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Abstract. In this paper we study proofs of some general forms of the Second In-

completeness Theorem. These forms conform to the Feferman format, where the proof

predicate is fixed and the representation of the set of axioms varies. We extend the Fefer-

man framework in one important point: we allow the interpretation of number theory to

vary.

§1. A dialogue.

Alcibiades: Hi, Socrates. You don’t know how happy I am to see you. I
am thoroughly confused, and you’re just the man to liberate me of this
annoying puzzlement.

Socrates: I am flattered that such a popular young person still needs an
old man who is not even on twitter. As you know, I think confusion is a
good thing. It is an important step on the road to insight. What is your
puzzlement about?

Alcibiades: Well, you remember that we were taught about the Second In-
completeness Theorem in the Lyceum? A theory cannot prove its own
consistency? Arithmetization? Great stuff. I worked hard, and I dare say
that I obtained a decent understanding of the proof.

Socrates: I do remember you did very well on the exam.
Alcibiades: However, now I have been reading Feferman’s paper Arithmeti-

zation of Metamathematics. He gives an example of an axiomatization of
Peano Arithmetic such that Peano Arithmetic can prove its own consistency
with respect to that axiomatization.

Socrates: I commend you on your diligence. Reading the Arithmetization
is an important step on the road to wisdom. Let no one say ever again
that Alcibiades is only an irresponsible rascal and party animal. But, to be
honest, I still do not see the source of your puzzlement. The Second Incom-
pleteness Theorem is applicable when certain conditions are fulfilled and
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Feferman’s clever axiomatization does not fulfill these conditions. That’s
how it is able to escape Gödel’s Second.

Alcibiades: But, you see, Socrates, I seem to be able to prove that any axiom-
atization, under minimal conditions, must obey Gödel’s Second. Moreover,
the proof is very simple, just an application of the Compactness Theorem.

Socrates: Bring it on.
Alcibiades: Here it is. Suppose a consistent theory, for the given axiomati-

zation, proves its own consistency. Let us call this theory Theory. Then,
by compactness, there must be a finitely axiomatized sub-theory that al-
ready proves the consistency statement for our original theory. I will call
this sub-theory simply Sub-theory. Since Sub-theory proves the consistency
of Theory, it must also prove its own consistency. So, we have a finitely
axiomatized theory that proves its own consistency. But, with the finite
axiomatization, we can have no Fefermanian funny business, so, the Second
Incompleteness Theorem applies in its full glory and we have a contradic-
tion. It follows that Theory cannot prove its own consistency after all.

Socrates: I can see why you are puzzled. But, here, can you explain to me
why we can infer that Sub-theory proves its own consistency, from the fact
that it proves the consistency of Theory?

Alcibiades: Isn’t that obvious? The consistency of the whole implies the
consistency of the part.

Socrates: You are certainly right about that. It is not only true that the
consistency of the whole implies the consistency of the part, what is more:
theories with a modicum of arithmetic verify this important principle.

Alcibiades: But if this is right, then what can be wrong with my argument?
Socrates: To understand these matters, we must carefully distinguish the

internal perspectives of the theories we are considering from our own exter-
nal perspective. There are three perspectives here: ours, the perspective of
Theory, and the perspective of Sub-theory.

What we have seen is that the principle that the consistency of the part
is implied by the consistency of the whole is validated from all perspectives.

We also know that Sub-theory is part of Theory in our perspective. What
we need is that Sub-theory knows —this is the relevant perspective for your
inference— that it is a part of Theory. How does it know that?

Alcibiades: It knows that by proving, for each of its axioms, that the axiom
is in the internally represented set of axioms of Theory. To be able to speak
about provability-in-Theory inside Theory at all, we have to agree that our
internal representation of the set of axioms is such that, for any axiom
of Theory, it proves that the axiom is in the set of axioms as internally
represented.

Socrates: Admirably said. So, Theory knows of each of its axioms that it
is an axiom according to the internal representation. Thus, Theory knows
that Sub-theory is part of Theory. But how does it follow that Sub-theory
knows of each of its own axioms that that axiom is also an axiom of Theory?
One would expect that Sub-theory, being a finite part, cannot automatically
do everything that Theory can.
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Alcibiades: I start to see some light at the end of the tunnel, but let me still
try to push the argument a bit further. Clearly, Sub-theory, when it is very
weak, need not be able to do this. But, for my argument, we can take the
finite part as large as we want. So simply take a finite sub-theory that can
verify that its axioms are axioms of the original theory according to the
internal representation.

Socrates: But if you extend the finite sub-theory, you also make the task of
the finite sub-theory heavier: it has to prove of more axioms that they are
in the set of axioms as internally presented. Could it not happen that no
finite sub-theory can do this?

Alcibiades: By the dog and by Zeus, Socrates, it seems that you unraveled
the mystery. We can escape my argument in case, for every given finite set
of axioms of Theory that proves the consistency of Theory, we need more
axioms than there are in the given set to verify that the axioms of the given
set are indeed axioms according to the given presentation.

Socrates: If you analyze Feferman’s clever example, you will see that this is
precisely what is going on there.

Alcibiades: I am relieved. Now I can go to Aristophanes’ party this evening
without having to think about the darned problem all the time.

Socrates: I am glad that I was able to help with that.

§2. Introduction. The present paper is, in a sense, a footnote to Feferman’s
great paper on arithmetization [5]. More precisely, it is a footnote to the part of
Feferman’s paper that is concerned with the Second Incompleteness Theorem.
In fact the present paper started with the puzzlement voiced by Alcibiades in
the dialogue.

We present some general versions of the Second Incompleteness Theorem.
Clearly, the Second Incompleteness Theorem can be generalized in many ways
and in many directions. For example, the Löb Conditions provide one such
generalization: roughly, suppose N is an interpretation of the Tarski-Mostowski-
Robinson theory R in U , in symbols N : R � U , and suppose the U -predicate

satisfies the Löb Conditions w.r.t. sentences coded in the N -numerals, then
also satisfies Löb’s Principle. Another important generalization is Feferman’s

Theorem of the interpretability of inconsistency. Incompleteness, in this gener-
alization, is not failure to prove consistency, but rather the ability to build an
internal model of the theory itself plus its inconsistency statement.

Our generalization takes a different direction. We keep —as Feferman did—
our proof-predicate and its arithmetization fixed but vary the formula α repre-
senting a set of axioms. There is one extra feature that we allow to vary which
is constant in Feferman’s paper: the interpretation of arithmetic. Thus, we do
not just have to specify the predicate α that defines the set of axioms but also
an interpretation that tells us where the numbers live. This leads us to a device
A, the presentation, that translates the language of arithmetic plus an extra
predicate ax into the language of the given theory. The notion of presentation is
worked out in Section 4.

We provide, in Section 5, a sufficient condition on the presentation A for the
validity of the Second Incompleteness Theorem for A, to wit: being a uniform
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semi-numeration, roughly, there are arbitrarily large finite approximations U0 of
the theory U , such that A semi-numerates the axioms of U0 in U0.

A major special case is formed by the Σ0
1-presentations. Here the set of axioms

of U is semi-numerated in U by a Σ0
1-formula σ relativized to a suitable interpre-

tation N of arithmetic. We discuss Σ0
1-presentations in Section 6. We zoom in

on the case where the arithmetic involved is EA. We provide some examples to
liberate the reader of the impression that the case at hand is already completely
clear.

• We give an example of a finitely axiomatized theory B and a Σ0
1-formula γ

that numerates the axiom set in N0 : EA � B but not in N1 : EA � B. In
the case of N0 the Second Incompleteness Theorem applies, but in the case
of N1, we have that B proves the consistency of the theory axiomatized by
γ. See Example 6.3.

• We give an example of a Σ0
1-presentation that numerates the axioms of a

given theory U in U , but not uniformly. See Subsection 6.1.
• We give an example that shows that theories U , where the axiom set is

numerated in U by a Σ0
1-presentation, need not be recursively enumerable

but can be arbitrarily complex. See Subsection 6.1.
• We give an example of a Σ0

1-presentation of Elementary Arithmetic EA that
defines a finite set of axioms in the standard model and is believed by EA to
define a finite set of axioms, for which the Löb conditions fail. Specifically,
EA cannot prove the formalized Second Incompleteness Theorem for this
presentation.1 See Subsection 6.2.

We use a variant of our main theorem to prove the full second incompleteness
theorem for Σ0

1-numerations of the set of axioms for the case that the interpreted
number theory is (at least) EA.

In Section 7, we have a brief look at some salient examples of non-Σ0
1-numerations

over PA. We discuss the well-known Feferman predicate. We give an example
where we have a uniform numeration for which the Löb Conditions cannot be
verified.

In Appendix A, we provide the basics of translations and interpretations.

§3. Preliminaries. In this section, we present some basic definitions.

3.1. Theories. In the present paper, a theory is given by a signature and a
set of sentences of that signature closed under deduction. We only consider finite
signatures. I guess we can allow countable signatures, but if we allow these, we
need some constraints on the effectiveness of the presentation. Our signatures
are officially relational but, since we have a p-time term-elimination algorithm,
for most purposes, we can pretend that we have terms. See, for a treatment
of term-elimination, e.g., [23, Appendix 7.3]. We will assume that we eliminate
terms using the small scope reading.

1This example is a good caveat for Alcibiades’ naive use of ‘finitely axiomatized theory’.

What he has in mind is something like a representation of the set of axioms that involves
a finite disjunction of formulas of the form (x = pAq)N . For this very special presentation

the relevant part of his argument works, but, as the example illustrates, there are readings of
‘finitely axiomatizable’ that share all the pitfalls of intensionality.
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We allow the theory to be of any complexity. It might be Π77
88, or it might be

outside any known hierarchy.

A set of axioms X for a theory U is simply a set of sentences of the signature
of the theory such that the deductive closure X of X is equal to U . The axioms
for identity will be treated as part of the theory and not of the logic. Thus,
for example, an axiomatization of Elementary Arithmetic is supposed to include
axioms that imply the usual axioms for identity.

We employ some special theories in this paper. These are the Tarski-Mostowski-
Robinson theory R (see [21]), Robinson’s arithmetic Q (see [21]), Buss’ theory
S1

2 (see [4], [6]), Elementary Arithmetic EA (also known as EFA or I∆0 + exp,
see [6]) and Peano Arithmetic PA (see [6], [9]). For all these theories we work
with variants that are formulated in the signature Ar of arithmetic with a unary
relation symbol Z for zero, a binary relation symbol S for successor, and two
ternary relation symbols A and M for addition and multiplication.

3.2. Translations and interpretations. We treat the definitions of this
subsection in more detail in Appendix A.

A translation τ from signature Ξ to signature Θ is basically a mapping from the
predicates of Ξ to Θ-formulas. We allow identity to be translated to a formula
other than identity. The translation can be lifted to the whole Ξ-language such
that the result commutes with the connectives of predicate logic.

There are two extra features. The first is domain relativization. The transla-
tion τ provides a domain given by a formula δτ . When we lift the translation to
the full language the translated quantifiers are relativized to this domain.

The second feature is the treatment of variables. The simplest possibility
is that our translation is 1-dimensional and parameter-free. In this case, we
simply require that the translation of an n-ary P is of the form A(v0, . . . , vn−1),
where all free variables are among those shown and each vi is from a fixed
infinite list v0, v1, . . . . We then translate P (x0, . . . , xn−1) into A(x0, . . . , xn−1)
(under an appropriate convention to handle variable-clashes). In case we allow
parameters, the translation of P has the form A(w0, . . . , wk−1, v0, . . . , vn−1),
for a fixed k. The wi are supposed to be distinct from the vj . When we lift
the translation to the full Ξ-language, we have to take care that none of the
parameters gets bound. Finally, a translation could have dimension m > 1.
In this case we send P to A(~v0, . . . , ~vn−1), where the ~vi are pairwise disjoint
sequences of variables of length m. In this case P (x0, . . . , xn−1) is translated
into A(~x0, . . . , ~xn−1), and we need some bookkeeping to assign sequences of
variables of the Θ-language to variables of the Ξ-language. We can combine
more-dimensionality with parameters in the obvious way.

We write Bτ for the τ -translation of B of the Ξ-language in the Θ-language.

An interpretation K of a theory U in a theory V is a triple 〈U, τ, V 〉, where τ
translates the signature of U into the signature of V . We require that, for all
U -sentences A, if U ` A, then V ` Aτ .2 We write K : U � V or K : V � U in
case 〈U, τ, V 〉 is an interpretation.

2In case we have parameters the definition should be slightly expanded. We need a param-
eter domain.
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3.3. Arithmetization. We follow Feferman in that the arithmetization of
provability is fixed. It is somewhat ironic that the arithmetization given by
Feferman as the one that should be fixed once and for all is one that we cannot
adopt. The size of a Feferman code is superexponential(!) in the length of the
formula. We want a code to be of order 2P (n), where P is a polynomial and n
is the length of the formula. In this way we can work naturally with our coding
in Buss’ theory S1

2. Thus, we fix an efficient coding. The codings of [4] or of [29]
would do, or, more precisely, a reworking of those codings for our arithmetical
language of signature Ar.3

The default in this paper is to use efficient numerals: these simulate dyadic
notation. For example, the number 3 is ‘11’ in dyadic and the corresponding
efficient numeral is S(SS0× S0).

We use pAq ambiguously for the Gödel number of A and for the numeral of
the Gödel number of A. We will employ Smoryński’s dot notation. E.g., pA(ẋ)q
stands for the arithmetization of the function that sends a formula A(x) and a
number n to the Gödel number of the result of substituting the numeral n of n
for x in A(x).

Let a signature Θ be given. Our default situation is that we study prov-
ability in a theory U formulated in a Θ-language for a theory formulated in
a Θ-language. We follow Feferman in that the notion of Θ-proof has a fixed
arithmetization. We have access to this arithmetization in U via a translation
τ : Ar→ Θ. The definition of the axiom set is allowed to use the full Θ-language.
Thus, it need not be restricted to the image of the arithmetical language under
τ . This leads us to the notation τ

αA.
Let us explain the notation τ

αA a bit more explicitly. Let proof(p) be the
arithmetization of ‘p is a predicate logical proof-from-assumptions in the Θ-
language’. We note that, par abus de langage, we notationally suppress Θ.4

We assume that the proof is set up in such a way that the assumptions are
explicitly labeled as assumptions. Let ass represent the function that extracts
the set of assumptions from p and let conc represent the function that extracts
the conclusion from p. Let n be the Gödel number of A. Then,

• provτα(x) :↔ ∃p ∈ δτ (∀a ∈ δτ ((a ∈ ass(p))τ → a ∈ α) ∧
(proof(p) ∧ conc(p) = x)τ ).

• τ
αA :↔ provτα(n).

We note that our convention automatically makes n a τ -numeral. In case the
ambient theory proves the functionality and totality of successor and addition
inside τ , we find that τ

αA is equivalent to the large scope reading

∃x ∈ δτ ((x = n)τ ∧ provτα(x)).

We also note that α may contain junk elements that are not in the Θ-language.
These are, in our context, don’t care, since they are always automatically ignored.

Suppose Θ is an extension of Ar and τ = embAr,Θ, the identical embedding of
Ar in Θ. In this case, we write provα(x) for provτα(x) and αA for τ

αA.

3Of course, the choice of an arithmetical basis rather than a set theory or a theory of strings

or a theory of binary trees is for a large part a legacy thing. However, some methods like Craig’s
Trick work most naturally with our choice. The same holds for Rosser-style arguments.

4An alternative strategy would be to let α give both axioms and signature.
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Here is an example. Let Θ be the signature of set theory and let neu be the
translation of arithmetic in ZF that is based on the finite von Neumann ordinals.
Let ζ be a suitable arithmetical predicate that defines the axioms of ZF. Let
true be the set theoretical truth predicate for arithmetic. Then, ( ζ A)neu and
( neu
ζneu A) both represent ZF-provability in ZF. Let ν be the arithmetization of the

mapping B 7→ Bneu and let

ζ∗(x) :↔ ζneu(x) ∨ ∃y((y ∈ sentAr ∧ x = ν(y))neu ∧ true(y)).

Then, neu
ζ∗ A represents provability from ZF plus arithmetical truth in ZF.

In Section 4, we will present a slightly different approach that avoids the notation
τ
αA.

§4. A framework. In this section we introduce presentations and develop a
basic framework for working with presentations. Let a signature Θ be given.

Let the signature of arithmetic be Ar and let the signature of arithmetic extended
with a unary predicate ax be Ar+. A presentation A is a translation from Ar+ to
Θ. The predicate ax stands for the set of axioms. To keep our exposition simple,
we work with a parameter-free A, but it is easy to adapt the development to the
case with parameters.

We note that we can read off the signature Θ from A. Moreover, A is an
extension of the intended translation for arithmetic and tells us what the intended
predicate representing the axiom set is, to wit: axA.

We write (A)− for the restriction of A to the arithmetical language.

Remark 4.1. We note that ( ax B)A =
(A)−

axA
B. m

Two presentations A and B are compatible if (A)− = (B)−. For τ : Ar→ Θ, ∆τ

is the set of all presentations A : Ar+ → Θ such that (A)− = τ .

4.1. Presentations and set of axioms. We write sentΘ for the Θ-sentences.
Let X ⊆ sentΘ. We define:

• GA(X) := {B ∈ sentΘ | X ` (ax(pBq))A}.
• HA(X) := GA(X) ∩X.

We note that, since we assumed nothing about the translation A and allow any
input X, the function GA might, for certain values, be completely silly. Numerals
may even fail to be defined. E.g., X ` (∃x x = 3)A may fail.

Remark 4.2. We remind the reader that, by our conventions, modulo provability
in predicate logic, e.g., (∃y0 y0 = 3)A unravels to:

∃y0 ∈ δA ∃y1 ∈ δA ∃y2 ∈ δA ∃y3 ∈ δA ∃y4 ∈ δA ∃y5 ∈ δA ∃y6 ∈ δA

(SA(y1, y0) ∧MA(y2, y3, y1) ∧ SA(y4, y2) ∧

SA(y5, y4) ∧ ZA(y5) ∧ SA(y6, y3) ∧ ZA(y6)).

m

We write X0 ⊆fin X for X0 ⊆ X and X0 is finite.
Clearly, GA(X) = GA(X). We also have, by the compactness property of

predicate logic, that GA(X) =
⋃
{GA(X0) | X0 ⊆fin X}. In other words, GA is
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Scott-continuous. It follows that GA is monotonic and that GA commutes with
unions of directed sets of sets of sentences. Similarly, for HA.

• A set of Θ-sentences X is A-complete iff X ⊆ GA(X).5

• A set of Θ-sentences X is A-sound iff GA(X) ⊆ X.

We observe that A-complete sets are closed under arbitrary unions.
It is natural to lift Feferman’s notion of numeration to the current setting.

For us it is useful to also have the weaker notion of semi-numeration. Let U be
a theory of signature Θ and let Z be a set of numbers. We say that:

• A semi-numerates Z in U if n ∈ Z implies U ` (ax(n))A.
• A numerates Z in U iff we have: n ∈ Z iff U ` (ax(n))A.
• A is a (semi-)numeration [of axioms] for U iff A (semi-)numerates in U

some set X of (Gödel numbers of) axioms for U .6

Thus, a set of axioms X is A-complete iff A semi-numerates (the set of Gödel
numbers of the elements of) X in X. A set of axioms X is A-sound and A-
complete iff A numerates (the set of Gödel numbers of the elements of) X in
X.

Here are some basic insights.

Theorem 4.3. Suppose U is axiomatized by X and X is A-complete. Then
X ⊆ HA(U) and HA(U) is A-complete. In other words, if U has an A-complete
axiomatization, then HA(U) is the maximal A-complete axiomatization of U .

Proof. Suppose X = U and X ⊆ GA(X). We have X = HA(X) ⊆ HA(U).
Moreover, GA(HA(U)) ⊇ GA(HA(X)) = GA(X) = GA(U) ⊇ HA(U). q

Theorem 4.4. Suppose X is A-complete and X axiomatizes U . Suppose fur-
ther that U is finitely axiomatizable. Then, there is a finite A-complete X0 ⊆ X
that axiomatizes U .

Proof. Suppose Y0 is a finite set of axioms for U . Since, X axiomatizes
U , there is, by compactness, a finite set X0 ⊆ X that implies Y0. Thus, X0

axiomatizes U . It follows that

GA(X0) = GA(X0) = GA(X) = GA(X) ⊇ X ⊇ X0.

So, X0 is A-complete. q

We say that:

• X is uniformly A-complete when X is the union of all its A-complete finite
subsets, in other words, if X =

⋃
{X0 ⊆fin X | X0 ⊆ GA(X0)}.

We note that uniform A-completeness implies A-completeness. Moreover, uni-
form A-completeness is closed under arbitrary unions.

Let X be a set of (Gödel numbers of) axioms for U . We say that:

• A is a uniform semi-numeration of X in U if X is uniformly A-complete.

5The expression ‘completeness’ is used in analogy with ‘Σ1-completeness’ and ‘Complete-

ness Theorem’. Our completeness says roughly: if something is an axiom, then it is provably
an axiom.

6For brevity, we will omit the qualification ‘of axioms’ when speaking about semi-
numerations or numerations for a theory.
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• A is a uniform numeration of X in U if X is uniformly A-complete and X
is A-sound.

• A is a uniform (semi-)numeration [of axioms] for U iff A uniformly (semi-)
numerates in U a set of (Gödel numbers of) axioms X for U .6

We first prove the analogue of Theorem 4.3

Theorem 4.5. Suppose U is axiomatized by X and X is uniformly A-complete.
Then X ⊆ HA(U) and HA(U) are uniformly A-complete. Thus, if A is a uni-
form semi-numeration for U , then HA(U) is the maximal uniformly A-complete
axiomatization.

Proof. Suppose U is axiomatized by X and X is uniformly A-complete.
Clearly, X ⊆ HA(U). Suppose A ∈ HA(U). Since X axiomatizes U , it follows
that there are B0, . . . , Bn−1 in X such that B0, . . . , Bn−1 ` (ax(pAq))A. By
uniform A-completeness, we can find A-complete Zi ⊆fin X, such that Bi ∈ Zi.
Let X0 be the union of the Zi, for i < n. Then X0 is a finite, A-complete subset
of X. It follows that X0 ∪ {A} is a finite, A-complete subset of HA(U). q

Theorem 4.6. A is a uniform semi-numeration for U iff, for every A ∈ U ,
there is an A-complete X0 ⊆fin U such that X0 ` A.

Proof. “⇒” Suppose A is a uniform semi-numeration for U . Let X be a
uniformly A-complete axiomatization of U . Suppose A ∈ U . It follows that
X ` A. Hence, reasoning as in the proof of Theorem 4.5, we find an A-complete
X0 ⊆fin X such that X0 ` A.

“⇐” Suppose, for every A in U , there is an A-complete X0 ⊆fin U such that
X0 ` A. Let X be the union of all finite A-complete X0 ⊆ U . Clearly, X
axiomatizes U . Moreover, by definition, X is uniformly A-complete. q

4.2. Ordering on presentations. We will use for ¬ ¬. Thus, ax> will
stand for a consistency statement.

Suppose we have a Θ-theory U and a translation τ : Ar→ Θ such that U ` (S1
2)τ .

We define a preordering of presentations in ∆τ as follows:

• A �U,τ B iff U ` ∀~x ∈ δτ ((provax)A(~x)→ (provax)B(~x)).
• A =U,τ B iff A �U,τ B and A �U,τ B.

We could drop the restriction to τ by defining a category instead of a preordering,
where an arrow is a U -definable embedding between presentations. However, for
the present paper such a category does not seem to be relevant.

4.3. Operations on presentations. In the present subsection, we study
ways of transforming presentations into other presentations.

Let τ : Ar→ Θ be a translation. We write τ [ax := α] for the translation from
Ar+ to Θ, which is equal to τ on Ar and where ax(x) is translated to δτ (~x)∧α(~x).

We extend the [ax := α] notation to presentations, by writing: A[ax := α] for
(A)−[ax := α]. So here [ax := α] becomes a reset to rather than a set to.
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4.3.1. Finite sets of axioms. Let X0 := {A0, . . . , Ak−1} be a finite set of
Θ-sentences. We write βX0 for

∨
i<k x = pAiq. Here, of course we should fix

some order for the elements of X0 and have some convention on how to put the
brackets. However, since all such choices lead to formulas that are equivalent over
predicate logic, we will not worry about them. Consider the Tarski-Mostowski-
Robinson theory R. We have:

Theorem 4.7. Let X0 be a finite set of Θ-sentences. Suppose X0 ` Rτ . Then,
X0 is τ [ax := βτX0

]-complete.

We omit the obvious proof. We also have:

Theorem 4.8. Suppose X0 is a finite set of Θ-sentences. Let U be a Θ-
theory. Let τ := (A)−. Suppose U ` (S1

2)τ and X0 is A-complete. Then,
A[ax := βτX0

] �U,τ A.

Proof. Suppose U ` (S1
2)τ and X0 is A-complete.

We find U `
∧
C∈X0

(ax(pCq))A. So, U ` (∀x (βX0
(x) → ax(x)))A. Hence, a

fortiori, U ` (∀x ∈ sentΘ (provβX0
(x)→ provax(x)))A. q

4.3.2. Union of presentations. The operation + is defined on compatible pairs
A, B. It is simply the intensional counterpart of union of sets of axioms. Of
course, to do this meaningfully, we cannot switch numbers. We define:

• A+ B := A[ ax := ((∃y ≤ x (x = disj(p⊥q, y) ∧ ax(y)))A ∨
(∃y ≤ x (x = conj(p>q, y) ∧ ax(y)))B)].

The disjunction with ⊥ and the conjunction with > are added to make addition
a bi-functor with respect to �U,τ . To have this we need to be able to distinguish
the sources of the axioms effectively in the proof. See the proof of Theorem 4.9.
(It would be nice to have an example to show that the naive definition does not
work.) We have:

Theorem 4.9. Suppose τ : Ar → Θ and U ` (S1
2)τ . We have, for A,B, C ∈

∆τ ,

a. The operation + restricted to ∆τ is monotonic w.r.t. �U,τ .
b. A �U,τ A+ B and B �U,τ A+ B.
c. A+A =U,τ A.
d. (A+ B) + C =U,τ A+ (B + C).
e. A+ B =U,τ B +A.

Proof. The only item that deserves some attention here is (a). Suppose, e.g.,
we have A �U,τ A′ and B �U,τ B′. We extend the signature of arithmetic with
ax0, ax1, ax′0, ax′1. Let C be the translation from the new signature to Θ that is τ

when restricted to Ar, where axC0 := axA, axC1 := axB, ax′0
C

:= axA
′
, ax′1

C
:= axB

′
.

We write inside C,

(α+ β)(x) := ∃y ≤ x ((x = disj(p⊥q, y) ∧ α(y)) ∨ (x = conj(p>q, y) ∧ β(y))).

Note that U ` ∀~x ∈ δτ (axA+B(~x)↔ (ax0 + ax1)C(~x)), and similarly for A′ + B′,
ax′0 + ax′1.
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We reason in U inside C. Suppose provax0+ax1
(x). Let p be a witnessing proof.

Let z be a conjunction of the C such that an axiom of the form (⊥ ∨ C) is
used in p and let w be a conjunction of the D such that an axiom of the form
(> ∧ D) is used in p. We note that, by definition, the C are ax0-axioms and
the D are ax1-axioms. It is easy to see that these conjunctions exist in S1

2. We
now transform p into a proof q in predicate logic of imp(conj(z, w), x). It is easy
to check that the transformation of p to q is available in S1

2. Clearly, we have
provax0

(z) and provax1
(w). It follows that provax′0

(z) and provax′1
(w). Ergo, we

can construct a proof witnessing provax′0+ax′1
(x). q

Theorem 4.10. Suppose A and B are compatible. Suppose further A and B
are semi-numerations for U and V . Then, A + B is a semi-numeration for
(U ∪ V ). Similarly, if A and B are uniform semi-numerations for U and V ,

then, A+ B is a uniform semi-numeration for (U ∪ V ).

We leave the trivial proofs to the reader.

Let A be a presentation and let A be a Θ-sentence. We write:

• A?A for A+A[ax := βA{A}].

We note that, for any translation τ : Ar→ Θ and any finite setX0 = {A0, . . . , Ak−1}
of Θ-sentences, we have that τ [ax := βτX0

] is equivalent over predicate logic to

τ [ax := ⊥] ?A0 . . .?Ak−1.7

We have, by a trivial proof:

Theorem 4.11. Suppose U ` (S1
2)A. Then, U ` ( ax B)A?A ↔ ( ax(A →

B))A.

4.3.3. Deductive closure. We define the deductive closure of A as

A := Th(A) := A[ax := (provax)A(~x)].

We have the obvious:

Theorem 4.12. Suppose U ` (S1
2)A. Let τ := (A)−. Then,

a. The operation Th restricted to ∆τ is monotonic w.r.t. �U,τ . In other words,
Th is an endo-functor of the preorder category given by �U,τ .

b. U ` ∀~x ∈ δA (axA(~x)→ axTh(A)(~x)), and, hence A �U,τ Th(A).
c. If A is a semi-numeration for U , then so is Th(A).
d. If A is a uniform semi-numeration for U , then so is Th(A).

Suppose U ` (S1
2)A. Let τ := (A)−. It is important to note that we do not

generally have: Th(A) �U,τ A. A counterexample will be given in Example 4.17.
We have the following strengthening of Theorem 4.8.

Theorem 4.13. Suppose X0 is a finite set of Θ-sentences. Let U be a Θ-
theory. Let τ := (A)−. Suppose U ` (S1

2)τ and X0 is Th(A)-complete. Then,
we have A[ax := βτX0

] �U,τ A.

7Here τ [ax := ⊥] ?A0 . . .?Ak−1 is read as ((. . . (τ [ax := ⊥] ?A0) . . . ) ?Ak−1).
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Proof. Suppose U ` (S1
2)τ and X0 is Th(A)-complete. Thus, for any C ∈ X0,

we have U ` ( ax C)A. It follows, by a feasible transformation of proofs, using
that X0 is standardly finite, that: U ` (∀x ∈ sentΘ (provβX0

(x)→ provax(x)))A.

q

4.3.4. Craigification. We consider a presentation A : Ar+ → Θ. We will say
that A is an E-presentation if axA(~x) has the form α(~x ) := ∃~y ∈ δAB(~y, ~x).
Throughout this subsubsection we will assume that A is an E-presentation.

We extend Ar+ with a new binary predicate symbol B, which we translate as B.
Let the resulting translation be A∗. We can now write α(~x) as (∃y B(y, x))A

∗
,

where we assume that the single variable x is translated to the sequence of
variables ~x. We define:

α?(~x) :↔ (∃u ≤ x∃y ≤ x (x = conj(u, pẏ = ẏq) ∧ B(y, u)))A
∗
.

We define the Craigification of A by: Cr(A) := A[ax := α?].

Unfortunately, Craigification is irredeemably syntactic. It is generally not a func-
tor w.r.t. �U,τ .

It will be convenient for readability to have the following presentation A? at
hand. We expand Ar with ax, B, and ax? and extend A∗ to A? on the new
signature by setting the translation of ax? to α?.

Theorem 4.14. Suppose A is an E-presentation and U ` (S1
2)A. Let τ be

(A)−. Then, Cr(A) �U,τ A. In terms of A?, this says:

U ` (∀x (provax?(x)→ provax(x)))A
?

.

Proof. We reason in U inside A?. Suppose provax?(x). Let p be a witnessing
proof. We zoom in on the occurrence of an axiom C from ax? in p. This axiom is
of the form pD ∧ ẏ = ẏq, where D is an axiom from ax. We replace the sub-proof
consisting of C by the obvious sub-proof of C from D, and similarly for all other
occurrences of axioms in p, thus obtaining an ax-proof p′ of x. To show that this
is possible, we have to verify that the transformation p 7→ p′ is p-time. To see
this, we note that the length of the subproof replacing C is just twice the length
of C plus some standard overhead m. Thus, the length of p′ will be estimated
by two times the length of p plus the length of p times m. In other words, the
length of p′ is bounded by m+ 1 times the length of p. This yields a polynomial
bound on p′. q

The converse of Theorem 4.14 does not hold, as will be illustrated by the Exam-
ple 4.17 at the end of this subsubsection. We collect some further properties of
Craigification.

Theorem 4.15. Suppose A is an E-presentation and U ` (S1
2)A. We have:

a. Suppose U has a A-complete axiomatization, then U is Th(Cr(A))-complete;
in other words, U is closed under the necessitation rule for ( ax(·))Cr(A).

b. Suppose U has a uniformly A-complete axiomatization, then U is uniformly
Th(Cr(A))-complete.
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Proof. We expand A to A? as in the proof of Theorem 4.14.

Ad (a): Let X be some axiomatization of U that is A-complete. So we have: if
A ∈ X, then U ` (ax(pAq))A

?

. In other words, U ` (∃y B(y, pAq))A
?

.

Suppose C ∈ U . Then, for some A0, . . . , An−1 ∈ X, we have A0, . . . , An−1 ` C.
Say the Gödelnumber of the proof is p. We find:

U ` (
∧
i<n

∃yi B(yi, pAiq))A
?

and U ` (proofβ{A0,... ,An−1}
(p, pCq))A

?

.

We want to show U ` ( ax? C)A
?

.

We reason in U inside A?. Let yi be such that B(yi, pAiq) for i < n. It follows
that pAi ∧ ẏi = ẏiq is in ax?. We note that the map y 7→ pAi ∧ ẏi = ẏiq is p-time,
thanks to our use of efficient numerals. We now transform p to an ax?-proof q
by replacing each sub-proof of p that consists of an ax-axiom Ai by a proof of
Ai from pAi ∧ ẏi = ẏiq. We note that the length of q is bounded by the length
of y?, i.e., the maximum of the yi’s times a standard constant. We know that
y? exists since p is standard. Thus, the transformation p 7→ q is available within

the resources of S1
2.

Ad (b). Let X be an uniformly A-complete axiomatization of U . Let C be any
sentence of U . Let X0 ⊆fin X be such that X0 ` C, X0 ` (S1

2)A, and X0 is
A-complete. It follows from (a) that X0 is Th(Cr(A))-complete, and hence that
X0 ∪ {C} is Th(Cr(A))-complete. From this it is immediate that U is uniformly
Th(Cr(A))-complete. q

The next property shows that Cr is a kind of left-inverse of Th. Regrettably, this
does not have functorial meaning because of the irredeemably syntactic character
of Cr. We note that Th(A) is an E-presentation, so that it is in the range of Cr.

Theorem 4.16. Suppose U ` (S1
2)A. Let τ = (A)−. Then, Cr(Th(A)) =U,τ

A.

Proof. We extend the signature Ar+ with an extra predicate ãx that is in-

terpreted as axCr(Th(A)). Thus we obtain a translation Ã. We reason in U , inside

Ã. We note that:

ãx(B)↔ ∃C ≤ B ∃p ≤ B (B = pC ∧ ṗ = ṗq ∧ proofax(p, C)).

We have to show that, for any A, ãx A iff ax A.

From left to right: Suppose q is an ãx-proof of A. Consider any occurrence of
an axiom Bi in q. Bi is of the form pCi ∧ ṗi = ṗiq, where pi is an ax-proof of
Ci. We replace the occurrence of Bi by the ax-proof pi of Ci followed by the
inference from Ci to pCi ∧ ṗi = ṗiq. We may assume that the length of pi is of
the same order as the length of pṗiq. It follows that the length of the replacement
is bounded by four times the length of pi with some standard overhead.

Now when we replace all occurrences of ãx-axioms in the manner prescribed,
we see that the length of the new ax-proof, say p?, will be bound by k times the
length of q, for some standard k. Thus, the transformation q 7→ p? is available
with the resources of S1

2.
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From right to left: Let p be an ax-proof of A. It follows that pA ∧ ṗ = ṗq is in
ãx. So we can take as ãx-proof the inference from pA ∧ ṗ = ṗq to A. q

Here is an example that separates a Craigification from the original axiomatiza-
tion and an original axiomatization from its theoretization.

Example 4.17. On the one hand, in [27, Theorem 4.1], we proved the follow-
ing. Suppose that C is a single axiom that axiomatizes EA. We take β(x) := (x =
pCq) and B := IdAr[ax := βIdAr ]. Let B be a single statement that is equivalent
to Σ0

1-collection over EA. Then EA + ¬B ` ( ax⊥)Th(B).
On the other hand, we have Cr(Th(B)) =EA,IdAr

B. But, EA + ¬B 0 ( ax⊥)B,
since EA + ¬B is Π3-conservative over EA, by the results of Paris & Kirby in
[14].

It follows that EA 0 ( ax⊥)Th(B) → ( ax⊥)Cr(Th(B)), and, thus,

Cr(Th(B)) =EA,IdAr
B ≺–\\ EA,IdAr

Th(B).

Thus, taking Th(B) as our original axiomatization, we find that the Craigification
is strictly below the original axiomatization. In Example 6.19, we provide a
second example of this phenomenon. We also see that, if we take B as our original
axiomatization, we the original axiomatization is strictly below its theoretization.

m

§5. The Second Incompleteness Theorem à la Alcibiades. We are
ready and set to give the corrected Alcibiades argument. This will be done
in Subsection 5.1. In the succeeding subsections, we will provide some variations
and strengthenings.

5.1. The basic version. We have:

Theorem 5.1. Suppose the Θ-theory U has a uniformly A-complete axioma-
tization. Then, whenever U ` (S1

2 + Θ
ax>)A, the theory U is inconsistent.

In a different formulation: suppose K : U � (S1
2 + Θ

ax>). Suppose further that
U has uniformly τK-complete axiomatization. Then, U is inconsistent.

Proof. The theory S1
2 is finitely axiomatizable, say B is a single axiom for

it. So, if U ` (S1
2 + Θ

ax>)A, it follows that U ` (B ∧ ax>)A. Then, for some
A-complete X0 ⊆fin U , we have X0 ` (B ∧ ax>)A. It follows, by Theorem 4.8
(with X0 in the role of U), that X0 ` (B ∧ βX0

>)A. We now apply the Second

Incompleteness Theorem for finitely axiomatized theories and find that X0 is
inconsistent. Hence, a fortiori, U is inconsistent. q

This is, of course, precisely the proof that Alcibiades had in mind, where the
hidden assumption is made explicit. We note that the above proof is fully con-
structive.
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5.2. A slightly stronger version. In this subsection, we prove a strength-
ening of Theorem 5.1. In Subsection 6.3, we will see a case where Theorem 5.2
rather than Theorem 5.1 is needed.

Theorem 5.2. Suppose the Θ-theory U has an uniformly Th(A)-complete ax-
iomatization. Then, whenever U ` (S1

2 + Θ
ax>)A, the theory U is inconsistent.

In a different formulation: suppose K : U � (S1
2 + Θ

ax>). Suppose further that
U has a uniformly Th(τK)-complete axiomatization. Then, U is inconsistent.

Proof. Let B be a single axiom for S1
2. Suppose U ` (S1

2 + ax>)A. It
follows that U ` (B ∧ ax>)A. Thus, for some Th(A)-complete X0 ⊆fin U , we
have X0 ` (B ∧ ax>)A. By Theorem 4.13 (with X0 in the role of U), we find:
X0 ` ( ax> → βX0

>)A, and, thus, X0 ` (S1
2 + βX0

>)A. We now apply the
Second Incompleteness Theorem for finitely axiomatized theories and find that
X0 is inconsistent. Hence, a fortiori, U is inconsistent. q

5.3. Löb’s Rule. We prove closure under Löb’s Rule under the appropriate
conditions.

Theorem 5.3. Suppose the Θ-theory U has a uniformly A-complete axioma-
tization and U ` (S1

2)A. Then, whenever U ` ( ax C)A → C, we have U ` C.

We give two proofs. The first proof is in essence the usual proof of closure under
Löb’s Rule from the Second Incompleteness Theorem. This proof is attributed
to Saul Kripke.

First Proof. Suppose the Θ-theory U has a uniformly A-complete axioma-
tization and U ` (S1

2)A. Suppose further that U ` ( ax C)A → C. It follows that
U+¬C ` ( ax ¬C)A. By Theorems 4.7 and 4.10, the theory U+¬C is uniformly
A?¬C-complete. By Theorem 4.11, we have U ` ( ax ¬C)A ↔ ( ax>)A?¬C .
Thus, we may conclude that U + ¬C ` ( ax>)A?¬C and A? ¬C is a uniform
semi-numeration for U + ¬C. It follows, by Theorem 5.1, that U + ¬C ` ⊥,
and, hence, U ` C. q

We can also prove the desired result directly.

Second Proof. Suppose the Θ-theory U has a uniformly A-complete ax-
iomatization and U ` (S1

2)A. Let B be a single axiom for S1
2. Suppose that

U ` ( ax C)A → C. So, U ` BA ∧ (( ax C)A → C). Then, for some A-
complete X0 ⊆fin U , we have X0 ` BA ∧ (( ax C)A → C). It follows that
X0 ` BA ∧ (( βX0

C)A → C). We now apply Löb’s Rule for finitely axiomatized
theories and find that X0 ` C. Hence, a fortiori, U ` C. q

We note that the second proof has the advantage that it is fully constructive.
We can strengthen the previous theorem a bit.

Theorem 5.4. Suppose the Θ-theory U has a uniformly Th(A)-complete ax-
iomatization and U ` (S1

2)A. Then, whenever U ` ( ax C)A → C, we have
U ` C.

The proof is a slight modification of the proofs above using either Theorem 5.2
or a variation on the proof of Theorem 5.2.
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§6. Σ0
1-presentations. In this section, we will consider the case of Σ0

1-nu-
merations of the set of axioms. This is, of course, in part, the case discussed
in Feferman’s [5]. Before proceeding, let us state and prove our version of the
traditional version of the Second Incompleteness Theorem for Σ0

1-numerations.

Theorem 6.1. Suppose σ(x) is a Σ0
1-formula that numerates the axioms of U

in the standard model. Then, if U � (S1
2 + σ >), we have that U is inconsistent.

Proof. Suppose N : U � (S1
2 + σ >). It follows that, for some finite

sub-theory U0 of U , we have U0 ` (S1
2)τN . It immediately follows, by Σ0

1-
completeness, that τN [ax := στN ] semi-numerates the axioms of U in U0. So, a
fortiori, the axioms of U are uniformly τN [ax := στN ]-complete in U . q

In Appendix B, we give four alternative proofs of Theorem 6.1.

Since Feferman’s set-up was less general than ours, the result does not summarize
everything to be said. There are three issues that need to be addressed.

The first issue is that Σ0
1-numerations of the set of axioms in the given theory

need not be uniform. We provide an example of this phenomenon in Subsec-
tion 6.1. There we will also show that a theory, whose axioms are numerated by
a Σ0

1-formula, can be as complex as we like: for every set of numbers Z there is
a such a theory U such that Z is reducible to U .

The second issue is that we do not know whether we have provable Σ0
1-completeness

in weak theories like S1
2. This problem is connected to questions concerning the

collapse of the polynomial hierarchy. We want to sidestep this issue. There are
two ways to do this. The first is to replace Σ0

1 by ∃Σb
1. In the context of the

stronger theory EA, Σ0
1 and ∃Σb

1 coincide modulo provable equivalence. So this
approach does not differ from the classical one as soon as we have EA. The sec-
ond way is more simple-minded: just work with EA as our basic theory. We will
choose this last option.

The third issue is that, in the absence of Σ0
1-collection, Σ0

1-axiomatized theories
need not satisfy the Löb conditions. We provide an example of this fact in
Subsection 6.2. In case we have Σ0

1-collection, we do have the following theorem.8

Theorem 6.2. Suppose σ(x) is Σ0
1 and N : U � (EA+ BΣ0

1 + σ >). Suppose
further that S := τN [ax := στN ] semi-numerates the axioms of U in U , then U
is inconsistent.

Proof. The predicate ( ax A)S satisfies the Löb conditions. q

Finally, in Subsection 6.3, we improve Theorem 6.2 by presenting two proofs of
the Second Incompleteness Theorem for Σ0

1-numerations in the EA-case.

To wet the reader’s appetite, here is a first example of the behaviour of Σ1-
numerations.

8Theorem 6.2 is the direct generalization of Feferman’s Theorem 5.6 in [5]. We note that
Feferman also does not require the theory U to be recursively enumerable.
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Example 6.3. Let C be a single axiom for EA and let β(x) := (x = pCq).
We consider the theory A := EA + β ⊥. Since, A is a finitely axiomatized
sequential theory, there is a faithful interpretation K : A�faith EA. (This result
is due to Harvey Friedman. See [24] for an exposition.) Let τ := τK and let
B := A+ ( β >)τ . So, B is a consistent theory. We take:

γ(x) := β(x) ∨ ( β ⊥ ∧ (x = p β ⊥q ∨ x = p( β >)τq)).

We set S := IdAr[ax := γ] and T := τ [ax := γτ ].
Clearly, S numerates the set of axioms {C, β ⊥, ( β >)τ} of B in B. Hence,

B 0 ( ax>)S.
On the other hand, B ` (∀x (γ(x)↔ β(x)))τ , and, hence, B ` ( γ >)τ , or, in

other words, B ` ( ax>)T. m

6.1. A non-uniform Σ1-numeration. We remind the reader of witness
comparison notation in the context of arithmetic. Suppose A = ∃xA0(x) and
B = ∃y B0(y). Then,

• A ≤ B :↔ ∃x (A0(x) ∧ ∀y < x¬B0(y)),
• A < B :↔ ∃x (A0(x) ∧ ∀y ≤ x¬B0(y)).

Let C be a single axiom for EA and let β := (x = pCq). By the Gödel Fixed-Point
Theorem, we find a formula R(x) such that:

EA ` R(x)↔ β+
∧
y<x R(ẏ) ¬R(ẋ) ≤ β+

∧
y<x R(ẏ)R(ẋ).

We consider the theory U axiomatized by X := {C} ∪ {R(n) | n ∈ ω}.
The theory U is consistent, since R(n) is a Rosser sentence for EA+ {R(k) | k <
n}.
Let α be the following predicate: α(x) := β(x)∨∃y < x (x = pR(ẏ)q∧R(y+1)).
Let A := IdAr[ax := αIdAr ]. We clearly have: EA ` α(pR(n)q) ↔ R(n+ 1). Since
U is consistent, it follows that A numerates X in U .

Theorem 6.4. For A, U and X as defined above, we have: A is not a uniform
semi-numeration of X in U .

Proof. Let X0 be a finite subset of X. Without loss of generality, we may
assume that X0 contains an axiom larger than C. Let R(n) be the largest axiom
in X0. Suppose X0 ` α(pR(n)q). It follows that EA + {R(k) | k ≤ n} `
α(pR(n)q). Hence, EA + {R(k) | k ≤ n} ` R(n+ 1). Quod non. q

Remark 6.5. We can adapt the ideas around the construction of the non-
uniform Σ0

1-axiomatization to produce a very complex U which still numerates
its own axioms with a Σ0

1-formula. Let C and β be as in the proof of Theorem 6.4.
Let Z be any set of natural numbers. By a result due to, independently,

Mostowski, Feferman, Scott, and Kripke (see, e.g., [10]), there is a Σ0
1-formula

S∗(x) such that

EA + {S∗(n) | n ∈ Z}+ {¬S∗(m) | m 6∈ Z}
is consistent. We consider the theory X := C + {S∗(n) | n ∈ Z}. It follows that
n ∈ Z iff X ` S∗(n). It is easy to see that

ζ(x) := (β(x) ∨ ∃y < x (x = pS∗(ẏ)q ∧ S∗(y)))
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numerates X in U := X. m

6.2. Failure of the Löb conditions for a Σ0
1-axiomatization of EA. In

this subsection, we provide a curious example. We provide a Σ0
1-formula σ(x)

with the following properties.

• The formula σ defines the axioms of EA, and, hence, numerates the axioms
of EA in EA.

• EA knows that σ defines a finite set of axioms.
• EA knows that the theory defined by σ is between EA and EA+ β >, where
β is a standard axiomatization of EA.

• EA does not prove the Löb condtions for σ, and, what is more, EA does
not prove the formalized Second Incompleteness Theorem for σ.

We work, for the moment, in EA. Our first order of business is to define a Kripke
model K. Let p be any (possibly non-standard) number. Our model has nodes
0, . . . , p+ 1. We set x ≺ y iff x = 0 and 1 ≤ y ≤ p+ 1. Let C be a single axiom
for EA and let β(x) := (x = pCq). We define the usual Solovay function hp on
K for β.9

• `p = 0 iff ∀xhp(x) = 0.
• `p = y, if 0 ≺ y and ∃xhp(x) = y.
• hp(0) = 0,

• hp(y + 1) :=

{
x if hp(y) ≺ x and proofβ(y, p`ṗ 6= ẋq)

hp(y) otherwise

We find the following:

Lemma 6.6. We have:

a. EA ` β( β ⊥ ↔
∨
x≤p `ṗ = ( ˙x+ 1)).

b. EA ` (x ≤ p ∧ β `ṗ 6= x+̇1)→ β ⊥.

Proof. The proof follows the usual lines of a proof of Solovay’s Theorem.
Since our model is so simple, some short cuts in the proof are possible. q

We use that over EA we have a Σ1-predicate def(y, z) such that an element a is
Σ1-definable iff, for some number k, def(k, z) defines a. We follow Paris & Kirby,
[14], in defining def as follows.10 Let T(e, w, x) be Kleene’s T-predicate where T
is ∆0. Here ‘e’ is the place for the index of a partial recursive function, ‘w’ is the
place for the sequence of arguments, and ‘x’ is the place for the computation.
We use ε for the (code of) the empty sequence. We assume that there is a result-
extracting rudimentary U such that U(x) is the result of the computation. We
take:

def(s, y) := ∃v (T(s, ε, v) ∧ U(v) = y).

9The proof of Solovay’s Theorem can nowadays be found in many places. There is Solovay’s
original article [20]. There are two excellent textbooks: [18] and [3]. There are two great

handbook articles: [8] and [1].
10Paris & Kirby defined a somewhat more general version with parameters.
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We proceed to specify σ. Let π be the usual axiomatization of PA.

σ(x) := β(x) ∨
∃p ( proofπ(p,⊥) ∧ ∀q < p¬ proofπ(q,⊥) ∧
∃y ≤ p (x = p`ṗ 6= ( ˙y + 1)q ∧ ∃s < p def(s, y)))

It is convenient to have a partial term p (as defined symbol) that stands for the
smallest inconsistency proof of PA (as given by π) if it exists. We note that p is
‘rigid’ over EA:

Lemma 6.7. EA ` p = x→ β p = ẋ.

With our new notation we can rewrite σ as:

σ(x) := β(x) ∨ (p ↓ ∧ ∃y ≤ p (x = p`p 6= ( ˙y + 1)q ∧ ∃s < p def(s, y))).

Without any worries about the meaning of the second conjunct of the definition of
σ, we can already prove some important claims about σ. Let S0 := IdAr[ax := β]
and S := IdAr[ax := σ]. We write � := �EA,IdAr

.

Lemma 6.8. We have:

a. S is a uniform numeration of {C} in EA. Consequently, we have EA 0 σ >.
b. EA ` ∀A (( β A→ σ A) ∧ ( σ A→ β( β > → A))).

In other words, S0 � S � S0 ? β >.

Proof. Ad (a): Clearly, we have EA ` σ(pCq). Conversely suppose EA `
σ(pDq) and C 6= D. It follows that EA ` p ↓. Quod non.

Ad (b). We reason in EA. The first conjunct is immediate. Suppose σ A.
In case p ↑, it follows that β and σ coincide, and hence β A and, a fortiori,

β( β > → A). Suppose p ↓. It follows, by Lemma 6.6(a), that β( β > →∧
x≤p `p 6= (x+ 1)). Hence, β+ β > extends σ. q

We now proceed to ‘compute’ σ ⊥ and σ σ >. The result of the computation
will be expressed as closed terms constructed from β and a special propositional
constant S?. We define S? as follows.

S? := ∃p ( proofπ(p,⊥) ∧ ∀q < p¬ proofπ(q,⊥) ∧
∀y ≤ p ∃s < p def(s, y) ).

In our p-notation: S? := (p ↓ ∧ ∀y ≤ p∃s < p def(s, y)). We note that S? is
Σ0

1,1, i.e., it can be rewritten, modulo provable equivalence, as a formula of the
form ∃x∀y ≤ t(x)∃z S?0 (x, y, z), where S?0 (x, y, z) is elementary. Here is a basic
insight about S?.

Lemma 6.9. EA + p ↓ ` β ¬S?, and, hence, EA + S? ` β ¬S?.

Proof. Let us write defz(s, y) for ∃v ≤ z (T(s, ε, v) ∧ U(v) = y). Let

D(x) := (∀y ≤ x∃s < x def(s, y)→ ∃z ∀y ≤ x ∃s < x defz(s, y)).

We work in EA. It is easily seen that D is closed under zero and successor.
Let I be a cut shortening D. Here we assume that I is downward closed w.r.t.
≤ and is closed under successor, addition, multiplication and ω1.
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We note that D(x) is equivalent to ¬ (∀y ≤ x ∃s < x def(s, y)), since EA
verifies the ∆0-pigeon hole principle. See, e.g., [6], p. 42.

We have, by a result of Pudlák (the outside large, inside small principle), that
∀x β x ∈ I. See [15]. Suppose p ↓. It follows that β p ∈ I. Hence, β ¬ S?.

q

Remark 6.10. Jumping ahead for a moment: the considerations from the
proof of Theorem 6.15 show that EA 0 S? → β ⊥. Thus, it follows that EA 0
S? → β S

?. We may conclude that EA does not prove Σ1,1-completeness. m

The following result characterizes σ under the assumption S?.

Lemma 6.11. EA + S? ` σ A↔ β( β > → A).

Proof. We reason in EA + S?. We remind the reader that:

σ(x) := β(x) ∨ (p ↓ ∧ ∃y ≤ p x = p`p 6= ( ˙y + 1)q ∧ ∃s < p def(s, y)).

In combination with S? this yields:

σ(x)↔ β(x) ∨ ∃y ≤ p x = p`p 6= ( ˙y + 1)q.

It follows that σ A iff β+
∧
y≤p(`p 6= ˙y+1)A, hence, we find by Lemma 6.6(a), σ A

iff β( β > → A). q

We will need a simple observation. We have:

Lemma 6.12. EA ` n
β ⊥ → π ⊥.

Proof. This insight uses the fact that PA is essentially reflexive, i.e., it proves
reflection for each of its finitely axiomatized sub-theories. See, e.g., [6, Chapter
III, Theorem 2.35, p168].

We use induction on n. In case n = 0 or n = 1, we are immediately done.
Suppose n = k + 2. We find:

EA ` k+2
β ⊥→ π

k+1
β ⊥

→ π
k
β ⊥

→ π ⊥. q

The following lemma gives our calculation of σ ⊥.

Lemma 6.13. We have:

a. EA + S? ` σ ⊥ ↔ β β ⊥.
b. EA + ¬S? ` σ ⊥ ↔ β ⊥.
c. EA ` σ ⊥ ↔ ((S? ∧ β β ⊥) ∨ β ⊥).

Proof. (a): This is immediate from Lemma 6.11.

(b): The right-to-left direction is immediate. We prove the left-to-right direction.
We work in EA+¬S? + σ ⊥. By Lemma 6.8(b), we get β( β > → ⊥). Hence,

β β ⊥, and so π ⊥. Thus, p ↓.
Now ¬S?, in combination with p ↓, tells us that there is an i ≤ p, such

that, for all s < p, we have ¬ def(s, i). It follows that every σ axiom is either
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C or of the form `p 6= (j + 1), where j ≤ p and j 6= i. Thus, σ ⊥ yields:

β ¬
∧
j≤p, j 6=i `p 6= (j + 1). It follows that β `p 6= (i + 1). By Lemma 6.6(b),

we find, as promised, β ⊥.

(c) is immediate from (a) and (b). q

Here is our calculation of σ σ >.

Lemma 6.14. We have:

a. EA + S? ` σ σ >.
b. EA + ¬S? ` σ σ > ↔ β ⊥.
c. EA ` σ σ > ↔ (S? ∨ β ⊥).

Proof. Ad (a): We work in EA + S?. By Lemma 6.11, we find that σ σ >
is equivalent with β( β > → σ >). By Lemma 6.9, we have β ¬S?. Hence,
by Lemma 6.13(b) and necessitation for β , we have β( σ > ↔ β >). We
may conclude that σ σ >.

Ad (b): We reason in EA + ¬S?. The right-to-left direction is easy. We treat
left-to-right. Suppose σ σ >.

Suppose p ↑. In this case we find β σ > and hence β β >. We may
conclude β ⊥.

Suppose p ↓. Since ¬S?, it follows that, for some i ≤ p, we have

β(
∧

j≤p,j 6=i

`p 6= (j + 1)→ σ >).

Ergo, β(`p = (i + 1) → σ >). On the other hand, β(`p = (i + 1) → β ⊥).
Hence, β(`p = (i + 1) → σ ⊥). We may conclude β(`p 6= (i + 1)) and, thus,

β ⊥.

Ad (c): (c) is immediate from (a) and (b). q

Theorem 6.15. EA 0 σ σ > → σ ⊥.

Our proof is a simple adaptation of a proof of Paris & Kirby, [14]. See also [9].

Proof. Let M be a model of PA + π ⊥. Let N be the model given by
all Σ1-definable elements of M. We can easily see that N is a Σ0

1-elementary
submodel of M. It follows that Π0

2-sentences are downwards preserved from M
to N . Hence, N |= EA. Reflecting on the construction of N , we have N |= S?.

It follows, by Lemma 6.14(a), that N |= σ σ >. If we would have N |= σ ⊥,
it would follow, by Lemma 6.13(a), that N |= β β ⊥. Since β β ⊥ is Σ0

1, we
would find that M |= β β ⊥.11 But this is impossible, since M |= PA and PA
proves reflection for β . q

Let G be the Gödel sentence for σ.

Corollary 6.16. EA 0 σ G→ σ σ G.

Proof. If we would have EA ` σ G → σ σ G, then the usual reasoning
for the formalized proof of the Second Incompleteness Theorem for σ would go
through, contradicting Theorem 6.15. q

11We note that σ ⊥ is not prima facie Σ0
1 since it has Σ0

1,1-form.
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Remark 6.17. We note that Corollary 6.16 does not contradict the fact that
EA ` S → σ S, for S ∈ Σ0

1 = Σ0
1,0. The reason is that a Σ0

1-sentence S is of the
form ∃xS0(x), where S0 ∈ ∆0 (or, if you wish, S0 ∈ ∆0(exp)). The formula σ G
is Σ0

1,1, i.e., it is of the form ∃x∀y < t(x)∃y S0(x, y), where S0 ∈ ∆0 (or, if you

wish, S0 ∈ ∆0(exp)). Our result illustrates that in EA there are Σ0
1,1-sentences

that are not equivalent to a Σ0
1,0-sentence. See Remark 6.10 of the present paper,

[26], and [27] for more on this phenomenon. m

Open Question 6.18. Here are four questions.

A. What are the possible provability logics of Σ0
1-numerations of the axioms of

EA over EA?
B. What are the possible closed fragments of provability logics of Σ0

1-numerations
of the axioms of EA over EA?

C. What is the provability logic of σ over EA?
D. What is the closed fragment of the provability logic of σ over EA?

m

Example 6.19. Let S be the presentation based on σ constructed in this
subsection. We note that Cr(S) is an elementary axiomatization. Hence, Cr(S)
does satisfy the formalized Second Incompleteness Theorem over EA. It follows
that S 6=EA,IdAr

Cr(S). m

6.3. The Second Incompleteness Theorem for Σ0
1-semi-numerations.

We prove the Second Incompleteness Theorem for Σ0
1-semi-numerations of U

in U . As we have seen, in Subsection 6.1, Σ0
1-semi-numerations need not be

uniform. Thus, we cannot use Theorem 5.1 to prove the Second Incompleteness
Theorem. Fortunately, if S is a Σ0

1-semi-numeration, then Th(S) is a uniform
Σ0

1-semi-numeration. So, we may apply Theorem 5.2 to obtain the desired result.

Theorem 6.20. Suppose U is consistent and N : U � EA. Let σ(x) be a Σ0
1-

formula and suppose that S := τN [ax := στN ] is a semi-numeration of U in U .
Then, U 0 ( ax>)S .

Proof. By Theorem 5.2, it is sufficient to show that Th(S) is a uniform
semi-numeration of U in U .

Suppose X axiomatizes U and S semi-numerates X in U . Let C be a single axiom
for EA. Let Y0 be a finite subset of U . Let X0 be a finite subset of X-axioms
sufficient for deriving the sentences in Y0 ∪ {CN}. We take

Y1 := Y0 ∪ {CN} ∪ {σN (pBq) | B ∈ X0}.

We note that the σN (pBq) for B in X0 are in U since S semi-numerates X.
So Y1 ⊆fin U . Consider any A ∈ Y1. In case A ∈ Y0 ∪ {CN}, we have a
proof of A from X0, so certainly, Y1 ` ( σ A)N , i.o.w. Y1 ` ( ax A)S . Suppose
A = σN (pB∗q), for some B∗ ∈ X0. Then, Y1 ` σN (pB∗q). It follows from
the fact that CN ∈ Y1 in combination with Σ0

1-completeness in EA that Y1 `
( σ σ

N (pB∗q))N , i.o.w., Y1 ` ( ax A)S . q
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We remind the reader that if we want to push down our result from EA to S1
2

without solving any complexity theoretic problems, then we can replace Σ0
1 by

∃Σb
1.

There is an alternative proof Theorem 6.20 that runs as follows.

Second proof of Theorem 6.20. Suppose U ` ( ax>)S . It follows, by
Theorem 4.14, that U ` ( ax>)Cr(S). By, Theorem 4.15(a), we see that U is
closed under the necessitation rule for ( ax(·))Cr(S). Inspection of the definition
of Cr(·) shows that axCr(S) is elementary. Hence, ( ax)Cr(S) satisfies the Löb
conditions. It follows that U ` ⊥. Quod non. q

Remark 6.21. The attentive reader may wonder whether the alternative proof
is not more successful than I make it here. Does not the argument establish the

theorem with S1
2 substituted for EA? I do not think so. The point is that

Cr(S)
ax

is still Σ0
1 rather than ∃Σb

1. There are tricks to improve Craigification to yield a
∆b

0-set of axioms, but I suspect that these tricks manage to obstruct the proof
of Theorem 4.15(a). Whatever is the case, there is more to explore here. m

§7. Extensions of Peano Arithmetic: examples. In this section we pro-
vide various examples of applications of our main theorem for theories extending
Peano Arithmetic.

7.1. Feferman provability. The contraposition of Theorem 5.1 tells us that
if U is consistent and M : U � (S1

2 + ax>), then A := τM is not a uniform semi-
numeration for U . The interesting case is of course, whenA is a semi-numeration.

We consider the theory PA. Let π be a usual arithmetization of the set of axioms
of PA. We define πy by πy(x)↔ π(x)∧x ≤ y. Feferman defines a predicate z by
z(x) := π(x) ∧ πx >. The Feferman Presentation is F := IdAr[ax := z]. Since
PA is reflexive, it follows that F is, indeed, a presentation of PA. On the other
hand, trivially, we have PA ` ( ax>)F. Thus, F is not uniform.

Feferman provability z has been studied intensively by provability logicians.
See [13], [22] and [17]. Shavrukov in [17] characterizes the bimodal provability
logic of π and z.12

Applications of Feferman provability are based on the use of Feferman consis-
tency as basis for a Henkin-style interpretations existence result. See [25] and
[28]. The full generality of Feferman’s method is only realized if we admit also
restricted provability where we restrict our proofs to proofs only involving for-
mulas below a given complexity. In a sense, we leave the Feferman framework
there, since we employ other notions of proof than the standard one.

12For some purposes, logicians have worked with a different definition of πy since alternative
definitions add some good properties to Feferman provability. The most salient example is to

take as elements of πx the axioms of the theories IΣy + Exp for y ≤ x. See, e.g., [19], [22], [17],
[16].
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7.2. Oracle provability. We consider the theory U axiomatized by the set
X consisting of the usual PA-axioms plus all true Π0

n-sentences. We define
π[n](x) := π(x) ∨ trueΠ0

n
(x).

It is easy to see that P[n] := IdAr[ax := π[n](x)] uniformly numerates X in U .
Hence, we have the Second Incompleteness Theorem for P[n]. We can also verify

this fact by showing that ( ax(·))P[n]

satisfies the Löb Conditions.

The provability logic of the predicates P[n] is Japaridze’s Logic. It has been
studied in great detail by provability logicians. See, e.g., [7] and [2].

7.3. Failure of the formalized Second Incompleteness Theorem over
Peano Arithmetic. Recently Taishi Kurahashi characterized the provability
logics of some Σ0

2-provability predicates. See [11] and [12]. One of his results is
that there is a Σ2-numeration of the axioms of PA such that the provability logic
for that numeration is precisely K. Thus, Kurahashi provides an example of a Σ0

2-
axiomatization for which we do have the Second Incompleteness Theorem, but
which does not satisfy the Löb-conditions. We provide a quick example of the
same phenomenon here. Our aim is far more modest than Kurahashi’s; we just
provide failure of the Second Incompleteness Theorem and not a characterization
of a provability logic.

We (locally) write: ` for provability in PA. Suppose the usual representation of
the axioms of PA is π. As before, let πy(x) := (π(x) ∧ x ≤ y). We write PAk for
the theory axiomatized by πk. We write x for πx . We define:

• P := IdAr[ax := π], := π.
• z(x) := π(x) ∧ πx >, F := IdAr[ax := z], M0 := z.
• π∗(x) := π(x) ∧ ∀y ≤ x¬ proofπ(y, π ⊥), P∗ := IdAr[ax := π∗], M1 := π∗ .

• π̃ := (z ∨ π∗)(x) := (z(x) ∨ π∗(x)), P̃ := IdAr[ax := π̃], M := π̃.

We follow the usual practice of writing O for ¬M¬.

It is easy to see that the axioms of PA are uniformly P̃-complete, since P∗

already uniformly semi-numerates the axioms of PA in PA. We have the stronger:
there is a fixed k such that if A is an axiom of PA, then PAk ` π̃(A). We simply
take k to be sufficiently large such that PAk ` EA. Thus, PA 0 O>. We note

that, since z and π∗ are PA-provably subsets of π, we even have that P̃ uniformly
numerates the axioms of PA in PA.

We show that PA does not prove the arithmetized Second Incompleteness
Theorem for M. Thus, a fortiori, we do not have the Löb conditions for M.

We enumerate some salient facts.

a. ` MA↔ (M0A ∨ M1A).
b. ` MA→ A.
c. ` > → (MA↔ A).
d. ` M⊥ ↔ M1⊥.
e. ` ⊥ → (MA↔ M0A).
f. ` ⊥ → O>.
g. ` ¬ ⊥ → ¬ O>.
h. ` O> ↔ ⊥.
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The items (a,b,c,d) are trivial.
Ad (e): We reason in PA. Suppose ⊥. Let x be the smallest witness of
⊥. We reason inside . We find that MA is equivalent to M0A or x−1A.

Since, by the reflexiveness of PA, x−1>, we see that x−1A implies M0A, and
we are done.

(f) is an immediate consequence of (e).

(g) is by formalizing the reasoning for 0 O>.

(h) follows by combining (f) and (g).

Using the above facts, we can show that 0 MO> → M⊥. Suppose (†) ` MO> →
M⊥. We have:

⊥ ∧ > `(f) O>
`(c) MO>
`(†) M⊥
`(b) ⊥

It follows, by propositional logic, that ⊥ ` ⊥, and hence ` ⊥. Quod non.
Thus, PA does not verify the Second Incompleteness Theorem for M. It follows
that M→ MM also fails over PA.

§8. Beyond reduction to finite. We have provided a reasonably general
version of the Second Incompleteness Theorem. Is this general version, the last
word? No. As a matter of principle, there is no last word, there is nothing like
the most general version of a theorem.

In the first place there are always new insights. Secondly, salient versions of a
theorem are often dependent on further interests. In our case, we already know
some limitations of what we do in the present paper.

We have already seen, in the alternative proof of Theorem 6.20, that the pat-
tern of proving the Second Incompleteness Theorem for a presentation by proving
the same theorem for a ‘weaker’ presentation extends beyond the reduction to
finite axiomatizability. Thus, our scheme can be extended.

In fact, the most important use of this kind of methodology does not fully fall
under our scheme: Pudlák’s proof of the Second Incompleteness Theorem for
recursively enumerable extensions of Q.13 Here is an outline of the proof.

Theorem 8.1. Let U be axiomatized by X := {C ∈ sentΘ | N |= σ(pCq)},
where σ(x) is a Σ0

1-formula. Suppose U � (Q + σ >). Then, U is inconsistent.

Proof. Suppose N : U�(Q+ σ >). One can construct a definable cut N0 of
N such that N0 : U �S1

2. (See, e.g., [6].) Since N0 is a cut and σ > is Π1,1, i.e.,
is of the form ∀x∃y < t(x)∀z S0(x, y, z), where S0 is ∆0, we find U ` ( σ >)N0 .
We may now apply Theorem 6.1. q

13Pudlák’s proof is an adaptation of a proof due to Mycielski of the Second Incomplete-
ness Theorem for his finitistic theory FIN in an unpublished manuscript “Finitistic intuitions

supporting the consistency of ZF and ZF+ AD”.
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We note that Pudlák’s argument transcends our framework since it involves the
interplay between two interpretations of a weak arithmetic. In his paper [15],
Pudlák discusses a bimodal logic where two modalities work together to prove
the Second Incompleteness Theorem for one of them. In fact, Pudlák addresses
a problem that we did not touch upon in this paper: how to deal with inefficient
Gödel numberings. As far as I know, this proposal in its application to inefficient
Gödel numberings was never seriously further explored.

One thing suggested by Pudlák’s argument is to develop an ordering of presen-
tations that also covers cases where the restriction to the arithmetical repertoire
is not constant. This would involve definable initial mappings between such
representations.

The Fefermanian restriction to a fixed proofpredicate excludes a lot of interest-
ing contexts where consistency statements occur. There is a lot to say about
cut-free, Herbrand, and versions of restricted provability. For example, finitely
axiomatized sequential theories prove their own cut-free consistency on a defin-
able cut. There is the question whether, for example, S1

2 proves its own cut-free
consistency. The proper generalization of Feferman provability involves restricted
consistency statements. Pavel Pudlák studied finitistic versions of consistency
proofs. Etcetera.

As the reader can see, much work is left be done, and Gödel’s legacy has not
nearly been exhausted.
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Appendix A. Translations and interpretations. We present the notion
of m-dimensional interpretation without parameters. There are two extensions
of this notion: we can consider piecewise interpretations and we can add pa-
rameters. We just treat the ordinary m-dimensional case without parameters or
pieces here.

Consider two signatures Ξ and Θ. An m-dimensional translation τ : Ξ → Θ
is a quadruple 〈Ξ, δ,F ,Θ〉, where δ(v0, . . . , vm−1) is a Θ-formula and where for
any n-ary predicate P of Ξ, F(P ) is a formula A(~v0, . . . , ~vn−1) in the language
of signature Θ, where ~vi = vi0, . . . , vi(m−1). Both in the case of δ and A all free
variables are among the variables shown. Moreover, if i 6= j or k 6= `, then vik is
syntactically different from vj`.

We require that we have ` F(P )(~v0, . . . , ~vn−1)→
∧
i<n δ(~vi). Here ` is prov-

ability in predicate logic. This demand is inessential, but it is convenient to
have.

We allow identity to be translated to a formula that is not identity.
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We define Bτ as follows:

• (P (x0, . . . , xn−1))τ := F(P )(~x0, . . . , ~xn−1).
• (·)τ commutes with the propositional connectives.
• (∀xA)τ := ∀~x (δ(~x )→ Aτ ).
• (∃xA)τ := ∃~x (δ(~x ) ∧Aτ ).

There are two worries about this definition. First, what variables ~xi on the
side of the translation Aτ correspond with xi in the original formula A? The
second worry is that substitution of variables in δ and F(P ) may cause variable
clashes. These worries are never important in practice: we choose ‘suitable’
sequences ~x to correspond to variables x, and we avoid clashes by α-conversions.
However, if we want to give precise definitions of translations and, for example,
of composition of translations these problems come into play. The problems are
clearly solvable, but a worked out solution is beyond the scope of this paper.

Instead of introducing τ explicitly as being 〈Ξ, δ,F ,Θ〉, we will write, e.g., δτ
for the δ of τ , and Pτ := Fτ (P ).

We specify the identity translation and composition of translations.

• idΞ is the identity translation. We take δidΞ(v) := (v = v) and F(P ) :=
P (~v ).

• We can compose translations. Suppose τ : Ξ → Θ and ν : Θ → Λ. Then
ν ◦ τ or τν is a translation from Ξ to Λ. We define:
◦ δτν(~v0, . . . , ~vmτ−1) :=

∧
i<mτ

δν(~vi) ∧ (δτ (v0, . . . , vmτ−1))ν .

◦ Pτν(~v0,0, . . . , ~v0,mτ−1, . . . , ~vn−1,0, . . . , ~vn−1,mτ−1) :=∧
i<n,j<mτ

δν(~vi,j) ∧ (P (v0, . . . , vn−1)τ )ν .

A translation relates signatures; an interpretation relates theories. An inter-
pretation K : U → V is a triple 〈U, τ, V 〉, where U and V are theories and
τ : ΞU → ΞV . We require: for U -sentences A, if U ` A, then V ` Aτ .

We can define the identity interpretation and composition of interpretations as
follows.

• IDU : U → U is the interpretation 〈U, idΞU , U〉.
• Suppose K : U → V and M : V → W . Then, KM := M ◦K : U → W is
〈U, τM ◦ τK ,W 〉.

Appendix B. Alternative proofs for Theorem 6.1. Here is Theorem 6.1
again.

Theorem 6.1. Suppose σ(x) is a Σ0
1-formula that numerates the axioms of U

in the standard model. Then, if U � (S1
2 + σ >), we have that U is inconsistent.

Alternative Proof 1. Suppose N : U�(S1
2 + σ >). Then, S1

2 ` σ(
∧

S1
2∧

σ >)N . Let γ(x) := (x = p
∧
S1

2 ∧ σ >q). We find: S1
2 ` γ ⊥ → σ ⊥, in

other words, S1
2 + σ > ` γ >. Since we have the Löb conditions for γ over

S1
2 + σ > we obtain S1

2 + σ > ` ⊥, by the Second Incompleteness Theorem.
Hence, S1

2 ` σ ⊥. But then, U ` ⊥. q
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Alternative Proof 2. Suppose N : U � (S1
2 + σ >). Let N0 be a cut in N

on which we have S1
2 + BΣ1 with the additional property that U ` ∀x ∈ δN0 2x ∈

δN . We claim that:

U ` ∀A ∈ δN0 (( σ A)N0 → ( σ( σ A)N0)N ).

We briefly sketch the idea for the verification of this last equation. First, inside
N0 we can transform σ A from a Σ0

1,1-formula to a Σ0
1-formula, say ( σ A)?.

We can construct ( σ A)? in such a way that S1
2 ` ( σ A)? → σ A. Second we

can estimate the transformation of a witness x of a Σ0
1-formula S to a witness

of σ S
N0 as of order 2k·x·|S|, for standard k. Note that this uses the fact that

we have a standardly finite verification of (S1
2)τN0 in U . So, if we start with a

witness p in N0 of ( σ A)?, we have a witness p? of σ( σ A)?N0 in N . We can
transform p? easily to a witness p̃ of σ( σ A)N0 in N .

By the Gödel Fixed-Point Lemma, we find G such that S1
2 ` G↔ ¬ σ G

N0 .

We now reason in U as follows. Suppose ( σ G
N0)N0 . Then, we have both

( σ G
N0)N and ( σ( σ G

N0)N0)N . By the fixed-point equation, it follows that
( σ ¬GN0)N , and, hence, ( σ ⊥)N .

On the other hand, we have ( σ >)N . So, we may conclude ⊥. Eliminating
our assumption, we obtain ¬ ( σ G

N0)N0 , or, in other words, (¬ σ G
N0)N0 . The

fixed-point equation gives us: GN0 .

We leave U . We have shown U ` GN0 . Since T := τN0
[ax := στN0 ] semi-

numerates X in U , we find U ` ( σ G
N0)N0 and, so, U ` (¬G)N0 . So U ` ⊥.

q

Alternative Proof 3. Suppose N : U � (S1
2 + σ >). Suppose σ(x) is

written in the form ∃uσ0(u, x), where σ0 is ∆0. Without loss of generality we
may assume that x < u is implied by σ0(u, x). We define:

α(x) := ∃w < x∃u < |x| ∃y < |x| (w = tally(y) ∧ σ0(u, y) ∧ x = conj(id(w,w), y)).

Here tally computes the standard non-efficient numeral. We assume that our
coding is such that 2y ≤ tally(y). We note that all terms in σ0(u, y) can be
bounded by polynomials in |x|. So, α is Σb

1. By the Σb
1-collection principle, we

find that proofα(y) is Σb
1 (modulo S1

2-provable equivalence). See [4], p. 53. It
follows that α is ∃Σb

1.
We set S := τN [ax := σ(x)τN ] and T := τN [ax := α(x)τN ]. We find that

T �U,τK S. Hence, U ` ( ax>)T .
Since σ represents the axioms of U in the standard model, it follows that

Th(T ) semi-numerates U . The reason is that S1
2 verifies the existence of tally(n),

for standard n. Thus, ( ax)T satisfies the Löb conditions. It follows that U ` ⊥.
q

Alternative Proof 4. Suppose N : U � (S1
2 + σ >).

In [26], we show that the theory Peano Basso is locally cut-interpretable in PA−.
We use the following consequence of this fact: the theory

W := S1
2 + BΣ0

1 + {S → SI | I is an S1
2-definable cut and S is a Σ0

1-sentence}
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is locally cut-interpretable in S1
2. It follows, by the downwards preservation of

Π1,1-sentences, that T := W + σ > is locally cut-interpretable in S1
2 + σ >.

Let θ be a ∆b
0 standard representation of the axioms of T . We define θn(x) :=

θ(x) ∧ x ≤ n. We have that U as axiomatized by σ interprets Wn axiomatized
by θn. Let us, ad hoc, write this as int[σ, θn]. Now, by Σ0

1,1-completeness (in the

metalanguage), we have U ` (int[σ, θn])N . It follows that U ` ( θn>)N .

By the Interpretation Existence Lemma (see [28]), we obtain an interpretation
M : U �T . It is easily seen that, in U , we have the Löb Conditions for ( σ(·))M ,
which yields a contradiction. q

DEPARTMENT OF PHILOSOPHY

UTRECHT UNIVERSITY

JANSKERKHOF 13, 3512BL UTRECHT, THE NETHERLANDS

E-mail : a.visser@uu.nl


