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Abstract

This paper investigates formal logics for reasoning about determinacy and inde-
pendence. Propositional Dependence Logic D and Propositional Independence
Logic I are recently developed logical systems, based on team semantics, that
provide a framework for such reasoning tasks. We introduce two new logics LD

and L I , based on Kripke semantics, and propose them as alternatives for D and
I, respectively. We analyse the relative expressive powers of these four logics
and discuss the way these systems relate to natural language. We argue that
LD and L I naturally resolve a range of interpretational problems that arise in
D and I. We also obtain sound and complete axiomatizations for LD and L I .

1 Introduction

In this paper we investigate the notions of propositional determinacy and proposi-
tional independence. We begin with a brief overview of related concepts.

1.1 Dependence and independence: brief historical notes

Dependence and independence are abstract notions that have played an important
role in mathematics and the natural sciences since antiquity. Today the concepts are
omnipresent in virtually all fields of science. There exists a wide range of different
scientific notions of dependence, e.g., statistical correlation, the causal relationship,
and functional dependence. Likewise, the notion of independence has different mean-
ings in different contexts, e.g., probabilistic and linear independence in mathematics,
as well as political and behavioural independence in social vernacular.

An early formal logical analysis of dependence was proposed in [Gre39]1. De-
pendencies in relational databases have been studied since (at least) the pioneering

∗Visiting professorship
1Also available as a reprint in [SvE88].
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work of Codd in the early 1970’s. Of the many relevant references we only note
here Armstrong’s work ([Arm74]) which provides a set of axioms for the notion of
functional dependence in databases.

The concept of dependence has also appeared in various philosophical contexts
under various different names. From the point of view of the current article, the
notion of supervenience is perhaps the most important related concept. The paper
[MB14] describes supervenience formally as follows:

“A set of properties A supervenes upon another set B just in case no two things
can differ with respect to A-properties without also differing with respect to their B-
properties. In slogan form, ‘there cannot be an A-difference without a B-difference’.”

On the formal level, perhaps the closest in spirit to the present study regarding
dependence is Humberstone’s logical formalisation and study of supervenience as a
generalisation of logical consequence in, e.g., [Hum92, Hum93, Hum98]. Another
notion related to the current paper is the notion of contingency. Formal investiga-
tions of contingency can be found in, inter alia, [MR66], [Hum95, Hum02], as well
as [Piz07, Piz13]. For a recent study of the contingency operator in various modal
logics see [FWvD15].

We also mention two very recent and closely related papers written after the
appearance of the earlier version [GK16] of the present paper. The two papers have
at least partially been written as a response to [GK16]. The first one of them is
[Fan16] which develops a formal modal logic of supervenience and also addresses
some research questions raised in [GK16] and reiterated here in Section 8. The
other one is [Hum17] which explores, inter alia, connections between supervenience
and dependence and discusses in detail some aspects of [GK16].

In the context of logical semantics, the notion of independence has been inves-
tigated perhaps most prominently in Independence Friendly (IF) Logic originally
defined in [HS89]; see also [Hin96]. IF logic was first formulated in terms of game-
theoretic semantics, and no compositional semantics for that logic was originally
available. Later on, Hodges developed ([Hod97]) a compositional semantics for the
system, currently know as team semantics. The idea of team semantics, in turn,
lead to Väänänen’s development of Dependence Logic in [Vää07]. Dependence logic
sparked a renewed interest in logical formalisation and analysis of dependence and
initiated an active related research programme. For an overview of the work in that
direction, see [Kon13, GV14] and the references therein.

1.2 Propositional logics of dependence and independence based on

team semantics

Väänänen’s Dependence Logic extends classical first-order logic with dependence
atoms

D(x1, ..., xk; y)

with the intuitive meaning that the choice of an interpretation for y is functionally
determined by the choices of interpretations for x1, ..., xk in evaluation games based
on game-theoretic semantics. Since the introduction of dependence atoms, research
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on logics based on team semantics has flourished and several kinds of related logical
systems have been investigated.

A propositional modal variant of Dependence Logic, called Modal Dependence
Logic, was defined in [Vää08]. That logic extends the syntax of ordinary modal logic
with a new operator D and formulae D(p1, . . . , pk; q) with the intuitive interpretation
that the truth values of p1, . . . , pk determine the truth value of q. The propositional
fragment of Modal Dependence Logic extended with D gives rise to Propositional
Dependence Logic D. In the logic D, sets of propositional assignments are called
teams; recall that a propositional assignment is simply a function from a set of
atomic proposition symbols to the Boolean domain {0, 1}. Intuitively, a team can
be regarded as a set of possible worlds. A formula D(p; q) is then defined to be true
in a team W if and only if each pair of possible worlds w, u ∈ W that give the
same truth value to p, must also give the same value to q. The more complex atoms
D(p1, . . . , pk; q) are interpreted in a similar fashion: any pair of worlds in W that
agree on the truth values of p1, . . . , pk, must also agree on the value of q (see Section
2 for the formal definition.) The propositions p1, . . . , pk are said to determine q.

The notion of independence which we investigate in this paper originates from
Independence Logic defined in [GV13]. Analogously to Dependence Logic, Indepen-
dence Logic extends first-order logic by independence atoms

(x1, . . . , xi) I (y1,...,yj)(z1, . . . , zk),

with the intuitive meaning that for any fixed set of values for y1, . . . , yj , the possible
values for x1, . . . , xi are independent of the possible values for z1, . . . , zk. A proposi-
tional variant of Independence Logic, called Propositional Independence Logic (and
denoted here by I) has been investigated in the literature (in, e.g., [KMSV14],
[Yan14]), and it relates to Independence Logic the same way Propositional Depen-
dence Logic relates to Dependence Logic.

Dependence Logic and Independence Logic, together with the Inclusion Logic
of [Gal12], are currently the central logical systems studied in the framework of
team semantics. It is also worth noting here that Propositional Dependence Logic
is closely related to inquisitive logic [Cia09, CR11]. In particular, the system InqL
of inquisitive logic is a propositional team-based logic equi-expressive with D. For
investigations on the relations between inquisitive logic and D, see, e.g., [Yan14,
YV16, Cia16a, Cia16b].

1.3 The content and contributions of this paper

While many of the semantic choices underlying Propositional Dependence Logic D
are natural and justified, we will identify in this paper a range of issues that are prob-
lematic. One such issue is the interpretation of formulae that use combinations of
determinacy operators D and disjunctions ∨. We will argue that while team seman-
tics gives a sensible interpretation to formulae D(p1, ..., pk; q) as well as disjunctive
formulae ϕ ∨ ψ free of operators D, interpretations of certain simple formulae that
combine D and ∨ become strange from the point of view of natural language. We

3



also discuss similar issues related to the team semantics interpretation of negation
¬ (together with D).

Motivated by the interpretational problems of D, we develop here an alternative
natural logic of determinacy called Propositional Logic of Determinacy and denoted
by LD. The logics D and LD have essentially the same set of formulae,2 but the
semantic approaches differ. Instead of team semantics, the system LD is essentially
based on Kripke semantics. A formula D(ϕ1, ..., ϕk;ψ) is true3 in a possible world
w if the set R(w) of accessible alternatives of w satisfies the determinacy condition:
for all u, v ∈ R(w), if u and v agree on the truth values of each ϕi, they also
agree on the truth value of ψ. The Boolean connectives as well as proposition
symbols are interpreted in LD in the same way as in Kripke semantics, and thus LD

can be regarded as a modal logic with a generalized modality D that talks about
determinacy rather than possibility or necessity. Mainly in order to keep matters
technically simple in this initial work on LD, we assume the accessibility relation R
to be the universal relation, so the set of successors of any world w is in fact the
whole domain of the model. At the end of the paper we briefly discuss the general
case with other kinds of accessibility relations.

As an important part of our discourse on LD, we present a range or arguments
for the naturalness of LD in relation to natural language. In particular, we argue
that LD resolves reasonably well the interpretational problems that we identify for
D.

It turns out that Propositional Independence Logic I is burdened by virtually the
same issues as Propositional Dependence Logic D, and these issues can be remedied
by defining Propositional Logic of Independence L I analogously to LD but based on
the independence operator I rather than the dependence operator D.

In addition to introducing the logics LD and L I and discussing how they, as
well as D and I, relate to each other and to natural language, we also provide a
comparative analysis of the expressive powers of these four logics. We show that,
while D and I are both strictly contained in LD and L I , the latter two logics are
equally expressive. In fact, we establish in Sections 3 and 4 that LD and L I are
maximally expressive, or expressively complete, in a certain natural sense. Since it
is well known from the literature on team semantics that D is strictly contained in
I, we eventually obtain a complete classification of the relative expressive powers of
the four logics.

We also prove that while both D and I translate into both LD and L I , there
exists no compositional translation4 from either of the team-semantics-based logics
into LD or L I . Intuitively, this indicates that team semantics and the Kripke-style
semantics of LD and L I are substantially different logical frameworks, at least from
the technical point of view.

2Strictly speaking, LD has more formulae than D because of the typical syntactic restrictions
applied in D and team semantics in general. This issue is discussed in more detail in the sections
below.

3This truth definition was first suggested as an alternative to team semantics in [Kuu14] and its
later versions such as, e.g., [Kuu15].

4See Section 6.4 for the definition of compositional translations.
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In addition to studying expressivity issues, we provide sound and complete ax-
iomatizations for LD and L I . This turns out to be a relatively straightforward,
yet interesting exercise, due to certain close connections—to be identified below—
between LD, L I and Contingency Logic from [MR66]. Contingency Logic is the
variant of modal logic with a modality C, where Cϕ is interpreted to mean that ϕ
is non-contingent at the state of evaluation, i.e., has the same truth value at every
successor of that state. We also show that there do not exist finite axiomatisations
for LD and L I , assuming a standard notion of an axiomatic deduction system.

The structure of this paper is as follows. In Section 2 we provide the necessary
background for the rest of the paper, including definitions of the logics D and I
based on team semantics. In Sections 3 and 4 we define the logics LD and L I and
study their basic properties. Section 5 analyses the logics D, I, LD and L I in
relation to natural language. Section 6 investigates expressivity issues and Section
7 provides sound and complete axiomatizations for LD and L I . Section 8 briefly
discusses a range of future research directions and concludes the paper.

The agenda and main idea of the current paper, i.e., investigating dependence
logic with a Kripke-style semantics instead of team semantics, has been first men-
tioned and briefly motivated in [Kuu14] and its later incarnations such as, e.g.,
[Kuu15]. Similar ideas have subsequently been developed in [Cia16b]. The current
paper develops the ideas of [Kuu14] in detail, and furthermore, provides an extensive
collection of related technical results concerning the expressivity and axiomatizabil-
ity of LD and related systems.

Section 6.7.2 of [Cia16b] contains an explicit comparison of LD with a logic
InqB⇒ that employs a Kripke-style approach (with some extra machinery) to se-
mantics and thereby exhibits the same principle as LD that dependence statements
are modal statements. One of the main differences between InqB⇒ and LD is that
InqB⇒ contains an explicit machinery for questions and thereby allows semantically
elaborate assertions about, e.g., dependence. Dependence statements in LD are re-
lations between statements, while in InqB⇒, dependence statements are construed
as a relation between questions. See Sections 6.7.2 and 6.5 of [Cia16b] for further
details.

2 Preliminaries and background

2.1 Functional determinacy

Determinacy of a function by a set of functions is a central concept in this article.
We will define it here in the general setting, though will use it further only on
Boolean functions.

Definition 2.1. Let k ∈ Z+ be a positive integer and let X,X1, . . . ,Xk, U be
nonempty sets. Let f : U → X be function, and consider a family of functions

{fi : U → Xi | i = 1, . . . , k}.

Given a set W ⊆ U , we say that the function f is determined by the family of func-
tions {f1, . . . , fk} on W , or that the family {f1, . . . , fk} determines the function f
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on W , if there exists a function F : X1 × . . . ×Xk → X such that f is the compo-
sition of F and the functions f1, . . . , fk on W , that is, f(w) = F (f1(w), . . . , fk(w))
for every w ∈ W . We also fix this definition in the following special case: we say
that a function g : U → X is determined by ∅ on W ⊆ U if g is constant on W , i.e.,
g(w1) = g(w2) for all w1, w2 ∈W .

This definition generalises straightforwardly to determinacy of a function by any
family of functions {fi : U → Xi | i ∈ I} indexed with an arbitrary (possibly
infinite) set I.

Equivalently, f is determined by the (possibly empty) family {f1, . . . , fk} on W
if and only if the following condition holds.

Det: For every w1, w2 ∈ W , it holds that if fi(w1) = fi(w2) for each i = 1, . . . , k,
then f(w1) = f(w2).

Indeed, if f is the composition of a mapping F with f1, . . . , fk onW and fi(w1) =
fi(w2) for each i = 1, . . . , k, then F (f1(w1), . . . , fk(w1)) = F (f1(w2), . . . , fk(w2)),
i.e., f(w1) = f(w2). Conversely, if the condition Det holds, then we can define a
mapping F : X1 × . . .×Xk → X as follows:

F (x1, . . . , xk) =

{

f(w) if x1 = f1(w), . . . , xk = fk(w), for some w ∈W,

x otherwise (where x ∈ X is arbitrarily fixed).

The condition Det guarantees that this is well-defined.
We let DetW (f1, . . . , fk; f) denote the assertion that f is determined by the

family of functions {f1, . . . , fk} on W . When k = 0, we write DetW (∅ ; f).

2.2 Preliminaries concerning propositional logic

We typically denote formulae by ϕ,ψ, χ, θ, α, β and sets of formulae by Φ,Ψ. Through-
out the paper, we let PROP denote a fixed countably infinite set of proposition
symbols. All formulae considered in the paper will be assumed to be built over
PROP.

Let Φ = {ϕ1, . . . , ϕk} be a finite nonempty set of formulae. We define a set
DNF (Φ) as follows.

1. For each subset S ⊆ {1, . . . , k}, let ψS denote the conjunction ψ1 ∧ . . . ∧ ψk
such that

ψi =

{

ϕi if i ∈ S,

¬ϕi if i 6∈ S.

2. Let Conj (Φ) := {ψS | S ⊆ {1, . . . , k} }. The formulae in Conj (Φ) are called
types over Φ.

3. Define DNF (Φ) := {
∨

U | U ⊆ Conj (Φ)}.

We call the formulae in DNF (Φ) type normal form formulae over Φ.
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In the above definition,
∨

∅ is assumed to be the formula p∧¬p for some propo-
sition symbol p ∈ PROP . We will not assume that the logical constant symbols
⊤,⊥ are available as primitives in the languages we consider. However, we will use
these symbols as abbreviations for the formulae p∨¬p and p∧¬p, respectively. For
technical convenience, we define DNF (∅) := {⊤,⊥} and Conj (∅) := {⊤}, and thus
we let ⊤ be the unique type over ∅.

When we write a formula θ(q1, . . . , qk), we indicate that all the propositional
variables occurring in θ are amongst q1, . . . , qk. Given a formula θ = θ(q1, . . . , qk)
and a tuple of formulae ϕ1, . . . , ϕk, we denote by θ(ϕ1, . . . , ϕk) the result of a uniform
substitution of ϕ1, . . . , ϕk, respectively, for q1, . . . , qk in the formula θ.

Definition 2.2. Let L be a logic. A relation of equivalence ≡L between formulae
of L satisfies the equivalent replacements property (ER) (with respect to ≡L), if
for every L-formula θ(q1, . . . , qk) and all tuples of ϕ1, . . . , ϕk, ψ1, . . . , ψk such that
ϕi ≡L ψi for each i = 1, . . . , k, it holds that θ(ϕ1, . . . , ϕk) ≡L θ(ψ1, . . . , ψk).

2.3 State description models

Recall that PROP denotes a fixed countably infinite set of proposition symbols. An
assignment for PROP is any mapping f : PROP → {0, 1}. Following Carnap, we
occasionally call assignments also state descriptions.

Any (possibly empty) setW of state descriptions will be called a state description
model (or SD-model). The reason we include the empty model in the picture is
technical and related to the the fact that we will deal, inter alia, with logics based
on team semantics. In team semantics, as we will see, the empty team plays an
important role.

Especially in the more technical parts of the paper, we often talk about points
or worlds of W rather than assignments or state descriptions.

2.4 Universal modality

In this paper we use a variant LU of the modal logic with the universal modality
from [GP92]. Formally, the syntax of the logic LU is given by the grammar

ϕ ::= p | ¬ϕ | (ϕ→ ϕ) | [U]ϕ,

where p ∈ PROP . We define 〈U〉 to be the dual of [U], i.e., 〈U〉ϕ := ¬[U]¬ϕ.
The semantics of LU is defined with respect to SD-models W and assignments

w ∈W as follows.

W,w |=U p iff w(p) = 1
W,w |=U ¬ϕ iff W,w 6|=U ϕ

W,w |=U ϕ→ ψ iff W,w 6|=U ϕ or W,w |=U ψ

W,w |=U [U]ϕ iff W,u |=U ϕ for all u ∈W

Thus, W,w |=U 〈U〉ϕ iff W,u |=U ϕ for some u ∈W .
As customary in modal logic, we define W |=U ϕ iff W,w |=U ϕ for all w ∈ W .

We also define, in the standard way, that |=U ϕ iff W |=U ϕ for all SD-models W .
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2.5 Propositional Dependence Logic D

We now define Propositional Dependence Logic D, which first appeared in the litera-
ture on team semantics as a syntactic fragment of Modal Dependence Logic, defined
in [Vää08]. The paper [Vää08] did not make explicit references to D, and the se-
mantics for Modal Dependence Logic—including its propositional fragment—was
formulated in [Vää08] in terms of Kripke models rather than SD-models.

Propositional Dependence Logic, with that explicit name, and variants of the
logic have recently been studied in, e.g., [HLSV14, HKMV15, Yan14, YV16]. The
models for Propositional Dependence Logic are currently typically defined in the lit-
erature as SD-models where the set of proposition symbols in consideration is finite;
thus the related SD-models are sets of finite state descriptions, i.e., finite assign-
ments. For most purposes, it makes little difference whether SD-models with finite
or infinite sets of proposition symbols are used. Similarly, it is mostly unimportant
whether the models under consideration are Kripke models or SD-models. Such
distinctions could, however, become more important in extensions and variants of
the logics considered in this paper.

The syntax of Propositional Dependence Logic D is given by the following gram-
mar (cf. [Vää08]),

ϕ ::= p | ¬p | D(p1, . . . , pk; q) | ¬D(p1, . . . , pk; q) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ)

where p, q, p1, . . . , pk ∈ PROP and k ∈ N. When considering formulae D(p1, . . . , pk; q)
where k = 0, we write5 Cϕ instead of D(; q) or D(ǫ ; q), where ǫ denotes the empty
sequence of proposition symbols.

We let FOR(D) denote the set of formulae of D. Note that formulae of D are in
negation normal form, and the operator D takes as inputs only proposition symbols.

LetW be a state description model. The semantics of Propositional Dependence
Logic D, to be defined below, is based on team semantics6, given by the following
clauses (cf. [Vää08, YV16]).

W 
D p iff w(p) = 1 for all w ∈W

W 
D ¬p iff w(p) = 0 for all w ∈W

W 
D D(p1, . . . , pk; q) iff for all u, v ∈W, if u(pi) = v(pi)
holds for all i ≤ k, then u(q) = v(q)

W 
D ¬D(p1, . . . , pk; q) iff W = ∅
W 
D ϕ ∧ ψ iff W 
D ϕ and W 
D ψ

W 
D ϕ ∨ ψ iff U 
D ϕ and V 
D ψ for some U, V ⊆W

such that U ∪ V =W

5Here C stands for ‘constancy’ but, as Humberstone has noted, it might be confused with
‘contingency’ which is, in fact, its opposite.

6 Throughout this paper, the turnstile 
 is reserved for logics based on team semantics and the
turnstile |= for logics with a Kripke-style semantics. The reader is warned that we often use different
turnstiles when comparing different logics, and the related change of turnstile may sometimes be
difficult to spot at first.
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We observe that W 
 Cp iff v(p) = u(p) for all u, v ∈W , i.e., the truth value of
p is constant in W .

The rationale for the truth condition of ¬D(p1, . . . , pk; q), as stated in [Vää07,
p.24] and reiterated in [LV13], is as follows. Suppose we wish to maintain the
same duality between D(p1, . . . , pk; q) and ¬D(p1, . . . , pk; q) as the one that holds
for the truth conditions for p and ¬p. We then end up with the definition that
W 
D ¬D(p1, . . . , pk; q) iff for all u, v ∈W ,

u(p1) = v(p1) ∧ . . . ∧ u(pk) = v(pk) ∧ u(q) 6= v(q),

where the expression above is obtained by negating the condition provided in the
truth definition of D(p1, . . . , pk; q) after the universal quantification of u and v.7 We
then observe that according to the obtained definition, W 
D ¬D(p1, . . . , pk; q) iff
W = ∅.

Another possible rationale for the truth definition of formulas ¬D(p1, . . . , pk; q)
can be obtained via an algebraic interpretation of formulae, as given in [Roe13]. Here
formulae are associated with non-empty and downwards closed sets of SD-models.
Such sets correspond to possible meanings of formulae. This approach leads to a
Heyting algebra. Negation is interpreted as the pseudo-complement operation, and
for the formula ¬D(p1, . . . , pn; q) this gives an interpretation that is equivalent to the
clause given above, i.e., ¬D(p1, . . . , pn; q) is satisfied by an SD-model W iff W = ∅.
See [Roe13] for further details.

While team semantics may seem strange at first, the following proposition jus-
tifies its naturalness with respect to propositional logic, i.e., the sublanguage of D
without formulae of the type D(p1, . . . , pk; q) and ¬D(p1, . . . , pk; q). Recall that the
turnstile |=U refers to LU .

Proposition 2.3. Let ϕ be a formula of propositional logic in negation normal form.
Then W 
D ϕ iff W,w |=U ϕ for all w ∈W . In other words, W 
D ϕ iff W |=U ϕ.

This proposition shows that team semantics simply lifts the semantics of propo-
sitional logic (in negation normal form) from the level of individual assignments
onto the level of sets of assignments. Thus, team semantics can be used in scenarios
where assertions (encoded by formulae of propositional logic) are made about sets
of possible worlds, and the intention of the assertions is to claim that any world in
the set satisfies the formula. We will consider examples of such scenarios in Section
5, where we discuss the relation between natural language and the logic D.

2.6 Propositional Independence Logic I

We next present Propositional Independence Logic I which was conceived as a
fragment of Modal Independence Logic in [KMSV14] and studied further in, e.g.,

7In other words, if we abbreviate the truth condition for p by ∀w ∈ W : Ψ and the truth
condition for D(p1, . . . , pk; q) by ∀u, v ∈ W : Ψ′, then the truth condition for ¬p is ∀w ∈ W : ¬Ψ
and thus we define the condition for ¬D(p1, . . . , pk; q) to be ∀u, v ∈ W : ¬Ψ′. How natural this
choice is exactly, is a question that calls for further analysis. We will briefly discuss issues related
to this matter in Section 5.
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[HKVV15]. Propositional Independence Logic relates to Independence Logic of
[GV13] in the same way D relates to Väänänen’s Dependence Logic. There are,
of course, different kinds of notions of (propositional) independence, and the logic I
provides a formal approach to a particular such notion. The logic is similar in spirit
to D, being based on team semantics.

The syntax of I is given by the following grammar.

ϕ ::= p | ¬p | (p1, . . . , pk) I (r1,...,rm)(q1, . . . , qn) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ)

where p and each of the symbols pi, ri, qi are proposition symbols in PROP. We
denote by FOR(I) the set of formulae of I. The numbers k and n are positive
integers and m a non-negative integer. When m = 0, the formula

(p1, . . . , pk) I (r1,...,rm)(q1, . . . , qn)

is written (p1, . . . , pk) I (q1, . . . , qn). Also, when any of the three tuples of propo-
sition symbols in the formula (p1, . . . , pk) I (r1,...,rm)(q1, . . . , qn) contains exactly one
formula, the brackets around the tuple are usually left out, as for example in the
formula p I r q.

Notice that, in line with the definition of I in [KMSV14, HKVV15], negation
and I can only be applied to propositional symbols. In particular, formulae

(p1, . . . , pk) I (r1,...,rm)(q1, . . . , qn)

may not occur negated. The same convention applies to independence atoms in
Independence Logic [GV13].

The semantics of I is defined with respect to SD-models. Intuitively, the formula

(p1, . . . , pk) I (r1,...,rm)(q1, . . . , qn)

asserts that when the truth values of the proposition symbols r1, . . . , rm are fixed,
then the tuples of truth values of (p1, . . . , pk) and (q1, . . . , qn) are informationally
independent in a way explained further after the formal truth definition of I.

We use 
I as the semantic turnstile of I. The formal semantic clauses of I for
propositional literals and Boolean connectives are exactly the same as those for the
logic D, while the semantics of the formulae

(p1, . . . , pk) I (r1,...,rm)(q1, . . . , qn)

is defined as follows. Let W be a state description model. We define

W 
I (p1, . . . , pk) I (r1,...,rm)(q1, . . . , qn)

iff for all w1, w2 ∈ W that agree on r1, . . . , rm (i.e., are such that w1(ri) = w2(ri)
for each i ∈ {1, . . . ,m}), there exists some v ∈W such that

(

∧

i≤m

v(ri) = w1(ri) ∧
∧

i≤k

v(pi) = w1(pi) ∧
∧

i≤n

v(qi) = w2(qi)
)

.
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Thus, the formula (p1, . . . , pk) I (r1,...,rm)(q1, . . . , qn) asserts that for every tuple
(b1, . . . , bm) of truth values for the propositions r1, . . . , rm, if we restrict attention to
the set S of those assignments in W that assign the values b1, . . . , bm to r1, . . . , rm,
then the following condition holds: the tuples of truth values for (p1, . . . , pk) and
(q1, . . . , qn) are informationally independent of each other on S in the sense that for
every two assignments w1, w2 ∈ S, there is an assignment v ∈ S that combines w1

restricted to (p1, . . . , pk) with w2 restricted to (q1, . . . , qn).
It is worth noting that, intuitively, the formula p I q can be interpreted to state

that nothing new can be concluded about the truth value of p in a possible world w
by finding out the truth value of q in w (and vice versa): an agent who fully knows
the model W but has no idea which w ∈ W is the actual world, cannot conclude
anything new about the truth value of q in the actual world by learning the truth
value of p in that world.

This interpretation explains the initially perhaps counterintuitive fact that the
formula p I p is satisfiable even in nonempty models: W 
I p I p holds iff p is
constant in W , i.e., if every assignment in W gives the same truth value to p.
Indeed, p being constant means exactly that nothing new can be concluded about
the truth value p in the actual world by learning the truth value of p in the actual
world. If p was not constant, the truth value of p in the actual world would obviously
reveal new information.

It is worth pointing out here that in the semantics of D and I, there is no explicit
actual world present. Next we will consider the logics LD and L I whose semantics
are given in a way similar to Kripke semantics in terms of pairs (W,w), where W
is a SD-model and w ∈ W an assignment which can be taken to correspond to an
appointed actual world.

3 Propositional logic of determinacy LD

We now introduce a new logic which extends propositional logic PL with depen-
dence formulae D(ϕ1, . . . , ϕk;ψ), where ϕ1, . . . , ϕk, ψ are arbitrary formulae in the
language. We call this logic Propositional Logic of Determinacy and denote it by
LD.

Recall that PROP denotes a fixed countably infinite set of proposition symbols.
The formulae of LD over PROP are defined by the following grammar.

ϕ ::= p | ¬ϕ | (ϕ→ ϕ) | D(ϕ, . . . , ϕ ;ϕ)

where p ∈ PROP, and where the tuple (ϕ, . . . , ϕ ;ϕ) contains k+1 formulae for any
k ∈ N. We consider the Boolean connectives ∧,∨,↔ as abreviations in the usual
way. When k = 0, we write Cϕ instead of D(ǫ;ϕ), where ǫ is the empty sequence
of formulae. We let FOR(LD) denote the set of formulae of LD. Notice indeed that
each of the operators ¬,→,D can be freely used in the language of LD; no syntactic
restrictions apply.

Intuitively, D(ϕ1, . . . , ϕk;ψ) means that the truth value of ϕ is determined by
the set of truth values of the formulae ϕ1, . . . , ϕk on the SD-model in consideration.
In particular, Cϕ means that the truth value of ϕ is constant in the model.
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We define truth of an LD-formula ϕ at a state description w in an SD-model W ,
denoted8 W,w |=D ϕ, inductively on the structure of formulae as follows.

W,w |=D p iff w(p) = 1
W,w |=D ¬ϕ iff W,w 6|=D ϕ

W,w |=D ϕ→ ψ iff W,w 6|=D ϕ or W,w |=D ψ

W,w |=D D(ϕ1, . . . , ϕk;ψ) iff for all u, v ∈W, if the equivalence
(W,u |=D ϕi ⇔W,v |=D ϕi) holds for
all i ≤ k, then (W,u |=D ψ ⇔ W,v |=D ψ)

When an SD-model W is fixed, the assignments w ∈ W can be extended to
truth assignments w∗ : FOR(LD) → {0, 1} in the natural way. The same, of course,
applies to LU .

Note that the truth definition of D(ϕ1, . . . , ϕk;ϕ) extends the semantics of D in
the logic D and does not here depend on the current state description w but only on
the entire SD-model W . In particular, the semantics of C is as follows: W,w |= Cϕ

iff for all u, v ∈W , we have that W,u |= ϕ iff W,v |= ϕ. In other words, W,w |= Cϕ

iff the truth value of ϕ is constant in the model.
Let us rephrase the semantic definition of D above in terms of explicit functional

dependence. Every formula ϕ ∈ FOR(LD) determines the function tWϕ :W → {0, 1}

such that tWϕ (w) := w∗(ϕ). Now we have W,w |= D(ϕ1, . . . , ϕn;ϕ) if and only if tWϕ
is determined by tWϕ1

, . . . , tWϕn
on W in the sense of Definition 2.1, i.e.,

W,w |= D(ϕ1, . . . , ϕn ; ϕ) iff DetW (tWϕ1
, . . . , tWϕn

; tWϕ ).

The semantics of LD is similar to Kripke semantics (in the case where the ac-
cessibility relation of a model W is the universal relation W ×W ). Therefore it is
natural to define for LD the notions of validity and satisfiability analogously to the
corresponding definitions in modal logic:

Definition 3.1. Let ϕ ∈ FOR(LD).

1. ϕ is valid in an SD-model W if W,w |= ϕ for every w ∈W . We write W |= ϕ

if ϕ is valid in W .

2. ϕ is valid (or SD-valid), if W |= ϕ for every SD-model W . We write |= ϕ if ϕ
is valid.

3. ϕ is satisfiable if W,w |= ϕ for some SD-model W 6= ∅ and some w ∈W .

The following definition is analogous to the definition of local equivalence in
modal logic:

Definition 3.2. Let ϕ and ψ be formulae of LD. We write ϕ ≡LD
ψ if the equiv-

alence W,w |= ϕ ⇔ W,w |= ψ holds for all SD-models W and all w ∈ W . We will
often omit the subscript LD when no confusion arises.

8We sometimes write W,w |=LD
ϕ instead or even simply W,w |= ϕ.

12



We note that validity in an SD-model can be expressed locally in LD in the sense
that for all assignments w ∈W , we have W |= ϕ iff W,w |= ϕ∧Cϕ. If we know that
W 6= ∅, then W |= ϕ iff W,w |= ϕ∧Cϕ for some w ∈W . Thus ϕ∧Cϕ plays the role
of the universal modality. Hence we define the notation [u]ϕ := ϕ ∧ Cϕ as well as
〈u〉ϕ := ¬[u]¬ϕ (which can easily be seen to be equivalent to ϕ ∨ ¬Cϕ). Note that
[u]ϕ and 〈u〉ϕ are simply abbreviations of formulae of LD, they are not formulae of
LU . (The box and diamond operators in LU are denoted by [U] and 〈U〉 instead of
[u] and 〈u〉.)

In turn, D is expressible in terms of [u] in the following sense:

Proposition 3.3.

D(ϕ1, . . . , ϕk;ψ) ≡
∨

χ∈DNF (ϕ1,...,ϕk)

[u](χ ↔ ψ).

Proof. Let us denote the formula on the right hand side by ∆(ϕ1, . . . , ϕk;ψ). Con-
sider any SD-model W . Define JψKW := {w ∈W | W,w |= ψ}. For each w ∈W , let
χw be the unique type over {ϕ1, . . . , ϕk} which is true at w; in the case k = 0, let
χw := ⊤. Define

χ(W,ψ) :=
∨

{χw | w ∈ JψKW}.

Now, suppose W,w |= D(ϕ1, . . . , ϕk;ψ). We claim that W,w |= [u](χ(W,ψ) ↔ ψ).
Indeed, take any v ∈ W . If W,v |= ψ, then v ∈ JψKW and W,v |= χv by definition,
whence W,v |= χ(W,ψ). Conversely, suppose W,v |= χ(W,ψ). Then W,v |= χu for
some u ∈ JψKW . Therefore W,u |= ψ and χv = χu, i.e., for each i = 1, . . . , k, we
have that W,u |= ϕi iff W,v |= ϕi. Since W,w |= D(ϕ1, . . . , ϕk;ψ), we thus have
W,u |= ψ iff W,v |= ψ. Therefore we infer that W,v |= ψ. Thus W,v |= χ(W,ψ) ↔ ψ

for every v ∈W . Hence W,w |= [u](χ(W,ψ) ↔ ψ), so W,w |= ∆(ϕ1, . . . , ϕk;ψ).
Conversely, suppose W,w |= ∆(ϕ1, . . . , ϕk;ψ). Thus W,w |= [u](χ ↔ ψ) for

some formula χ ∈ DNF (ϕ1, . . . , ϕk). Suppose u, v ∈W are such that W,u |= ϕi iff
W,v |= ϕi for each i = 1, . . . , k. Then W,u |= χ iff W,v |= χ, whence W,u |= ψ iff
W,v |= ψ because W,u |= χ ↔ ψ and W,v |= χ ↔ ψ. Thus we have proved that
W,w |= D(ϕ1, . . . , ϕk;ψ).

Proposition 3.3 establishes that the operator D is definable in terms of [u]. As a
particular case of this definability, we obtain that Cψ ≡ [u]ψ ∨ [u]¬ψ. Since D and
[u] are interdefinable, it follows that the logics LD and LU are clearly equiexpressive:
we can translate LD into LU by making use of Proposition 3.3, and, on the other
hand, we can translate LU into LD with the help of our earlier observation that the
formula ϕ∧Cϕ simulates the universal modality. Below we will make significant use
of this interdefinability of the operators D and [u].

The above results suggest obvious equivalence-preserving translations between
LD and LU . However, while this connection between LD and LU is interesting and
useful, the primary aim of this paper is to study the notion of determinacy and the
operator D taken as a primitive. Indeed, one of our principal objectives is to compare
Propositional Dependence Logic D and the new logic LD and investigate how well
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they can be used in order to formalise statements about propositional determinacy
and how well the two logics relate to natural language. The interdefinability of
LD and LU can thus be regarded as an interesting fact that nevertheless will play
mainly a technical role in this paper. Furthermore, neither of the above mentioned
translations is polynomial, and in the more general framework of Kripke semantics
(see Section 8.2 below) it is not always possible to define the box modality � in
terms of the determinacy operator D. We leave investigations of that more general
framework for the future.

The following is a straightforward observation about LD which we will use later
on.

Lemma 3.4. The logic LD satisfies the equivalent replacement property ER with
respect to the equivalence given in Definition 3.2.

We say that a class C of SD-models is definable in LD (resp., in LU ), if there
exists a formula ϕ of LD (resp., of LU ) such that W |= ϕ iff W ∈ C.

Let w : PROP → {0, 1} be an assignment function, and let Φ ⊆ PROP. We let
w|Φ denote the restriction of w to Φ, i.e., the function f : Φ → {0, 1} defined so that
f(p) = w(p) for all p ∈ Φ. We define W |Φ := {w|Φ | w ∈W }.

Definition 3.5. Two SD-models W1 and W2 are Φ-equivalent, denoted W1 ≡Φ W2,
if W1|Φ =W2|Φ.

Definition 3.6. A class of SD-models C is closed under finite propositional equiva-
lence, if the following conditions hold.

1. ∅ ∈ C.

2. There exists a finite set Φ ⊆ PROP such that for all nonempty SD-models W1

and W2, if W1 ∈ C and W1 ≡Φ W2, then W2 ∈ C.

The first condition above has been included for technical convenience. Note that
the empty model satisfies every formula of LU and LD.

Proposition 3.7. A class of SD-models is definable in LU iff it is closed under
finite propositional equivalence.

Proof. Suppose a class of SD-models C is definable in LU by some formula ϕ and
let Φ ⊆ PROP be the set of proposition symbols that occur in ϕ. Then for all
SD-models W1 and W2, if W1 ∈ C and W1 ≡Φ W2, then W1 |= ϕ and thus W2 |= ϕ,
whence W2 ∈ C. Thus C is closed under finite propositional equivalence.

Now, suppose C is closed under finite propositional equivalence and let Φ ⊆
PROP be a finite set such that for all nonempty SD-models W1 and W2, if W1 ∈ C
andW1 ≡Φ W2, thenW2 ∈ C. Define a characteristic formula ϕW of a modelW 6= ∅
as follows. For each w ∈ W , let χw be the unique propositional type in Conj (Φ)
such that W,w |= χw. Define

ϕW :=
(

∧

w∈W

〈u〉χw
)

∧ [u]
(

∨

w∈W

χw
)

,
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which of course can be regarded as a finite formula since we can eliminate repeated
conjuncts and disjuncts.

Let
∆(Φ, C) :=

∨

W ∈ C\{∅}

ϕW ,

which again can be regarded as a finite formula.
Then C is defined by ∆(Φ, C). Indeed, ∆(Φ, C) is true in every model W ∈ C.

Conversely, every SD-model U 6= ∅ satisfying ∆(Φ, C) satisfies some disjunct, i.e.,
some characteristic formula ϕW of some model W ∈ C \ {∅}, because the truth
value of each disjunct of ∆(Φ, C) is constant across the worlds of a given SD-model.
Clearly U ≡Φ W , whence we have U ∈ C.

Consequently, we obtain a characterisation of the expressive power of LD:

Corollary 3.8. A class of SD-models is definable in LD iff it is closed under finite
propositional equivalence.

Let Φ 6= ∅ be a finite subset of PROP . Let C denote the set of all SD-models
in restriction to Φ, i.e., the set {W |Φ | W is an SD-model }. We call C the set of
Φ-models and denote it by M(Φ). Let S ⊆ M(Φ). We say that S is definable in
LU (LD) in restriction to M(Φ), if there is a formula ϕ of LU (LD) Such that for all
W ∈ M(Φ), we have W |= ϕ iff W ∈ S.

Proposition 3.9. LU and LD are expressively complete in the sense that for any
finite nonempty Φ ⊆ PROP and any S ⊆ M(Φ) with ∅ ∈ S, the set S is definable
in restriction to M(Φ) in both LU and LD.

Proof. The claim for LU is established by an argument that is almost identical to
the proof of Proposition 3.7. The claim for LD then follows by the equiexpressivity
of the logics LD and LU .

4 Propositional Logic of Independence L I

We have defined the logic of LD as an extension of propositional logic PL with
the operator D. Next we introduce Propositional Logic of Independence L I which
extends PL in a similar way, but now with the operator I instead of D. The logic
L I relates to Propositional Independence Logic I analogously to the way LD relates
to Propositional Dependence Logic D.

The language of Propositional Logic of Independence L I is given by the following
grammar.

ϕ ::= p | ¬ϕ | (ϕ→ ϕ) | (ϕ, . . . , ϕ) I (ϕ,...,ϕ)(ϕ, . . . , ϕ),

where p ∈ PROP, and each of the three tuples (ϕ, . . . , ϕ) in the expression

(ϕ, . . . , ϕ) I (ϕ,...,ϕ)(ϕ, . . . , ϕ)

is a finite tuple of formulae; the tuples in the same expression may be of different
lengths, but only the tuple in the subscript may possibly be empty. Instead of
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writing (ϕ, . . . , ϕ) I ∅ (ϕ, . . . , ϕ), we simply write (ϕ, . . . , ϕ) I (ϕ, . . . , ϕ). As in LD,
we consider the Boolean connectives ∧,∨,↔ definable as usual. Sometimes we leave
out brackets of formulae of L I , following the convention that the operator I has
a higher priority than all binary connectives, while negation has a higher priority
than all other operators (including I ). We let FOR(L I ) denote the set of formulae
of L I .

The semantics of L I is similar to that of LD and also defined with respect to SD-
models W and assignments w ∈ W . Propositional symbols and Boolean operators
are interpreted exactly as in LD. To define the semantics for I , recall that in
an SD-model W and for a logic with a Kripke-style semantics, each w ∈ W can
be extended to a truth function w∗ from the set of formulae to {0, 1} such that
w∗(ϕ) = 1 iff W,w |= ϕ. The truth definition of the operator I extends the one in
the logic I as follows. We define W,w |=L I

(ϕ1, . . . , ϕk) I (θ1,...,θm)(ψ1, . . . , ψn) iff for
all w1, w2 ∈ W that agree on θ1, . . . , θm (i.e., are such that w∗

1(θi) = w∗
2(θi) for all

i ∈ {1, . . . ,m}), there exists some v ∈W such that

(

∧

i≤m

v∗(θi) = w∗
1(θi) ∧

∧

i≤k

v∗(ϕi) = w∗
1(ϕi) ∧

∧

i≤n

v∗(ψi) = w∗
2(ψi)

)

.

Thus the operator I of L I extends I of I so that in L I the operator can be
applied to all formulae, not only proposition symbols. Note that the semantics of I

(which we defined with respect to the model W and world w ∈W ) does not directly
depend on the world w but is global in the model.

Analogously to the conventions fixed in Definition 3.1 for LD, we say that a
formula ϕ of L I is valid in a model W (denoted W |=L I

ϕ), if ϕ is true in every
world of W , and that ϕ is valid (denoted |=L I

ϕ) if W |=L I
ϕ for every model W .

Two formulae ϕ and ψ of L I are equivalent, denoted ϕ ≡L I
ψ, if the equivalence

W,w |=L I
ϕ⇔ W,w |=L I

ψ holds for all models W and all w ∈W .
The following two lemmas are straightforward to prove. For Lemma 4.2, recall

the definition of Φ-equivalence of SD-models from Definition 3.5.

Lemma 4.1. The logic L I satisfies the equivalent replacements property ER with
respect to ≡L I

.

Lemma 4.2. Let ϕ be a formula of LD or L I . Let Φ be the set of proposition
symbols occurring in ϕ. For nonempty models W and U and points w ∈ W and
u ∈ U , if W ≡Φ U , then we have W,w |= ϕ iff U, u |= ϕ.

Since both logics LD and L I are interpreted with respect to SD-models W and
assignments w ∈ W , it is easy to compare them. We define the following simple
translation t from LD into L I :

1. t(p) := p for p ∈ PROP

2. t(¬ϕ) := ¬t(ϕ)

3. t(ϕ→ ψ) := t(ϕ) → t(ψ)

4. t(D(ϕ1, . . . , ϕk ; ψ)) := t(ψ) I (t(ϕ1),...,t(ϕk)) t(ψ).
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In particular, we have t(Cψ) := t(ψ) I t(ψ). (Recall our discussion in Section 2.6
concerning formulae of the type p I p.)

Now we make some simple but interesting observations.

Proposition 4.3. LD embeds into L I and D embeds into I, in the following sense.

1. For each formula ϕ of LD, there exists a formula ψ of L I equivalent to ϕ, i.e.,
such that W,w |= ϕ iff W,w |= ψ for all W and all w ∈W .

2. For each formula ϕ of D, there exists a formula ψ of I equivalent to ϕ, i.e.,
such that W 
 ϕ iff W 
 ψ for all W .

Proof. The proof of the first claim is straightforward, using the translation t defined
above. The second claim is also straightforward, based on the obvious variant t′ of
the translation t that keeps proposition symbols and Boolean connectives the same
and translates D(p1, . . . , pk ; q) to q I (p1,...,pk) q.

We note that the translation from D into I mentioned in the above proof is well
known from the literature on team semantics.

We define [u′]ϕ to be an abbreviation for the formula ϕ ∧ ϕ Iϕ of L I , and we
let 〈u′〉ϕ denote ¬[u′]¬ϕ. Note that [u′] corresponds to the universal modality in an
obvious way. To see how the independence operator I can be expressed in terms of
〈u′〉, consider a formula (ϕ1, ..., ϕk) I (θ1,...,θm)(ψ1, ..., ψn) of L I . Recall the notation
Conj (Φ) from Section 2.2, including also the special case for Φ = ∅ which stipulates
that Conj (∅) = {⊤}. Define

B := Conj ({ϕ1, . . . , ϕk})× Conj ({θ1, . . . , θm})× Conj ({ψ1, . . . , ψn}).

Proposition 4.4.

(ϕ1, ..., ϕk) I (θ1,...,θm)(ψ1, ..., ψn)

≡L I

∧

(ϕ,θ,ψ)∈B

(

(

〈u′〉(θ ∧ ϕ) ∧ 〈u′〉(θ ∧ ψ)
)

→ 〈u′〉(θ ∧ ϕ ∧ ψ)
)

.

Proof. It is easy to see that the bottom formula describes the semantics of the
operator I in terms of 〈u′〉 in a rather direct way.

We will complete the expressivity analysis of the logics LD, L I , D, and I in
Section 6.

5 Natural language and logics of determinacy and in-

dependence

In this section we interpret the logics D and LD in relation to natural language and
compare their respective properties. We will not discuss I explicitly here, but since
I is technically quite similar to D, many of the observations below concerning D
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apply to I as well. Here we take W 
 ϕ (respectively, W |= ψ) to mean that a
sensible agent who considers W to be the set of all possible scenarios, considers ϕ
(resp., ψ) to hold. This kind of reading of SD-models as information states is in line
with the the intuitions of modal logic and also inquisitive logic.

The principal argument of the section is that LD is—at least in some important
respects—a better match than propositional dependence logic D with natural lan-
guage intuitions concerning statements about logical determinacy. It is sufficient
for our purposes to consider formulae with only the connectives ¬ and ∨ together
with determinacy assertions of the type D(p; q). We make the assumption that the
desirable natural language counterparts of ¬ and ∨ should always be “it is not the
case that” and “or,” respectively. Formulae D(p; q) should correspond to assertions
stating that “whether P holds, determines whether Q holds.” Here P and Q denote
suitable natural language interpretations of p and q. A different kind of analysis
would arise if, for example, ¬ was to be read as “it is never the case that” or “it is
impossible that.”

Our argument will proceed as follows. We first argue that the semantics of
formulae of the type p ∨ q is a good match with natural language intuitions in
both logics LD and D. We then turn to examples concerning formulae of the type
D(p; q), and again argue that the semantics of both logics is reasonable. (In this
context we also briefly discuss more complex formulae of the type D(p, q; r), but
this is not crucial from the point of view of our discussion.) We then argue that,
despite both p ∨ q and D(p; q) having a reasonable semantics in D, formulae of the
type D(p; q) ∨ D(p′; q′), which combine ∨ and D, are problematic. In fact, we show
this even for the formula D(p; q) ∨ D(p; q), where both disjuncts are the same. We
then continue by arguing that LD, in turn, gives natural interpretations for these
problematic examples. Finally, we briefly discuss formulae of the type ¬D(p; q).

As we saw in the previous section (cf. Proposition 2.3), team semantics is simply
classical semantics lifted to the level of sets: if ϕ is a formula of propositional logic
PL, then, in the setting of team semantics, W 
 ϕ simply means that each world in
W satisifies ϕ. Even the semantics of disjunction ∨, which may appear strange at
first, makes perfect sense from that perspective. Let us consider an example where
team semantics seems to give a correct interpretation (from the natural language
perspective) to the disjunctive formula p ∨ q.

Consider the following propositions.

• “The patient has an ear infection”, encoded by p.

• “The patient has high blood pressure”, encoded by q.

Assume a set W = {w1, w2, w3} of possible scenarios has been identified by a clini-
cian after inspecting a patient with vertigo, where

w1(p) = 1, w1(q) = 0; w2(p) = 0, w1(q) = 1; w3(p) = 1, w3(q) = 1.

The set W = {w1, w2, w3} is assumed here to be the set of exactly all scenarios
which the clinician considers possible. The clinician has informed the patient about
his situation, so the patient also considers W to be the set of all possible scenarios.
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To summarize the discussion with the patient, and to repeat what the situation is,
the clinician then states to the patient:

“So, you have an ear infection or high blood pressure.”

The clinician seems to be asserting that “W 
 p ∨ q,” i.e., that the set W of all
possible scenarios splits into worlds that satisfy p and worlds that satisfy q. Thus
team semantics works correctly here. The interpretation “W 
 p or W 
 q” has a
different meaning, which is false in this case.

In this example, the assertion p ∨ q was made about the set W of possible
states of affairs, i.e., sets of assignments. Since team semantics is based on sets
of assignments (rather than individual assignments), it is a natural framework for
interpreting determinacy atoms D(p1, . . . , pk; q). We next give natural language
examples that should convince the reader that the semantics of the operator D given
by D is a good match with intuitions concerning statements about propositional
determinacy.

Consider now a scenario with two containers of water in two laboratory ovens.
Fix the following propositions.

• “The temperature is over 100◦ Celsius”, denoted by p.

• “The water is boiling”, denoted by q.

Assume the setting is encoded by the set W = {w1, w2}, with one possible world
for each container, such that w1 = {p, q} and w2 = ∅. By w1 = {p, q} we of course
mean that w1(p) = 1 and w1(q) = 1, and analogously, w2 = ∅ means that w2(p) = 0
and w2(q) = 0.

Consider the following assertion:

“Whether the temperature is over 100◦ Celsius
determines whether the water is boiling.”

It is natural to interpret the assertion to mean thatW 
 D(p; q). Thus the semantics
of D seems to work fine here. For another example, extend the above setting with
a third oven w3 with a water container and a new proposition r which asserts that
the air pressure in the oven is over 1 bar. Let W = {w1, w2, w3}, where

• w1 = {p, q}

• w2 = ∅

• w3 = {p, r}

This time the temperature being over 100◦ Celsius does not determine whether the
water is boiling, i.e., W 6
 D(p; q), because both w1 and w3 satisfy p, but the two
worlds disagree on the truth value of q. However, we do have that W 
 D(p, r; q).
By adding yet another world w4 = {p, q, r} encoding a fourth oven, we end up with
a laboratory where W 6
 D(p, r; q).

19



A scenario where D(p, r; q) seems to hold universally, i.e., in every correctly
designed set W of possible worlds, can be obtained for example by considering a
setting where each world is associated with a balance scale and two equally heavy
weights. Let p encode the assertion that exactly one weight has been placed on the
left tray of the balance scale, and r the corresponding assertion concerning the right
tray; q is the assertion that the scale is in balance. Now, indeed, D(p, r; q) holds for
any collection of physically possible worlds, with q being true exactly when either p
and r are both true or when they are both false.

We have seen that team semantics works fine on simple disjunctive formulae
p ∨ q and and determinacy statements D(p; q). We next combine disjunctions and
determinacy statements and show that this leads to problematic interpretations from
the point of view of natural language (cf. [Kuu14]).

Let p denote the assertion that the sun is shining and q the assertion that
it is winter. Consider a setting where W = {w1, w2, w3, w4}, with all possible
distributions of truth values for p and q realized. Now clearly W 6
 D(p; q), so
whether the sun is shining does not determine whether it is winter. However, now
W 
 D(p; q) ∨ D(p; q) holds in D. This seems strange. Consider the following
translation of the formula D(p; q) ∨ D(p; q) into natural language.

“ Whether the sun is shining determines whether it is winter, or,

whether the sun is shining determines whether it is winter.”

The intuitively correct interpretation of the above statement seems to be the (indeed
false) assertion that

“W 
 D(p; q) or W 
 D(p; q),”

rather than the (true) assertion “W 
 D(p; q)∨D(p; q)” suggested by team semantics.
The natural language statement “Whether the sun is shining determines whether it
is winter, or, whether the sun is shining determines whether it is winter” seems
obviously false. Therefore team semantics here gives an undesired interpretation to
the formula D(p; q) ∨ D(p; q). In fact, we observe that the formula ϕ := D(p; q) ∨
D(p; q) is a validity of D, i.e., we have W |= ϕ for every SD-model W .

For another example, consider the formula D(p; q) ∨ D(r; q), where p, q and r

stand for “It is dark”, “John is at home”, and ”It is cold” respectively. Assume all
distributions of truth values of the propositions p, q, r are realized in W . Now W 


D(p; q)∨D(r; q) holds in D. This is again counterintuitive from the natural language
point of view. Like the formula D(p; q)∨D(p; q), also the formula D(p; q)∨D(r; q) is
a validity of D. In fact, every formula of the type D(p1, . . . , pk; q) ∨ D(r1, . . . , rn; q)
is a validity of D, because every SD-model W can be split into sets U, V ⊆W such
that U ∪ V = W and each assignment in U satisfies q while each assignment in V
satisfies ¬q.

Before we discuss how LD deals with the above formulae, we note once more
that our analysis assumes that ∨ should correspond to the natural language “or.”
We do not want to claim that the natural language word or has always a unique
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interpretation.9 However, LD works quite nicely in the above examples, as we will
next demonstrate.

Concerning the formula p∨q in the beginning of the section, we haveW 
 p∨q iff
W |= p∨q. Also, for determinacy statements ϕ := D(p1, ..., pk; q), we haveW 
 ϕ iff
W |= ϕ. Finally, for the problematic formulae D(p; q)∨D(p; q) and D(p; q)∨D(r; q),
the semantics of LD gives the desired interpretations: we haveW |= D(p; q)∨D(p; q)
iff (W |= D(p; q) or W |= D(p; q)) and similarly for the formula D(p; q) ∨ D(r; q).

We will not try to give an elaborated account of how well exactly LD corresponds
to natural language, but it is essential to notice that LD can be considered to have
a similar level of naturalness as standard S5 modal logic or modal logic with the
universal modality. The reason for this is that a similar Kripke style semantics
is used, and furthermore, it can be argued that LD is simply a fragment of the
modal logic S5. This is because determinacy statements are naturally definable in
terms of statements about possibility: simply consider the direct natural language
translation of the equivalence

D(p; q)

↔
(

¬
(

〈u〉(p ∧ q) ∧ 〈u〉(p ∧ ¬q)
)

∧ ¬
(

〈u〉(¬p ∧ q) ∧ 〈u〉(¬p ∧ ¬q)
))

,

where 〈u〉 should be read as “it is possible that.” The natural language translation of
this equivalence indeed seems intuitively immediately appealing, and importantly,
the equivalence essentially just states the formal semantics of D(p; q) (determinacy)
in terms of the diamonds 〈u〉 (possibility), thus demonstrating that statements of
determinacy can be very naturally and directly formulated in terms of possibility
statements. Therefore LD can be considered a fragment of modal logic (with the
universal or S5 modality in the particular case of this paper), and the level of
correspondence between natural language and LD is similar to the corresponding
relationship for (S5) modal logic. We note that the restriction to S5 frames is of
no importance here. We also note that the above equivalence deals only with the
simple determinacy formula D(p; q) but it is easy to generalize our argument to more
complex formulae. (See also Proposition 3.3.)

In addition to disjunction ∨, also the semantics of negation ¬ in D can be
counterintuitive if the reading “it is not the case that” is desired for ¬. For example,
let p and q denote the assertions “the Riemann hypothesis holds” and “it is raining,”
respectively. Let W be a nonempty SD-model. Now we have W 6
 ¬D(p; q) in D. In
LD, we have W |= ¬D(p; q) in (for example) every model W where the truth value
of p is the same in every possible world and where q is true in some worlds and false
in others.10

9There exist arguments essentially promoting the uniqueness of the meaning of disjunction (see
[Alo16] for an overview). On the other hand, already for example the inclusive and exclusive modes
of or are sometimes taken to demonstrate ambiguity of disjunction. While we wish to refrain from
taking any definite position in this debate, this issue is worth mentioning here. (We also want
to point out that in the formal proofs and definitions of this article, the word or is used in the
standard inclusive fashion as is customary in standard mathematical practice.)

10 Perhaps alternative readings of ¬ could work better in D. For example, in [Kuu15], the
reading “it is never the case that” for the negation of D is suggested. This reading is not meant
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Finally, concerning LD, it is worth noting the triviality that just as in S5, W |=
¬ϕ is not in general equivalent to W 6|= ϕ, because W |= ¬ϕ means that W,w 6|= ϕ

for all w ∈ W . Analogously, W |= ϕ ∨ ψ is not in general equivalent to (W |=
ϕ or W |= ψ). We note that, by Proposition 2.3, we have W |= χ iff W 
 χ for all
formulae of propositional logic in negation normal form, so D and LD are similar
with respect to formulae of propositional logic PL.

To give an example of how the semantics of ¬ works in D and LD in the context
of formulae of PL, let p and q denote the assertions “John has a cat” and “John
is married,” respectively. Assume a scenario where it is agreed that the possible
worlds are w1 = {p} and w2 = ∅, i.e., John may or may not have a cat, but he is
definitely not married. Let W = {w1, w2}. The assertion “It is not the case that
John is married” seems correct, and indeed, we have W 
 ¬q. Note, however, that
even though W 6
 p, the claim “It is not the case that John has a cat” would seem
odd. To make the claim W 6
 p, one would have to assert, e.g., that it is possible
that John does not have a cat, or that it is not necessarily the case that John has
a cat.

6 Comparing the expressive powers of D, I, LD and L I

We have earlier observed (Proposition 4.3) that LD embeds into L I , and also that
D embeds into I. In this section we will complete our discussion concerning the
expressive powers of the logics LD,L I ,D and I.

6.1 I does not embed into D

Let ϕ,ψ ∈ FOR(D) ∪ FOR(I). We write ϕ ≡team ψ if the equivalence W 
 ϕ ⇔
W 
 ψ holds for all SD-models W . The first result we wish to point out is well-
known; we prove it for the sake of completeness.

Proposition 6.1. The logic I does not embed into D: there exists a formula ϕ of
I such that for all formulae ψ of D, the equivalence ϕ ≡team ψ fails.

Proof. It is well-known, and easy to show, that D satisfies the following downwards
closure property : if W 
D ϕ and U ⊆W , then we have U 
D ϕ.

Now, define an SD-model W = {w1, w2, w3, w4} where the four states represent
all truth assignments for propositions p and q. More precisely, let w1(p) = w1(q) =
w2(p) = w3(q) = 1 and w2(q) = w3(p) = w4(p) = w4(q) = 0. Define U := {w1, w4}.
Consider the formula ϕ := p I q. It is clear that W 
 ϕ and U 6
 ϕ. Therefore,
due to the downwards closure property of D, no formula ψ of D can satisfy the
equivalence ϕ ≡team ψ.

6.2 Embedding L I into LD via a concrete translation

While D embeds into I but not vice versa, the situation is different for LD and L I .
In Section 2.6 we established that LD embeds into L I . We now define a translation

to necessarily have any temporal connotations, but instead could alternatively be read as “it is

impossible that.” We shall not try analyze here how well such a reading could actually work.
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showing that L I embeds into LD, too. While it is straightforward to observe, based
on Propositions 3.7 and 3.9, that L I indeed embeds into LD, the concrete translation
below will be of interest later on when we discuss compositional translations (to be
defined) between the logics under investigation. We define the following translation
s : FOR(L I ) → FOR(LD):

1. s(p) := p, for p ∈ PROP

2. s(¬ϕ) := ¬s(ϕ)

3. s(ϕ ∧ ψ) := s(ϕ) ∧ s(ψ)

4. We then translate the formula (ϕ1, . . . , ϕk) I (θ1,...,θm)(ψ1, . . . , ψn) in a way that
derives from Proposition 4.4. First we define

B := Conj ({s(ϕ1), . . . , s(ϕk)})× Conj ({s(θ1), . . . , s(θm)})

× Conj ({s(ψ1), . . . , s(ψn)}).

For the special case where m = 0, recall that Conj (∅) = {⊤}. Now, let

s((ϕ1, . . . , ϕk) I (θ1,...,θm)(ψ1, . . . , ψn)) :=

∧

(ϕ,θ,ψ)∈B

(

(

〈u〉(θ ∧ ϕ) ∧ 〈u〉(θ ∧ ψ)
)

→ 〈u〉(θ ∧ ϕ ∧ ψ)
)

.

It is easy to see that the translation of the operator I given by the formula above
describes the meaning of I quite directly in terms of 〈u〉.

The proof of the next claim is straightforward, using the translation s defined
above.

Proposition 6.2. L I embeds into LD i.e., for each formula ϕ of L I , there exists
an equivalent formula ψ of LD in the sense that for all W and all w ∈ W , we have
W,w |= ϕ iff W,w |= ψ.

6.3 Strict embedding of D and I into LD and L I

Next we will show that the team-semantics-based logic I is strictly contained in the
Kripke-style logic LD in the following sense.

1. For each formula ϕ of I, there exists a formula ϕ′ of LD such that ϕ and
ϕ′ define the same class of SD-models, i.e., W 
I ϕ iff W |=LD

ϕ′ for all
SD-models W .

2. There exists a formula ψ of LD which is not equivalent to any formula of I, i.e.,
for all formulae ψ′ of I, there exists a model W such that (W 
 ψ′ and W 6|=
ψ) or (W 6
 ψ′ and W |= ψ).
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The claim 1 above is essentially obvious, since all classes of models definable in
I are closed under finite propositional equivalence, and due to Proposition 3.7, LD

can define all such model classes. However, we will provide an explicit and effective
translation of I into LD which is interesting in its own right and also elucidates the
semantics of I. Furthermore, despite the simplicity of our translation, we will show
in Section 6.4 that there does not exist a compositional translation from I into LD.

Recall once again the notion of a type normal form formula and related notions
from Section 2. Let Φ be a finite nonempty set of proposition symbols and χ =
∨

{χ1, . . . , χk} a formula in DNF (Φ). We let SPLIT (χ) denote the set of pairs
(α, β) of type normal form formulae in DNF (Φ) such that if α =

∨

{α1, . . . , αm}
and β =

∨

{β1, . . . , βn}, then we have

{χ1, . . . , χk} = {α1, . . . , αm} ∪ {β1, . . . , βn}.

Let χ ∈ DNF (Φ). We define the following translation tχ from I into LD:

1. tχ(p) := [u](χ → p) and tχ(¬p) := [u](χ → ¬p)

2. To translate the formula (p1, . . . , pk) I (q1,...,qm) (r1, . . . , rn), we use a suitably
modified version of the equivalence in Proposition 4.4. We first define

B := Conj ({p1, . . . , pk})× Conj ({q1, . . . , qm})× Conj ({r1, . . . , rn}).

We then define tχ
(

(p1, . . . , pk) I (q1,...,qm) (r1, . . . , rn)
)

:=

∧

(ϕ,ψ,θ)∈B

(

(

〈u〉(χ ∧ ψ ∧ ϕ) ∧ 〈u〉(χ ∧ ψ ∧ θ)
)

→ 〈u〉(χ ∧ ψ ∧ ϕ ∧ θ)
)

.

3. tχ(ϕ ∧ ψ) := tχ(ϕ) ∧ tχ(ψ)

4. tχ(ϕ ∨ ψ) :=
∨

(α,β)∈SPLIT (χ)

(

tα(ϕ) ∧ tβ(ψ)
)

If ϕ is a formula of I and Φ the set of proposition symbols in ϕ, we let χ(ϕ)
denote the formula in DNF (Φ) that contains as disjuncts all types over Φ. Note
that the formula χ(ϕ) is a tautology.

We then prove that our translation of I into LD preserves truth.

Lemma 6.3. W 
I ϕ iff W |=LD
tχ(ϕ)(ϕ).

Proof. Let ϕ be a formula of I and W a model. Let Φ be the set of proposition
symbols that occur in the formula ϕ. If χ ∈ DNF (Φ), we let Wχ denote the set of
worlds in W that satisfy χ. We will show that for every χ ∈ DNF (Φ) and every
subformula ψ of ϕ, we have

Wχ 
I ψ iff W |=LD
tχ(ψ).

The claim of the Lemma will then follow, as Wχ(ϕ) =W .
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The proof proceeds by induction on the structure of ψ. The cases for proposition
symbols, negated proposition symbols and conjunctions are straightforward. The
argument for I is easy, as our translation in that case captures quite directly the
semantics of I .

We now proceed to the case ψ = ψ′ ∨ ψ′′. When going through the argument
below, it helps to keep in mind the trivial technicality that for an SD-model U
and a proper subset S of PROP , there may exist several assignments in U that
are equivalent with respect to S, i.e., assignments that satisfy exactly the same
propositions in S (but differ elsewhere).

Assume that Wχ 
I ψ′ ∨ ψ′′. Thus there exist sets S′, S′′ ⊆ Wχ such that
S′


I ψ
′ and S′′


I ψ
′′, and furthermore, S′∪S′′ =Wχ. Therefore there exists a pair

(α, β) ∈ SPLIT (χ) such that S′ ⊆ Wα and S′′ ⊆ Wβ, and furthermore, Wα ≡Φ S′

and Wβ ≡Φ S′′ (recall Definition 3.5). Therefore clearly Wα 
 ψ′ and Wβ 
 ψ′′.
Hence, by the induction hypothesis, we have W |=LD

tα(ψ
′) and W |=LD

tβ(ψ
′′).

Thus W |=LD
tα(ψ

′) ∧ tβ(ψ
′′), whence we conclude that W |=LD

tχ(ψ
′ ∨ ψ′′).

For the converse, assume that W |=LD
tχ(ψ

′ ∨ ψ′′). Therefore there exist type
normal form formulae α, β such that (α, β) ∈ SPLIT (χ), and furthermore, W |=LD

tα(ψ
′) and W |=LD

tβ(ψ
′′). By the induction hypothesis, we have Wα 
I ψ′ and

Wβ 
I ψ′′. Since (α, β) ∈ SPLIT (χ), we have Wα ∪ Wβ = Wχ, and therefore
Wχ 
I ψ

′ ∨ ψ′′.

We are now ready to prove the following theorem.

Theorem 6.4. The logic I is strictly contained in LD, i.e.:

1. For each ϕ ∈ FOR(I), there exists a formula ϕ′ ∈ FOR(LD) (which can be
found effectively), such that for all SD-models W , it holds that W 
 ϕ iff
W |= ϕ′.

2. There exists a formula ψ ∈ FOR(LD) that is not expressible in I, i.e., for all
χ ∈ I, there exists an SD-modelW such that the equivalenceW |= ψ ⇔W 
 χ

fails.

Proof. By Lemma 6.3 there exists an effective translation from I into LD. Hence
we only need to prove the second claim of the theorem. In fact the claim follows
relatively easily from Proposition 3.7 and the proof of Theorem 4.2 of [KMSV15],
but we will establish the claim here explicitly.

We will show that the LD-formula ¬Cp is not expressible in I, i.e., there is no
formula ψ of I such that W 
I ψ iff W |=LD

¬Cp. We first define two models U
and U ′, where U consists of two worlds, one satisfying p and the other one not,
and U ′ consists of single world that does not satisfy p. Furthermore, for all other
proposition symbols q, we define q to be false in each world of the models U , U ′.

We then show by induction on the structure of formulae that for all ϕ ∈ FOR(I),
we have

U 
I ϕ ⇒ U ′

I ϕ.
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For the literals p and ¬p this is immediate, as U 6
I p and U 6
I ¬p. For other
literals q, ¬q, etc., the implication holds because U 6
I q and U ′


I ¬q. In or-
der to deal with the operator I , notice that U ′ satisfies all formulae of the type
(p1, . . . , pk) I (q1,...,qm)(r1, . . . , rn), since the model U ′ contains only a single world.

The case for ∧ follows immediately by the induction hypothesis.
We then consider the case for ∨. Assume that U 
I ψ ∨ ψ′. Therefore there

exist sets S, S′ ⊆ U such that S 
I ψ and S′

I ψ

′, and furthermore, S ∪ S′ = U .
We may assume, by symmetry, that S contains the assignment in U that does not
satisfy p. We consider two cases.

1. Assume that S = U . Then U ′

I ψ follows directly by the induction hy-

pothesis. Furthermore, we have ∅ 
I χ for every formula χ ∈ FOR(I), whence the
condition

U ′

I ψ and ∅ 
I ψ

′

holds. Therefore U ′

I ψ ∨ ψ′.

2. Assume that S is the singleton not satisfying p. Notice now that the world in
S and the world in U ′ satisfy exactly the same proposition symbols. Thus S = U ′,
whence U ′


I ψ. Therefore the condition

U ′

I ψ and ∅ 
I ψ

′

holds again, and we hence conclude that U ′

I ψ ∨ ψ′.

Finally, note that U |=LD
¬Cp, while U ′ 6|=LD

¬Cp. Therefore ¬Cp cannot be
expressible by a formula of I.

Corollary 6.5. The logics D and I are both strictly contained in both LD and L I .

In summary, we have shown that D < I < LD ≡ L I , where < denotes strict
containment and ≡ equi-expressivity. We have also observed that LD and L I are
expressively complete in the sense that they can define exactly all classes of SD-
models closed under finite propositional equivalence. (See Definition 3.6 for the
exact specification of finite propositional equivalence.)

6.4 Regular logics and compositionality of translations

Let t∗ denote the translation from I into LD we defined above. Recall that in
addition to t∗, we have also defined the translations t : FOR(LD) → FOR(L I )
and s : FOR(L I ) → FOR(LD). Furthermore, in the proof of Proposition 4.3, we
described a translation from D into I; let us denote that translation by t′.

In this section we will take a closer look at the four translations t∗, t, s and t′.
We will establish that, in a certain sense, the translation t∗ is essentially different
from the other three.

We begin by defining a notion of a syntactically regular logic suitable for our
purposes. To this end, we first need some auxiliary definitions. Let N

∗ be the
set of all finite sequences of numbers in N (including the empty sequence). Let C
be a finite or countably infinite set of operator symbols. Let d be a function that
associates with each symbol in C a nonempty subset of N∗; the set d(c) is called
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the arity type set of c. For example, in L I , the operator I always operates on three
tuples of formulae, with the middle tuple being the only one allowed to be the empty
tuple, and thus the arity type set associated with I is N+ × N × N+.

The set C together with the function d give rise to a set FOR(C, d) of formulae,
which is defined to be the smallest set S such that the following conditions hold:

1. If p ∈ PROP , then p ∈ S.

2. If c ∈ C, (n1, . . . , nk) ∈ d(c), and ϕ1,1, . . . , ϕ1,n1
, . . . , ϕk,1, . . . , ϕk,nk

∈ S, then

c
(

(ϕ1,1, . . . , ϕ1,n1
), . . . , (ϕk,1, . . . , ϕk,nk

)
)

∈ S.

We call FOR(C, d) the syntactically regular set of formulae defined by C and d.
We call a logic syntactically regular if the set of formulae of the logic is a syntactically
regular set of formulae for some set C and a related function d. Any logic whose
set of formulae is a subformula closed subset of some syntactically regular set of
formulae, is called a syntactically subregular logic. Closure of a formula set F under
subformulae obviously means that if c

(

(ϕ1,1, . . . , ϕ1,n1
), . . . , (ϕk,1, . . . , ϕk,nk

)
)

∈ F,

then each of the formulae ϕi,j is in F . For the sake of simplicity, we will below
mainly talk about regular and subregular (rather than syntactically regular and
syntactically subregular) logics.

It is easy to see that LD and L I are essentially regular logics. Similarly, D and
I are essentially subregular logics.11

Let L be a subregular logic and c an operator symbol of L. Let d be the function
that associates the operators of L with the related arity type set, and let x ∈ d(c).
The pair (c, x) is called a base operator of L. For example, the operator D of LD

can act on tuples of formulae of all positive finite lengths, so each pair (D, i), where
i is a (singleton tuple containing a) positive integer, is a base operator. In contrast,
the operators ¬ and → of LD are both associated with only a single arity type, and
thus we can directly regard ¬ and → as base operators.

We now define the notion of a compositional translation from one subregular
logic to another. Intuitively, a compositional translation from a logic L to a logic
L′ has the property that each base operator of L is described in L′ in a uniform
way. Therefore the translation in some sense acts only on the base operators of
L rather than directly on individual formulae. Thus a compositional translation
can be considered to be, in a sense, simple and direct. For further discussion on
compositional translations, see [Jan97].

Assume ϕ1, . . . , ϕk, where k ∈ N, are distinct formulae of a subregular logic
L. Assume ψ(ϕ1, . . . , ϕk) is a formula of L obtained from ϕ1, . . . , ϕk by composing
these formulae with some collection of base operators. Let X1, . . . ,Xk be novel
symbols. Then ψ(X1, . . . ,Xk) is called an operator term of L; the operator term is
obtained by replacing the original ground instances of the formulae ϕ1, . . . , ϕk in

11We acknowledge that strictly speaking LD and L I are not syntactically regular because—to
give one reason—the connective → uses infix rather than prefix notation. However, it would be a
trivial exercise to redefine the syntax of these logics in the required way, and therefore we consider
them syntactically regular. Similarly, D and I are considered syntactically subregular.
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ψ(ϕ1, . . . , ϕk) by X1, . . . ,Xk, respectively. (For example, if ϕ1 := p and ϕ2 := q, and
if ψ(ϕ1, ϕ2) := (p → q)∨p I q, then we obtain the operator term (X1 → X2)∨X1 IX2

by replacing ϕ1 with X1 and ϕ2 with X2.)
Let L and L′ be subregular logics. We identify L and L′ with their respective

sets of formulae. A translation T : L→ L′ is compositional, if for each base operator
(c, (n1, . . . , nk)) of L, there exists an operator term

ψ(X1,1, . . . ,X1,n1
, . . . ,Xk,1, . . . ,Xk,nk

)

of L′ such that for all tuples (ϕ1,1, . . . , ϕ1,n1
), . . . , (ϕk,1, . . . , ϕk,nk

) of formulae of L
such that c

(

(ϕ1,1, . . . , ϕ1,n1
), . . . , (ϕk,1, . . . , ϕk,nk

)
)

∈ L, we have

T
(

c
(

(ϕ1,1, . . . , ϕ1,n1
), . . . , (ϕk,1, . . . , ϕk,nk

)
))

:= ψ(T (ϕ1,1), . . . , T (ϕ1,n1
), . . . , T (ϕk,1), . . . , T (ϕk,nk

)
)

,

i.e., the translated formula is obtained by substituting each symbol Xi,j in ψ by
T (ϕi,j). Furthermore, it is required that for each proposition symbol p in the syn-
tax of L, the translation T (p) contains no other proposition symbols except for p.
This ensures that the translation T (ϕ) of any formula ϕ contains no other propo-
sition symbols except for those in ϕ itself. This is a natural requirement and can
be essential for example when considering SD-models with a finite propositional
signature, i.e, models that interpret only a finite number of proposition symbols.
We note that in the team semantics literature, SD-models are in most cases indeed
defined to interpret only finitely many proposition symbols.

The symbolsXi,j in the above definition should be regarded as placeholders in the
operator term ψ(X1,1, . . . ,Xk,nk

). Intuitively, the operator term ψ(X1,1, . . . ,Xk,nk
)

provides a “uniform description” of the base operator (c, (n1, . . . , nk)) of L in L′.
The above definition of a compositional translation is suitable for the purposes of
the current paper and follows standard principles of compositional translations.

Note that our translations t : FOR(LD) → FOR(L I ) and s : FOR(L I ) →
FOR(LD) are indeed compositional, as is the translation t′ : FOR(D) → FOR(I)
from the proof of Proposition 4.3. However, the translation t∗ : FOR(I) → FOR(LD)
is not compositional, despite being relatively simple. In fact, it will turn out that a
sound compositional translation from I into LD or L I is not possible. To see this,
it is sufficient (due to the existence of the translations t′ and s) to show that D does
not translate compositionally into LD. The following theorem does exactly that.

Theorem 6.6. There exists no compositional translation T from D into LD which
is sound with respect to SD-models in the sense that for any SD-model W and any
formula ϕ of D, we have W 
 ϕ iff W |= T (ϕ).

Proof. Let S be an SD-model and χ1, χ2 formulae of LD. We say that χ1 and χ2

are locally equivalent in S, if for all w ∈ S, it holds that S,w |= χ1 iff S,w |= χ2.
Suppose, for the sake of contradiction, that a compositional translation T from

D into LD exists. Consider an SD-model V consisting of exactly two assignments,
one satisfying p and the other one not. Then fix a proposition symbol q so that for
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each w ∈ V , the assignment w satisfies q if and only if w does not satisfy p. For all
other proposition symbols r ∈ PROP \ {p, q}, we assume that neither of the worlds
in V satisfies r. We then define an SD-model U which is the same as V but with the
interpretation of q redefined so that q is satisfied by u ∈ U if and only if u satisfies
p. Let W ∈ {U, V }. We will prove the following claims about W .

1. Let r ∈ PROP \ {p, q}. The formula T (r) is not satisfied by either of the
points of W .

2. T (q) is satisfied by exactly one point of W .

3. T (Cp) is satisfied by exactly one point of W .

We begin with the first claim. If T (r) was satisfied by both points of W , we
would have W |= T (r) and thus W 
 r, which is a contradiction. If T (r) was
satisfied by exactly one point of W , we would obtain a contradiction due to the fact
that T (r) is required by definition to contain no other proposition symbols except
for r, and since w(r) = 0 for both points w ∈ W , the situation where only one of
the points in W satisfies T (r) is impossible by symmetry. Therefore the first claim
holds.

Concerning the second claim, we first observe that T (q) cannot be satisfied by
both points of W , because if it was, then we would haveW |= T (q) and thusW 
 q,
which is a contradiction. Now assume that neither of the points of W satisfies T (q).
Then, using the first claim established above (claim 1.), the formulae T (q) and T (r),
for r ∈ PROP \ {p, q}, are locally equivalent in W . Therefore we can now infer,
by the following argument, that the formulae T (Cq) and T (Cr) must also be locally
equivalent in W .

Since the translation T is compositional, there exists an operator term ψ(X)
that describes the translation of the operator C, and thus we have T (Cq) = ψ(T (q))
and T (Cr) = ψ(T (r)). Since we know that T (q) and T (r) are locally equivalent in
W , we immediately observe that ψ(T (q)) and ψ(T (r)) are also locally equivalent in
W . Thus T (Cq) and T (Cr) are locally equivalent in W .

Hence, as W 6
 Cq and thus W 6|= T (Cq), we infer that W 6|= T (Cr). Therefore
W 6
 Cr. This is a contradiction, and thus the second claim holds.

Concerning the third claim, assume first that T (Cp) is satisfied by both points of
W . ThenW |= T (Cp), whenceW 
 Cp, which is a contradiction. Assume then that
neither of the points in W satisfies T (Cp). Therefore, using the first claim (claim
1. above), T (Cp) and T (r) are locally equivalent in W . As W 
 Cp ∨ Cp, we have
W |= T (Cp ∨ Cp) and thus W |= ψ′(T (Cp), T (Cp)), where ψ′(X,Y ) is the operator
term for ∨ which demonstrates that T is indeed a compositional translation. Since
T (Cp) and T (r) are locally equivalent inW , we infer thatW |= ψ′(T (r), T (r)). Thus
W 
 r ∨ r, which is a contradiction. Therefore we conclude that T (Cp) is satisfied
by exactly one point of the model W , and hence the third claim holds.

We have now proved each of the above three claims. By the last two of the three
claims, recalling that T (Cp) can only use the proposition symbol p and T (q) the
symbol q, we now observe that exactly one of the following conditions hold.
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1. T (Cp) is locally equivalent to T (q) in U .

2. T (Cp) is locally equivalent to T (q) in V .

We first assume that the first one of these conditions holds. Therefore, since U 


Cp ∨ Cp and thus U |= T (Cp ∨ Cp), we may now conclude that U |= T (q ∨ q) as
follows.

We know that T (Cp) and T (q) are satisfied by exactly the same single point
in U . We know also that U |= T (Cp ∨ Cp). Thus U |= ψ′(T (Cp), T (Cp)), where
ψ′(X,Y ) is the operator term for ∨. Since T (Cp) and T (q) are locally equivalent in
U , we therefore have U |= ψ′(T (q), T (q)). Since ψ′(T (q), T (q)) = T (q ∨ q), we have
U |= T (q ∨ q).

Since U |= T (q∨q), we have U 
 q∨q, which is a contradiction. Thus we turn to
the case where T (Cp) and T (q) are locally equivalent in V . Similarly to the above,
since V 
 Cp ∨ Cp and thus V |= T (Cp ∨ Cp), we infer using the formula ψ′(X,Y )
that V |= T (q ∨ q). Therefore V 
 q ∨ q, which is a contradiction.

We finish this section by mentioning some relevant related results in the literature
on compositional translations and uniform definability of operators. Section 3.5 of
[Cia09] establishes that in the propositional inquisitive logic InqL, which is a team-
based logic equi-expressive with D, none of the primitive operators is definable in
terms of the others. In [Yan16], it is shown that the implication and disjunction
connectives of InqL are not uniformly definable in D, and thus no compositional
translation from InqL into D is possible. In [Gal13], it is shown that the so-called
weak universal quantifier ∀1 is not uniformly definable in first-order dependence
logic.

7 Validities and axiomatizations

In this section we provide sound and complete axiomatizations for LD and L I . We
begin by axiomatizing LC, the fragment of LD with only operators C instead of
general determinacy operators D.

7.1 Capturing the validities of LC

Recall that Cϕ stands for D(ǫ;ϕ), where ǫ is the empty sequence of formulae. Recall
also the abbreviation [u]ϕ := ϕ ∧ Cϕ and the equivalence Cψ ≡ [u]ψ ∨ [u]¬ψ that
intuitively demonstrate that the universal modality [U] and C are expressible in
terms of each other.

We denote the fragment of LD that extends propositional logic PL with C by
LC. The operator C has been studied previously and in a more general setting as a
“non-contingency” operator, and also—in epistemic logic—as a “knowing whether”
operator, see [FWvD15] and the references therein.

We next present a sound and complete axiomatic system AX(LC) that captures
the validities of LC. Several proofs of completeness of equivalent axiomatizations
have already been provided in the literature, starting with [MR66] and considered
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again in, e.g., [Dem97]. For historical references and recent related work on axiom-
atizations of C, see the above mentioned reference [FWvD15]. Nevertheless, we will
present here yet another, simple and intuitive axiomatization with a purely syntac-
tic proof of completeness by means of reduction to the completeness of S5 (or LU ).
We will then use the completeness of AX(LC) to obtain complete axiomatizations
for LD and L I .

The axiomatic system AX(LC) is defined as follows.

Axiom schemes:

Ax0(C) A complete set of axioms for PL

Ax1(C) C⊤

Ax2(C) Cϕ↔ C¬ϕ

Ax3(C) C(ϕ ∧ Cϕ)

Ax4(C) Cϕ ∧ Cψ → C(ϕ ∧ ψ)

Ax5(C) ϕ ∧ Cϕ ∧ C(ϕ→ ψ) → Cψ

Inference rules:

Rul0(C) Modus Ponens

Rul1(C) EQC: If ⊢ ϕ↔ ψ then ⊢ Cϕ↔ Cψ.

We will denote derivability in AX(LC) by ⊢C.
The axiomatic system above is not minimal. For instance, Ax4(C) can be left

out12, as it is derivable (though, not quite trivially) from the others. Nevertheless,
rather than providing a derivation of the axiom (which would not be in the focus of
this paper), we prefer to keep it in the system.

Proposition 7.1. The following inference rule, which preserves SD-validity, can be
used in AX(LC):

NECC: If ⊢C ϕ then ⊢C Cϕ.

Proof. If ⊢C ϕ, then ⊢C ϕ↔ ⊤ by PL (propositional logic). Thus ⊢C Cϕ↔ C⊤ by
EQC, whence ⊢C Cϕ by using Ax1(C) and PL.

Now, recall the following well-known complete S5 axiomatization for LU .

Axiom schemata:

Ax0(U) A complete set of axioms for PL.

Ax1(U) [U](ϕ → ψ) → ([U]ϕ → [U]ψ)

Ax2(U) [U]ϕ → ϕ

12Thanks to Jie Fan for noting that.
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Ax3(U) 〈U〉ϕ → [U]〈U〉ϕ

Inference rules:

Rul0(U) Modus Ponens

Rul1(U) NECU: If ⊢ ϕ then ⊢ [U]ϕ

We will denote derivability in LU by ⊢S5.
To show completeness of AX(LC), we first extend the intuitive interdefinability

of C and the universal modality to a translation ϕ 7→ ϕ+ from LC into LU and a
translation ϕ 7→ ϕ◦ from LU into LC.

The translation ϕ 7→ ϕ+ from LC into LU is defined as follows.

1. p+ = p

2. (¬ϕ)+ = ¬ϕ+

3. (ϕ→ ψ)+ = (ϕ+ → ψ+)

4. (Cϕ)+ = [U]ϕ+ ∨ [U]¬ϕ+

The translation ϕ 7→ ϕ◦ from LU into LC goes as follows.

1. p◦ = p

2. (¬ϕ)◦ = ¬ϕ◦

3. (ϕ→ ψ)◦ = (ϕ◦ → ψ◦)

4. ([U]ϕ)◦ = (ϕ◦ ∧ Cϕ◦)

Lemma 7.2. For every formula ϕ of LC, |= ϕ iff |= ϕ+, where the validity statement
in each case refers to the semantics of the language in question. Moreover, the
translation ()+ preserves, both ways, truth in states and therefore validity in models.

The proof of the lemma is straightforward.
The composition of the two translations, first ()+ and then ()◦, defines the

following translation ϕ 7→ ϕ∗ from LC into LC:

1. p∗ = p

2. (¬ϕ)∗ = ¬ϕ∗

3. (ϕ→ ψ)∗ = (ϕ∗ → ψ∗)

4. (Cϕ)∗ = (ϕ∗ ∧ Cϕ∗) ∨ (¬ϕ∗ ∧ C¬ϕ∗)

The following lemma shows that we can derive equivalence of ϕ and its transla-
tion ϕ∗ in AX(LC).

Lemma 7.3. We have ⊢C ϕ↔ ϕ∗ for every formula ϕ ∈ LC.
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Proof. The proof proceeds by induction on the structure of ϕ. The case for atoms
is trivial and the cases for the Boolean connectives follow easily from the induction
hypothesis using the fact that AX(LC) is complete with respect to PL. We thus
discuss the case involving Cϕ.

By the induction hypothesis, we have ⊢C ϕ ↔ ϕ∗. By the inference rule EQC,
we obtain

⊢C Cϕ↔ Cϕ∗.

On the other hand, by PL, we have

⊢C Cϕ↔
(

(ϕ ∧ Cϕ) ∨ (¬ϕ ∧ Cϕ)
)

.

Then, again using PL together with the induction hypothesis and the equivalences
above, we derive

⊢C Cϕ↔
(

(ϕ∗ ∧ Cϕ∗) ∨ (¬ϕ∗ ∧ Cϕ∗)
)

.

Finally, using the axiom Cθ ↔ C¬θ with θ := ϕ∗ and PL, we get

⊢C Cϕ↔
(

(ϕ∗ ∧ Cϕ∗) ∨ (¬ϕ∗ ∧ C¬ϕ∗)
)

.

This concludes the proof.

Next we will show that every derivation in LU can be simulated by a derivation
in AX(LC).

Lemma 7.4. For every formula ϕ ∈ LU , if ⊢S5 ϕ then ⊢C ϕ
◦.

Proof. The proof proceeds by induction on derivations in LU . We will first prove
that ⊢C ϕ

◦ for each axiom ϕ for LU . For propositional tautologies this is trivial.
To deal with Ax1(U), we must show that

⊢C ((θ → ψ) ∧ C(θ → ψ)) → ((θ ∧ Cθ) → (ψ ∧ Cψ))

for arbitrary θ and ψ. The following derivation does exactly this. (The steps after
the first one use PL and the preceding steps.)

1. ⊢C (θ ∧ Cθ ∧ C(θ → ψ)) → Cψ Ax5(C)

2. ⊢C (θ ∧ ψ ∧ Cθ ∧ C(θ → ψ)) → (ψ ∧ Cψ)

3. ⊢C (θ ∧ (θ → ψ) ∧ Cθ ∧ C(θ → ψ)) → (ψ ∧ Cψ)

4. ⊢C ((θ → ψ) ∧ C(θ → ψ) ∧ (θ ∧ Cθ)) → (ψ ∧ Cψ)

5. ⊢C ((θ → ψ) ∧ C(θ → ψ)) → ((θ ∧ Cθ) → (ψ ∧ Cψ))

To cover axiom Ax2(U), we must show that ⊢C (θ ∧ Cθ) → θ, which is a propo-
sitional tautology.

To deal with axiom Ax3(U), we must show that

⊢C ¬(¬θ ∧ C¬θ) →
(

¬(¬θ ∧ C¬θ) ∧ C¬(¬θ ∧ C¬θ)
)

.

Here is the derivation.
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1. ⊢C ¬(¬θ ∧ C¬θ) → ¬(¬θ ∧ C¬θ) by PL

2. ⊢C C(¬θ ∧ C¬θ) Ax3(C)

3. ⊢C C¬(¬θ ∧ C¬θ) by row 2, Ax2(C) and PL

4. ⊢C ¬(¬θ ∧ C¬θ) →
(

¬(¬θ ∧ C¬θ) ∧ C¬(¬θ ∧ C¬θ)
)

by 1, 3 and PL

Now it remains to establish that NECU preserves the claim, that is, we will
show that if ⊢S5 ϕ and thus ⊢C ϕ

◦ by the induction hypothesis, then we also have
⊢C ([U]ϕ)◦. Thus we assume that ⊢C ϕ◦. Using NECC (see Proposition 7.1), we
infer that ⊢C Cϕ◦, and using PL, we get ⊢C ϕ

◦ ∧ Cϕ◦. As ([U]ϕ)◦ = ϕ◦ ∧ Cϕ◦, we
are done.

We are now ready to prove the soundness and completeness of AX(LC).

Proposition 7.5. The axiomatic system AX(LC) is sound and complete for the
validities of LC.

Proof. The soundness follows by an easy verification of the validity of all the axioms
and the fact that EQC preserves validity.

To prove completeness, assume that |= ϕ for some formula ϕ of LC. Then |= ϕ+

by Lemma 7.2. By completeness of LU , we have ⊢S5 ϕ
+. By Lemma 7.4, we thus

have ⊢C (ϕ+)◦, i.e., ⊢C ϕ
∗. Therefore ⊢C ϕ by Lemma 7.3.

7.2 Complete axiomatizations of LD and L I

We now define sound and complete axiomatic systems AX(LD) and AX(L I ) for LD

and L I by introducing new axiom schemata.
The axiomatic system AX(LD) for LD is obtained by extending AX(LC). The

idea is simply to define D in terms of C. A suitable definition is obtained from the
equivalence established in Proposition 3.3.

Recall that [u]ϕ is an abbreviation of ϕ∧Cϕ. We define, for each positive integer
k, the following axiom schema:

Ax(Dk) D(ϕ1, . . . , ϕk, ψ) ↔
∨

χ∈DNF (ϕ1,...,ϕk)

[u](χ ↔ ψ).

The system AX(LD) consists of the axiom schemata and rules of LC together with
the above axiom schemata for each k ∈ Z+.

We obtain an axiomatic system AX(L I ) for L I similarly by essentially extending
AX(LC) by schemata that define by Proposition 4.4 the operator I in terms of C.
The language L I does not contain C as a primitive, but the translation t given
before Proposition 4.3 shows that the operator C can be expressed as ϕ I ϕ. Thus
we first define AX 0(L I ) to be the following system13 obtained from AX(LC) by the
substitution Cθ 7→ θ I θ.

Axiom schemes:
13Provided here for readers’ convenience.

34



Ax0( I ) A complete set of axioms for PL.

Ax1( I ) ⊤ I ⊤

Ax2( I ) ϕ Iϕ ↔ ¬ϕ I¬ϕ

Ax3( I ) (ϕ ∧ ϕ Iϕ) I (ϕ ∧ ϕ Iϕ)

Ax4( I ) ϕ Iϕ ∧ ψ Iψ → (ϕ ∧ ψ) I (ϕ ∧ ψ)

Ax5( I ) ϕ ∧ ϕ Iϕ ∧ (ϕ→ ψ) I (ϕ → ψ) → ψ Iψ

Inference rules:

Rul0(C) Modus Ponens

Rul1( I ) EQ I : If ⊢ ϕ↔ ψ then ⊢ ϕ Iϕ ↔ ψ Iψ.

Recalling the abbreviation 〈u′〉 from Section 4, we define AX(L I ) to be the
extension of AX 0(L I ) by the following axiom schemata for all m ∈ N and k, n ∈ Z+:

Ax( I k,m,n) (ϕ1, . . . , ϕk) I (θ1,...,θm)(ψ1, . . . , ψn) ↔
∧

(ϕ,θ,ψ)∈B

(

(

〈u′〉(θ ∧ ϕ) ∧ 〈u′〉(θ ∧ ψ)
)

→ 〈u′〉(θ ∧ ϕ ∧ ψ)
)

,

where B is as in Proposition 4.4.
We denote derivability in AX(LD) by ⊢D and derivability in AX(L I ) by ⊢ I .

Theorem 7.6.

1. AX(LD) is sound and complete for the validities of LD.

2. AX(L I ) is sound and complete for the validities of L I .

Proof. The proofs of the two claims are very similar, so we will first present the
argument for AX(LD) and then briefly comment the claim for AX(L I ).

Soundness follows from the soundness of AX(LC) and Proposition 3.3. To prove
completeness, we will use a similar argument as the one applied in the proof of
Proposition 7.5. We will reduce the completeness of AX(LD) to the already proved
completeness of AX(LC).

We first define the obvious translation tr of LD into LC which leaves all atoms
and Boolean connectives intact and likewise translates Cϕ to C tr(ϕ), but treats
formulae D(ϕ1, . . . , ϕk;ψ) with k 6= 0 as follows. Using the equivalence established
by Proposition 3.3, we put

tr(D(ϕ1, . . . , ϕk;ψ)) :=
∨

χ∈DNF (ϕ1,...,ϕk)

(

(tr(χ) ↔ tr(ψ)) ∧ C(tr(χ) ↔ tr(ψ))
)

.
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We then prove by induction on the structure of formulae θ of LD that

⊢D θ ↔ tr(θ).

The cases for proposition symbols and Boolean connectives are trivial. To cover
the case for C, assume we have shown that ⊢D ϕ ↔ tr(ϕ). We then conclude that
⊢D Cϕ↔ C tr(ϕ) directly by the rule EQC.

To deal with the case for D, let θ = D(ϕ1, . . . , ϕk;ψ), and let the induction
hypothesis be that ⊢D ϕi ↔ tr(ϕi) for each i ≤ k and ⊢D ψ ↔ tr(ψ). From here it
is easy to conclude, using completeness with respect to propositional logic, that we
also have ⊢D χ↔ tr(χ) for each χ ∈ DNF (ϕ1, ..., ϕk). Therefore, using PL, we have

⊢D (χ ↔ ψ) ↔ (tr(χ) ↔ tr(ψ)),

whence we infer by the rule EQC that we have

⊢D C(χ ↔ ψ) ↔ C(tr(χ) ↔ tr(ψ)).

Using this equivalence and the already established fact that ⊢D χ′ ↔ tr(χ′) for all
χ′ ∈ {ψ} ∪DNF (ϕ1, ..., ϕk), we then infer by PL that

⊢D

∨

χ∈DNF (ϕ1,...,ϕk)

(

(χ ↔ ψ) ∧ C(χ ↔ ψ)
)

↔
∨

χ∈DNF (ϕ1,...,ϕk)

(

(tr(χ) ↔ tr(ψ)) ∧ C(tr(χ) ↔ tr(ψ))
)

.

From here we conclude, using propositional logic and Ax(Dk), that

⊢D D(ϕ1, ..., ϕk ;ψ)

↔
∨

χ∈DNF (ϕ1,...,ϕk)

(

(tr(χ) ↔ tr(ψ)) ∧ C(tr(χ) ↔ tr(ψ))
)

.

In other words, we have ⊢D D(ϕ1, . . . , ϕk, ψ) ↔ tr(D(ϕ1, . . . , ϕk, ψ)), whence we
have now established that ⊢D θ ↔ tr(θ) for all θ of LD.

To conclude the proof, assume that |= θ for some θ of LD. Then |= tr(θ) by
soundness of the translation tr. Hence, recalling that tr(θ) is a formula of LC, we
have ⊢C tr(θ) by completeness of AX(LC). Using the fact that ⊢D θ ↔ tr(θ), we
extend the derivation of tr(θ) in AX(LC) to a derivation of θ in AX(LD). Therefore
⊢D θ.

The completeness proof of AX(L I ) is similar. We first prove that AX 0(L I ) is
complete for the notational variant of LC that replaces Cϕ with f(ϕ) I f(ϕ), where f
is a translation that keeps proposition variables and Boolean connectives intact but
treats C as given here. This proof of completeness is virtually identical to the corre-
sponding argument for AX (LC) given above. Then the completeness of AX(L I ) is
proved similarly to the way AX(LD) was treated above, the only significant (but un-
complicated) difference being that the axioms Ax( I k,m,n) instead of axioms Ax(Dk)
are used.
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Our axiomatizations for LD and L I are not finite because we have the schemata
Ax(Dk) and Ax( I k,m,n) for infinitely many values of k,m, n.14 We will next show
that, in fact, neither LD nor L I has a finite axiomatization. To this end, we will
first define formally what we mean by a finite axiomatization.

An axiom schema for LD (respectively, L I ) is an object obtained from a formula
χ of LD (L I ) by substituting schema letters ϕ1, . . . , ϕn for all proposition symbols in
χ. A proof rule for LD (L I ) is an implication of the form ⊢ ψ1, . . . , ⊢ ψk ⇒ ⊢ χ,
where ψ1, . . . , ψk, χ are axiom schemata for LD (L I ) and k a positive integer. A
finite axiomatization for LD (L I ) is a pair (Φ,Ψ), where Φ is a finite set of axiom
schemata and Ψ a finite set of proof rules for LD (L I ).

Theorem 7.7. Neither LD nor L I has a sound and complete finite axiomatization.

Proof. We discuss LD only. The argument for L I is similar.
Assume (Φ,Ψ) is a sound and complete finite axiomatization for LD. Let k be the

maximum number such that some schema in Φ∪Ψ contains a subschema of the type
D(ψ1, . . . , ψk ; ϕ). For each formula χ of LD, let χ(⊥) denote the formula obtained
from χ by replacing (in any order) each subformula of the type D(α1, . . . , αk+1;β)
by ⊥. We will show by induction on deductions that for all formulae χ of LD, if χ
is a theorem of (Φ,Ψ), then also χ(⊥) is a theorem of (Φ,Ψ). This will conclude
the proof for the following reason. Consider the formula D(p, . . . , p ; p), where p is
simply repeated k + 2 times. This formula is a theorem of LD, while ⊥ is not.

The inductive argument is based on the following observation: if α is a for-
mula obtained from a schema ϕ by substitution, then also the formula α(⊥) can
be obtained from ϕ by substitution, because the schema ϕ does not involve any
subschemata of the type D(χ1, . . . , χk+1;χ

′). Therefore the basis of the induction,
which deals with the direct use of axiom schemata as a first step of a deduction, is
clear. The induction step is based on similar reasoning. For consider a proof rule
⊢ ϕ1, . . . ,⊢ ϕm ⇒⊢ ψ and assume that we have deduced some formula β by applying
an instance ⊢ α1, . . . ,⊢ αm ⇒ ⊢ β of this rule to some formulae α1, . . . , αm such that
⊢ α1, . . . ,⊢ αm. Since the schemata ϕ1, . . . , ϕm, ψ do not contain subschemata of the
type D(χ1, . . . , χk+1, χ

′), we observe that the implication ⊢ α1(⊥), . . . ,⊢ αm(⊥) ⇒
⊢ β(⊥) is also an instance of the rule ⊢ ϕ1, . . . ,⊢ ϕm ⇒ ⊢ ψ. Since ⊢ α1, . . . ,⊢ αm,
we have ⊢ α1(⊥), . . . ,⊢ αm(⊥) by the induction hypothesis. Thus ⊢ β(⊥), as re-
quired.

8 The road ahead

In this paper we have defined the logics LD and L I as alternatives for D and I. We
have comprehensively studied the expressive powers of these four logics and argued
for the naturalness of LD and L I in relation to D and I. We have also provided
sound and complete axiomatizations for LD and L I . Here we discuss briefly a range
of natural future developments of the present work.

14Indeed, bounding these values by some small constant would result in more elegant axiom-
atizations that then would, however, only work for bounded versions of D and I with bounded
arities.
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8.1 Relativised determinacy operators

The determinacy of a formula by a set of formulae can be relativised to a set of pos-
sible worlds. Let JθKW denote the set {w ∈W |W,w |= θ} and define the relativised
determinacy operator Dθ(ϕ1, . . . , ϕk;ψ) such that W,w |= Dθ(ϕ1, . . . , ϕk;ψ) iff for
all u, v ∈ JθKW , if the equivalence

W,u |= ϕi ⇔W,v |= ϕi

holds for each i ≤ k, then we have

W,u |= ψ ⇔W,v |= ψ.

In particular, we define Cθϕ = Dθ(∅, ϕ). Using [u], we notice that

C
θϕ ≡ [u](θ → ϕ) ∨ [u](θ → ¬ϕ).

We also notice that D(θ, ϕ) is definable in terms of Cθ as follows.

D(θ, ϕ) ≡ C
θϕ ∧ C

¬θϕ.

Furthermore, Dθ is inductively definable in terms of Cθ as follows.

1. Dθ(∅, ϕ) = Cθϕ

2. Dθ(ϕ1, . . . , ϕk+1, ψ)
≡ Dθ∧ϕk+1(ϕ1, . . . , ϕk, ψ) ∧ Dθ∧¬ϕk+1(ϕ1, . . . , ϕk, ψ)

We provide a simple example illustrating the use of relativised determinacy in
natural language. Consider a scenario with the following propositions.

• There are road blocks, denoted by p.

• It is rush hour, denoted by q.

• John will be on time, denoted by r.

Assume the set of possible worlds in the scenario is W = {w1, w2, w3, w4, w5},
where

• w1 = {(p, 0), (q, 0), (r, 1)},

• w2 = {(p, 0), (q, 1), (r, 1)},

• w3 = {(p, 0), (q, 1), (r, 0)},

• w4 = {(p, 1), (q, 0), (r, 1)},

• w5 = {(p, 1), (q, 1), (r, 0)}.
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Consider the following claim.

If there are road blocks, then, whether it is rush hour determines whether John
will be on time.

Perhaps the most natural interpretation for this sentence is given by Dp(q, r),
which is true in each world of the model W = {w1, . . . , w5}, and thus we have
W |= Dp(q, r). Interestingly, however, there is at least one sensible alternative
interpretation, p → D(q, r), which is true in the worlds w1, w2, w3, and false in
w4, w5, whence we have W 6|= p→ D(q, r).

8.2 Determinacy and independence in the general modal setting

As already mentioned in the introduction section, the determinacy operator D

can be naturally generalised to the general modal setting. Given a Kripke model
M = (W,R, V ) and a possible world w ∈W , we define the semantics of D as follows:
M,w |= D(ϕ, . . . , ϕk;ψ) iff for all u, v ∈ W such that wRu and wRv, if the equiva-
lence M,u |= ϕi ⇔M,v |= ϕi holds for each i ≤ k, then M,u |= ψ ⇔M,v |= ψ.

It is easy to see that in a propositional language extended with both D and the
standard box modality �, we have the equivalence

D(ϕ1, . . . , ϕk;ψ) ≡
∨

χ∈DNF (ϕ1,...,ϕk)

�(χ↔ ψ),

i.e., for all Kripke models M and points w in the domain of M , the pointed model
M,w satisfies either both or neither of the above formulae. On the other hand,
on all models with a reflexive accessibility relation (but not in general), the box
modality � is definable in terms of D by �ϕ := ϕ∧Cϕ, where Cϕ of course denotes
D(∅;ϕ).

Studying D over different classes of Kripke models provides an interesting re-
search direction. In fact, the recent study [Fan16] has already taken up that direc-
tion.

8.3 Logical determinacy and consequence

It is possible to extend the scope of D to cover arbitrary sets of formulae as follows.
Let Γ denote a possibly infinite set of formulae of LD. Define W,w |= D(Γ, ψ) if
for all assignments u, v ∈ W it holds that if the equivalence W,u |= ϕ ⇔ W,v |= ϕ

holds for all ϕ ∈ Γ, then W,u |= ψ ⇔ W,v |= ψ.
The determinacy operator D now parallels in a natural way Tarski’s notion of a

logical consequence operator C defined so that C(Γ, ψ) holds if and only if W,w |= ψ

for every state description model W and assignment w such that W,w |= ϕ for
all ϕ ∈ Γ. The parallel is in the sense that D satisfies the same defining prop-
erties (Reflexivity, Monotonicity and Cut) which Tarski postulated for C (while D

has some interesting extra properties that C lacks). Indeed, this is not acciden-
tal, because D and C bear technically similar ideas: C preserves truth, whereas D

preserves invariance of truth values. For a further discussion of this and related
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issues, see [Hum92, Hum93, Hum98], as well as [Cia16a, Cia16b] for an argument
presenting dependence as a case of logical consequence applied to questions instead
of propositions. Thus, an interesting research direction extending the present work
involves relating determinacy and logical consequence in the more general modal
setting outlined here.

8.4 Determinacy operators and conditional knowledge

The determinacy operator D has a natural epistemic reading: the determinacy for-
mula D(ϕ1, . . . , ϕk, ψ) can be interpreted to mean that an agent knows the truth
value of ψ relative to the truth values of the formulae ϕ1, . . . , ϕk in the sense that
the agent can always deduce the truth value of ψ if she learns the truth values of
ϕ1, . . . , ϕk. This interpretation of D leads to yet another open research direction.
It is worth noting that a uniform analysis of various kinds of knowledge, including
knowledge of questions and knowledge of dependencies of this kind has already been
given in the work [CR15] on inquisitive epistemic logic (IEL). Indeed, conditional
knowledge can be regarded as knowledge obtained by answering questions: the for-
mula D(ϕ;ψ) with the meaning “agent a knows whether ψ holds conditionally on
the knowledge whether ϕ holds” can be expressed in IEL as Ka(?ϕ→?ψ).
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A. Kurucz, editors, Advances in Modal Logic 10, pages 294–312. College
Publications, 2014.

[Hod97] Wilfrid Hodges. Compositional semantics for a language of imperfect
information. Logic Journal of the IGPL, 5(4):539–563, 1997.

[HS89] Jaakko Hintikka and Gabriel Sandu. Informational independence as a
semantical phenomenon. In J. E. Fenstad, I. T. Frolov, and R. Hilpinen,
editors, Logic, Methodology and Philosophy of Science, volume 8, pages
571–589. Elsevier, Amsterdam, 1989.

[Hum92] Lloyd Humberstone. Some structural and logical aspects of the notion
of supervenience. Logique et Analyse, 35:101–137, 1992.

[Hum93] Lloyd Humberstone. Functional dependencies, supervenience, and
consequence relations. Journal of Logic, Language and Information,
2(4):309–336, 1993.

[Hum95] Lloyd Humberstone. The logic of non-contingency. Notre Dame Journal
of Formal Logic, 36(2):214–229, 1995.

[Hum98] Lloyd Humberstone. Note on supervenience and definability. Notre
Dame Journal of Formal Logic, 39(2):243–252, 1998.

[Hum02] Lloyd Humberstone. The modal logic of agreement and noncontingency.
Notre Dame Journal of Formal Logic, 43(2):95–127, 2002.

[Hum17] Lloyd Humberstone. Supervenience, dependence, disjunction.
Manuscript, June 2017.

[Jan97] Theo Janssen. An overview of compositional translations. In Composi-
tionality: The Significant Difference, International Symposium, COM-
POS’97, Bad Malente, Germany, September 8-12, 1997. Revised Lec-
tures, pages 327–349, 1997.

[KMSV14] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert
Vollmer. Modal independence logic. In Advances in Modal Logic 10,
pages 353–372, 2014.

[KMSV15] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert
Vollmer. A van benthem theorem for modal team semantics. In CSL
2015, Proceedings, pages 277–291, 2015.

42



[Kon13] Juha Kontinen. Dependence logic: A survey of some recent work. Phi-
losophy Compass, 8(10):950–963, 2013.

[Kuu14] Antti Kuusisto. A double team semantics for generalized quantifiers.
CoRR, abs/1310.3032v5, 2014.

[Kuu15] Antti Kuusisto. A double team semantics for generalized quantifiers.
CoRR, abs/1310.3032v8, 2015.

[LV13] Peter Lohmann and Heribert Vollmer. Complexity results for modal
dependence logic. Studia Logica, 101(2):343–366, 2013.

[MB14] Brian McLaughlin and Karen Bennett. Supervenience. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Stanford, 2014.

[MR66] Hugh Montgomery and Richard Routley. Contingency and non-
contingency bases for normal modal logics. Logique et Analyse,
9(35):318–328, 1966.

[Piz07] Claudio Pizzi. Necessity and relative contingency. Studia Logica,
85(3):395–410, 2007.

[Piz13] Claudio Pizzi. Relative contingency and bimodality. Logica Universalis,
7(1):113–123, 2013.

[Roe13] Floris Roelofsen. Algebraic foundations for the semantic treatment of
inquisitive content. Synthese, 190(1):79–102, 2013.

[SvE88] Barry Smith and Christina von Ehrenfels. Foundations of Gestalt The-
ory. Philosophia resources library. Philosophia Verlag, 1988.
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