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GENERIC LARGE CARDINALS AS AXIOMS

MONROE ESKEW

Abstract. We argue against Foreman’s proposal to settle the continuum hy-
pothesis and other classical independent questions via the adoption of generic
large cardinal axioms.

Shortly after proving that the set of all real numbers has a strictly larger car-
dinality than the set of integers, Cantor conjectured his Continuum Hypothesis
(CH): that there is no set of a size strictly in between that of the integers and the
real numbers [1]. A resolution of CH was the first problem on Hilbert’s famous list
presented in 1900 [19]. Gödel made a major advance by constructing a model of
the Zermelo-Frankel (ZF) axioms for set theory in which the Axiom of Choice and
CH both hold, starting from a model of ZF. This showed that the axiom system
ZF, if consistent on its own, could not disprove Choice, and that ZF with Choice
(ZFC), a system which suffices to formalize the methods of ordinary mathematics,
could not disprove CH [16]. It remained unknown at the time whether models of
ZFC could be found in which CH was false, but Gödel began to suspect that this
was possible, and hence that CH could not be settled on the basis of the normal
methods of mathematics. Gödel remained hopeful, however, that new mathemati-
cal axioms known as “large cardinals” might be able to give a definitive answer on
CH [17].

The independence of CH from ZFC was finally solved by Cohen’s invention of
the method of forcing [2]. Cohen’s method showed that ZFC could not prove CH
either, and in fact could not put any kind of bound on the possible number of
cardinals between the sizes of the integers and the reals. Lévy and Solovay further
developed the forcing machinery, and noticed that it also destroyed Gödel’s hopes
for large cardinals. Forcing allowed one to manipulate the cardinal value of the set
of reals, passing from one model of ZFC to another giving a different answer on
CH, without disturbing any large cardinals in the process [22].

This was not the last word on CH from the community of set theorists. Several
programs to develop acceptable axioms that settle CH have been put forward.
Matthew Foreman, a leading set theorist, has suggested a solution to CH via axioms
called “generic large cardinals.” Our goal here is to critically examine Foreman’s
proposal. First, we describe the goals these axioms are supposed to meet and the
kinds of considerations in their favor, highlighting the claim that the favorable
considerations for traditional large cardinals transfer to the generic ones. Second,
we discuss many technical difficulties in accommodating generic large cardinals in a
single axiomatic framework, and present some new “mutual inconsistency results”
that raise troubles for the program. Third, we examine the considerations in favor
of traditional large cardinals and argue that they do not have the same import for
the generic variety. Finally, we consider an alternative take on these kinds of axioms
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that seems to avoid the technical difficulties, but sacrifices some of the original goals
of the program.

1. Foreman’s program

In accord with Gödel [17], Foreman regards CH as a legitimate and important
mathematical problem, despite its independence from ZFC. In Foreman’s view,
such problems may be resolved by the adoption of new axioms, a method which is
in line with the historical practice of mathematics, as “whatever process led to the
acceptance of ZFC as an axiomatization of mathematics (despite its controversial
beginnings) may lead to other assumptions that settle, or partially settle most of
the problems we are interested in” [11].

Of course, the everyday mathematical work of performing calculations and prov-
ing theorems is not the same kind of thing as making a commitment to a new axiom.
So how does one assess axiom candidates? Foreman lays out two categories of evi-
dence, which he calls “primary considerations” and “secondary considerations” [12].
Roughly, primary considerations have to do with the conceptual content of the ax-
ioms, while secondary considerations have to do with various utilitarian features
of the theories they generate. Included among these features is completness, the
effectiveness of the axiom system at answering questions. We will not dispute the
claim that generic large cardinals fare particularly well with respect to many sec-
ondary considerations. Indeed, they are able to settle several classical questions
about relatively small cardinals, including CH, and they have many of the same
implications for descriptive set theory as conventional large cardinals.1

What Foreman describes as primary considerations seem to be closely linked to
“intrinsic justifications,”2 but perhaps also include considerations of “naturalness”
that may not count as justifications in the sense of valid arguments for conclu-
sions. Gödel suggests something along these lines, saying that large cardinals are
“axioms which are only the natural continuation of the series of those set up so
far” [17]. Foreman argues that the primary considerations for traditional large car-
dinals transfer to the generic large cardinals. Since many set theorists accept large
cardinals as intrinsically justified or natural, the implication is that they should
therefore view generic large cardinals in the same way. Our aim in this paper is to
argue against this transference claim, without attempting a thorough analysis of the
underlying notion of “primary consideration.” We will first argue that the transfer-
ence claim leads to unwelcome consequences, and then critically examine whether
some of the well-known primary considerations for traditional large cardinals do
indeed apply equally to generic ones.

Foreman describes large cardinals as “a successful axiom system” [12]. With
regard to primary considerations in their favor, Foreman says little in [12] beyond
noting the “sociological fact that the dominant view among those actively searching
for true axioms that extend ZFC is that Large Cardinal axioms are true.” This
is reminiscent of an argument for the Axiom of Choice made by Zermelo, who
noted that “it is applied without hesitation everywhere in mathematical deduc-
tion” [29]. In other words, specialists in the relevant fields demonstrate in their
mode of working that the principles in question are natural or intuitive. Foreman
says the generic large cardinals are “straightforward generalizations of conventional

1See [13].
2See [23].
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large cardinals,” and that the “evidence for large cardinals, when suitably viewed,
does not distinguish between conventional large cardinals and generic large cardi-
nals” [12]. Indeed, Foreman gives a characterization of generic large cardinals that
includes many conventional large cardinals as special cases.

A key mathematical difference between the conventional and generic large car-
dinals is the mutual inconsistency phenomenon observed with the generic variety.
There are pairs of generic large cardinal axioms that contradict one another. In
some cases, both members of the pair are known to be consistent relative to conven-
tional large cardinals. Since the conventional large cardinals form a directed order
in strength, such phenomena are not possible for the conventional large cardinals
that have been studied. If a pair of them were to be inconsistent with each other,
then a single large cardinal axiom would be inconsistent by itself. This is because
for any finite collection S of large cardinal axioms, one only needs to look a bit
further up the hierarchy to find an axiom which implies the existence of a model
satisfying all statements in S.3

What are we to make of this situation? If we are seeking to adopt a new axiom
system to resolve independent questions, we certainly should not adopt an incon-
sistent one. According to Foreman [13], “While the counterexample to mutual
consistency is certainly very troubling, it may not be fatal to the program of look-
ing to generalized large cardinals for true extensions of ZFC.” He states that “the
‘mutual inconsistency phenomenon’ seems rare,” and that the important question
is, “which generalized large cardinals are true.” In other words, he predicts that
a deeper understanding of the situation will yield reasons to accept some generic
large cardinals as axioms and reject others.

A straightforward acceptance of the transference claim immediately leads us
into problems. For if everything worthy of the name “generic large cardinal” is as
deserving of axiomhood as conventional large cardinals, then we have several equally
deserving axiom candidates, which cannot be adopted simultaneously. We cannot
accept a simple principle such as “generic large cardinal axioms are true,” and we
seem to be left with no alternative principle that favors some generic large cardinals
over others. But perhaps the primary considerations in favor of conventional large
cardinals do not legitimately apply to some hypotheses we currently call “generic
large cardinals.” If the mutual inconsistency phenomenon is indeed quite rare, then
it becomes plausible that a more refined understanding of the considerations in favor
of conventional and generic large cardinals may resolve the problem by guiding us
to a choice between conflicting axioms, perhaps by informing a scheme for what
counts as a generic large cardinal axiom that excludes problematic cases. This could
be guided by new mathematical information, as Kunen’s proof of the nonexistence
of “Reinhardt cardinals” led to a maturation of the large cardinal theory rather
than its collapse [25]. However, we aim to show in the next section, by collecting
some known results and presenting some new ones, that the phenomenon may be
unsettlingly common, and hence the prospects for the program may be bleak.

3It should be noted that this is not a meta-theorem about an abstract notion of large cardinals,
but more of an empirical fact about the axioms that have been studied. Indeed, there is no
generally accepted formal definition of what a large cardinal is, though there is certainly enough
resemblance and coherence between the extant axioms to warrant the use of a general term.



4 MONROE ESKEW

2. Inconsistencies

Without attempting a comprehensive definition, Foreman in [11] characterizes
generic large cardinals as axioms that “assert the existence of an elementary em-
bedding j : V → M , where j is definable in a forcing extension of the universe
V [G].” (M is assumed to be a transitive class definable in V [G].) Conventional
large cardinals (at least those of sufficiently high strength) fit the same description,
except that they do not allow j to be generated by forcing.

With no restrictions on the hypotheses of this kind that one may consider as
axiom candidates, we quickly run into inconsistencies. For example, there is a
relationship between the kind of forcing used to generate the embedding j and the
possible critical point of j. The kind of forcing employed can dictate the allowable
critical points, and a stipulation of a certain critical point can restrict the class of
employable forcings. If we stipulate the critical point to be a successor cardinal,
then this cardinal must be collapsed by the forcing, since if κ = µ+ is the least
ordinal moved by j : V → M , then M |= µ < κ < j(κ) = µ+. If we stipulate
the forcing to have the countable chain condition, then the critical point must be
weakly inaccessible and at most the value of the continuum.4 Since some generic
large cardinals imply the continuum is not so large, we immediately get some mutual
inconsistencies.

A less obvious restriction on generic embeddings occurs near singular cardinals.
Since any forcing generating an elementary embedding with critical point a succes-
sor cardinal κ = µ+ must collapse κ to have the same cardinality as µ, the best
chain condition one can get for the forcing is the κ+-c.c., and thus the minimal
possible size of the forcing is κ. The former property is equivalent to the existence
of a κ+-saturated normal ideal on κ, and the latter a κ-dense normal ideal on κ.
These objects are the combinatorial surrogates for the kinds of generic embeddings
they generate, in analogy to the countably complete ultrafilters on various sets as-
sociated to various kinds of conventional large cardinal embeddings. These objects
are often referred to by the abridged names, “saturated ideal” and “dense ideal”
on κ.

A dense ideal on ω1 is known to be equiconsistent with infinitely many Woodin
cardinals [28], and for a general successor of a regular cardinal, a model can be
obtained from an almost-huge cardinal [6]. Foreman [8] obtained a model of ZFC
in which every successor cardinal carries a saturated ideal, and therefore a natural
question is whether one can obtain the stronger property of a dense ideal on κ, where
κ is the successor a singular cardinal. In [6], the author showed that this contradicts
the generalized continuum hypothesis (GCH). Using a lesser-known forcing lemma,
we easily obtain a contradiction without GCH:

Lemma 1 (Sakai [24]). If P is a partial order of size κ, where κ is a regular
cardinal, then P forces cf(κ) = |κ|.

Corollary 2. If κ is the successor of a singular cardinal, then there is no dense
ideal on κ.

Proof. Suppose µ is singular, κ = µ+, and there is a dense ideal on κ. Let j : V →
M ⊆ V [G] be a generic embedding arising from forcing with the ideal. The critical
point of j is κ and Mκ∩V [G] ⊆ M . By elementarity and the closure of M , |κ| = µ

4See [20] or [21].
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and cf(κ) < µ in V [G]. This contradicts Sakai’s Lemma since G is generic for a
forcing of size κ. �

Deeper restrictions on generic elementary embeddings come from work regarding
the canonical nonstationary ideal on a regular cardinal κ, denoted NSκ. Work of
Gitik and Shelah [15] shows that is not possible for NSκ to be saturated unless
κ = ℵ1, which is consistent relative to a Woodin cardinal [28]. For various restricted
versions of this, the relative consistency is open–for example the statement that
NSℵ2

restricted to ordinals of cofinality ℵ1 is ℵ3-saturated. However, Foreman and
Magidor [14] proved that if there are sufficient conventional large cardinals in the
background, then the above statement about NSℵ2

contradicts the ℵ2-saturation of
NSℵ1

. In particular, these hypotheses give different answers regarding whether a
counterexample to CH exists in the inner model L(R).

With regard to the inconsistencies involving the nonstationary ideal, Foreman
has a response. He characterizes the ℵ2-saturation of NSℵ1

as “an anomaly that
does not fit the general situation” [13], suggesting that a clearer picture of the
mathematical situation may lead to a refined formulation of the notion of “generic
large cardinal” that does not allow this contradiction to go through. This leads
Foreman to an “informal working definition” of a generic large cardinal hypothesis
as an assertion of the forcability of an elementary embedding j : N → M for
transitive structures N and M , with three paramters:

(1) Where j sends the ordinals.
(2) How big N and M are.
(3) The nature of the forcing.

As he states, “This mechanism appears to define away the anomaly of NSω1
,”

since there is no place in this framework for asserting that the generic embedding
is related to a particular definable ideal. He clarifies that by “the nature of the
forcing,” he means its isomorphism type as a boolean algebra. The assertion,
“such-and-such isomorphism type can be represented as such-and-such,” is not a
permitted part of a generic large cardinal hypothesis.

This informal defintion does not have enough information to exclude inconsistent
cases, as Foreman notes that “one cannot adjust these parameters arbitrarily.” As
mentioned above, there is an interplay between axes (1) and (3). There are obvious
interplays between (1) and (2), as making N and M “larger” tends to introduce
more absoluteness and thus restrict the action of j. There are also limitations
regarding (2) analogous to Kunen’s inconsistency.5 Nonetheless, one might reason-
ably hope that we can specify some consistent general framework that captures
most of the instances of generic large cardinals that have been studied.

Whatever underlying concept motivates Foreman’s working definition, it does
appear that there are instances of generic large cardinals falling under the con-
cept that are mutually contradictory. Foreman mentions two examples that he
finds troubling. The first example shows that the following “particularly attractive
sounding axiom” asserting the existence of a family of ideals is false: “For all ℵ2-c.c.
Boolean algebras B of cardinality less than or equal to 2ω2 that collapse ω1, there
is a normal fine ideal I on [ω2]

ω1 such that P([ω2]
ω1)/I ∼= B.”

5See [13], Section 6.2.
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If we substitute B = Col(ω, ω1), then we can prove CH,6 and that there is also an
ideal J on ω1 such that P(ω1)/J ∼= Col(ω, ω1). These two hypotheses together prove
a certain partition property P .7 If we substitute B = Col(ω,<ω2), then from this
hypothesis we can prove ¬P . Although the existence of any ℵ2-saturated normal
ideal on [ω2]

ω1 is not known to be consistent relative to large cardinals, Foreman
notes that the same argument can be carried out on the basis of the conjunction
of CH with two weaker ideal hypotheses known to be individually consistent (with
GCH) relative to conventional large cardinals.8

In [5], the author generalized this result as follows, allowing us to drop the
hypothesis of CH from the original case:

Theorem 3. Suppose κ is a successor cardinal, there is a κ-complete, κ-dense ideal
on κ, and λ > κ is a cardinal.

(1) If λ is a successor cardinal, there is no normal ideal on [λ]κ whose associated
forcing is λ-absolutely λ-c.c. and uniformly λ-dense.

(2) If λ is a limit cardinal, then there is no λ+-saturated normal ideal on [λ]κ.

Although we will not repeat here the definitions of λ-absolutely λ-c.c. and uni-
formly λ-dense, we note the conjunction of these properties covers a broad class
of partial orders that includes Col(µ,<λ) when λ is regular and λ<µ = λ. If a
proponent of generic large cardinals as axioms is troubled by the more specific in-
consistency, then certainly this generalization should be all the more disconcerting,
as so many more pairs of generic large cardinals are ruled out. In particular, dense
ideals on successor cardinals are inconsistent with any reasonably saturated ideal
which collapses an inaccessible to be that same successor. As noted in [5], stronger
properties of ideals that generically map successor to inaccessible cardinals can rule
out even saturated ideals on those successor cardinals.

After discussing the above mutual inconsistency phenomenon in [13], Foreman
defined a particularly strong notion of “minimally generically n-huge” as an example
of a type of generic large cardinal axiom:

Definition. For finite n > 0, a cardinal κ = µ+ is minimally generically n-huge

iff there is a normal, fine, κ-complete ideal I on Z = [κ+n]κ
+n−1

such that P(Z)/I
has a dense set isomorphic to Col(µ, κ).

If we additionally assume that κ<µ ≤ κ+n, then whenever G ⊆ P(Z)/I is
generic, there is an elementary embedding j : V → M ⊆ V [G] such that M is
closed under κ+n-sequences from V [G], and j(κ+m) = κ+m+1 for all m < n. Since
Col(µ, κ) actually collapses κ<µ to µ, and (κ+)V is a cardinal in V [G], we must
have in this context that κ<µ = κ, meaning that the forcing associated to the ideal
is of minimal possible density, and is in fact uniquely characterized as the µ-closed
partial order of this density with these collapsing effects.9 Furthermore, a deeper
theorem of Foreman shows that in the case µ = ω, the hypothesis implies CH and

6See [13], Section 5.3.
7P asserts that whenever we have a coloring of the rectangle ω2×ω1 in countably many colors,

there are sets A ⊆ ω2 and B ⊆ ω1, both uncountable, such that the coloring is constant on A×B.
8These are a dense ideal on ω1 and a normal ideal on [λ]ω1 with associated forcing Col(ω,<λ),

for some inaccessible λ.
9See [3], Section 14.
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in fact GCH up to κ+n.10 Using a simple trick, we can draw the same conclusion
for larger values of µ.11

Along these lines, it is natural to define a cardinal κ = µ+ to be minimally
generically almost-huge if there is a κ-complete ideal I on κ such that P(κ)/I has
a dense set isomorphic to Col(µ, κ). A standard projection argument shows that
if κ = µ+, κ<µ = κ, κ is minimally generically n-huge, and 0 < m ≤ n, then κ is
minimally generically m-huge and minimally generically almost-huge.

As [13] went to press, Woodin showed in an unpublished note that it is incon-
sistent for ω1 to be minimally generically 3-huge while ω3 is minimally generically
1-huge. Woodin’s argument was somewhat specific to the cardinals involved. We
prove below the following generalization of his result using a different argument.

Theorem 4. Suppose κ = µ+ and n ≥ 2. Then the following are mutually incon-
sistent:

(1) κ is minimally generically n-huge.
(2) For some m, 0 < m < n, there is an ideal I on κ+m such that P(κ+m)/I

is forcing-equivalent to a κ-closed partial order.12

The second hypothesis includes the case that κ+m is minimally generically almost-
huge, but is much weaker, and in fact equiconsistent with a measurable cardinal.13

The second hypothesis also implies that (κ+m−1)µ = κ+m−1, since otherwise, a
generic embedding arising from I would stretch an enumeration of Pκ(κ

+m−1) to
reveal new elements in the generic extension. But a κ-closed partial order does
not add any <κ-sequences of ordinals. A fortiori, κ<µ ≤ κ+n, and so by the prior
remarks, the two hypotheses together imply GCH holds on the interval [µ, κ+n].

The theorem shows that degrees of minimal generic hugeness on nearby successor
cardinals contradict one another. It will follow from a more general lemma that
is a bit clumsier to state. Before beginning the argument, we gather some notions
and facts we will need:

Definition (Hamkins [18]). A partial order P has the κ-approximation property

when for all X ∈ V and all P-names Ẏ , if it is forced that Ẏ ∩ x ∈ V for all
x ∈ Pκ(X)V , then it is forced that Ẏ ∩X ∈ V .

Definition (Usuba [27]). A partial order has the strong κ-c.c. if it has the κ-c.c.
and forcing with it adds no cofinal branches to κ-Suslin trees.

We note two ways of guaranteeing that P has the strong κ-c.c.: P has the µ-c.c.
for some µ < κ, or P×P is κ-c.c. The latter follows easily if |P| < κ. The following
result of Usuba [27] improves results of Hamkins, Mitchell, and Unger:

10See [13], Theorem 5.9.
11See [6], Corollary 3.4. If κ = µ+ and there is a κ-complete, normal, κ-dense ideal on Z but

2µ > κ, then we can collapse µ to ω and preserve all of these properties, getting a model that is
ruled out by Foreman’s Theorem.

12With minor modifications to the arguments, “κ-closed” can be weakened to “κ-strategically-
closed.”

13For example, if we force with Col(µ, <κ), where κ is measurable, then the ideal I generated
by the dual of a normal ultrafilter U on κ has the property that P(κ)/I has a dense set isomorphic
to Col(µ,<jU (κ)). For the reverse direction, such an ideal is precipitous, which implies that κ is
measurable in an inner model.
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Theorem 5 (Usuba). Suppose κ is a regular cardinal, P is a nontrivial κ-c.c.

partial order, and Q̇ is a P-name for a κ-closed partial order. Then P ∗ Q̇ has the
κ-approximation property if and only if P has the strong κ-c.c.

The next lemma implies Theorem 4. As noted above, the hypotheses of Theorem
4 imply GCH on the interval [µ, κ+n], and thus the hypotheses of the next lemma
are satisfied with P = Col(µ, κ), κ = κ0, κ1 = κ+, λ0 = κ+m−1, and λ1 = κ+m.

Lemma 6. Suppose there are regular cardinals κ0, κ1, λ0, λ1 such that λ<λ0

0 = λ0

and κ0 ≤ λ0. Suppose P is a strongly κ1-c.c. nontrivial partial order such that
whenever G ⊆ P is generic, there is an elementary embedding j : V → M ⊆ V [G]
with:

(1) j(κ0) = κ1.
(2) j(λ0) = λ1.
(3) M is closed under λ+

1 -sequences from V [G].

Then there is no λ+
0 -complete ideal I on λ+

0 whose associated forcing is equivalent
to a κ0-closed partial order.14

Proof. Suppose j : V → M ⊆ V [G] is a generic elementary embedding as hypoth-
esized. By the closure of M and the chain condition, λ1 is regular in V [G], and
j(λ+

0 ) = (λ+
1 )

V [G] = (λ+
1 )

V .

Since V |= λ<λ0

0 = λ0, it follows that V |= λ<λ1

1 = λ1. For otherwise, in V
there is a surjection f : [λ1]

<λ1 → λ+
1 , which would be in M by the closure of M .

But by elementarity, M |= λ<λ1

1 = λ1. Therefore, then by the well-known result of
Specker [26], there is a λ+

1 -Aronszajn tree T ∈ V .
Suppose I is as hypothesized. M |= j(I) is a λ+

1 -complete ideal on λ+
1 whose

associated forcing is equivalent to a κ1-closed partial order. By the closure of
M , this is true in V [G] as well. If we force with P(λ+

1 )/j(I) over V [G], then
we get an elementary embedding i : V [G] → N with critical point λ+

1 . We have
i(T ) ↾ (λ+

1 )
V = T , and a branch through T can be found by looking below a node

in i(T ) at level (λ+
1 )

V . Therefore, by forcing with P ∗ P(λ+
1 )/j(I), we obtain a

new set b ⊂ T such that for every x ∈ Pκ1
(T )V , b ∩ x ∈ V . This is a failure of

κ1-approximation, in contradiction to Usuba’s Theorem. �

In summary, many pairs of seemingly natural candidates for generic large cardi-
nal axioms turn out to contradict one another. A fixed successor cardinal cannot
be generically large in certain different ways at the same time, where the nature of
the forcing producing the generic embedding varies. A canonical notion of minimal
generic n-hugeness cannot hold simultaneously on nearby successor cardinals. The
pervasiveness of such examples, combined with the absence of any apparent salient
difference between conflicting hypotheses, lowers hopes for a single consistent tem-
plate for such axioms. We are thus compelled to scrutinize the possible primary
considerations in favor of these principles.

3. Weight of the evidence

Do the primary considerations for conventional large cardinals really apply equally
to generic large cardinals? The key difference between conventional and generic

14If κ0 = λ0, we may drop the cardinal arithmetic assumption, as the existence of a κ+

0
-

complete ideal on κ+

0
whose associated forcing is equivalent to a κ0-closed partial order implies

κ<κ0

0
= κ0.
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large cardinals is the admissibility of forcing to construct a nontrivial elementary
embedding of V into a transitive class. On its face, this involves the introduction
of an object G /∈ V to form a larger model V [G] in which the embedding can be de-
fined. If the axioms of set theory are meant to describe what is true in the universe
of sets V , this seems curious. Generic large cardinals would seem to be principles
about local regions of a set-theoretic multiverse. Indeed, Foreman states in [11]
that a generic large cardinal hypothesis “allows one to state ‘symmetry principles’
that can hold in a generic extension of the universe.” Foreman makes no attempt to
dress the motivating picture for generic large cardinals in a formalism that avoids
reference to extensions of the universe, other than to say that the forcability of
generic embeddings is equivalent to the existence of ideals in V with certain prop-
erties. But it is clearly the formulation in terms of generic embeddings, rather than
combinatorial properties of ideals, that is the source of motivation for these princi-
ples. Putting aside for the moment general worries about the relationship of generic
embeddings to multiversism, let us examine several of the primary considerations
for large cardinals, and assess whether they apply to the generic variety.

3.1. Arguments from authority. In [12], Foreman largely avoids stating what
primary considerations in favor of large cardinals there are, opting instead to ar-
gue simply that they exist. He cites the fact that many expert set theorists treat
large cardinal assumptions “as if they were true,” which he says shows they “have
intuitions about the veridicality of the axioms.” Moreover, these intuitions are “ed-
ucated,” and may be likened to the refined judgements of professional wine tasters,
in the sense that one has reason to trust the experts’ opinions even if it is difficult
for non-experts to inspect the basis for the judgments.15

However, this kind of evidentiary picture is not so similar with generic large
cardinals. Foreman acknowledges as much, noting that “the generic large cardinals
are much less studied than conventional large cardinals, and so it is hard to supply
the same kind of historical or sociological evidence for the intuitive content of the
large cardinals.” We may also add that there are not many set theorists who appear
to regard generic large cardinal principles as axiomatically true. Foreman’s aim in
his several philosophical writings about generic large cardinals is to prescribe these
as axioms to an audience that includes the community of set theorists, rather than to
describe a existing consensus. Even if a consensus among experts about propositions
in their field of expertise counts as evidence in favor of those propositions, this kind
of evidence is presently lacking for generic large cardinals.

3.2. Generalization. One motivating idea for many conventional large cardinals,
discussed for example in [25], is that the many properties of ω that are the result
of the gap between the finite and infinite should generalize to higher infinities,
displaying a similarly vast difference in size between varieties of infinite sets. Insofar
as such considerations are about sheer relative size, they do not seem to apply
to generic large cardinals, where the focus is on accessible cardinals such as the
ℵn for finite n. On the other hand, generic large cardinals do indeed generalize
the previously-studied large cardinals by introducing the possibility of elementary
embeddings generated by forcing. There does not appear to be a justification
lurking here as to why these kinds of generalizations should be true, but we grant

15Of course, it is somewhat controversial that such connoisseurs are really tracking some ob-
jective facts.
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that they may appear natural. However, the feeling of naturalness may be mitigated
in the face of other compelling facts, such as in the case of Reinhardt cardinals.
We believe that the mathematical facts laid out in the previous section play a
similar role. As Foreman points out in [12], evolutions of views of what is natural
in mathematics occur quite often, such as with the discovery of continuous but
nowhere differentiable functions or sets of reals that are not Lebesgue-measurable.

3.3. Reflection and resemblance. In [11], Foreman asserts that a hypothesis
that a small cardinal is generically large “allows these cardinals to have similar
reflection and resemblance properties as posited by large cardinal axioms on highly
inaccessible cardinals.” These ideas appear in [25] as motivating principles for con-
ventional large cardinals. The idea of reflection is that the mathematical universe
is vast enough that it cannot be characterized by properties that hold in it, and in-
stead these properties must already be satisfied by robust set-sized approximations
to it, such as rank-initial segments Vα. Furthermore, this phenomenon should itself
reflect, so that many Vα have their properties reflected by smaller Vβ . The idea of
resemblance is that, for the same kinds of reasons, many levels of the cumulative
hierarchy, or many members of various other classes, should resemble one another,
perhaps via mechanisms such as elementary embeddings. An example of a precise
implementation of this idea is Vopěnka’s Principle, which says that for any proper
class of structures in the same language, there exists an elementary embedding from
one member of the class into another.

Many kinds of generic large cardinals entail the reflection of various properties,
and the reflection that one gets from a generic embedding is indeed a key compo-
nent of many arguments involving these objects, as many examples in [13] show.
Also, the embeddings themselves may be viewed as kinds of resemblance properties.
However, there are limitations. The Π1 statement that κ is a cardinal fails to reflect
on a final segment of α < κ if κ is a successor cardinal. Furthermore, there is a
very simple sense in which the ℵn for finite n do not resemble one another; each
has a relatively simple definition.

Thus, the typical cardinals one considers as generically large cannot enjoy the
kind of full-fledged reflection and resemblance that is possible at conventional large
cardinals. These observations can be seen as manifestations of the fact that the
“symmetry” which appears via a generic embedding does not occur in V but in an
outer model. The idea that the mathematical universe has structures too rich to be
pinned down by such-and-such kinds of properties does not seem to motivate the
generic largeness of small cardinals. There are plenty of resources for describing
low levels of the cumulative hierarchy. The resemblance between low-rank objects
exhibited by generic a embedding only appears by changing the background universe
and thus changing the properties of some objects. While a principle asserting the
occurrence of this kind of phenomenon may be well-motivated, it is not motivated
by the same ideas that are commonly put forward for conventional large cardinals.

4. Multiversism

The motivating picture for generic large cardinals is ostensibly about the rela-
tionship of V to a generic extension V [G]. This is in itself a big difference with
conventional large cardinals, which are all unambiguously about one universe V .
We would like to suggest a way of saving generic large cardinals as axiomatic prin-
ciples of a sort, in a way that embraces this difference. The cost, however, is that
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we give up on using generic large cardinals to arrive at final answers to classical
independent questions like CH.

Perhaps, to the working set theorist, generic embeddings have some intuitive
appeal as first principles. But because of mutual inconsistencies, it is difficult if not
impossible to treat them as axiom candidates in the normal sense. Given that they
have their most appealing formulation in terms of a relationship between several
models of set theory, it may be in their own spirit to state them in a way that allows
the domain of the elementary embedding to vary. (To be fair, this possibility is
already hinted at in Foreman’s “informal working definition,” but it doesn’t seem
to have been seriously explored.)

One way of making sense of this is in the context of a pluralist approach to
set-theoretic ontology. This is the view that there is not a single correct mathemat-
ical universe, but a multiverse of many equally valid universes. Not all universe-
existence hypotheses have equal status. For example, questions such as whether
there are universes realizing various assignments of values to positions in the Cichoń
diagram,16 or in which ℵω is a Jónsson cardinal,17 are considered open questions
in set theory to be settled on the basis of the existence of models of ZFC (plus
conventional large cardinals). Generic large cardinal principles may be formulated
as existence principles for the multiverse. For example, instead of asserting con-
junctions ruled out by Theorem 4, we could assert that there is a universe V1 in
which ω1 is minimally generically 2-huge, and another V2 in which ω2 is minimally
generically 1-huge. A very similar approach that maintains a commitment to a
single correct universe V could be to formulate generic large cardinal axioms as
asserting the existence of inner models of V ′ ⊆ V , along with generic objects G
over V ′, generating generic embeddings j : V ′ → M ⊆ V ′[G] ⊆ V .

A potential utility to this approach is that it introduces more methods for tack-
ling consistency problems. A multiverse approach to generic large cardinal prin-
ciples may provide a collection of well-motivated starting points for solutions to
consistency questions that may not at present be answerable by other means. The
use of a conventional large cardinal assumption to prove the consistency of a theory
T is generally regarded as progress on (if not a complete solution to) the question
of whether T is consistent. Of course, reducing the strength of the large cardinal
assumption employed, or eliminating the use of large cardinals altogether, is a bet-
ter result. If T can be shown equiconsistent with ZFC plus a large cardinal, then,
as seems to be universally agreed, this is the best one can say about the consis-
tency of T . In [9], Foreman gives some examples of questions about graph theory
and algebra that can be settled on the basis of generic large cardinal assumptions.
Since the consistency of many generic large cardinal assumptions, including those
used in [9], is currently not known to follow from conventional large cardinals,
some nontrivial information seems to be obtained about these problems. Though
it may be preferable to solve these problems with conventional large cardinals, it
is certainly of some value to find an argument from other reasonable hypotheses.
Another example whose history nicely bolsters this epistemic picture is described
in [10]. Woodin first showed how to construct a uniform, countably complete, ω1-
dense ideal on ω2, an object whose existence has many combinatorial consequences,
from the assumption that both ω1 and ω2 are minimally generically almost-huge.

16See, for example, [7].
17See [4].
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Foreman later showed the consistency of such an object assuming the consistency
of ZFC with a huge cardinal (a type of conventional large cardinal).

It would be desirable to subsume these universe-existence hypotheses under one
general principle about the nature of the set-theoretic multiverse. Since investiga-
tions of consistency must often start from some strong assumptions, it would be
valuable to have a general account of what starting assumptions are appropriate.
However, this is likely to be at least as difficult as unifying the conventional large
cardinals under a single formal framework. Thus we leave this task for future work.
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