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Abstract We generalise the Blok–Jónsson account of structural consequence relations, later developed by Galatos,
Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson

admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents

or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in
that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are

considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over

certain partially ordered monoids. We investigate these relations using categorical methods and provide analogues of
the main results obtained in the general theory of consequence relations. Then we focus on the driving example of

multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract
Algebraic Logic.

1 Introduction

Most logicians agree that logic is about consequence, but different logicians have different preferences
when it comes to specifying what this term means in their favourite propositional logics. Someone
proceeds syntactically, taking consequence to be derivability in a given proof system, while someone else
defines it semantically, using e.g. algebraic or Kripkean models. The most successful attempt to single out
a neutral axiomatic framework embracing the common properties of all these different concepts is generally
attributed to Tarski: in this acceptation, a consequence relation is a reflexive, monotonic and transitive
relation between a set of formulas and a single formula of a given propositional language. Such Tarskian
consequence relations (tcr’s: see Definition 2.2) are the primary object of study of Abstract Algebraic

Logic (AAL: see e.g. [9, 11, 14–17]), a discipline that aims at providing general tools for the investigation
and comparison of the different brands of propositional logics on the market.

Among the reasons why AAL has established itself as a mainstream approach there is its success in
effectively accommodating all the main extensions of, and alternatives to, classical propositional logic:
intuitionistic logic, modal logics, relevant logics, quantum logics, and whatnot.

Although tcr’s are perfectly adequate for the needs of a wide spectrum of such abstract metalogical
enquiries, it gradually emerged that they fail to capture a range of situations where we are still reasoning from
given premisses to certain conclusions according to the same three principles of Reflexivity, Monotonicity,
and Cut, yet we are not manipulating formulas of a given language, but perhaps sequents (as in Gentzen
calculi) or equations (as in equational consequence relations associated with classes of algebras). Actually,
it is not unusual for a logic to be given alternative presentations as a “consequence relation” of sorts over
different sets of syntactic units. For example, classical logic can be presented not only as a (syntactically
or semantically defined) tcr, but also as the derivability relation of the classical sequent calculus, or as the
equational consequence relation of the 2-element Boolean algebra. In order to subsume these generalisations
of the concept of propositional logic, core AAL was extended to k-dimensional systems (see [10]) and,
subsequently, to Gentzen systems (see [30–34, 38]). The proliferation of these extensions of the classical
AAL theory suggests that the idea of abstracting away from the specifics of these presentations to pinpoint
what is essential to a logic is not without its allure.
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Logical consequence: The Blok–Jónsson approach. In their groundbreaking paper [8] (see also the
lecture notes [7] of the course “Algebraic structures for logic” that inspired the paper), Wim Blok and Bjarni
Jónsson take their cue from such reflections and suggest to replace the set of formulas in the definition
of tcr by an arbitrary set A, keeping however the same postulates of Reflexivity, Monotonicity, and Cut.
These more general relations are called abstract consequence relations (acr’s: see Definition 2.3).

The first conceptual hurdle for this general approach is providing a suitable account of logical conse-
quence. It is generally agreed that logical consequence, as opposed to consequence in general, is a matter
of logical form. In the standard AAL framework, this requirement is rendered precise by adding to the three
Tarskian postulates the further condition of substitution-invariance, also called sometimes structurality (see
Definition 2.2). It is clear enough that replacing the algebra of formulas by the unstructured set A, which
behaves as a sort of “black box” in so far as no relevant notion of endomorphism is applicable to it, calls
for a completely different account of substitution-invariance.

Blok and Jónsson’s response to this problem is insightful. They observe that the application of sub-
stitutions to propositional formulas (or, for that matter, to equations or sequents) is reminiscent of an
operation of multiplication by a scalar. In fact, if ϕ is a formula and σ1, σ2 are substitutions, then
pσ1 ˝σ2qpϕq “ σ1pσ2pϕqq and, if ι is the identity substitution, ιpϕq “ ϕ. Generalising this example, we are
led to an abstract counterpart of substitution invariance (see Definition 2.4), where the set of substitutions
is replaced by a monoid that acts on the set A.

One striking feature of Blok and Jónsson’s suggestion is that it allows to reformulate, at a very general
level, the classical notion of algebraisability in a way that provides a uniform perspective on the algebraisation
of logics and Gentzen systems (see [9, 34]).

A categorical perspective. Nikolaos Galatos and Constantine Tsinakis ( [21]) follow in Blok and Jónsson’s
footsteps and take their approach to the next level of generality. In particular, they aim at applying categorical
and order-theoretic methods to the study of acr’s. One major hindrance to this accomplishment is the
intrinsic asymmetry of acr’s, whose relata are, respectively, a subset of the base set and an element thereof.
With an eye to removing this potential source of technical problems, they introduce symmetric versions of
acr’s on a given set A. Thus, given a acr $ on a set A, they define its symmetric version $s by X $s Y

iff X $ y for all y P Y . Although these symmetric acr’s, which coincide with those preorder relations on
℘pAq containing the supersethood relation and such thatX $

Ť
tZ : X $ Zu, are shown to be in bijective

correspondence with standard acr’s, their advantage is that their premiss-sets and conclusion-sets are points
in a complete lattice of sets, ℘pAq. This circumstance suggests a natural generalisation to arbitrary complete
lattices, here called Galatos–Tsinakis consequence relations (gtcr’s: see Definition 2.6).

Can action-invariance be accommodated in this broader setting? To do so, we must first enrich our
monoids of actions with additional structure, in such a way as to turn them into complete residuated lattices

(see [20,25]). Monoidal actions are accordingly replaced by actions of such residuated lattices on complete
lattices, giving rise to the notion of an M-module (see Definition 2.5).

The algebraisability relation can be expressed in this framework in two different ways, respectively
giving rise to two notions of equivalence between gtcr’s. One of the main results of the paper [21] is the
characterisation in purely categorical terms of the M-modules for which these two senses of equivalence
coincide. These include the M-modules of formulas, of equations and of sequents. Thus, the result of
Galatos and Tsinakis gives an elegant abstract characterisation of those M-modules that are just as “well
behaved” as these standard examples.

The substructural challenge. As powerful and wide-ranging as this approach may be, a tricky challenge
to its adequacy is posed by substructural logics (see [20,25,29]). Such logics, usually introduced by means
of sequent calculi where some or all of the standard structural rules (Weakening, Contraction, Exchange,
Cut) are restricted or even deleted, provide an interesting problem for the Blok–Jónsson approach to
consequence, as further developed by Galatos and Tsinakis. By this we do not mean that they lie outside its
scope — on the contrary, they can be handled even in traditional AAL. There is, in fact, a canonical way to
obtain a tcr out of a given substructural sequent calculus. By way of example, consider the sequent calculus
FLe for full Lambek calculus with exchange and the varietyFLe of pointed commutative residuated lattices.
Define:
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‚ X $FLe
ϕ iff the sequent ñ ϕ is provable in the calculus obtained by adding to FLe as axioms the

sequents in t ñ ψ : ψ P Xu (this is sometimes called (see [2]) the external consequence relation of
a sequent calculus).

‚ X $1
FLe

ϕ ðñ tψ ^ 1 « 1 : ψ P Xu (FLe
ϕ ^ 1 « 1.

Here, (K refers to the equational consequence of the class of algebras K, namely, given a set of equations
Π and an equation ε, the expression Π (K ε means that every evaluation on an algebra of K satisfying all
the equations of Π also satisfies the equation ε.

It is well known [20, Ch. 2] that both relations coincide, that is, $FLe
“ $1

FLe
. The relation defined by

any of these two equivalent conditions is a tcr to all intents and purposes.
This approach, however, seems to fly in the face of the motivation underlying substructural logics. tcr’s

are relations between sets of formulas and single formulas, whence they are insensitive to the number of
occurrences a formula may have in some collection of premisses. In other words, they automatically validate
the Contraction and the Anticontraction rules: ifX,ϕ, ϕ $ ψ, thenX,ϕ $ ψ, and conversely ifX,ϕ $ ψ,
then X,ϕ, ϕ $ ψ. Yet, some substructural logics (like linear logic, [23]) are commonly employed to
formalise a “resource-conscious” notion of inference, according to which sentences are information tokens
of a given type and for which the Contraction rule is utterly suspect. Other substructural logics in the relevant
family ( [26, 27]) aim at capturing a concept of deduction according to which premisses in an argument
should be actually used to get the conclusion, something which seems to disqualify Anticontraction (and,
even more, Weakening). In other words: AAL can certainly accommodate substructural logics into its
framework (in the format of propositional logics or of Gentzen systems), and bestow on them the imposing
bulk of general results it has to offer, but only at the cost of tweaking the substructural proof systems in
such a way as to produce consequence relations that weaken and contract by fiat. AAL, in sum, does not
stay true to the spirit of substructural logics.

Now return, for a while, to the sequent calculus FLe. A more plausible candidate for a formalisation
of substructural consequence is its so-called internal consequence relation (see [2]), namely, that relation
that holds between a finite multiset of formulas Γ and a formula ϕ just in case Γ ñ ϕ is a provable sequent
of FLe. Investigating relations of this kind, however, means overstepping the Tarskian framework under at
least two respects:

1. A consequence relation should be conceived of as a relation between a finite multiset of formulas and
a formula.

2. The Monotonicity postulate should be dropped and the Reflexivity postulate should be restricted.

This approach, indeed, has been followed by Arnon Avron (see [3–5]) and, sporadically, by a few others
( [26,27,29,39]), who laid down the fundamentals of a theory of multiset consequence. However, to help the
theory to get started and make it easier to reconstruct some of the basic AAL theorems, it also seems wise
to follow a middle-of-the-road perspective that shortens the gap with the Tarskian paradigm, adopting finite
multisets as collections of premisses but leaving the Monotonicity and Reflexivity postulates untouched.
The resulting relations have a built-in Weakening condition, although they do not necessarily contract. This
policy, as a matter of fact, faces an insurmountable problem. David Ripley (see [35]) has shown that it is
not possible to obtain a bijective correspondence between these “naive” multiset consequence relations and
closure operators on finite multisets of formulas — any such relation that arises from a closure operator has
to obey Contraction.

In the paper [13], the authors developed a strategy to avoid this problem. They adopted a multiple-
conclusion format, studying relations $ between finite multisets of formulas of a given propositional
language, here called multiset deductive relations (mdr’s: see Definition 2.13). As in the case of gtcr’s,
the interpretation of the right-hand side is essentially conjunctive (cf. similar approach in non-monotonic
case in [4]). In other words, Γ $ ∆ can be read as: using at most once all the formula occurrences in Γ, we
can derive all the formula occurrences in ∆. The paper contains arguments in favour of this preference over
a disjunctive reading. They also suitably modified the notions of a closure operator and a closure system
on finite multisets of formulas so as to recover the traditional lattice isomorphism results that characterise
the standard set-theoretical framework. These correspondences were laid down as the embryo of a theory
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that aimed at eventually obtaining appropriate analogues of the main results available in AAL for Tarskian
consequence.

It is worth asking whether something like these multiset consequence relations, which have no direct
counterpart in AAL, can still ensconce in some more flexible apparatus based on (not necessarily complete)
lattices. After all, finite multisets over a set still form a lattice under the operations

pX _ Yqpaq “ suptXpaq,Ypaqu and pX ^ Yqpaq “ inftXpaq,Ypaqu

(see below), out of which we could define an M-module of sorts that would land us in known territory.
However, it is not hard to see that the crucial operation on multisets is not any of these, but rather multiset

sum:
pX Z Yqpaq “ Xpaq ` Ypaq.

It is via multiset sum that we aggregate multisets of premisses in substructural logics and formulate sequent
rules in substructural sequent calculi. Being a non-idempotent operation, though, it is scarcely pliant to the
methods reviewed so far. The gtcr’s on complete lattices, therefore, need to be replaced by appropriate
relations on dually integral partially ordered Abelian monoids, the prime motivating example being the
pomonoid

xFm5
L,ď,Z,Hy,

where Fm
5
L is the set of finite multisets of formulas of a propositional language L, Z is multiset sum,

H is the empty multiset and ď is the sub-multisethood relation (all these notions will be rehearsed in
Subsection 2.1).

The study of such deductive relations (dr’s: see Definition 3.1) is the main topic of the present
paper. Before outlining its contents in Subsection 2.3, however, it is expedient to go through a number of
preliminaries needed to make the paper reasonably self-contained.

2 Preliminaries

We start this section by reviewing some basic notions about multisets only to such an extent as it is needed
for the purposes of the present paper. For a more comprehensive account, the reader can consult e.g. [6,37].

2.1 Multisets

By a multiset over a set A we mean a function X from A to the set N of natural numbers.1 By ℘M pAq we
denote the set of all multisets over A. The root set of a multiset X is the set

|X| “ ta P A : Xpaq ą 0u.

If a P |X|, we say that a is an element of X of multiplicity Xpaq. A multiset X is finite if |X| is finite. By
A5 we denote the set of all finite multisets over A. The empty multiset, i.e. the constant function 0, will be
denoted by the same symbol H used for the empty set — the context will always be sufficient to resolve
ambiguities.

The set ℘M pAq inherits the ordering of N in the following way:

Y ď X ðñ Ypaq ď Xpaq, for all a P A.

With respect to this ordering, it forms a lattice with joins and meets defined as

pX _ Yqpaq “ suptXpaq,Ypaqu and pX ^ Yqpaq “ inftXpaq,Ypaqu,

for all a P A. The operation _ is a kind of “union”, and, true to form, if we consider the subsets of A as
multisets whose elements have multiplicity 1 and X and Y are subsets of A, then X _ Y “ X Y Y. There
is another “union-like” operation of sum between multisets, defined as follows:

pX Z Yqpaq “ Xpaq ` Ypaq, for all a P A.

1We use letters Γ,∆,Π, . . . for multisets of formulas, while X, Y, Z, . . . are used for general multisets.
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The next proposition shows that the set of finite multisets over a set A can be seen as the universe of a
dually integral Abelian pomonoid which we will denote as A5.

Proposition 2.1. For any set A the structure A
5 “ xA5,ď,Z,Hy is a dually integral Abelian pomonoid,

i.e., a structure where:

1. xA5,Z,Hy is an Abelian monoid.

2. ď is a partial order compatible with Z, i.e.,

X ď Y ùñ X Z Z ď Y Z Z.

3. H is the bottom element of ď.

We will also have occasion to use the operation XzY defined by

pXzYqpaq “ max
 
Xpaq ´ Ypaq, 0

(
, for all a P A,

relying on the context to disambiguate between this operation and standard set-theoretic subtraction. As it
is customary to do, we use square brackets for multiset abstraction; so, for example, ra, a, b, cs will denote
the multiset X s.t. Xpaq “ 2, Xpbq “ Xpcq “ 1, and Xpdq “ 0, for any d R ta, b, cu.

Finally, every map f : A Ñ B can be extended to a morphism from A
5 to B

5 (for which we retain the
same symbol) via

fpXq “ rfpa1q, . . . , fpanqs

for every X “ ra1, . . . , ans. We will use this notation without special mention.

2.2 Consequence relations

Let L be a propositional language (or, which is the same, an algebraic language). By FmL we denote
the algebra of formulas with countably many variables on the language L with universe FmL. An L-
substitution is an endomorphism σ of FmL. The notation σpXq refers to the set tσpϕq : ϕ P Xu, for every
X Ď FmL.

Definition 2.2. A Tarskian consequence relation (tcr) on L is a binary relation $ Ď ℘pFmLq ˆ FmL

obeying the following conditions for all X,Y Ď FmL and ϕ P FmL:

‚ X $ ϕ whenever ϕ P X . (Reflexivity)

‚ If X $ ϕ and X Ď Y , then Y $ ϕ. (Monotonicity)

‚ If Y $ ϕ and X $ ψ for every ψ P Y , then X $ ϕ. (Cut)

A tcr $ on L is said to be substitution-invariant, or also a logic, if for all X Y tϕu Ď FmL, whenever

X $ ϕ we also have that σpXq $ σpϕq, where σ is an arbitrary L-substitution.

As we mentioned in the introduction, tcr’s are the main object of study of AAL. The next definition,
due to Blok and Jónsson ( [8]) generalises tcr’s so as to also encompass cases in which the syntactic units
are not formulas, e.g. equational consequence relations and consequence relations on sequents.

Definition 2.3. An abstract consequence relation (acr) on a set A is a relation $ Ď ℘pAq ˆA obeying the

following conditions for all X,Y Ď A and for all a P A:

‚ X $ a whenever a P X . (Reflexivity)

‚ If X $ a and X Ď Y , then Y $ a. (Monotonicity)

‚ If Y $ a and X $ b for every b P Y , then X $ a. (Cut)

5



In this framework, generalising substitution invariance requires a little more work. The set of L-
substitutions, which forms a monoid with composition, is replaced by an arbitrary monoidal action on the
base set A.

Definition 2.4. A monoid M “ xM, ¨, 1y acts on a set A if there is a map ‹ : M ˆ A Ñ A s.t. for all

m1,m2 P M and all a P A,

pm1 ¨m2q ‹ a “ m1 ‹ pm2 ‹ aq and 1 ‹ a “ a.

Thus, an acr $ is said to be action-invariant if for all X Y tau Ď A and m P M , wheneverX $ a we also

have that tm ‹ x : x P Xu $ m ‹ a.

Observe that if M acts onA, then ℘pMq “ x℘pMq, ¨1, t1uy (where ¨1 is complex product) acts on ℘pAq
via the induced map

N ‹1 X “ tm ‹ x : m P N, x P Xu.

The sets ℘pAq and ℘pMq have the structures of a complete lattice and a complete residuated lattice under
set-inclusion, respectively. Moreover, the map ‹1 : ℘pMq ˆ ℘pAq Ñ ℘pAq is biresiduated, i.e., it is
residuated in each coordinate. This motivates the following definitions.

Definition 2.5. Let M “ xM,^M,_M, ¨, z, {, 1y be a complete residuated lattice, L “ xL,^L,_Ly be a

complete lattice and ‹ : M ˆL Ñ L be a map. We say that M acts on L, or also that L “ xL,^L,_L, ‹y
is an M-module,2 if the monoid reduct of M acts on L and, moreover, there are maps {‹ : L ˆ L Ñ M

and z‹ : M ˆ L Ñ L such that, for all m P M and x, y P L,

m ‹ x ďL y ðñ m ďM y{‹x ðñ x ďL mz‹y.

Every acr $ on a set A can be lifted to a binary relation $s on ℘pAq as follows:

X $s Y ðñ X $ y, for every y P Y.

Observe that $s satisfies these three properties:

‚ $s is a preorder on ℘pAq,

‚ if X Ď Y then Y $s X ,

‚ X $
Ť

tZ : X $ Zu.

Also, any binary relation on ℘pAq satisfying these three properties is of the form $s for some acr $ on A,
and this correspondence is bijective. If moreover $ is an action-invariant acr, then $s satisfies that

X $s Y ùñ N ‹1 X $s N ‹1 Y.

It is natural enough to propose an abstract version of these relations, as done in [21].

Definition 2.6. A Galatos–Tsinakis consequence relation (gtcr) on a complete lattice L “ xL,^,_y, with

induced order ď, is a preorder $ ofL that contains ě and is such that for all x P L, x $
Ž

ty P L : x $ yu.

A gtcr $ on an M-module L is said to be action-invariant if, for all x, y P L and m P M , x $ y implies

m ‹ x $ m ‹ y.

In traditional AAL, the fundamental concept of deductive equivalence is the algebraisability relation
( [9, 15]) between logics and equational consequence relations. We recall its definition hereafter.

Definition 2.7. A logic $ on a language L is algebraisable if there exist a generalised quasi-variety K and

two maps

τ : ℘pFmLq ÐÑ ℘pEqLq :ρ

which commute with unions and substitutions, such that

X $ ϕ ðñ τpXq (K τpϕq and x ≈ y )(K τρpx ≈ yq

for every X Y tϕu Ď FmL.

2Note that for modules we use boldface italic font, whereas for algebras a simple boldface. Also, if K is module then K is its
lattice reduct.
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In the displays above, EqL is the set of L-equations (formally cast as ordered pairs of L-formulas),
and (K the equational consequence relation of K. When the above conditions hold, K is unique and is
said to be the equivalent algebraic semantics of $. Given a logic $ and a generalised quasi-variety K, we
denote by C$ and CK the closure operators associated to the relations $ and (K respectively. It is well
known (see e.g. [15, p. 149]) that the notion of algebraisability is captured by the existence of a particular
isomorphism. Below, given an acr $ on a set A, we denote by T hp$q the complete lattice of theories of
$, i.e., such sets T Ď A such that a P T whenever T $ a.

Theorem 2.8 (Syntactic Isomorphism Theorem). Let $ be a logic and K a generalised quasi-variety.

Then $ is algebraisable with equivalent algebraic semantics K if and only if there is a lattice isomorphism

Φ: T hp$q Ñ T hp(Kq such that Φ ˝ C$ ˝ σ “ CK ˝ σ ˝ Φ for every substitution σ.

Blok and Jónsson introduced the following natural generalisation of the concept of algebraisability [7,
Definition 4.5], based on the criterion provided by Theorem 2.8.

Definition 2.9. Let M be a monoid acting on two sets A1 and A2, respectively through the actions ‹1 and

‹2. Moreover, let $1 and $2 be two action invariant acr’s, respectively on A1 and A2. The acr’s $1 and

$2 are said to be equivalent if the following two lattices with unary operators are isomorphic

xT hp$1q, C$1
m : m P My – xT hp$2q, C$2

m : m P My.

Observe that, in the light of Theorem 2.8, a logic $ is algebraisable with equivalent algebraic semantics
K if and only if the substitution-invariant acr’s $ and (K are equivalent according to this definition (where
M “ EndpFmLq is the monoid of substitutions, acting in the natural way on formulas and equations).

Since the maps τ : ℘pFmLq ÐÑ ℘pEqLq :ρ in Definition 2.7 commute with arbitrary unions, they are
residuated maps on the corresponding complete lattices. Moreover, they commute with substitutions. This
is the reason why [21] consider the category M-Mod whose objects are M-modules and whose arrows are
residuated maps τ : L Ñ L

1 (called translators) such that, if M acts on L and L
1 via ‹1 and ‹2 respectively,

we have that for all x P L and m P M , τpm ‹1 xq “ m ‹2 τpxq. A noteworthy feature of M-Mod is the
fact that gtcr’s on its objects can be viewed as bona fide objects in the same category.

Theorem 2.10.

1. The gtcr’s on an M-module L correspond bijectively to closure operators on its lattice reduct L

(namely, enlarging, order-preserving, and idempotent unary operation γ on L) via the maps $pq and

γpq defined by

x $γ y iff y ďL γpxq and γ$pxq “
ł

ty P L : x $ yu.

2. If L is an M-module (via ‹) and $ is a gtcr on its lattice reduct L, then the lattice Lγ$
of γ$-closed

elements of L is the lattice reduct of an M-module Lγ$
via the map ‹γ$

: M ˆLγ$
Ñ Lγ$

defined

by

m ‹γ$
x “ γ$pm ‹ xq.

Moreover, γ$ is a morphism in M-Mod from L onto Lγ$
.

Observe that if $ is a gtcr on L, then Lγ$
is nothing but the lattice of $-theories — viz., of all t P L

such that t $ x implies x ď t.
It turns out that algebraisability can be generalised to the setting of modules over residuated lattices,

again thanks to the criterion provided by Theorem 2.8.

Definition 2.11. Two gtcr’s $1 and $2, respectively on theM-modulesL andL1, are said to be equivalent
if there is a module isomorphism f : Lγ$1

Ñ L
1
γ$2

. An isomorphism f : Lγ$1
Ñ L

1
γ$2

is induced by the

translators τ : L Ñ L
1 and ρ : L1 Ñ L if fγ$1

“ γ$2
τ and f´1γ$2

“ γ$1
ρ.

Given an isomorphism f : Lγ$1
Ñ L

1
γ$2

induced by translators τ and ρ, the classical definition of

algebraisability can be restored, in the sense that for every x, y P L and z P L1 we have that

x $1 y ðñ τpxq $2 τpyq and z %$2 τpρpzqq.
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In this parlance, the Syntactic Isomorphism Theorem states that every equivalence between a logic
$ and the equational consequence (K relative to a generalised quasi-variety K is induced by a pair of
translators. It is natural to ask whether this is true for arbitrary equivalences between gtcr’s onM-modules.
Unfortunately, it turns out that this is false in general, as shown in [22]. Nevertheless, Galatos and Tsinakis
find sufficient and necessary conditions for it to be the case. Recall, that an objectR in a category C, whose
arrows are set-theoretic functions, is onto-projective if for any C-morphisms f : S Ñ T and g : R Ñ T

between objects in C with f onto, there is a C-morphism h : R Ñ S such that f ˝ h “ g. Here is the main
result in the paper by Galatos and Tsinakis:

Theorem 2.12. An M-module L is onto-projective in M-Mod if and only if for any M-module L
1 and

gtcr’s $1 and $2, respectively on L and L
1, every residuated order embedding f : Lγ$1

Ñ L
1
γ$2

is such

that fγ$1
“ γ$2

τ for some translator τ : L Ñ L
1. In particular, if both L and L

1 are onto-projective,

then every equivalence between $1 and $2 is induced by translators.

Generalisations of the above criterion have been obtained in [19] (see also [36]) and [28], while the
structure of onto-projective objects in the Blok–Jónsson framework was described in [18]. Note that in [19]
the authors have also proved that all epimorphisms in M-Mod are onto, so the specification “onto” in the
previous theorem is redundant.

Given a propositional language L, the lattice of sets ℘pFmLq corresponding to the plain old module
of L-formulas is indeed onto-projective in ℘pEndpFmLqq-Mod, and so are the modules of L-equations
and L-sequents. Thus, Theorem 2.12 identifies modules that are just as “well behaved” as these standard
examples in terms of admitting a general version of the Syntactic Isomorphism Theorem.

The following concept, already discussed in the introduction, is the key motivating example for the
further generalisations that will be at the centre of the next sections.

Definition 2.13. A multiset deductive relation (mdr) on a propositional languageL is a relation $ on Fm
5
L

such that for each Γ,∆,Π P Fm
5
L:

‚ Γ Z ∆ $ Γ. (Reflexivity)

‚ If Γ $ ∆, then Γ Z Π $ ∆ Z Π. (Compatibility)

‚ If Γ $ ∆ and ∆ $ Π, then Γ $ Π. (Transitivity)

2.3 Overview of the results

This paper is structured as follows. In Section 3, we introduce the concept of a deductive relation (dr) on a
dually integral Abelian pomonoid. This is a modification of the notion of gtcr on a complete lattice, so as to
encompass mdr’s and other examples that are not directly covered by Galatos and Tsinakis’ theory. Since, as
we have seen, gtcr’s on a lattice are in bijective correspondence with closure operators on the same lattice,
it is to be expected — if we are on the right track — that an analogous result holds with respect to dr’s and
some sort of “operational companions” of such. The fact that aggregation of premisses and conclusions
is abstractly represented by a monoidal operation which, unlike set union, is not necessarily idempotent,
implies that it won’t do to define these operators in the standard way. Thus, deductive operators (do’s)
on a dually integral Abelian pomonoid R “ xR,ď,`, 0y are introduced as certain maps δ : R Ñ ℘pRq.
Similarly, we propose a notion of a deductive system (ds) that appropriately generalises closure systems
associated with closure operators. The main result of the section is:

Theorem 2.14 (see Theorem 3.17). If R is a dually integral Abelian pomonoid, then the posets xRelpRq,Ďy,

xOppRq,ďy and xSyspRq,Ěy are isomorphic.

In Section 4, the problem of action-invariance is under scrutiny. We define a category A-Mod of
modules over dually integral po-semirings (called A-modules) that is closely related to the category of
Galatos and Tsinakis’ M-modules and includes as new examples the modules MultL whose underlying
pomonoids have the form xFm5

L,ď,Z,Hy for some language L, and whose scalars are finite multisets of
L-substitutions. In this wider framework, we obtain analogues of the main theorems proved by Galatos and
Tsinakis. Here is an example:
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Theorem 2.15 (see Theorem 4.13). An A-module R is onto-projective in A-Mod iff, for any other

A-moduleS and action-invariant do’s δ and γ onR andS respectively, every injective and order-reflecting

morphism Φ: Rδ Ñ Sγ is induced by some morphism.

In Theorem B, Rδ,Sγ are A-modules of sets whose universes are, respectively, the union of all δ-
images (resp., γ-images) of elements ofR (resp., S). We also show that our motivating multiset-theoretical
example is just as well behaved as the standard examples in Galatos and Tsinakis’ theory:

Theorem 2.16 (see Theorem 4.18). Modules arising from multisets are onto-projective in the appropriate

categories.

In Section 5, we zoom in on mdr’s. We introduce two types of matrix semantics for such relations.
If $ is an mdr on a language L, an L-hypermatrix is a pair xA, F y, where A is an L-algebra and F
is a ď-downward closed set of finite multisets over A. We show that the L-hypermatrix models of an
mdr $ correspond bijectively to the models of a Gentzen relation uniquely associated to $. This opens
the way for importing into our theory all sorts of tools and results from the abstract theory of Gentzen
systems (see [31, 33, 34]), including a workable definition of Leibniz congruence of an L-hypermatrix and
a completeness theorem for any substitution-invariant mdr:

Theorem 2.17 (see Theorem 5.16). Every substitution-invariant mdr is complete with respect to the class

of its reduced L-hypermatrix models.

An alternative type of matrix semantics for mdr’s, on the other hand, involves certain structures made
up by an algebra A, a dually integral Abelian pomonoid xD,ď,`, 0y, and a pomonoid homomorphism
from xA5,ď,Z,Hy to xD,ď,`, 0y. These structures subsume ordinary logical matrices, which arise when
D is the 2-element join semilattice. We clarify the relationship between these monoidal matrices and L-
hypermatrices. We also show that, in the most favourable cases, the structure of the former can be simplified
to a pair constituted by an algebra and a fuzzy subset of its universe. We use these simplified matrices to
provide a completeness theorem for a multiset-theoretic companion of infinite-valued Łukasiewicz logic.

Finally, we introduce Hilbert systems suited for multiset consequence and prove that their derivability
relations are substitution-invariant mdr’s; conversely, every substitution-invariant mdr is shown to arise
as the derivability relation of some such Hilbert system. As an example, we provide a Hilbert-style
axiomatisation of the above-mentioned multiset-theoretic companion of infinite-valued Łukasiewicz logic.
The main result is:

Theorem 2.18 (see Theorem 5.30). Any substitution-invariant mdr coincides with the derivability relation

of some axiomatic system AS.

3 Deductive relations

3.1 Basic definitions and facts

We emphasised in our introduction that we need to consider more general relations than Galatos and Tsinakis’
gtcr’s if we want to properly account for multiset consequence relations introduced in Definition 2.13. By
Proposition 2.1, the set of finite multisets of formulas of a given language can be equipped with the structure
of a dually integral Abelian pomonoid. This leads us to the next definition.

Definition 3.1. A deductive relation (dr) on a dually integral Abelian pomonoid R “ xR,ď,`, 0y is a

relation $ on R such that for every a, b, c P R:

‚ If a ď b, then b $ a. (Generalised Reflexivity)

‚ If a $ b and b $ c, then a $ c. (Transitivity)

‚ If a $ b, then a` c $ b` c. (Compatibility)

A dr is finitary if for each compact3 element b such that a $ b there is a compact element a1 ď a such

that a1 $ b.

3An element a P R is compact if for each directed set D Ď R which has a supremum suppDq ě a we have d ě a for some
d P D.
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Observe that $ is a compatible preordering of R and 0 is a $-maximum. Also observe that, using
properties of compatible preorderings on Abelian monoids and the dual integrality of R, we have:

Lemma 3.2. Let $ be a dr on R “ xR,ď,`, 0y. For all a, b, c, d P R:

1. a $ b and c` b $ d imply c` a $ d. (Cut)

2. a $ b implies c` a $ b. (Monotonicity)

Some examples of dr’s follow hereafter. Our prime motivating example, the multiset deductive relations,
will be thoroughly studied in Section 5, where appropriate particular examples will be given. It is easy to
observe that:

Example 3.3. Let L be a propositional language. Multiset deductive relations on L are exactly the dr’s on

Fm
5
L.

Of course, standard acr’s (hence, in particular, tcr’s) give rise to instances of deductive relations:

Example 3.4. Let $ be an acr on the set A (see Definition 2.3) and let

R
℘pAq “ x℘pAq,Ď,Y,Hy.

Then $1, where, for all X,Y Ď A, X $1 Y iff X $ a for all a P Y , is a dr on R
℘pAq.

In view of the previous example, the reader will be curious to figure out whether dr’s also generalise
gtcr’s (see Definition 2.6). The answer, here, is less straightforward.

Proposition 3.5. Let L “ xL,^,_y be a complete lattice with induced order ď and bottom element 0.

Then the structure

L
1 “ xL,ď,_, 0y

is a dually integral Abelian pomonoid and any (finitary) gtcr on L is a (finitary) dr on L
1.

Proof. The only non-trivial part is Compatibility. Assume that a $ b. Thus, a _ c $ b and a _ c $ c and
so

Ž
tx : a_ c $ xu $ b_ c. By the defining condition on gtcr’s, it follows that a_ c $ b_ c.

The converse direction does not hold in general. The next proposition provides a class of explicit
counterexamples, indeed, a very wide one, because any substitution-invariant tcr $ with a theorem (i.e.,
an element a such H $ a) containing a variable has infinitely many theorems.

Proposition 3.6. Let $ be a finitary acr with infinitely many theorems4 on A and let $1 be defined as in

Example 3.4. Then the relation defined by:

X , Y if there is a finite Y 1 Ď Y such that Y zY 1 Ď X and X $1 Y 1

is a dr on R
℘pAq but it is not a gtcr on ℘pAq.

Proof. For our first claim, the only nontrivial condition to check is Transitivity. Assume that X , Y

and Y , Z , and let Y 1 and Z 1 be finite sets with the required properties. We claim that the finite set
Z̄ “ Z 1 Y pY 1 X Zq witnesses X , Z . In fact:

‚ Clearly Z̄ is a finite subset of Z .

‚ X $1 Z̄ , because , Ď $1 implies that X $1 Z .

‚ The final condition is obtained by the following chain:

ZzpZ 1 Y pY 1 X Zqq “ pZzZ 1q X pZzpY 1 X Zqq “ pZzZ 1q X pZzY 1q Ď Y X pZzY 1q Ď Y zY 1 Ď X.

To conclude the proof, it is easy to observe that for each theorem a we have H , a, yet clearly
H & ta : H , au.

4Actually, any acr where there is a finite set with infinitely many consequences would do the job.
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The above result is not that surprising, as our definition of dr only employs finitary operations, as
opposed to the use of infinite suprema in gtcr’s. Our approach has the advantage that our background
structure could be much smaller, as the following proposition shows.

Proposition 3.7. Let L “ xL,^,_y be a complete algebraic lattice with induced order ď and bottom

element 0. Then the structure

KpLq “ xKpLq,ď,_, 0y,

where KpLq is the set of compact elements of L, is a dually integral Abelian pomonoid. Moreover, there

is bijective correspondence between finitary gtcr’s on L and dr’s on KpLq.5

Proof. For a start, note that finitary gtcr’s on complete algebraic lattices are fully determined by their
subrelations between compact elements. In fact, for x P L, let

Cx “ tc P KpLq : c ď xu.

Thus x “
Ž
Cx. Now, take x, y P L. We have that x $ y iff for each c P Cy there is xc P Cx such that

xc $ c. As in Proposition 3.5, it is possible to show that the restriction of any gtcr on L is a dr on KpLq,
and the previous observation entails that if two gtcr’s differ they also differ on compact elements.

Conversely, assume that $ is a dr and define:

x $1 y ðñ for each c P Cy there is xc P Cx such that xc $ c.

The only condition in need of a proof is that x $1 p, where p “
Ž

ta P L : x $1 au. Let C “ tc P KpLq :
x $1 cu. If we show that C “ Cp, we are done. For the nontrivial inclusion, assume that c P KpLq and
c ď p. Then there are c1, . . . , cn such that c ď c1 _ ¨ ¨ ¨ _ cn and x $1 cj for all j ď n. This means that for
all j ď n there is xj ď x such that xj $ cj . Using properties of dr’s we obtain x1_¨ ¨ ¨_xn $ c1_¨ ¨ ¨_cn
and so x $1 c, i.e., c P C. This mapping is clearly one-one and an inverse to the previous one.

The next example identifies a deductive relation on fuzzy sets. It is introduced to underscore the
generality of our framework, but it will not be further discussed in the remainder of this paper.

Example 3.8. Let L be the language of infinite-valued Łukasiewicz logic Ł. The relation $ Ď r0, 1sFmL ˆ
r0, 1sFmL defined as:

Γ $ ∆ ðñ for each r0, 1s-valued evaluation e we have: if epψq ě Γpψq

for each ψ P FmL, then epψq ě ∆pψq for each ψ P FmL

is a dr on

R
r0,1sFmL

“ xr0, 1sFmL ,ď,_,Hy,

where Hpϕq “ 0 for all ϕ P FmL and _ is pointwise supremum.

Among the basic notions of algebraic logic that need to be redefined in our new framework, one certainly
finds the concepts of theory and theorem. Here, we must stray away to a certain extent from the received
orthodoxy. In view of Example 3.4, given a dr $ on R “ xR,ď,`, 0y, one would expect a $-theory to be
an element of R with certain properties. In AAL, in fact, a theory is a deductively closed set of formulas.
In particular, the theory generated by a set of formulasX is the smallest deductively closed set of formulas
that includes X — or else, the largest Y such that X $ Y — and has the property that its subsets are
exactly the consequences of X . However, in the case of mdr’s (Definition 2.13), this would not work.
Such a “largest consequence” need not always exist, because it could happen, for instance, that Γ $ ∆ and
Γ $ Π but Γ & ∆ _ Π. Nevertheless, it makes sense to collect all the consequences of a given multiset
Γ of formulas into a set and view the set itself as the deductive closure of Γ. Abstracting away from this
particular example, we are led to the following definition (recall that every dr is a preorder on R).

Definition 3.9. Let $ be a dr on R. A $-theory (or simply a theory, when $ is understood) is a $-upset

T of R. By Thp$q we denote the family of all $-theories.

5Note that all dr’s on KpLq are finitary.
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Proposition 3.10. Let $ be a dr on R. Then Thp$q is a closure system on R (namely, a family of subsets

of R that containsR and is closed under arbitrary intersections).

Proof. Clearly, R is a theory. Suppose that tTiuiPI is a nonempty family of theories, a P
Ş

tTiuiPI and
a $ b. Given an arbitrary Tj (j P I), a P Tj , whence b P Tj . It follows that b P

Ş
tTiuiPI .

We denote byTh$pXq the smallest $-theory containingX , and byThpp$q the set of principal theories
of the form Th$paq, for a P R, which is just the principal $-upset generated by a. The subscripts in Th$

will be dropped when the deductive relation is clear from the context.
Let us note the each $-theory is a union of principal theories, a quite unusual feature from the point of

view of the general theory of closure systems. Actually we can prove even more:

Proposition 3.11. Let $ be a dr on R. Then

Th$pXq “
ď

tTh$pxq : x P Xu.

Proof. Clearly if x P X then Th$pxq Ď Th$pXq and so one inclusion follows. To prove the converse one
it suffices to show that T “

Ť
tTh$pxq : x P Xu is a $-theory (since, as such, it will contain the smallest

$-theory including X). Assume that a P T and a $ b. Thus we know that a P Th$pxq for some x P X
and so Transitivity completes the proof.

Definition 3.12. Let $ be a dr on R “ xR,ď,`, 0y. The element b P R is a $-theorem if 0 $ b.

Observe that 0 is always a theorem6 and the theorems are exactly the $-maximal elements of R, since
for any a P R we have a $ 0. Note that ě, which can be seen as the least dr on R, has 0 as the only
theorem.

The reader will recall that one of the main advantages of the notion of gtcr is the fact that the collection
of theories of a given gtcr $ over a complete lattice is itself a complete lattice, which is furthermore
determined by $. We prove an analogous results for dr’s and principal theories.

Theorem 3.13. Let $ be a dr on R “ xR,ď,`, 0y. Let us define `$ on Thpp$q as

Th$pxq `$ Th$pyq “ Th$px` yq.

Then

Th$ “ xThpp$q,Ď,`$,Thp0qy

is a dually integral pomonoid and the mapping Th$ : R Ñ Thpp$q is a surjective morphism.

Proof. The relation Ď is clearly a partial order on Thpp$q with Thp0q as a bottom element. Moreover,
Th is order preserving: in fact, by Generalised Reflexivity a P Thpaq and so, by Transitivity, a $ b iff
Thpbq Ď Thpaq. Thus, if a ď b then, by Generalised Reflexivity, Thpaq Ď Thpbq.

We now sketch the proof of the fact that the operation `$ is well defined. To this end, consider
a, b, c, d P R such that Thpaq “ Thpbq and Thpcq “ Thpdq. In particular, b $ a and d $ c and so by
Compatibility and Transitivity d ` b $ a ` c, whence Thpa ` cq Ď Thpb ` dq. The other inclusion is
proved analogously. The fact that xThpp$q,`$,Thp0qy is an Abelian monoid is obvious, so we only need
to check that `$ is compatible with the order. Let a, b, c P R be such that Thpaq Ď Thpbq. Thus b $ a

and so b` c $ a` c. As a consequence,

Thpaq `$ Thpcq “ Thpa ` cq Ď Thpb` cq “ Thpbq `$ Thpcq.

The fact that Th is a surjective morphism is again obvious.

6There are dr’s for which 0 is the only theorem — for example, any dr that stems from a theoremless acr as in Example 3.4 has
this property.
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3.2 Deductive operators and systems

In AAL, propositional logics can be introduced in three different but equivalent ways: via consequence
relations, via closure operators, and via closure systems. The same is true of the approach we have taken.
While deductive relations are abstract counterparts of tcr’s, our next goal is to define suitable abstract
notions of deductive operator and deductive system, in such a way as to generalise the lattice isomorphisms
between the lattices of consequence relations, of closure operators, and of closure systems that are available
in the traditional theory of AAL. Analogues of the classical concepts of closure operator and closure system
can be defined as follows.

Definition 3.14. A deductive operator (do) on a dually integral Abelian pomonoid R “ xR,ď,`, 0y is a

map δ : R Ñ ℘pRq such that for every a, b, c P R:

‚ a P δpaq. (Enlargement)

‚ If a ď b, then δpaq Ď δpbq. (Order Preservation)

‚ If a P δpbq, then δpaq Ď δpbq. (Idempotency)

‚ If a P δpbq, then a ` c P δpb` cq. (Compatibility)

Observe that, in full analogy with Definition 3.9, a do is a map from elements of R to subsets of R.
Next we define the notion of a deductive system; recall that closure systems are systems of theories

of some acr, but as we have seen in the previous subsection the principal theories are the crucial ones in
our framework (as they can be seen as universes of dually integral Abelian pomonoids). This leads to the
following definition:

Definition 3.15. A deductive system (ds) on a dually integral Abelian pomonoid R “ xR,ď,`, 0y is a

family C Ď ℘pRq of ď-downsets ofR such that for the mapping δC : R Ñ ℘pRq defined by δCpxq “
Ş

tC P
C : x P Cu we have δCpRq “ C and if δCpxq Ď δCpyq, then δCpx` zq Ď δCpy ` zq for all x, y, z P R.

The subscript, or superscript, C will be omitted whenever it is not needed to clarify potential confusions.

Proposition 3.16. Let C be a ds on a dually integral Abelian pomonoid R. Then the mapping δC is a do

on R.

Proof. Enlargement is obvious. For Idempotency, assume that a P δpbq, c P δpaq and we haveX P C such
that b P X . Then a P X (due to the first assumption) and so c P X (due to the second assumption), i.e.,
c P δpbq. If a ď b, then (as eachX is ď-downset) a P δpbq and so by Idempotency δpaq Ď δpbq, which takes
care of Order Preservation. Finally, we prove Compatibility: using the conditions we already established,
if a P δpbq, then δpaq Ď δpbq and so δpa ` cq Ď δpb` cq, whence a` c P δpb ` cq.

Given a dually integral Abelian pomonoidR “ xR,ď,`, 0y,we respectively denote byRelpRq,OppRq
and SyspRq the sets of deductive relations, deductive operators and deductive systems onR. We next define
partial orders on these sets. RelpRq will be viewed as partially ordered by set inclusion, and SyspRq by
supersethood. We define an order on OppRq as follows: given δ, γ P OppRq, we set δ ď γ iff δpaq Ď γpaq
for every a P R.

Theorem 3.17. If R “ xR,ď,`, 0y is a dually integral Abelian pomonoid, then the posets xRelpRq,Ďy,

xOppRq,ďy and xSyspRq,Ěy are isomorphic.

Proof. We define maps δpq : Re lpRq Ñ OppRq and $pq : OppR Ñ Re lpRq as follows:

$δ “ txa, by : b P δpaqu and δ$paq “ Th$paq.

It is easy to show that they are well defined and monotone. We now prove they are mutually inverse.
Consider $ P RelpRq and observe that x $ y iff y P δ$pxq iff x $δ$

y. On the other hand, for any
δ P OppRq:

x P δpyq ðñ y $δ x ðñ x P δ$δ
pyq.
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Next, we handle the slightly more complex case of dr’s and ds’s. We define two maps Cpq : RelpRq Ñ
SyspRq and $pq : SyspRq Ñ RelpRq as follows:

C$ “ tTh$paq : a P Ru and $C “ txa, by : b P δCpaqu.

Using Theorem 3.13, we conclude that C$ is indeed a ds, while Proposition 3.16 guarantees that δC is a do.
Monotonicity of both functions is obvious and so is the fact that they are mutually inverse. For the sake of
completeness, we observe that Cδ “ tδpaq : a P Ru maps OppRq to SyspRq, and that such a mapping is
inverted by the mapping that sends any ds C to the already defined deductive operator δC .

Corollary 3.18. xRelpRq,Ďy, xOppRq,ďy and xSyspRq,Ěy are complete lattices.

Proof. By Theorem 3.17, it will suffice to prove our claim for any one of these posets, say xOppRq,ďy. It
is obvious that δ1, defined by

δ1paq “ R for all a P R

is a do and that it is the top element w.r.t. ď. In order to see that do’s on R form a complete lattice, it is
enough to see that for every family of do’s tδi : i P Iu, the map

Ź
iPI δi defined by

ľ

iPI

δipaq “
č

tδipaq : i P Iu

is again a do. Enlargement is clear. For Order Preservation, suppose that a ď b and c P δipaq for all i P I .
Then for all i P I we have that δipaq Ď δipbq, whence c P

Ş
tδipbq : i P Iu. As to Idempotency, suppose

a P δipbq for all i P I , and c P δipaq for all i P I . Then for all i P I we have that δipaq Ď δipbq and so again
c P

Ş
tδipbq : i P Iu. Compatibility, once more, is clear.

3.3 Blok–Jónsson companions of deductive relations

Deductive relations, deductive operators and deductive systems respectively give rise to special kinds of
acr’s (Definition 2.3), closure operators and closure systems. In the present subsection, we point out the
fact that there is a significant transfer of information from the original relations, operators and systems to
these “Blok–Jónsson companions”, which we now proceed to define.

Given a dr $ on R “ xR,ď,`, 0y, its Blok–Jónsson companion is the relation $BJ Ď ℘pRq ˆ R

defined as follows for every X Ď R and every a P R:

X $BJ a ðñ there is y P X s.t. y $ a.

Lemma 3.19. If $ is a dr on R “ xR,ď,`, 0y, then $BJ is an acr on R.

Proof. For Reflexivity, suppose x P X ; we want to show that X $BJ x, i.e. that there is y P X s.t. y $ x.
However, by the reflexivity of $, x itself fits the bill.

Monotonicity is straightforward from the definition of $BJ .
For Cut, we want to show that X $BJ y and Z $BJ x for all x P X imply that Z $BJ y. In fact,

suppose there is x P X s.t. x $ y. This implies that there is z P Z s.t. z $ x, whence by transitivity of $,
z $ y, which in turns entails that Z $BJ y.

Along the same lines, deductive operators and deductive systems on R can be lifted to closure operators
and closure systems, respectively, on the base set R.

Lemma 3.20. Given a do δ on R “ xR,ď,`, 0y, the map δBJ : ℘pRq Ñ ℘pRq defined as

δBJ pXq “
ď

tδpxq : x P Xu

is a closure operator.

Proof. First, if a P X Ď R, then a P δpaq Ď δBJ pXq, and therefore X Ď δBJ pXq. If X Ď Y , then
obviously δBJ pXq Ď δBJ pY q. And finally, assume that z P δBJ pδBJ pXqq, i.e., there are y, x such that
x P X, y P δpxq, z P δpyq. By Idempotency and Generalised Reflexivity, z P δpzq Ď δpyq Ď δpxq, which
means z P δBJ pXq.
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Lemma 3.21. Given a ds C on R “ xR,ď,`, 0y, the family CBJ “ t
Ť

Y : Y Ď Cu is a closure system.

Proof. Recall that C “ tδCpxq : x P Ru and as x P δCpxq then
Ť

C “ R. Now we only have to prove that
for X Ď C we have

Ş
X P C. If x P

Ş
X then for each X P X there is cX such that x P δCpcXq Ď X , thus

also δCpxq Ď δCpcXq Ď X and so δCpxq Ď
Ş

X . To conclude the proof just observe that

č
X “

ď!
δCpxq : x P

č
X

)
P CBJ .

In full analogy with the above, we call δBJ and CBJ the Blok–Jónsson companions of δ and C,
respectively. Observe that:

Lemma 3.22. Let $ be a dr on R “ xR,ď,`, 0y. The $-theories are the theories (in the sense of

Blok–Jónsson) of $BJ . Namely, for T Ď R, t.f.a.e.:

1. T is a $-upset of R.

2. T $BJ x implies x P T .

Proof. Let us first suppose T is a $-upset ofR and there is y P T such that y $ x. Then x P T . Conversely,
suppose that for any x, T $BJ x impliesx P T , that y P T , and that y $ z. So T $BJ z, whence z P T .

Let us continue to use the notations $δ,$C, C$, Cδ, δ$, and δC for the correspondences between dr’s,
do’s and ds’s on R spelt out in Theorem 3.17. With an innocent notational abuse, we employ the same
symbols for the standard correspondences between the setsAcrpRq of acr’s, closure operatorsCloppRq and
closure systems ClospRq, all onR. We now prove that the relation of “taking the Blok–Jónsson companion”
commutes with these functions.

Theorem 3.23. The following diagrams

RelpRq OppRq

AcrpRq CloppRq

δ$

$BJ
δBJ

δ$

RelpRq SyspRq

AcrpRq ClospRq

C$

$BJ
C
BJ

C$

OppRq SyspRq

CloppRq ClospRq

δC

δBJ
C
BJ

δC

as well as the ones we obtain by reversing the above correspondences, are all commutative.

Proof. The correspondences are well defined by Theorem 3.17 and Lemmas 3.19, 3.20, and 3.21. We
now take care of some of the commutations. We show that p$δq

BJ “ $δBJ ; the other commutations are
established similarly. In fact, xX, ay P p$δq

BJ iff there exists x P X s.t. x $δ a, which in turn holds iff
there exists x P X s.t. a P δpxq. But this just means that a P

Ť
xPX δpxq, which amounts to X $δBJ a.

Similarly, pδ$qBJ “ δ$BJ . In fact,

pδ$qBJ pXq “
ď

aPX
Th$paq “ tb P R : a $ b for some a P Xu

“ tb P R : X $BJ bu “ δ$BJ pXq.

This theorem implies, in particular, the following corollary:

Corollary 3.24. Let R “ xR,ď,`, 0y be a dually integral Abelian pomonoid. The complete lattices of

Blok–Jónsson companions of dr’s, do’s, and ds’s on R are isomorphic.
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4 Action-invariance

One of the remarkable achievements of Blok and Jónsson’s treatment of logical consequence is its purely
abstract account of substitution-invariance. Resorting to appropriate monoidal actions, Blok and Jónsson
effectively sidestep the problem brought about by their use of sets with no structure whatsoever to be
preserved. As we have seen, Galatos and Tsinakis turn this insight into the starting point for their categorical
foundation of the whole subject. It would be highly desirable, then, to lay down a comparable treatment
of action-invariance in our framework. This will be done by equipping our Abelian pomonoids with
appropriate monoidal actions.

Our guiding example will again be given by multiset deductive relations, i.e., dr’s on Fm
5
L, as we can

naturally call an mdr $ substitution-invariant if for every L-substitution σ and for every Γ,∆ P Fm
5
L:

Γ $ ∆ ùñ σpΓq $ σp∆q.

4.1 A categorical setting

For a start, let us recall the notion of partially ordered semiring [24, Ch. 3].

Definition 4.1. A partially ordered semiring, or po-semiring, is a structure A “ xA,ď,`, ¨, 0, 1y where:

1. xA, ¨, 1y is a monoid.

2. xA,ď,`, 0y is an Abelian pomonoid.

3. σ ¨ 0 “ 0 ¨ σ “ 0 for all σ P A;

4. For every σ, π, ε P A, we have

π ¨ pσ ` εq “ pπ ¨ σq ` pπ ¨ εq and pσ ` εq ¨ π “ pσ ¨ πq ` pε ¨ πq.

5. If σ ď π and 0 ď ε, then σ ¨ ε ď π ¨ ε and ε ¨ σ ď ε ¨ π.

A po-semiringA “ xA,ď,`, ¨, 0, 1y is dually integral iff xA,ď,`, 0y is dually integral as a pomonoid.
Of course, the dual integrality condition “kills” many among the interesting examples of po-semirings,
including all nontrivial po-rings.

Our chief example of dually integral po-semiring will be the semiring of finite multisets of substitutions
on formulas of a propositional language L. The role it will play here is analogous to the role played in
Galatos and Tsinakis’ theory by the complete residuated lattice of sets of L-substitutions.

Example 4.2. Let L be a propositional language, and let EndpFmLq be the set of substitutions of FmL.

The structure

ΣL “ xEndpFmLq5,ď,Z, ¨,H, ridFmL
sy,

where, for X “ rσ1, . . . , σns, Y “ rπ1, . . . , πms P EndpFmLq5,

X ¨ Y “ rσ1 ˝ π1, . . . , σ1 ˝ πm, . . . , σn ˝ π1, . . . , σn ˝ πms,

is a dually integral po-semiring.

With this notion in our quiver, in order to get going we only need to endow our dually integral Abelian
pomonoids from the previous section with a suitable operation of multiplication by a scalar.

Definition 4.3. Let A “ xA,ďA,`A, ¨A, 0A, 1Ay be a dually integral po-semiring. An A-module is

a structure R “ xR,ďR,`R, 0R, ˚Ry where xR,ďR,`R, 0Ry is a dually integral Abelian pomonoid

and ˚R : A ˆ R Ñ R is an action of xA, ¨A, 1Ay on R that is order-preserving in both coordinates and

distributes over `R. In symbols:

1. pσ ¨A πq ˚R a “ σ ˚R pπ ˚R aq
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2. 1A ˚R a “ a

3. 0A ˚R a “ 0R

4. pσ ˚R aq `R pσ ˚R bq “ σ ˚R pa `R bq

5. pσ `A πq ˚R a “ pσ ˚R aq `R pπ ˚R aq

6. If σ ďA π, then σ ˚R a ďR π ˚R a

7. If a ďR b, then σ ˚R a ďR σ ˚R b.

Example 4.4. Consider the po-semiring ΣL defined in Example 4.2, and let MultL “ xFm5
L,ď,Z,H, ˚y,

where for

X “ rσ1, . . . , σns P EndpFmLq5 and Γ P Fm
5
L,

we set, resorting to our usual notational conventions,

X ˚ Γ “ σ1pΓq Z ¨ ¨ ¨ Z σnpΓq.

Then MultL is a ΣL-module.

Modules over a dually integral po-semiring can be naturally equipped with arrows as follows:

Definition 4.5. Let A be a dually integral po-semiring, and R and S be a pair of A-modules. A morphism
τ : R Ñ S is a pomonoid homomorphism (i.e., an order-preserving monoid homomorphism) such that

τpσ ˚R aq “ σ ˚S τpaq for every σ P A and a P R.

Given a dually integral po-semiring A, the collection of A-modules with morphisms between them
forms a category in which composition and identity arrows are, respectively, standard composition of
functions and identity functions. We denote this category by A-Mod. Isomorphisms in the category
A-Mod are precisely bijective morphisms that reflect the order.

From now on we will assume that A is a fixed, but otherwise arbitrary, dually integral po-semiring.

Example 4.6. It is expedient to remark that the setting of modules over complete residuated lattices

can subsumed under the present one as follows. Recall that every complete residuated lattice M “
xM,^,_, ¨, z, {, 1y can be naturally turned into a dually integral po-semiring UpMq “ xM,ď,_, ¨, 0, 1y
where ď and 0 are respectively the order and the bottom element of the lattice reduct of M. Then observe

that every M-module L “ xL,^,_, ‹y gives rise to a UpMq-module UpLq “ xL,ď,_, 0, ‹y, where ď
and 0 are respectively the order and the bottom element of the lattice reduct of L. Finally, every translator

f : L1 Ñ L2 between M-modules induces a morphism Upfq : UpL1q Ñ UpL2q of UpMq-modules by

setting Upfqpaq “ fpaq for every a P L1. Summing up, the application Up¨q can be regarded as a forgetful

functor from M-Mod to UpMq-Mod, which reduces modules over a complete residuated lattice to modules

over a dually integral po-semiring.

We are now ready to give an abstract formulation of action-invariant dr’s. Against the backdrop
of Theorem 3.17, these deductive relations can be presented equivalently as deductive operators or as
deductive systems. As a matter of fact, it turns out that working with do’s is more convenient, although
similar definitions and results can be obtained by putting the other two concepts to the forefront.

Definition 4.7. An action-invariant do on an A-module R is a do δ on its pomonoid reduct xR,ď,`, 0y
such that for every σ P A and a, b P R:

a P δpbq ùñ σ ˚ a P δpσ ˚ bq.

To exemplify this concept, we point out that substitution-invariant mdr’s give rise to deductive operators
that are action-invariant according to the definition just given.

Proposition 4.8. Let L be a propositional language. Then an mdr $ on L is substitution-invariant iff δ$

is an action-invariant do on the ΣL-module MultL. Similarly, δ is an action-invariant do on MultL iff $δ

is a substitution-invariant mdr on L.
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Proof. First consider an mdr $ on L. Suppose that $ is substitution-invariant. As Fm5
L is a reduct of the

ΣL-module MultL, by Theorem 3.17 we only have to show that δ$ is action-invariant. Assume that ∆ P
δ$pΓq and considerX “ rσ1, . . . , σks P EndpFmLq5. From the definition of δ$ and substitution-invariance
of $ it follows that, for every i ď k, we have that σipΓq $ σip∆q. Now, applying Compatibility several
times, we obtain that ě

iďk

σipΓq $
ě

iďk

σip∆q.

The above display amounts exactly to the fact that X ˚ ∆ P δ$pX ˚ Γq. Hence, we conclude that δ$ is
action-invariant according to Definition 4.7.

Conversely, suppose that δ$ is action-invariant and that Γ $ ∆. Consider a substitution σ. First observe
that ∆ P δpΓq. Since δ$ is action-invariant and rσs P EndpFmLq5, we have that rσs ˚ ∆ P δ$pσ ˚ Γq,
which means exactly σpΓq $ σp∆q. Hence we conclude that $ is substitution-invariant.

The second claim follows from the first one, together with δ$δ
“ δ (Theorem 3.17).

Given an action-invariant do δ on R, we define a structure

Rδ “ xδpRq,Ď,`δ, δp0q, ˚δy,

where for every σ P A and a, b P R: δpaq `δ δpbq “ δpa ` bq and σ ˚δ δpaq “ δpσ ˚ aq.

Lemma 4.9. Let δ be an action-invariant do on the A-module R. Then Rδ is a well-defined A-module

and the map δ : R Ñ Rδ is a morphism.

Proof. Using Theorems 3.17 and 3.13, we know that Rδ “ xδpRq,Ď,`δ, δp0qy is a well-defined dually
integral pomonoid. Now we show that the action ˚δ is well defined too. Consider σ P A and a, b P R

such that δpaq “ δpbq. In particular, we have that a P δpbq. By the action-invariance of δ, we obtain that
σ ˚ a P δpσ ˚ bq. Thus we conclude that δpσ ˚ aq Ď δpσ ˚ bq. The other inclusion is proved analogously.

Next, we turn to prove that Rδ is an A-module. It only remains to establish the conditions regarding
the action ˚δ. It is clear that ˚δ is order-preserving on the first coordinate. We prove that the same holds
for the second one. Consider σ P A and a, b P R such that δpaq ďδ δpbq. From the action-invariance of δ
it follows that σ ˚ a P δpσ ˚ bq and, therefore, that δpσ ˚ aq ďδ δpσ ˚ bq. We conclude that

σ ˚δ δpaq “ δpσ ˚ aq ďδ δpσ ˚ bq “ σ ˚δ δpbq.

The fact that ˚δ is a monoidal action and the distributivity conditions are easy exercises. Finally, we
prove that the map δ : R Ñ Rδ is a morphism. Due to Theorem 3.13, it remains to show that δ respects
the monoidal action, which follows directly from the definition of ˚δ.

We conclude this subsection be defining two maps which will play an important role in the next
subsection.

Lemma 4.10. Let f : R Ñ S be a morphism between A-modules.

1. The map f˚ : R Ñ ℘pRq defined as:

f˚paq “ f´1ptx : x ď fpaquq

is an action-invariant do on R.

2. The map f̂ : Rf˚ Ñ f rRs defined as:

f̂pf˚paqq “ fpaq

is a well-defined isomorphism.
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Proof. To prove the first claim, the only condition in Definition 3.14 that stands in need of a check is
Compatibility. Let a, b, c P R and suppose that a P f˚pbq. This means that fpaq ď fpbq. In particular, we
have that

fpa `R cq “ fpaq `S fpcq ďS fpbq `S fpcq “ fpb`R cq.

Hence we conclude that a ` c P f˚pb ` cq. This shows that f˚ is a do. It remains to be shown that it is
action-invariant. Consider σ P A and suppose that a P f˚pbq. Then

fpσ ˚R aq “ σ ˚S fpaq ďS σ ˚S fpbq “ fpσ ˚R bq.

Thus σ ˚R a P f˚pσ ˚R bq, whence our conclusion follows.
To prove the second claim observe that the map f̂ is well defined, since ďS is antisymmetric. It is clear

that f̂ is a bijection. Since isomorphisms in A-Mod are bijective morphisms, it suffices to prove that f̂ is a
morphism. But this is an exercise, using the definition of Rf and the fact that f is a morphism.

4.2 Action-invariant representations

The main result in [21], reproduced above as Theorem 2.12, is an elegant and purely categorical characteri-
sation of the modules over a complete residuated lattice for which an analogue of the Syntactic Isomorphism
Theorem (Theorem 2.8) for algebraisable logics holds. The aim of this subsection is to obtain a similar
result in the setting of modules over a dually integral po-semiring.

Definition 4.11. Let δ and γ be action-invariant do’s on the A-modules R and S, respectively.

1. An action-invariant representation of δ into γ is a morphismΦ: Rδ Ñ Sγ that is injective and reflects

the order.

2. A representation Φ of δ into γ is induced if there is a morphism τ : R Ñ S that makes the following

diagram commute:

R S

Rδ Sγ

τ

δ γ

Φ

3. δ and γ are equivalent if the A-modules Rδ and Sγ are isomorphic.

Definition 4.12. An A-module R has the representation property (REP) if for any other A-module S and

action-invariant do’s δ and γ on R and S respectively, every action-invariant representation of δ into γ is

induced.

We are now ready to provide a characterisationofA-modules with the REP in the spirit of Theorem 2.12.

Theorem 4.13. An A-module has the REP iff it is onto-projective in A-Mod.

Proof. The backbone of our argument is essentially the same as in [21, Lemma 8.1]. It is clear that
every projective A-module has the REP. Now, let R be an A-module with the REP, and consider two
morphisms f : S Ñ T and g : R Ñ T with f onto. By Lemma 4.10, the derived maps f˚ and g˚ are
action-invariant do’s on R and S, respectively. Observe that gpRq is the universe of a submodule gpRq of
T . By Lemma 4.10 the following maps are isomorphisms:

pf : Sf˚ Ñ T and pg : Rg˚ Ñ gpRq.

Let i : gpRq Ñ T be the morphism given by the inclusion relation. Clearly the composition

f̂´1 ˝ i ˝ ĝ : Rg˚ Ñ Sf˚

is a representation of g˚ into f˚. Thus we can apply the fact that R has the REP, obtaining a morphism
h : R Ñ S such that

f̂´1 ˝ i ˝ ĝ ˝ g˚ “ f˚ ˝ h.
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Hence for every a P R, we have that

f ˝ hpaq “ pf̂ ˝ f˚q ˝ hpaq “ f̂ ˝ pf˚ ˝ hqpaq “ f̂ ˝ pf̂´1 ˝ i ˝ ĝ ˝ g˚qpaq

“ pf̂ ˝ f̂´1q ˝ i ˝ ĝ ˝ g˚paq “ i ˝ ĝ ˝ g˚paq “ i ˝ gpaq “ gpaq.

Hence we conclude that f ˝ h “ g. Therefore R is onto-projective.

In order to show that our abstract framework is well behaved, we are committed to proving that
every equivalence between two substitution-invariant mdr’s is induced by a pair of endomoprhisms on the
ΣL-module MultL (note that this claim can be seen as a variant of the Isomorphism Theorem in the setting
of mdr’s). In other words, we want to show that MultL has the REP (that is, it is onto-projective) in the
category of ΣL-modules. Instead of proving this directly, we will take a brief detour and prove some more
general results. First, we make a note of the following definition.

Definition 4.14. An A-module R is cyclic if there is a P R such that R “ tσ ˚ a : σ P Au.

Observe that every dually integral po-semiring A “ xA,ď,`, ¨, 0, 1y can be seen as a degenerate
instance of A-module if we drop ¨ and 1 from the signature and set ˚ “ ¨. Keeping this in mind, we obtain
the following:

Lemma 4.15. Any dually integral po-semiring A, viewed as an A-module, is cyclic and onto-projective.

Proof. Clearly A is cyclic, since A “ tσ ¨ 1 : σ P Au. Let f : R Ñ S and g : A Ñ S be two morphisms,
where f is onto. Fix any a P R such that fpaq “ gp1q and define h : A Ñ R via hpσq “ σ ˚R a. Clearly,
h : A Ñ R is a morphism. Moreover, given σ P A, we have that

gpσq “ gpσ ¨ 1q “ σ ¨ gp1q “ σ ¨ fpaq “ fpσ ˚ aq “ f ˝ hpσq.

Hence we conclude that A is onto-projective.

Cyclic modules can be described in an arrow-theoretic way as follows:

Lemma 4.16. An A-module R is cyclic iff there is an onto morphism f : A Ñ R.

Proof. If there is an onto morphism f : A Ñ R and x P R, then for some σ P A we have that x “ fpσq “
σ ˚ fp1q. To prove the converse, it is enough to check that ifR “ tσ ˚ v : σ P Au, then the map f : A Ñ R

defined by fpσq “ σ ˚ v is a morphism.

We are now ready to prove the following characterisation of cyclic and onto-projective objects in
A-Mod.

Theorem 4.17. Let R be an A-module. The following conditions are equivalent:

1. R is cyclic and onto-projective.

2. There is a retraction f : A Ñ R.

3. There are µ P A and v P R such that µ ˚ v “ v and A ˚ tvu “ R and for every σ, π P A: if

σ ˚ v ď π ˚ v, then σ ¨ µ ď π ¨ µ.

Proof. To prove 1. implies 2. observe that from Lemma 4.16, we know that there is a morphism f : A Ñ R

which is surjective. Applying the projectivity of R to the diagram given by f and the identity map idR, we
conclude that f is a retraction.

Next we prove that 2. implies 1. From Lemma 4.16 we know that R is cyclic. Moreover, R is a retract
of an onto-projective object by Lemma 4.15. Thus we conclude that R is onto-projective too.

To prove 2. implies 3. observe that by the assumption, there is an injective morphism g : R Ñ A such
that 1R “ f ˝ g. Then we define v “ fp1q and µ “ gpvq. Since f is onto, we have that A ˚ tvu “ R.
Moreover:

µ ˚ v “ µ ˚ fp1q “ fpµ ˚ 1q “ fpµq “ fpgpvqq “ v.

Considering σ, π P A such that σ ˚ v ď π ˚ v, we have that σ ¨ µ “ σ ¨ gpvq “ gpσ ˚ vq ď gpπ ˚ vq “
π ¨ gpvq “ π ¨ µ.
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Finally we prove 3. implies 2. Since A ˚ tvu “ R, we know that the map f : A Ñ R defined as
fpσq “ σ ˚ v is an onto morphism. Then let g : R Ñ A be defined via gpσ ˚ vq “ σ ¨ µ. Using the
assumption, it is not difficult to see that g is well defined and order-preserving. Also, it can be routinely
established that g preserves the action and is a monoid homomorphism. Thus, g is a morphism. In order to
prove that f ˝ g “ 1R we consider a generic element σ ˚ v P R and show that:

f ˝ gpσ ˚ vq “ σ ˚ pf ˝ gpvqq “ σ ˚ fpµq “ σ ˚ pµ ˚ vq “ σ ˚ v.

Theorem 4.18. The ΣL-module MultL is cyclic and onto-projective. In particular, this implies that it has

the REP.

Proof. Let x be a designated L-variable, and let v “ rxs. Moreover, let σ be the L-substitution defined by
σpyq “ x for all L-variables y, and fix µ “ rσs. It is not difficult to see that v and µ satisfy the conditions
of Item (3) in Theorem 4.17.

5 Multiset deductive relations

Recall that what prompted us to extend Blok and Jónsson’s theory was the motivating example of multiset

deductive relations (mdr’s), defined in Definition 2.13. It turns out that our general theory has interesting
offshoots once we focus on this special case — and the whole of the present section will be devoted to
buttressing this claim. For a start, we list some prototypical instances of mdr’s.

Example 5.1. Recall that an algebra A “ xA,^,_, ¨,Ñ, 1y of type L0 “ x2, 2, 2, 2, 0y is a commutative
and integral residuated lattice (see e.g. [25]) if xA,^,_y is a lattice, xA, ¨, 1y is a commutative monoid, 1

is the top element w.r.t. the induced order ď of xA,^,_y, and the following residuation law holds for every

a, b, c P A:

a ¨ b ď c ðñ a ď b Ñ c.

Given a class K of commutative and integral residuated lattices, let the relation $K be defined as follows

for all Γ “ rϕ1, . . . , ϕns,∆ “ rψ1, . . . , ψms P Fm
5
L0

:7

Γ $K ∆ ðñ K ( ϕ1 ¨ . . . ¨ ϕn ď ψ1 ¨ . . . ¨ ψm. (1)

It can be checked that $K is a substitution-invariant mdr in the sense of Definition 2.13.

Example 5.1 identifies, for every substructural logic whose equivalent algebraic semantics is a quasi-
variety of commutative and integral residuated lattices, a “multiset-theoretic” companion of such that best
suits the resource interpretation at which we hinted in our introduction. One particular such logic will
play some role in what follows. The multiset companion $MV of infinite-valued Łukasiewicz logic $Ł is
obtained when the class K is the variety MV of MV-algebras (see [12]), formulated in the language L0.8

Also, observe that Example 5.1 encompasses the so-called internal consequence relations of alge-
braisable substructural sequent calculi with exchange and weakening (see [2, 3]). In fact, let S be such a
calculus and Q its equivalent algebraic semantics. Upon defining, for finite multisets of L0-formulas Γ and
∆ “ rψ1, . . . , ψms,

Γ $S ∆ ðñ $S Γ Ñ ψ1 ¨ . . . ¨ ψm,

then it follows from well-known results about substructural logics that $S “ $Q.
If the above examples look a bit contrived, this is due, in part, to the fact that the multiple-conclusion

format is unfamiliar to many. As a consequence, it would seem expedient to extract from these examples

7Here and in the sequel, given a multiset Γ “ rϕ1, . . . , ϕns of L0-formulas, the notation ϕ1 ¨ . . . ¨ ϕn will ambiguously refer to
any of the L0-formulas

p¨ ¨ ¨ pϕfp1q ¨ ϕfp2qq ¨ . . . ¨ ϕfpnqq,

where f is a permutation of t1, . . . , nu. By way of convention, if Γ is the empty multiset, we formally set ϕ1 ¨ . . . ¨ ϕn “ 1.
8On the other hand, the logic obtained when K is the variety generated by the 3-element MV-chain was first considered by Arnon

Avron (see e.g. [5]).
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appropriate single-conclusion relations that can be more easily compared, say, to the usual, external,
consequence relations of substructural sequent calculi. It turns out that single-conclusion relations can be
recovered as fragments of mdr’s (see [13]):

Definition 5.2. Let L be a propositional language. A single-conclusion mdr on L is a relation $u Ď
Fm

5
L ˆ FmL such that, for some mdr $,

Γ $u α ðñ Γ $ rαs.

It should be observed, though, that we are not claiming that single-conclusion mdr’s be themselves
instances of mdr’s, for they need not be closed w.r.t. all the conditions that define them (see [13] for
further discussion). Clearly, for each single-conclusion mdr $u there exists the least mdr $ that has $u

as fragment: namely, the intersection of all such mdr’s. In Subsection 5.4 we present an example of two
mdr’s with the same single-conclusion fragment.

Multiset deductive relations can be taken to subsume tcr’s, as illustrated by the next example.

Example 5.3. Every finitary substitution-invariant tcr can be encoded into a finitary substitution-invariant

mdr. Indeed, consider such tcr , on language L. Then we define a substitution-invariant mdr $ on L by

setting, for all Γ “ rϕ1, . . . , ϕns,∆ “ rψ1, . . . , ψms in Fm
5
L:

Γ $ ∆ ðñ |Γ| , ψk, for all k ď m.

It is a purely computational matter to check that $ is indeed a substitution-invariant mdr. Moreover, it is

clear that $ encodes , in the sense that, whenever ϕj ‰ ϕk for all j, k ď n,

ϕ1, . . . , ϕn , ψ ðñ rϕ1, . . . , ϕns $ rψs.

5.1 Hypermatrices and the first completeness theorem

In this subsection we describe a matrix-based semantics for arbitrary substitution-invariant mdr’s. To this
end, we work in a fixed (but otherwise arbitrary) language L.

Logical matrices are part and parcel of every algebraic logician’s toolbox (see e.g. [15, Ch. 4]). As a
consequence, when we are dealing with mdr’s over a language L, it seems desirable to be in a position
to help ourselves to concepts that inherit at least some of the effectiveness and power of matrix semantics
in AAL. Whatever notion of matrix we are bound to adopt, it appears natural that its attendant notion of
“Lindenbaum–Tarski matrix” be in keeping with Definition 3.9: we expect such matrices to have the form
xFmL, F y where F is a certain set of finite multisets of L-formulas. Therefore, it is all too plausible to
focus on “matrices” constituted by an algebra and a certain family of finite submultisets of its universe. The
next definitions spell out in detail this basic insight.

Definition 5.4. An L-hypermatrix is a pair xA, F y, where A is an L-algebra and F a ď-downset in A5.

Definition 5.5. For a class H of L-hypermatrices we define a relation (H on Fm
5
L as Γ (H ∆, if for every

A “ xA, F y P H, each context C P A5 and each homomorphism f : FmL Ñ A:

C Z fpΓq P F ùñ C Z fp∆q P F.

Theorem 5.6. Let H be a class of L-hypermatrices. Then (H is a substitution-invariant mdr on L.

Proof. We show the proof for H “ txA, F yu; the general statement then follows from the obvious facts
that (H “

Ş
t(A: A P Hu and that the class of substitution-invariant mdr’s is closed under intersections.

The validity of transitivity and substitution-invariance of (A is very easy to see.
For Compatibility, assume that Γ (A ∆ and consider a context C P A5 and a homomorphism

e : FmL Ñ A. If C Z epΓq Z epΠq “ C Z epΓ Z Πq P F , then by our hypothesis C Z ep∆q Z epΠq P F ,
and thus Γ Z Π (A ∆ZΠ.

For Generalised Reflexivity, assume that Γ ď ∆ and consider a context C P A5 and a homomorphism
e : FmL Ñ A. Clearly, epΓq ď ep∆q, and so by the compatibility of ď we obtain C Z epΓq ď C Z ep∆q.
Thus, if C Z ep∆q P F , then C Z epΓq, because F is a ď-downset.
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Note that the fact that F a ď-downset inA5, and the reference to arbitrary contexts C, play a crucial role
in the previous proof. Lifting both restrictions at once leads to the following definition of a relation (1

A
on

Fm
5
L for an arbitrary pair A “ xA, F y, where A is an L-algebra and F Ď A5:

Γ (1
A ∆ iff for each homomorphismf : FmL Ñ A, if fpΓq P F then fp∆q P F.

Lemma 5.7. Consider a pair A “ xA, F y, where A is an L-algebra and F Ď A5. Then (A Ď (1
A

.

Assume further that for some mdr $ we have $ Ď (1
A

. Then A is an L-hypermatrix and $ Ď (A.

Proof. The first inclusion is trivial. Assume that $ Ď (1
A

and we show that F is ď-downset. Note that for
any multiset of mutually different atoms rp1, . . . , pns and m ď n we have rp1, . . . , pns (1

A
rp1, . . . , pms

and for any multisets X ď Y there is homomorphism e : FmL Ñ A such that X “ repp1q, . . . , eppmqs and
Y “ repp1q, . . . , eppnqs.

To complete the proof we need to show that $ Ď (A. Assume that C “ rx1, . . . , xns P A5, Γ $ ∆

and f : FmL Ñ A are such that C Z fpΓq P F and we need to prove that C Z fp∆q P F . Let Π be a
multiset of mutually different atoms rp1, . . . , pns not occurring in Γ Z ∆; we know that Γ Z Π $ ∆ Z Π.
Next consider the homomorphism e1 defined as e1ppiq “ xi and e1ppq “ eppq for other atoms and note that
e1pΓ Z Πq “ X Z epΓq P F and so X Z epΓq “ e1p∆ Z Πq P F .

Next, we provide an example showing that (A and (1
A

are in general different relations.

Example 5.8. Consider a two-element set A “ t0, 1u. Then let F Ď A5 be defined as follows:

F “ tH, r0s, r1s, r0, 1su.

Now, equip A with the structure of an algebra A “ xA,0,1y, whose only operations are constant symbols

0 and 1 for 0 and 1, respectively. Clearly, F is a ď-downset and it is easy to see that for A “ xA, F y we

have

r0s (1
A r1s and r0,1s *1

A r1,1s.

Hence the consequence (1
A

does not satisfy Compatibility and, therefore, it is not an mdr and cannot be

equal to (A.

Corollary 5.9. Let H be a class of L-hypermatrices. We define a relation (1
H

on Fm
5
L as (1

H
“

Ş
t(1

A
:

A P Hu. Then (1
H

is an mdr iff (1
H

“ (H.

Now we can define notions of model and filter. Note that the previous lemma renders it immaterial
whether we use (1

A
or (A in such definitions.

Definition 5.10. Let $ be a substitution-invariant mdr on L. An L-hypermatrix A “ xA, F y is a model
of $ and F is an $-filter on A if $ Ď (A. By Modp$q we denote the set of all models of $ and by

Fi$pAq the set of all $-filters on A.

It is straightforward to show that Fi$pAq is a closure system. Given a closure system C on a set X , let
us denote by Cp the set of its principal members:

Cp “
!č

tC P C : x P Cu : x P X
)
.

Proposition 5.11. Let $ be a substitution-invariant mdr on L.

1. For every L-algebra A, the collection pFi$pAqqp is a ds on A
5 and moreover Fi$pAq “

ppFi$pAqqpqBJ .

2. pFi$pFmLqqp “ Thpp$q.

Proof. Consider an arbitraryL-algebraB. Recall thatFi$pBq is a closure system. Then let FgB$ : ℘pB5q Ñ

℘pB5q be its corresponding closure operator. It is easy to see that for every X Ď B5,

FgB$pXq “
ď

nPω

Fn
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where F0 “ X and

Fn`1 “ Fn Y tX P B5 : there are Γ,∆ P Fm
5
L s.t. Γ $ ∆ and a homomorphism

f : FmL Ñ B s.t. fpΓq P Fn and fp∆q “ Xu.

From the above remarks it follows that for every Γ P Fm
5
L,

FgFmL

$ pΓq “ t∆ P Fm
5
L : Γ $ ∆u.

In particular, this means that pFi$pFmLqqp “ Thpp$q, which proves the second statement.
For the other statement, consider an L-algebra A. We begin by proving that pFi$pAqqp is a ds on

xA5,ď,Z,Hy. To this end, we claim that

if X P FgA$ pYq, then X Z C P FgA$ pY Z Cq (2)

for every X,Y,C P A5.
To prove this claim, fix X,Y,C “ rc1, . . . , cks P A5 and consider decompositions

FgA$ pYq “
ď

nPω

Fn and FgA$ pY Z Cq “
ď

nPω

Gn

defined at the beginning of this proof. We show, by induction on n P ω, that

X P Fn ùñ X Z C P Gn. (3)

The case where n “ 0 is direct. Then we consider the case n “ s` 1. Suppose that X P Fs`1. Then there
are Γ,∆ and a homomorphism f : FmL Ñ A such that

Γ $ ∆, fpΓq P Fs, and fp∆q “ X.

Consider the multiset Π “ rx1, . . . , xks consisting of fresh pairwise different variables. By compatibility
of $, we have that

Γ Z Π $ ∆ Z Π. (4)

By inductive hypothesis we know that
fpΓq Z C P Gs. (5)

Let f 1 : FmL Ñ A be any homomorphism which coincides with f on the variables appearing in the
formulas Γ and ∆, and such that f 1pxiq “ ci. By (5) we have that

f 1pΓq Z f 1pΠq P Gs.

Together with (4), this implies that

X Z C “ fp∆q Z C “ f 1p∆q Z f 1pΠq P Gs`1.

This concludes the proof of (3) and, therefore, establishes (2). Now we turn back to the main argument.
First observe that

pFi$pAqqp “ tFgA$ pXq : X P A5u.

Clearly pFi$pAqqp is a family of ď-downsets. Define the map δ : A5 Ñ pFi$pAqqp setting

δpXq “
č

tC P pFi$pAqqp : X P Cu “ FgA$ pXq

for every X P A5. Clearly δpA5q “ pFi$pAqqp. Finally, from (2) we obtain that

δpXq Ď δpYq ùñ δpX Z Cq Ď δpY Z Cq.

Hence we conclude that pFi$pAqqp is a ds on A
5 as desired.

Then we turn to prove that Fi$pAq “ ppFi$pAqqpqBJ . The inclusion from left to right is clear.
To prove the other inclusion, consider a family tFi : i P Iu Ď pFi$pAqqp. Then suppose that Γ $ ∆,
and consider a homomorphism f : FmL Ñ A such that fpΓq P

Ť
iPI Fi. Clearly there is j P I such

that fpΓq P Fj . Since Fj P Fi$pAq, we obtain that fp∆q P Fj Ď
Ť
iPI Fi. Hence we conclude thatŤ

iPI Fi P Fi$pAq.
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The notions introduced so far are enough to obtain a first completeness theorem for any substitution-in-
variant mdr.

Theorem 5.12 (1st Completeness Theorem). Let $ be a substitution-invariant mdr on L. Then

$ “ (Modp$q “ (1
Modp$q.

Proof. From left to right, our claim is obvious. For the reverse direction, assume that Γ & ∆ and
define T “ Th$pΓq. By Proposition 5.11, xFmL, T y P Modp$q and then the identity mapping is the
homomorphism we need to show that Γ *Modp$q ∆.

5.2 A bridge to Gentzen systems and the second completeness theorem

We will now establish a connection with the algebraic theory of Gentzen systems, i.e. substitution-invariant
acr’s on sequents, a well-trodden research stream in AAL ( [30–34, 38]), that will serve as a touchstone
for our approach based on hypermatrices. Let $ be a substitution-invariant mdr on L. We will associate
with it a consequence relation $g between sequents. To this end, consider the set SeqL of L-sequents of
the form

H ✄ xϕ1, . . . , ϕny,

where xϕ1, . . . , ϕny is a finite sequence of formulas and the relation $g Ď ℘pSeqLq ˆ SeqL defined as
follows:

X $g H ✄ xϕ1, . . . , ϕny ðñ there is H ✄ xγ1, . . . , γmy P X

s.t. rγ1, . . . , γms $ rϕ1, . . . , ϕns.

Clearly, $g is a substitution-invariant acr onSeqL: for every substitutionσ, ifX $g H✄xϕ1, . . . , ϕny,
then

tH ✄ xσpγ1q, . . . , σpγmqy : H ✄ xγ1, . . . , γmy P Xu $g H ✄ xσpϕ1q, . . . , σpϕnqy.

As we remarked above, substitution-invariant acr’s on sequents are the object of study of numerous
papers that have appeared under the heading of algebraisation of Gentzen systems. Within this theory,
a model of a Gentzen system , on SeqL is a pair xA, F y where A is an L-algebra and F is a set
of finite sequences of elements of A such that for every set X Y tH ✄ xϕ1, . . . , ϕnyu Ď SeqL, if
X , H ✄ xϕ1, . . . , ϕny, then for every homomorphism f : FmL Ñ A,

if xfpγ1q, . . . , fpγmqy P F for every H ✄ xγ1, . . . , γmy P X,

then xfpϕ1q, . . . , fpϕnqy P F. (6)

We denote by Modp,q the class of all models of ,. A quick comparison between Definition 5.10 (see also
the comments before the definition) and (6) suggests that the models of $ and $g must be interdefinable.
To make this idea precise, we define two maps as follows:

p¨qs : Modp$q ÐÑ Modp$gq :p¨qm (7)

where p¨qs stands for sequents and p¨qm stands for multisets. For xA, F y P Modp$gq and xB, Gy P
Modp$q, we set:

xA, F ym “ xA, tra1, . . . , ans : n ě 0, xa1, . . . , any P F uy

xB, Gys “ xB, tf P Bt1,...,nu : n ě 0, rfp1q, . . . , fpnqs “ X for some X P Guy.

The proof of the following result is simple (note that we need to use Lemma 5.7):

Lemma 5.13. The transformations p¨qs : Modp$q ÐÑ Modp$gq : p¨qm are well defined and mutually

inverse bijections.
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As a consequence, we can apply the algebraic constructions developed for Gentzen systems in the
above-mentioned literature, to the study of substitution-invariant mdr’s. We devote the remaining part of
this subsection to give a flavour of the resulting theory.

Let xA, F y be a pair consisting of an L-algebra A and a set F of finite sequences of elements of A. A
congruence θ of A is compatible with F if for every a1, b1, . . . , an, bn P A,

if xa1, . . . , any P F and xa1, b1y, . . . , xan, bny P θ, then xb1, . . . , bny P F.

When θ is compatible with F , we set

F {θ “ txa1{θ, . . . , an{θy : xa1, . . . , any P F u.

It turns out that there exists the largest congruence of A compatible with F . This congruence is called the
Leibniz congruence of F over A, and is denoted by ΩAF . The reduced models of , are the following
class:

Mod
˚p,q “ I

 
xA{ΩAF, F {ΩAF y : xA, F y P Modp,q

(
.

A general result [15, Proposition 5.111] shows that the Gentzen system , is complete with respect to the
semantics Mod

˚p,q: the pairs in Mod
˚p,q are models of , and, moreover, if X . H ✄ xϕ1, . . . , ϕny,

then there is xA, F y P Mod
˚p,q and a homomorphism f : FmL Ñ A such that

xfpγ1q, . . . , fpγmqy P F for every H ✄ xγ1, . . . , γmy P X,

and xfpϕ1q, . . . , fpϕnqy R F. (8)

All the above constructions can be transferred to the study of substitution-invariant mdr’s as follows. Let
xA, F y be an L-hypermatrix. A congruence θ ofA is compatible with F if for every a1, b1, . . . , an, bn P A,

if ra1, . . . , ans P F and ra1{θ, . . . , an{θs “ rb1{θ, . . . , bn{θs,

then rb1, . . . , bns P F. (9)

When θ is compatible with F , we set:

F {θ “ tra1{θ, . . . , an{θs : ra1, . . . , ans P F u.

Lemma 5.14. There exists the largest congruence of A compatible with F .

Proof. We will denote by G the set of finite sequences of elements of A such that xA, Gy “ xA, F ys. We
know that ΩAG is the largest congruence of A compatible with G. In order to conclude the proof, it will
be enough to show that ΩAG is also the largest congruence of A compatible with F . However, it is easily
proved that a congruence of A is compatible with F if and only if it is compatible with G, whence our
claim follows.

Given the above result, we denote the largest congruence of A compatible with F by ΩAF , and call it
the the Leibniz congruence of F over A. We define the reduced models of an mdr $ as follows:

Mod
˚p$q “ I

 
xA{ΩAF, F {ΩAF y : xA, F y P Modp$q

(
.

Corollary 5.15. The transformations p¨qs : Mod
˚p$q ÐÑ Mod

˚p$gq : p¨qm are well defined and mutu-

ally inverse bijections.

Proof. Pick a model xA, F y P Mod
˚p$q. Let G be the set of finite sequences of elements of A such

that xA, F ys “ xA, Gy. From Lemma 5.13 we know that xA, Gy P Modp$gq. Moreover, since
xA, F y P Mod

˚p$q, the congruence ΩAF is the identity relation IdA. Now, in the proof of Lemma 5.14
we showed that ΩAF “ ΩAG. Thus we conclude that ΩAG “ IdA. Since xA, Gy – xA{IdA, G{IdAy
and Mod

˚p$gq is closed under isomorphisms, we conclude that xA, F ys “ xA, Gy P Mod
˚p$gq. A

similar argument shows that if xB, Gy P Mod
˚p$gq, then xB, Gym P Mod

˚p$q. This means that the
maps p¨qs : Mod

˚p$q ÐÑ Mod
˚p$gq :p¨qm are well defined. The fact that they are inverse bijections

follows from Lemma 5.13.
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Theorem 5.16 (2nd completeness theorem). Let $ be a substitution-invariant mdr on L. Then

$ “ (Mod˚p$q “ (1
Mod˚p$q.

Proof. From the general theory of the algebraisation of Gentzen systems we know that Mod
˚p$gq is a

class of models of $g. By Lemma 5.13 this implies that the image of the class Mod
˚p$gq under the

transformation p¨qm is a class of models of $. But by the previous corollary we know that this image
coincides with Mod

˚p$q. Thus Mod
˚p$q is a class of models of $. Then suppose that X & Y.

From the very definition of $g it follows that for any sequence xϕ1, . . . , ϕny and xψ1, . . . , ψmy such that
X “ rϕ1, . . . , ϕns and Y “ rψ1, . . . , ψms we have:

H ✄ xϕ1, . . . , ϕny . H ✄ xψ1, . . . , ψmy.

From the general completeness result of $g with respect to Mod
˚p$gq it follows that there is xA, F y P

Mod
˚p$gq and a homomorphism f : FmL Ñ A such that

xfpϕ1q, . . . , fpϕnqy P F and xfpψ1q, . . . , fpψmqy R F.

Let G Ď A5 be such that xA, F ym “ xA, Gy. Due to the previous corollary we know that xA, Gy P
Mod

˚p$q. Moreover, it is straightforward to check that

rfpϕ1q, . . . , fpϕnqs P G and rfpψ1q, . . . , fpψmqs R G.

5.3 Monoid matrices and t-norm semantics

It is possible to give hypermatrices a (nearly) equivalent formulation in such a way as to shed further
light on the direction in which they generalise ordinary logical matrices. The rough idea is replacing the
unstructured set of designated values in a logical matrix by a richer structure. If xA, Dy is an ordinary
logical matrix (i.e., an algebra with a subset), D can be identified with a function in t0, 1uA; in other
words, being designated is an all-or-nothing matter. The set t0, 1u can also be viewed as the universe of the
2-element join semilattice 2. If we replace 2 by any dually integral Abelian pomonoid D, however, we can
at the same time express an ordering of “degrees of designation”, and evaluate the degree of designation
of whole submultisets of A, with the monoidal operation in D ensuring that evaluations behave well with
respect to multiset union. This leads to the following:

Definition 5.17. Let L be a language. An L-monoid matrix is a quadruple M “ xA,D, G, fy, where:

1. A is an L-algebra.

2. D “ xD,ď,`, 0y is a dually integral Abelian pomonoid.

3. G is a ď-downset in D.

4. f : A5 Ñ xD,ď,`, 0y is a pomonoid homomorphism.

The next lemma ensures that monoid matrices are closed w.r.t. a sort of quotient construction. For
E Ď D, pEs will denote the ď-downset generated in D by E.

Lemma 5.18. Let M “ xA,D, G, fy be an L-monoid matrix, D1 a dually integral Abelian pomonoid,

and g : D Ñ D
1 a pomonoid homomorphism. Then

gD1 pM q “ xA,D1, pgpGqs, g ˝ fy

is an L-monoid matrix.

Proof. D
1 is a dually integral Abelian pomonoid by assumption, and likewise pgpGqs is a ď-downset in D

1.
The map g ˝ f is a composition of monoid homomorphisms, and if X ď Y, then fpXq ďD fpYq and so
gpfpXqq ďD

1

gpfpYqq.
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The relationships between the previously introduced notions are made clear in the next theorem. While
every L-hypermatrix arises out of an L-monoid matrix, an L-monoid matrix need not be more than the
“homomorphic image” of an L-monoid matrix that arises out of an L-hypermatrix.

Theorem 5.19.

1. If M “ xA,D, G, fy is an L-monoid matrix, then

H
M “ xA, tX P A5 : fpXq P Guy

is an L-hypermatrix.

2. If H “ xA, F y is an L-hypermatrix, then

M
H “ xA,A5, F, idy

is an L-monoid matrix.

3. H
M

H

“ H .

4. fDpMH
M

q “ M .

Proof. To prove the first claim we have to show that tX P A5 : fpXq P Gu is a ď-downset, i.e. if fpXq P G
and Y ď X, then fpYq P G. However, if Y ď X, then fpYq ďD fpXq, whence our conclusion follows as
G is a ďD-downset.

The second claim is trivial and the third one as straightforward:

H
M

H

“ xA, tX P A5 : idpXq P F uy “ xA, F y “ H .

The final claim: MH
M

“ xA,A5, tX : fpXq P Gu, idy, whence

fD

´
M

H
M
¯

“ xA,D, pfptX : fpXq P Guqs, fy.

However, fptX : fpXq P Guq Ď G, so pfptX : fpXq P Guqs “ G, and thus fD
´
M

H
M
¯

“ M .

We now focus on a special class of monoid matrices, namely, those matrices whose underlyingpomonoid
is just the closed unit real interval r0, 1s, endowed with some t-norm ˚ (i.e., a monotone, associative, and
commutative operation with unit 1) and with the usual ordering of real numbers. In essence, these monoid
matrices can be seen as an algebra together with a fuzzy set of designated values. Although very special in
nature, these matrices can be used to yield a semantics for the multiset companions of some fuzzy logics,
obtained in the same guise as $MV (see the remarks immediately following Example 5.1).

Definition 5.20. An L-fuzzy matrix is an L-monoid matrix M “ xA,D, G, fy, s.t. D “ xr0, 1s,Ě, ˚, 1y,

where ˚ is some t-norm and Ď is the usual ordering of r0, 1s.

Two fuzzy matrices will be called similar if their algebra reducts are similar and the t-norm ˚ is the
same in both cases.

Definition 5.21. If M “ xA,D, G, fy is an L-fuzzy matrix with t-norm ˚ and Γ,∆ P Fm
5
L, we set

Γ (˚
M

∆ just in case Γ (HM ∆.

If M is a class of similar L-fuzzy matrices, we write Γ (˚
M

∆ as a shortcut for: Γ (˚
M

∆ for every

M P M.

Theorem 5.6 implies the following:

Lemma 5.22. If M is a class of similar L-fuzzy matrices, (˚
M

is a substitution-invariant mdr on L.
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Observe that, if we fixA and f while lettingMbe the class of similarL-fuzzy matrices txA,D, ra, 1s, fy :
a P r0, 1su, we have that

Γ (˚
M
∆ ðñ Γ (HM ∆ for all M P M

ðñ @a@C@epfpC Z epΓqq P ra, 1s ùñ fpC Z ep∆q P ra, 1sqq

ðñ @C@epfpC Z epΓqq Ď fpC Z ep∆qqq

ùñ @epfpepΓqq Ď fpep∆qqq,

where the third equivalence uses the downward closure of HM . Furthermore, since

fperγ1, . . . , γnsq “ fpepγ1qq ˚ ¨ ¨ ¨ ˚ fpepγnqq,

the behaviour of f is entirely determined by its behaviour on one-element multisets, whence we lose no
generality in taking f to be a function from A to r0, 1s. In other words, a fuzzy matrix can be viewed — in
this special case — as an algebra together with a fuzzy set of designated values. Moreover, if A itself is
some algebra with universe r0, 1s, the function f becomes a real function.

With this material at hand, we are ready to prove the completeness of $MV with respect to the class M
of all L0-fuzzy matrices of the form xr0,1sMV,D, ra, 1s, fy, where:

‚ r0,1sMV is the standard MV algebra over r0, 1s, formulated in the language L0 of commutative
residuated lattices.

‚ D “ xr0, 1s,Ě,b, 1y, where b is the Łukasiewicz t-norm.9

‚ a P r0, 1s.

‚ f : r0, 1s Ñ r0, 1s is strictly monotone and preserves b (this class is non-empty: it contains e.g. the
identity function id and the square function p¨q2).

Theorem 5.23. For any Γ,∆ P Fm
5
L0

, the following are equivalent:

1. Γ $MV ∆.

2. Γ (˚
M
∆.

3. Γ (˚
I
∆, where I “ tM P M : f “ idu.

Proof. We prove that 1. implies 2., then next implication is trivial and the final one follows from the
observation after Lemma 5.22

Suppose that Γ “ rϕ1, . . . , ϕns, ∆ “ rψ1, . . . , ψms, Γ $MV ∆. By Chang’s completeness theorem,
this means that for every homomorphism e : FmL0

Ñ r0,1sMV,

epϕ1q b ¨ ¨ ¨ b epϕnq Ď epψ1q b ¨ ¨ ¨ b epψmq.

LetM “ xr0,1sMV,D, ra, 1s, fy P M,C Pr0,1s5, and let e1 : FmL0
Ñ r0,1sMV be a homomorphism.

Suppose further that

a Ď fpCZe1pΓqq “ fpCq b fpe1pΓqq “ fpCq b fpe1pϕ1qq b ¨ ¨ ¨ b fpe1pϕnqq.

However, since f is monotone and b-preserving,

fpe1pϕ1qq b ¨ ¨ ¨ b fpe1pϕnqq Ď fpe1pψ1qq b ¨ ¨ ¨ b fpe1pψmqq

and, by monotonicity of t-norms, a Ď fpCq b fpe1pϕ1qq b ¨ ¨ ¨ b fpe1pϕnqq Ď fpCq b fpe1pψ1qq b ¨ ¨ ¨ b
fpe1pψmqq “ fpCZe1p∆qq, which suffices for our conclusion.

9When discussing Łukasiewicz logic and its multiset companion $MV , we write the multiplicative conjunction (residuated lattice
product) ϕ ¨ ψ using the more customary notation ϕ b ψ.
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5.4 Hilbert systems

We mentioned at the outset that previous attempts at investigating multiset consequence are few and far
between. Virtually all authors who undertook this enterprise, however, tried to set up axiomatic calculi of
sorts ( [3, 29, 39]). We now proceed to present our own take on the issue.

Definition 5.24. A consecution10 in a propositional language L is a pair xΓ,∆y, where Γ and ∆ are finite

multisets of formulas. A consecution is single-conclusion if ∆ “ rϕs for some formula ϕ.

Instead of ‘xΓ,∆y’, we write ‘Γ✄∆’. With a slight abuse, we also identify the consecution H ✄ rϕs
with the formula ϕ.

Definition 5.25 (Axiomatic system). Let L be a propositional language. A (single-conclusion) axiomatic
system in the language L is a set AS of (single-conclusion) consecutions closed under arbitrary substi-

tutions.11 The elements of AS of the form Γ ✄ ∆ are called axioms if Γ “ H and deduction rules
otherwise.

Of course, each axiomatic system can also be seen as a collection of schemata, i.e. a collection of
consecutions and all their substitution instances. Observe that our single-conclusion axiomatic systems
are essentially Avron’s multiset Hilbert systems (see [3]); however, the upcoming notion of tree-proof
is different, as our single-conclusion mdr’s (unlike Avron’s “simple consequence relations”) enjoy the
Monotonicity condition.

Definition 5.26 (Tree-proof). LetL be a propositional language and letASbe a single-conclusion axiomatic

system in L. A tree-proof of a formula ϕ from a multiset of formulas Γ in AS is a finite tree t labelled by

formulas such that:

‚ The root of t is labelled by ϕ.

‚ If a leaf of t is labelled by ψ, then either

´ ψ is an axiom or

´ ψ is an element of Γ and it labels at most Γpψq leaves in t.

‚ If a node of t is labelled by ψ and ∆ ‰ H is the multiset of labels of its predecessor nodes, then

∆✄ rψs P AS.

We write Γ $t
AS
ϕ whenever there is a tree-proof of ϕ from Γ in AS. Our next goal is to define a notion

of derivation for arbitrary axiomatic systems.

Definition 5.27. Let L be a propositional language and let AS be an axiomatic system in L. A derivation
of a finite multiset of formulas ∆ from a finite multiset of formulas Γ in AS is a finite sequence xΓ1, . . . ,Γny
of finite multisets of formulas such that:

‚ Γ1 “ Γ;

‚ For every Γj , 1 ă j ď n, there is a rule Ψ✄Ψ1 P AS, such thatΨ ď Γj´1 and Γj “ pΓj´izΨqZΨ1;

‚ ∆ ď Γn.

We say that ∆ is derivable from Γ in AS, and write Γ $AS ∆, if there is a derivation of ∆ from Γ in AS.

Observe that, if Ψ “ H, the second clause above says that in a derivation we are allowed to beef up with
finitely many axioms any multiset that has already been derived. The next lemma supports the adequacy of
the given definition.

Lemma 5.28. Let L be a propositional language and let AS be an axiomatic system in L. Then $AS is the

least substitution-invariant mdr containing AS.

10The term “consecution” is taken from [1] (the term “sequent” is sometimes used instead).
11I.e., if Γ✄∆ P AS, then σpΓq ✄ σp∆q P AS.
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Proof. Generalised Reflexivity being trivial, we prove the remaining conditions.

Compatibility Given a derivation P “ xΓ1, . . . ,Γny of ∆ from Γ in AS, it is easy to observe that the
sequence P 1 “ xΓ1 Z Π, . . . ,Γn Z Πy is a derivation of ∆ Z Π from Γ Z Π (thanks to the fact that
in our notion of proof we can apply rules in an arbitrary context).

Transitivity Suppose we have a derivation xΓ1, . . . ,Γny of ∆ from Γ in AS. Then ∆ ď Γn and so
from ∆ $AS Π we get by monotony Γn $AS Π Z pΓnz∆q; let x∆1, . . . ,∆ny be the corresponding
derivation in AS. Note that ∆1 “ Γn and Π ď ∆n. Then the sequence

xΓ1, . . . ,Γn,∆2, . . . ,∆ny

is clearly a derivation of Π from Γ in AS.

Substitution-invariance Given a derivation P “ xΓ1, . . . ,Γny of ∆ from Γ in AS, the sequence P 1 “
xσrΓ1s, . . . , σrΓnsy is a derivation of σr∆s from σrΓs in AS.

Now for the proof that $AS is the least substitution-invariant mdr containingAS. Obviously AS Ď $AS.
What remains to prove is that for each substitution-invariant mdr $, if AS Ď$, then $AS Ď $. Assume
that Γ $AS ∆, i.e. there is a derivation P of ∆ from Γ in AS. By induction on the length of P , we can
show that for each multiset of formulas Π in P we have Γ $ Π, and hence in particular Γ $ ∆. The base
case is settled with an appeal to Reflexivity. As to the induction step: let Π and Π1 be labels of successive
elements of P and Γ $ Π. We know that there is a rule Ψ✄Ψ1 such that Π1 “ pΠzΨq ZΨ1. Thus Ψ $ Ψ1,
and so by Compatibility ΨZ pΠzΨq $ Ψ1 Z pΠzΨq, i.e. Π $ Π1. An application of Transitivity completes
the proof.

Definition 5.29. Let L be a propositional language, AS an axiomatic system in L, and let $ be a

substitution-invariant mdr on L. We say that AS is an axiomatic system for (or a presentation of) $ if

$ “ $AS.

Clearly, due to the previous lemma, each mdr can be seen as its own presentation, and so we obtain:

Corollary 5.30 (Łos–Suszko). Every given substitution-invariant mdr $ coincides with the derivability

relation $AS of some axiomatic system AS.

The next lemma spells out the relation between derivations and tree-proofs.

Lemma 5.31. Let AS be a single-conclusion axiomatic system on L, Γ $AS ∆, and ϕ P |∆|. Then there

are multisets of L-formulas Γϕ and Γr such that Γϕ Z Γr “ Γ, Γϕ $t
AS
ϕ and Γr $AS ∆zrϕs.

Proof. Let P “ xΓ1, . . . ,Γny be the assumed derivation of ∆ from Γ in AS. For each i ď n, let
Γi “ rψi1, . . . , ψ

i
ki

s and note that without loss of generality we can assume that the rule used in the i-th
step of P is rψi1, . . . , ψ

i
pi

s ✄ ψi`1
ci

for some pi ď ki and ci ď ki`1. Also note that ki`1 ´ 1 “ ki`1 ´ pi

and there is a bijection f between Γi`1zrψi`1
ci

s and Γizrψi1, . . . , ψ
i
pi

s such that ψi`1

j “ ψifpjq whenever

ci ‰ j ď ki`1. We construct the labelled graph G with nodes N “ txi, jy | i ď n and j ď kiu, where ψij
is the label of xi, jy, and edges only between the following nodes:

‚ rule edges: xi, ky and xi` 1, ciy for each k ď pi;

‚ non-rule edges: xi, fpjqy and xi` 1, jy for j ‰ ci.

It is easy to see thatG is a forest (a disjoint union of trees). Let t be the subtree of G with root ψn1 , and
let Γϕ be the multiset of all labels of leaves in t which are not axioms. Then clearly Γϕ ď Γ and t is almost

a tree-proof of ϕ from Γϕ; all we have to do is to collapse nodes connected by non-rule edges.
Finally, let Γti denote the multiset resulting from Γi by removing formulas labeling the nodes of t (as

many times as it labels some node) and observe that Γt1, . . . ,Γ
t
n is almost a proof of Γtn “ Γnzrψn1 s from

Γt1: we only need to remove each Γti which equals its predecessor. Defining Γr “ Γt1 and observing that
Γr “ ΓzΓϕ and ∆zrψn1 s ď Γtn completes the proof.
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Lemma 5.32. For any AS single-conclusion axiomatic system, Γ $t
AS
ϕ iff Γ $AS rϕs.

Proof. One direction follows directly from the previous lemma. To prove the converse one, assume that
there is a tree-proof t of ϕ from Γ in AS. Let n be a node of t, ψn its label, Pn the set of its predecessors,
∆n the multiset of labels of nodes in Pn, and Γn the multiset of labels of elements of Γ which are not
axioms and occur in leaves of the subtree of t with root n. If we show that Γn $AS rψns, the proof is done:
indeed for the root r of t we obtain Γr $AS rϕs and given that Γr ď Γ and $ is an mdr, we obtain the
claim by Monotonicity. Let us prove the claim: if n is a leaf, the proof is trivial. Otherwise, there is a rule
∆n ✄ rψns and for each m P Pn we have Γm $ rψms. Thus

Ţ
mPPn

Γm $ ∆n and so
Ţ

mPPn

Γm $ rψns.

The proof is completed by observing that
Ţ

mPPn

Γm “ Γn.

Recall that single-conclusion mdr’s were introduced in Definition 5.2 as fragments of mdr’s. We now
observe that the tree-provability relations of single-conclusion axiomatic systems, in a sense, “generate” the
corresponding derivability relations.

Corollary 5.33. Let AS be a single-conclusion axiomatic system. Then $t
AS

is a single-conclusion mdr and

$AS is the least mdr $ such that

Γ $t
AS α ðñ Γ $ rαs.

Proof. The former claim is immediate from the previous lemma. To prove the latter, assume that $ is an
mdr such that

Γ $t
AS α ðñ Γ $ rαs.

We need to show that if Γ $AS ∆, then Γ $ ∆. We prove it by induction on n “
ř

ψP|∆|

∆pψq. If n “ 0

the claim is trivial. Assume now that ∆ “ ∆0 Z rϕs. By Lemma 5.31, there are multisets Γϕ and Γr such
that Γϕ Z Γr “ Γ, Γϕ $t

AS
ϕ and Γr $AS ∆zrϕs. Thus, our assumption on $ and the induction hypothesis

imply that Γϕ $ ϕ and Γr $ ∆zrϕs. Thus Γ $ rϕs Z Γr and Γr Z rϕs $ ∆. Transitivity completes the
proof.

We close this subsection by providing an axiomatic system for $MV , the multiset companion of infinite-
valued Łukasiewicz logic $Ł. Although we show that it has no single-conclusion axiomatisation, we also
axiomatise its single-conclusion fragment. In this way, we incidentally provide an example of two different
mdr’s with the same single-conclusion fragment.

Proposition 5.34. There is no single-conclusion presentation of $MV .

Proof. Assume that there is such a system Ax and note that we have rp b qs $Ax rp, qs. Then, due to
Lemma 5.31, either $Ax p or $Ax q, a contradiction.

Definition 5.35. The axiomatic system MV
s, formulated in the language L0 of commutative residuated

lattices, contains as axioms all instances of the axioms of Łukasiewicz logic in L0, and as its sole deduction

rule the rule (MP): rϕ, ϕ Ñ ψs ✄ rψs. The axiomatic system MV is an extension of MV
s by the rule

(b-Elim): rϕb ψs ✄ rϕ, ψs.

Observe that MV
s is a single-conclusion axiomatic system.

Theorem 5.36. Let Γ,∆, rϕs P Fm
5
L0

. Then, we have the following:

1. Γ $MVs rϕs ðñ Γ $MV rϕs.

2. Γ $MV ∆ ðñ Γ $MV ∆.

Proof. Recall, that given a multiset of L0-formulas Γ “ rγ1, . . . , γns, we write
Â

Γ for γ1 b ¨ ¨ ¨ b γn.
Note that due to the standard completeness of $Ł we obtain:

Γ $MV ∆ ðñ MV (
â

Γ ď
â

∆ ðñ $Ł

â
Γ Ñ

â
∆. (10)

For the left-to-right direction of the former claim, it suffices to prove the latter. Assume that Γ “
Γ1, . . . ,Γn ě ∆ is a derivation of ∆ from Γ. If we show that MV (

Â
Γi ď

Â
Γi`1 the claim follows

as MV (
Â

Γn ď
Â

∆. We distinguish three cases:
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‚ The case whenΓi`1 “ ΓiZrϕs, whereϕ is an axiom, is simple, as in this case we haveMV ( ϕ « 1.

‚ The case when there is a multiset ∆ such that Γi “ ∆ Z rϕ, ϕ Ñ ψs and Γi`1 “ ∆Z rψs: we know
that MV ( ϕ b pϕ Ñ ψq ď ψ and so MV ( ϕb pϕ Ñ ψq b

Â
∆ ď ψ b

Â
∆.

‚ The final case, when there is a multiset ∆ such that Γi “ ∆ Z rϕ b ψs and Γi`1 “ ∆ Z rϕ, ψs, is
simple.

For the converse direction, we first prove the first claim by induction on the length of Γ. Note that
thanks to Lemma 5.31 we can work with tree-proofs. If Γ “ H, then by the assumption we know that ϕ is a
theorem of Łukasiewicz logic, i.e., there is a proof ofϕ in its usual Hilbert calculus. This proof can be easily
transformed into a tree-proof of ϕ in $MVs . For the induction step, observe that if Γ Z rψs $MV rϕs, then
Γ $MV rψ Ñ ϕs and so by induction there is a tree-proof of ψ Ñ ϕ from Γ from which it is trivial to get
a tree-proof of ϕ from Γ Z rψs. Finally, we prove the right-to-left direction of the latter claim. First notice
that Γ $MV ∆ entails Γ $MV

Â
∆ and so by the first claim Γ $MVs

Â
∆ and thus also Γ $MV

Â
∆.

Repeated use of the rule (b-Elim) completes the proof.
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