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Abstract. We consider the propositional logic equipped with Chellas stit
operators for a finite set of individual agents plus the historical necessity
modality. We settle the question of whether such a logic enjoys restricted
interpolation property, which requires the existence of an interpolant only
in cases where the consequence contains no Chellas stit operators occurring
in the premise. We show that if action operators count as logical symbols,
then such a logic has restricted interpolation property iff the number of
agents does not exceed three. On the other hand, if action operators are
considered to be non-logical symbols, the restricted interpolation fails for
any number of agents exceeding one. It follows that unrestricted Craig
interpolation also fails for almost all versions of stit logic.
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1 Introduction

The so-called stit logic is the modal logic of actions that uses the locution ‘j sees
to it that A’ (where j is an agent name and A a sentence) as its paradigm of action
modality. The very name ‘stit’ derives from the acronym of this paradigm locution.
This logic has been present and explored in the literature on philosophical logic at least
since the 1980s. Many of the early defining texts in the stit tradition were authored
and coauthored by N. Belnap, and the book [2] is a useful guide to the early steps
of this type of research and its attending controversies. However, in [2] N. Belnap
comes forward as a proponent of the so-called achievement stit operator, whereas the
later work in stit logic mainly concentrated around the Chellas stit and deliberative stit
operators.1 Deliberative stit operator was independently proposed by F. von Kutschera
(see, e.g. [13]) and J. Horty (see, e.g., [8]). The present paper follows this line so that
the name of stit logic gets applied to the logic of Chellas stit/deliberative stit operator

1Chellas stit is named after B. Chellas, who introduced a similar operator in [4]. These two stit
operators are interdefinable in the presence of historical necessity modality; therefore, one is inclined
to say that they share the same logic. Chellas stit operator is somewhat simpler and often used as the
basic one, whereas the deliberative stit is often defined in terms of Chellas stit.
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with Chellas stit taken as the basic stit operator, and deliberative stit as the defined
one.

Most of the work on stit logic since these early days had a conceptual focus, apply-
ing stit semantics to modelling philosophical questions and exploring alternative stit
operators which were proposed as improved versions of achievement and deliberative
stit in some respect (see, e.g., [3]). More recently emerged the attempts to enrich stit
logic with other types of operators, e.g. the ones borrowed from temporal logic (see,
e.g., [9]) or justification logic (see, e.g., [10] and [11]). Sometimes these attempts were
intertwined with attempts to recast the stit semantics itself so as to make it more
suitable for the enrichment in question.

As for the more technical work on stit logic, it mostly concentrated on forging
axiomatizations and, to some extent, solving the computational complexity questions.
Some of the relatively recent important contributions to this research are e.g. [6] and
[1].

One of the standard refinements of completeness results is the Craig Interpolation
Property. However, to the best of our knowledge, this direction of research in stit logic
has yet to see its first contributions. We hope that our paper will be able to cover this
gap at least to some extent. The paper mainly focuses on a restriction of the Craig
Interpolation Property which only requires existence of an interpolant if the antecedent
shares no agent names with the consequent. However, we show that even this weakened
version of interpolation property fails for stit logic if the logic deals with more than
three different agents. Of course, the failure of restricted Craig interpolation entails
also the failure of the unrestricted interpolation property. Therefore, an easy corollary
to the main result of this paper is the failure of unrestricted Craig interpolation in stit
logic for any number of agents exceeding three, which yields the negative solution to
the problem of Craig interpolation for the vast majority of variants of the basic stit
logic.

We now briefly touch upon the structure of the text below. Section 2 defines the
version of stit logic at hand in terms of language, semantics, and a strongly complete
axiomatization. We also introduce the main notations to be used in the paper and
give the precise definition of the Restricted Craig Interpolation Property for stit logic
of n agents. The latter property will be the main subject of the two following sections.
We are going to show, first, that whenever our version of stit logic has no more than
three different agents, it enjoys this property. The proof of this positive part of our
main result is given in Section 3. The corresponding negative part, saying that the
Restricted Craig Interpolation Property fails for stit logic with more than three agents,
is then formulated and proven in Section 4. After that, Section 5 explores the various
corollaries of the main result in relation to the following topics: (a) unrestricted Craig
interpolation, (b) the Restricted Robinson Consistency Property, and (c) the stronger
versions of both unrestricted and restricted interpolation property which treat stit
operators as non-logical symbols.

Section 6 sums up the preceding sections and charts some natural continuations for
the line of research presented in the paper.
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2 Preliminaries

On the basis of a given a finite agent community Ag and a set of propositional
variables V , we define the set LAg

V of (Ag, V )-stit formulas as follows:

A := p | A → A | ⊥ | ✷A | [j]A,

where p ∈ V and j ∈ Ag. Stit formulas will be denoted by letters A, B, C, D, decorated
with sub- and superscripts whenever needed. Formulas of the type ✷A and [j]A are
informally read as ‘A is (historically) necessary’ and ‘the agent j sees to it that A’,
respectively. We reserve✸A and 〈j〉A as the notations for the duals of these modalities.

Modalities of the form [j] for j ∈ Ag are called action modalities and will be inter-
preted as Chellas stit operators for the respective agent j. We will not use deliberative
stit operator [d : j] in this paper, but it can be defined on the basis of Chellas stit
and historical necessity: [d : j]A := [j]A ∧ ¬✷A. Although Ag is normally assumed
to be non-empty, in this paper we will allow for Ag = ∅ as a border case for the sake
of notational convenience. The set L∅

V is then basically a variant of the language of
the logic of historical necessity. This logic is known to coincide with propositional S5
and hence has Craig Interpolation Property.2 Therefore, even though empty agent
communities are allowed by our notation, we will not consider interpolation properties
of the languages devoid of action modalities in this paper.

Stit formulas are interpreted over the respective classes of stit models. An (Ag, V )-
stit model is a structure of the form S = 〈Tree,≤, Choice, V 〉, such that:

• Tree is a non-empty set. Elements of Tree are called moments.

• ≤ is a partial order on Tree for which a temporal interpretation is assumed.

• Hist(Tree,≤) is the set of maximal chains in Tree w.r.t. ≤. Since Hist(Tree,≤)
is completely determined by Tree and ≤, it is not included into the structure of a
model as a separate component. Elements of Hist(Tree,≤) are called histories.
The set of histories containing a given moment m will be denoted HS

m . The
following set

MH(Tree,≤) = {(m,h) | m ∈ Tree, h ∈ HS

m},

called the set of moment-history pairs, will be used to evaluate formulas in LAg
V .

Two histories, h, g ∈ HS
m we call undivided at m ∈ Tree and write h ≈m g iff h

and g share some later moment m′. In other words, we stipulate that:

h ≈m g ⇔ (h, g ∈ HS

m)&(∃m′ > m)(h, g ∈ HS

m′).

• Choice is a function mapping Tree × Ag into 22
Hist(Tree,≤)

in such a way that
for any given j ∈ Ag and m ∈ Tree we have as Choice(m, j) (to be denoted
as Choicemj below) a partition of HS

m . For a given h ∈ HS
m we will denote by

Choicemj (h) the element of the partition Choicemj (otherwise called a choice cell)
containing h. Intuitively, the idea is that j cannot distinguish by her activity at
m between histories that belong to one and the same choice cell.

2In fact, propositional S5 even has the stronger Lyndon interpolation property, see e.g [5, Theorem
5.14, p. 140].



4 Grigory K. Olkhovikov

• V is an evaluation function, mapping the set V into 2MH(Tree,≤)

In what follows, for a given (Ag, V )-stit model S = 〈Tree,≤, Choice, V 〉, we will
sometimes use Hist(S) and MH(S) to denote Hist(Tree,≤) and MH(Tree,≤), re-
spectively.

Additionally, every stit model S is required to satisfy the following constraints:

1. Historical connection:

(∀m,m1 ∈ Tree)(∃m2 ∈ Tree)(m2 ≤ m&m2 ≤ m1) (HC)

2. No backward branching:

(∀m,m1,m2 ∈ Tree)((m1 ≤ m&m2 ≤ m) ⇒ (m1 ≤ m2 ∨m2 ≤ m1)) (NBB)

3. No choice between undivided histories:

(∀m ∈ Tree)(∀h, h′ ∈ HS

m)(h ≈m h′ ⇒ Choicemj (h) = Choicemj (h′)) (NCUH)

for every j ∈ Ag.

4. Independence of agents:

(∀f : Ag → 2H
S

m )((∀j ∈ Ag)(f(j) ∈ Choicemj ) ⇒
⋂

j∈Ag

f(j) 6= ∅) (IA)

for every m ∈ Tree.

We omit the motivation for these constraints, referring the reader to the existing liter-
ature on stit logic, e.g. [2] and [7]. The inductive definition of the satisfaction relation

for the members of LAg
V is then as follows:

S,m, h |= p ⇔ (m,h) ∈ V (p);

S,m, h |= [j]A ⇔ (∀h′ ∈ Choicemj (h))(S,m, h′ |= A);

S,m, h |= ✷A ⇔ (∀h′ ∈ HS

m)(S,m, h′ |= A),

with the usual clauses for the Boolean connectives. The notions of satisfaction and
validity are also defined in a standard way.

Stit logic, as given above, admits of the following strongly complete axiomatization
S which we borrow from [1].3 The axiom schemes of S are as follows:

A full set of axioms for classical propositional logic (A0)

S5 axioms for ✷ and [j] for every j ∈ Ag (A1)

✷A → [j]A for every j ∈ Ag (A2)

(✸[j1]A1 ∧ . . . ∧✸[jn]An) → ✸([j1]A1 ∧ . . . ∧ [jn]An) (A3)

The assumption is that in (A3) j1, . . . , jn are pairwise different.

3The original proof, due to Ming Xu, used a somewhat more expressive language allowing also to
describe equality/inequality relations between agents, see e.g. [2, Ch. 17].
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In addition to the axioms, S contains two inference rules:

From A,A → B infer B; (MP)

From A infer ✷A; (Nec)

Provability of A in S we will denote by ⊢ A. It is clear that the strong completeness
of S also implies compactness of stit logic for any given finite community Ag of agents
and any given set V of propositional variables.

We introduce some further useful notations related to sets of stit formulas. If
Γ ⊆ LAg

V , then we let Γ✷ denote the set of all boxed formulas from Γ. Similarly,

whenever j ∈ Ag, we use Γ[j] to denote the set {[j]A ∈ LAg
V | [j]A ∈ Γ}.

For arbitrary Ag, V , and a set Γ ∪ {A} ⊆ LAg
V , we extend the notation ⊢ to

contexts like Γ ⊢ A to mean that ⊢ (A1 ∧ . . . ∧ Ar) → A for some A1, . . . , Ar ∈ Γ.

Then Γ ⊆ LAg
V is called inconsistent iff Γ ⊢ ⊥, and consistent otherwise. Moreover,

Γ ⊆ LAg
V is (Ag, V )-maxiconsistent iff it is consistent and no consistent subset of LAg

V

properly extends Γ. It can be shown, in the usual way, that an arbitrary Γ ⊆ LAg
V is

(Ag, V )-maxiconsistent iff for every A ∈ LAg
V the set Γ ∩ {A,¬A} is a singleton. In

what follows we will need the following classical lemma about maxiconsistent sets:

Lemma 1. For any finite Ag and any set of propositional variables V , if Γ ⊆ LAg
V is

consistent but not maxiconsistent, then there is an A ∈ LAg
V such that {A,¬A}∩Γ = ∅.

Proof. If Γ ⊆ LAg
V is consistent but not maxiconsistent, then choose a consistent Ξ

such that Γ ⊂ Ξ ⊆ LAg
V and choose any A ∈ Ξ \ Γ. Then A /∈ Γ by choice of A,

and if ¬A ∈ Γ, then {A,¬A} ⊆ Γ ∪ {A} ⊆ Ξ, which contradicts the consistency of
Ξ since, of course, ⊢ (A ∧ ¬A) → ⊥. Therefore, we must also have ¬A /∈ Γ so that
{A,¬A} ∩ Γ = ∅.

For a Γ ⊆ LAg
V we define that:

|Γ| := {p ∈ V | p occurs in Γ},

and:
Ag(Γ) := {j ∈ Ag | j occurs in Γ},

If Γ is a singleton {A}, then we use the notations |A| and Ag(A) instead of |{A}| and
Ag({A}).

In this paper we will be mainly testing the applicability to stit logic of the following
property:

Definition 1. For a positive integer n, stit logic has the Restricted n-Craig Interpo-
lation Property (abbreviated by (RCIP )n) iff for any set of propositional variables V ,

and all A,B ∈ L
{1,...,n}
V , whenever ⊢ A → B and Ag(A)∩Ag(B) = ∅, then there exists

a C ∈ L
Ag(A)∪Ag(B)
|A|∩|B| such that both ⊢ A → C and ⊢ C → B.

3 The case n ≤ 3

The main result of this section looks as follows:
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Theorem 1. For every n ≤ 3, stit logic has (RCIP )n.

We prepare the result by proving several technical lemmas first.

Lemma 2. The following statements are true:
1. For every agent index j, [j] is an S5-modality.

2. Let A,B1, . . . Bn, C ∈ LAg
V , let i1, . . . , in, j ∈ Ag be pairwise different, and let

⊢ (✷A∧[i1]B1∧. . .∧[in]Bn) → ¬C. Then also ⊢ (✷A∧✸[i1]B1∧. . .∧✸[in]Bn) → ¬✸[j]C.

3. Let A,B,C ∈ LAg
V , let j ∈ Ag, and let ⊢ (✷A ∧ [j]B) → C. Then also

⊢ (✷A ∧✸[j]B) → ✸[j]C.

Proof. (Part 1). Immediately by (A1), (Nec), and (A2).
(Part 2). Assume the hypothesis of Part 2 and assume that we have:

⊢ (✷A ∧ [i1]B1 ∧ . . . ∧ [in]Bn) → ¬C (1)

Then we reason as follows:

⊢ (✷A ∧ (✸[i1]B1 ∧ . . . ∧✸[in]Bn ∧✸[j]C)) →

→ (✷A ∧✸([i1]B1 ∧ . . . ∧ [in]Bn ∧ [j]C)) (by (A3)) (2)

⊢ (✷A ∧✸([i1]B1 ∧ . . . ∧ [in]Bn ∧ [j]C)) →

→ (✷A ∧✸([i1]B1 ∧ . . . ∧ [in]Bn ∧ C)) (by (A1)) (3)

⊢ (✷A ∧✸([i1]B1 ∧ . . . ∧ [in]Bn ∧ C)) →

→ ✸(✷A ∧ [i1]B1 ∧ . . . ∧ [in]Bn ∧ C) (✷ is S5) (4)

⊢ (✷A ∧ (✸[i1]B1 ∧ . . . ∧✸[in]Bn ∧✸[j]C)) →

→ ✸(✷A ∧ [i1]B1 ∧ . . . ∧ [in]Bn ∧ C) (by (2)-(4)) (5)

⊢ ✷((✷A ∧ [i1]B1 ∧ . . . ∧ [in]Bn) → ¬C) (by (1) and (Nec)) (6)

⊢ ¬✸(✷A ∧ [i1]B1 ∧ . . . ∧ [in]Bn ∧ C) (by (6) and prop. logic) (7)

⊢ ¬(✷A ∧ (✸[i1]B1 ∧ . . . ∧✸[in]Bn ∧✸[j]C)) (by (5) and (7)) (8)

From (8), it follows by propositional logic that ⊢ (✷A∧✸[i1]B1∧. . .∧✸[in]Bn) → ¬✸[j]C.
(Part 3). We reason as follows:

⊢ (✷A ∧ [j]B) → C (premise) (9)

⊢ [j]((✷A ∧ [j]B) → C) (by (9) and Part 1) (10)

⊢ ([j]✷A ∧ [j]B) → [j]C (by (10) and Part 1) (11)

⊢ ✷A → ✷✷A (by (A1)) (12)

⊢ ✷✷A → [j]✷A (by (A2)) (13)

⊢ ✷A → [j]✷A (by (12) and (13)) (14)

⊢ (✷A ∧ [j]B) → [j]C (by (11) and (14)) (15)

⊢ (✷A ∧✸[j]B) → ✸[j]C (by (15) and S5 properties of ✷) (16)

Assume that V is a set of propositional variables and Ag a finite community
of agents. A pair (Γ,∆) of sets of (Ag, V )-stit formulas, is called inseparable, iff
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Ag(Γ) ∩ Ag(∆) = ∅, and for no A ∈ L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| it is true that both Γ ⊢ A and

∆ ⊢ ¬A. Below we basically repeat the classical argument for the proof of the follow-
ing standard lemma about inseparability:

Lemma 3. Let (Γ,∆) be an inseparable pair, and assume that both |Γ| and |∆| are at
most countable.4 Then:

1. There exist Γ′ and ∆′ such that Γ ⊆ Γ′ ⊆ L
Ag(Γ)
|∆| , ∆ ⊆ ∆′ ⊆ L

Ag(∆)
|∆| , (Γ′,∆′) is

inseparable, Γ′ is (Ag(Γ), |Γ|)-maxiconsistent, and ∆′ is (Ag(∆), |∆|)-maxiconsistent.

2. If Γ′ ⊆ Γ and ∆′ ⊆ ∆, then (Γ′,∆′) is inseparable.

Proof. (Part 1) We proceed as in the case of classical logic. We first enumerate the

formulas in L
Ag(Γ)
|Γ| as A0, . . . , As, . . . , and the formulas in L

Ag(∆)
|∆| as B0, . . . , Bs, . . . ,.

We then define two increasing sequences of sets of formulas:

Γ = Γ0 ⊆ . . . ⊆ Γs ⊆ . . .

and
∆ = ∆0 ⊆ . . . ⊆ ∆s ⊆ . . .

in L
Ag(Γ)
|Γ| and L

Ag(∆)
|∆| , respectively. The definition is as follows. Γ0 and ∆0 are just Γ

and ∆, and whenever Γr and ∆r are defined for an r ∈ ω, then we set:

Γr+1 =

{

Γr ∪ {Ar}, if (Γr ∪ {Ar},∆r) is inseparable;
Γr, otherwise.

and, further:

∆r+1 =

{

∆r ∪ {Br}, if (Γr+1,∆r ∪ {Br}) is inseparable;
∆r, otherwise.

Claim 1. For every r ∈ ω, the pairs (Γr,∆r) and (Γr+1,∆r) are inseparable.
The Claim is proved by induction on r. If r = 0 then (Γ0,∆0) = (Γ,∆) is in-

separable by the assumption of the lemma, and the inseparability of (Γ1,∆0) follows
by the definition of Γ1. If r = s + 1, then (Γs+1,∆s) is inseparable by the induction
hypothesis, whence the inseparability of (Γs+1,∆s+1) follows by the definition of ∆s+1.
From the latter, the inseparability of (Γs+2,∆s+1) follows by the definition of Γs+2.
Claim 1 is proved.

We now set:
Γ′ :=

⋃

s∈ω

Γs; ∆′ :=
⋃

s∈ω

∆s.

We clearly have both:

Γ ⊆ Γ1 ⊆ . . . ⊆ Γs ⊆ . . . ⊆ Γ′ ⊆ L
Ag(Γ)
|Γ| (17)

and:
∆ ⊆ ∆1 ⊆ . . . ⊆ ∆s ⊆ . . . ⊆ ∆′ ⊆ L

Ag(∆)
|∆| (18)

4This lemma also holds for uncountable sets of variables but we will not need this more general
version in the present paper.
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We now show a series of further claims:

Claim 2. The sets Γ′, ∆′ are consistent

Indeed, if Γ′ is inconsistent then ⊢ At1 ∧ . . .∧Atr → ⊥ for some At1 , . . . , Atr in the

above enumeration of L
Ag(Γ)
|Γ| such that At1 , . . . , Atr ∈ Γ′. Then, by definition of Γ′,

we must also have At1 , . . . , Atr ∈ Γs, where s = max(t1, . . . , tr) + 1 so that we have

Γs ⊢ ⊥. Of course, we also have ∆s ⊢ ¬⊥, and since ⊥ ∈ L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| , it follows that

(Γs,∆s) is separable, a contradiction to Claim 1. Therefore, Γ′ is consistent, and the
consistency of ∆′ is established in a similar way.

Claim 3. The sets Γ′, ∆′ are (Ag(Γ), |Γ|)-maxiconsistent, and (Ag(∆), |∆|)-maxiconsistent,
respectively.

Indeed, if Γ′ is not (Ag(Γ), |Γ|)-maxiconsistent, then it follows from Claim 2 and

Lemma 1, that there is an A ∈ L
Ag(Γ)
|Γ| such that {A,¬A} ∩ Γ′ = ∅. Then we will have

A = Ar and ¬A = Ar′ for some r, r′ ∈ ω in terms of our enumeration of L
Ag(Γ)
|Γ| . Since

Ar, Ar′ /∈ Γ′ we will have, by definition of Γ′, that (Γr∪{Ar},∆r) and (Γr′∪{Ar′},∆r′)
are separable. This means that there exist some Ar

1, . . . , A
r
t1

∈ Γr, A
r′

1 , . . . , Ar′

t2
∈ Γr′ ,

Br
1 , . . . , B

r
t3

∈ ∆r, B
r′

1 , . . . , Br′

t4
∈ ∆r′ , and C,D ∈ L

Ag(Γ)∪Ag(∆)
|Γ|∩|∆| such that all of the

following holds:

⊢ (Ar
1 ∧ . . . ∧ Ar

t1
∧ A) → C (19)

⊢ (Br
1 ∧ . . . ∧Br

t3
) → ¬C (20)

⊢ (Ar′

1 ∧ . . . ∧ Ar′

t2
∧ ¬A) → D (21)

⊢ (Br′

1 ∧ . . . ∧Br′

t4
) → ¬D (22)

We then infer, by propositional logic, that:

⊢ (

t1
∧

s=1

Ar
s ∧

t2
∧

s=1

Ar′

s ) → (C ∨D) (23)

⊢ (

t3
∧

s=1

Br
s ∧

t4
∧

s=1

Br′

s ) → ¬(C ∨D) (24)

Now set r′′ := max(r, r′). By (17) and (18) we know that {Ar
s | 1 ≤ s ≤ t1}∪{Ar′

s | 1 ≤ s ≤ t2} ⊆ Γr′′

and that {Br
s | 1 ≤ s ≤ t3} ∪ {Br′

s | 1 ≤ s ≤ t4} ⊆ ∆r′′ . We also clearly have that

C ∨D ∈ L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| . Therefore, it follows from (23) and (24) that (Γr′′ ,∆r′′) is sep-

arable, in contradiction to Claim 1. Therefore, Γ′ must be (Ag(Γ), |Γ|)-maxiconsistent.
Maxiconsistency of ∆′ is shown in a similar way.

Claim 4. (Γ′,∆′) is inseparable.

Since Γ′, ∆′ are maxiconsistent, they are closed for finite conjunctions. Therefore,

we can assume wlog, that there are A ∈ Γ′, B ∈ ∆′ and C ∈ L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| such that

all of the following holds:

⊢ A → C (25)

⊢ B → ¬C (26)
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Then let r, s ∈ ω be such that A ∈ Γr and B ∈ ∆s. Setting t := max(r, s), we know
that A ∈ Γt and B ∈ ∆t whence it follows that (Γt,∆t) is separable, in contradiction
to Claim 1.

Claims 2–4 then imply the first part of the Lemma.
(Part 2). Immediate from the definition of separability.

Lemma 4. If (Γ,∆) is separable then for some finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ the pair
(Γ′,∆′) is also separable.

Proof. If (Γ,∆) is separable then for some A ∈ L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| it is true that both

Γ ⊢ A and ∆ ⊢ ¬A. By definition, this means that there are A1, . . . , Ar ∈ Γ and
B1, . . . , Bs ∈ ∆ such that both ⊢ (A1 ∧ . . . ∧ Ar) → A and ⊢ (B1 ∧ . . . ∧ Bs) → ¬A.
Therefore, we can set Γ′ := {A1, . . . , Ar} and ∆′ := {B1, . . . , Bs}.

Next we prove two lemmas which sum up some important facts about inseparability
that are peculiar to stit logic:

Lemma 5. Let V be a set of propositional variables, let n ≤ 3, and let Γ,∆ ⊆ L
{1,...,n}
V

be such that (Γ,∆) is inseparable. Moreover, assume that Γ is (Ag(Γ), |Γ|)-maxiconsistent
and ∆ is (Ag(∆), |∆|)-maxiconsistent. Finally, assume that there exist ✸[j1]A1, . . . ,✸[jr]Ar ∈ Γ,
and ✸[i1]B1, . . . ,✸[is]Bs ∈ ∆ such that j1, . . . , jr ∈ Ag(Γ) are pairwise different and
i1, . . . , is ∈ Ag(∆) are pairwise different.

Then the pair:

(Γ✷ ∪ {[j1]A1, . . . , [jr]Ar},∆
✷ ∪ {[i1]B1, . . . , [is]Bs}) (27)

is inseparable.

Proof. Assume the hypothesis, and assume, for reductio, that (27) is separable. Then,
by compactness of stit logic and the S5 properties of ✷, there must be ✷A ∈ Γ, ✷B ∈ ∆,

and C ∈ L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| such that both of the following equations hold:

⊢ (✷A ∧ [j1]A1 ∧ . . . ∧ [jr]Ar) → C, (28)

and
⊢ (✷B ∧ [i1]B1 ∧ . . . ∧ [is]Bs) → ¬C. (29)

SinceAg(Γ)∩Ag(∆) = ∅, all of the agent indices in the united sequence j1, . . . , jr, i1, . . . , is
must be pairwise different and we must have r + s ≤ n. Therefore, r + s ∈ {0, 1, 2, 3}
which gives us our three cases below. Although these cases show many similarities,
we consider them separately. In every case we reason by contraposition, showing that
the separability of (27) (expressed by (28) and (29)) implies the separability of (Γ,∆),
thus contradicting the initial assumption of the lemma.

Case 1. Let {r, s} = {1, 2}. Assume, wlog, that r = 2 and s = 1, the other subcase is
symmetric. Then, by (28) and (29), there exist i, j and k such that {i, j, k} = {1, 2, 3},
and that both of the following hold:

⊢ (✷A ∧ [i]A1 ∧ [j]A2) → C, (30)

and
⊢ (✷B ∧ [k]B1) → ¬C. (31)
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By Lemma 2.2, (30), and propositional logic, we get that:

⊢ (✷A ∧✸[i]A1 ∧✸[j]A2) → ¬✸[k]¬C, (32)

On the other hand, by Lemma 2.3 and (31):

⊢ (✷B ∧✸[k]B1) → ✸[k]¬C. (33)

Since C, by its choice, is in L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| , we clearly have ✸[k]¬C ∈ L

Ag(Γ)∪Ag(∆)
|Γ|∩|∆| , and

we also have, by the initial choice of our formulas, that ✷A,✸[i]A1,✸[j]A2 ∈ Γ and
✷B,✸[k]B1 ∈ ∆. Therefore, it follows from (32) and (33), that (Γ,∆) is separable.

Case 2. Let {r, s} = {1}. Then, by (28) and (29), there exist i, j ∈ {1, 2, 3} such
that i 6= j and both of the following hold:

⊢ (✷A ∧ [i]A1) → C, (34)

and
⊢ (✷B ∧ [j]B1) → ¬C. (35)

By Lemma 2.2 and (34) we get that:

⊢ (✷A ∧✸[i]A1) → ¬✸[j]¬C, (36)

On the other hand, by Lemma 2.3 and (35):

⊢ (✷B ∧✸[j]B1) → ✸[j]¬C. (37)

Since C, by its choice, is in L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| , we clearly have ✸[j]¬C ∈ L

Ag(Γ)∪Ag(∆)
|Γ|∩|∆| ,

and we also have, by the initial choice of our formulas, that ✷A,✸[i]A1 ∈ Γ and
✷B,✸[j]B1 ∈ ∆. Therefore, it follows from (36) and (37), that (Γ,∆) is again separa-
ble, contrary to our assumptions.

Case 3. 0 ∈ {r, s}. We may assume, wlog, that s = 0, the other subcase being
symmetric. By (29), we must have then:

⊢ ✷B → ¬C. (38)

By S5 properties of ✷, we get then:

⊢ (✷A ∧✸[j1]A1 ∧ . . . ∧✸[jr]Ar) → ✸C (from (28)) (39)

⊢ ✷B → ✷¬C (from (38)) (40)

It follows then, by the choice of the formulas involved, that (Γ,∆) is separable, contrary
to our assumptions.

This exhausts the list of possible cases and thus the Lemma is proved.

Lemma 6. Let V be a set of propositional variables, Ag a finite agent community,
and let Γ,∆ ⊆ LAg

V be such that (Γ,∆) is inseparable. Moreover, assume that Γ is
(Ag(Γ), |Γ|)-maxiconsistent and ∆ is (Ag(∆), |∆|)-maxiconsistent. Then:

1. If ¬✷A1 ∈ Γ, then the pair (Γ✷ ∪ {¬A1},∆✷) is inseparable.
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2. If ¬✷B1 ∈ ∆, then the pair (Γ✷,∆✷ ∪ {¬B1}) is inseparable.

3. If ¬[j]A1 ∈ Γ, then the pair (Γ✷ ∪ Γ[j] ∪ {¬A1},∆✷) is inseparable.

4. If ¬[i]B1 ∈ ∆, then the pair (Γ✷,∆✷ ∪∆[i] ∪ {¬B1}) is inseparable.

Proof. (Part 1). Assume the hypothesis. If the pair (Γ✷ ∪ {¬A1},∆✷) is separable,
then, by compactness of stit logic, maxiconsistency of Γ and ∆, and S5 properties of

all the modalities in stit logic, there must be ✷A ∈ Γ, ✷B ∈ ∆, and C ∈ L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆|

such that (38) holds together with the following equation:

⊢ (✷A ∧ ¬A1) → C. (41)

From (41) we infer, using S5 properties of ✷:

⊢ (✷A ∧✸¬A1) → ✸C. (42)

On the other hand, from (38) we infer (40) arguing as in Case 3 in the proof of Lemma
5 above. Taken together, (40) and (42) show separability of (Γ,∆), contrary to our
assumptions. Therefore, (41) and (38) cannot hold, whence (Γ✷∪{¬A1},∆

✷) must be
inseparable, and we are done.

Part 2 is symmetric to Part 1.
(Part 3). Assume the hypothesis. If the pair (Γ✷ ∪ Γ[j] ∪ {¬A1},∆✷) is separa-

ble, then, by compactness of stit logic, maxiconsistency of Γ and ∆, and S5 proper-
ties of all the modalities in stit logic, there must be ✷A, [j]A′ ∈ Γ, ✷B ∈ ∆, and

C ∈ L
Ag(Γ)∪Ag(∆)
|Γ|∩|∆| such that (38) holds together with the following equation:

⊢ (✷A ∧ [j]A′ ∧ ¬A1) → C (43)

Next we infer:

⊢ [j]((✷A ∧ [j]A′ ∧ ¬C) → A1) (by (43), [j] is S5) (44)

⊢ ([j]✷A ∧ [j]A′ ∧ [j]¬C) → [j]A1 (by (44), [j] is S5) (45)

⊢ ✷A → [j]✷A (cf. (14) above) (46)

⊢ (✷A ∧ [j]A′ ∧ [j]¬C) → [j]A1 (by (45) and (46)) (47)

⊢ (✷A ∧ [j]A′ ∧ ¬[j]A1) → ¬[j]¬C (by (47) and prop. logic) (48)

We also infer (40) from (38), arguing as in Case 3 in the proof of Lemma 5 above.
From (40) and (A2) it then follows that:

⊢ ✷B → [j]¬C (49)

Taken together, (48) and (49) show separability of (Γ,∆), contrary to our assumptions.
Therefore, (43) and (38) cannot hold together, whence (Γ✷ ∪ Γ[j] ∪ {¬A1},∆✷) must
be inseparable, and we are done.

Part 4 is symmetric to Part 3.

We are now prepared to prove Theorem 1. Assume that n ≤ 3, assume for re-

ductio, that A,B ∈ L
{1,...,n}
V , and we have ⊢ A → B, Ag(A) ∩ Ag(B) = ∅, but for
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no C ∈ L
Ag(A)∪Ag(B)
|A|∩|B| we have both ⊢ A → C and ⊢ C → B. This means that the

pair ({A}, {¬B}) is inseparable and can be extended, using Lemma 3, to an insepara-
ble pair (Ξ0,Ξ1) such that Ξ0 is (Ag(A), |A|)-maxiconsistent and Ξ1 is (Ag(B), |B|)-
maxiconsistent. We now define a (Ag(A) ∪ Ag(B), |A| ∪ |B|)-stit model S which we
will show to satisfy Ξ0 ∪ Ξ1.

Now we start defining components of S = 〈Tree,≤, Choice, V 〉:

• We first define the set of standard pairs as the set of all inseparable pairs (Γ,∆)
such that Γ is (Ag(A), |A|)-maxiconsistent, ∆ is (Ag(B), |B|)-maxiconsistent, and
the following condition holds:

Ξ✷

0 ⊆ Γ&Ξ✷

1 ⊆ ∆.

The set of standard pairs is non-empty since (Ξ0,Ξ1) is clearly a standard pair.

• We then define Tree as the set of all standard pairs plus a single additional
moment †.

• ≤ is the reflexive closure of the relation {(†, (Γ,∆)) | (Γ,∆) is a standard pair }

Immediately we get the following lemma:

Lemma 7. If (Γ,∆) is a standard pair then Γ✷ = Ξ✷

0 and ∆✷ = Ξ✷

1 .

Proof. We show that Γ✷ = Ξ✷

0 , the other part is similar. We have Ξ✷

0 ⊆ Γ by the
definition of standard pair, whence clearly Ξ✷

0 ⊆ Γ✷. In the other direction, assume
that ✷C ∈ Γ. Since Ξ0 is (Ag(A), |A|)-maxiconsistent, we must have either ✷C ∈ Ξ0 or
¬✷C ∈ Ξ0. In the latter case, by S5 properties of ✷ and (Ag(A), |A|)-maxiconsistency
of Ξ0 we get that ✷¬✷C ∈ Ξ0. We have established, therefore, that either ✷C ∈ Ξ✷

0

or ✷¬✷C ∈ Ξ✷

0 . However, we cannot have ✷¬✷C ∈ Ξ✷

0 , since we know that Ξ✷

0 ⊆ Γ,
and also ✷C ∈ Γ. It follows that we must have ✷C ∈ Ξ✷

0 .

We pause to reflect on the structure of histories induced by the pair (Tree,≤).
Every such history has the form h(Γ,∆) = {†, (Γ,∆)}. It is clear, moreover, that we

have both HS

† = Hist(S) and H(Γ,∆) = {h(Γ,∆)} for every standard pair (Γ,∆). We
then define the choice function for our model in the following way:

• For every j ∈ Ag(A) and standard pairs (Γ,∆) and (Γ0,∆0), we define that

h(Γ0,∆0) ∈ Choice†j(h(Γ,∆)) iff Γ[j] ⊆ Γ0.

• Similarly, for every i ∈ Ag(B) and standard pairs (Γ,∆) and (Γ0,∆0), we define

that h(Γ0,∆0) ∈ Choice†j(h(Γ,∆)) iff ∆[i] ⊆ ∆0.

• For every j ∈ Ag(A)∪Ag(B) and every standard pair (Γ,∆) we set that Choice
(Γ,∆)
j = {H(Γ,∆)} = {{h(Γ,∆)}}.

• Finally, for a p ∈ |A|, we define that V (p) = {(†, (Γ,∆)) | p ∈ Γ}; symmetrically,
for a q ∈ |B|, we define that V (q) = {(†, (Γ,∆)) | q ∈ ∆}.

First of all, we need to show that we have in fact defined a stit model:

Lemma 8. The structureS = 〈Tree,≤, Choice, V 〉, as defined above, is a (Ag(A)∪Ag(B), |A|∪|B|)-
stit model.
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Proof. It is obvious that ≤ is a forward-branching preorder on the non-empty set
Tree. The fact that Choicemj is a partition of HS

m trivially follows from defini-
tion, whenever m 6= †. If, on the other hand, m = †, then this same fact follows
from S5 properties of [j] together with the fact that, for every standard pair (Γ,∆),
Ag(Γ) ∩ Ag(∆) = Ag(A) ∩ Ag(B) = ∅.

As for the constraints, (HC) is satisfied since † is the ≤-least moment in Tree and
(NCUH) is satisfied because there are no undivided histories in S. We consider (IA).
Letm ∈ Tree and let f be a function onAg such that (∀j ∈ Ag(A)∪Ag(B))(f(j) ∈ Choicemj ).
We are going to show that in this case

⋂

j∈Ag(A)∪Ag(B) f(j) 6= ∅. If m 6= †, then this is
obvious, since every agent will have a vacuous choice. We treat the case when m = †.

Then, for every j ∈ Ag(A)∪Ag(B), we pick an hj ∈ f(j) so that f(j) = Choice†j(hj).
Since Hist(Tree,≤) = {h(Γ,∆) | (Γ,∆) is a standard pair}, we can choose, for every
j ∈ Ag(A) ∪ Ag(B), a standard pair (Γj ,∆j) such that hj = h(Γj ,∆j). Together with

f(j) = Choice†j(hj), this gives us the following equation:

(∀j ∈ Ag(A) ∪Ag(B))(f(j) = Choice†j(h(Γj ,∆j)) (50)

Now consider the pair:

(Ξ✷

0 ∪
⋃

{Γ
[j]
j | j ∈ Ag(A)},Ξ✷

1 ∪
⋃

{∆
[i]
i | i ∈ Ag(B)} (51)

We will show that the pair (51) is inseparable. Indeed, suppose otherwise. Then, by
Lemma 4, there must be✷A1, . . . ,✷Ar ∈ Ξ✷

0 , ✷B1, . . . ,✷Br′ ∈ Ξ✷

1 , [j]A
j
1, . . . , [j]A

j

r(j) ∈ Γj

(for every j ∈ Ag(A)), and [i]Bi
1, . . . , [i]B

i
r(i) ∈ ∆i (for every i ∈ Ag(B)) such that the

pair:

({✷A1, . . . ,✷Ar} ∪
⋃

{{[j]Aj
1, . . . , [j]A

j

r(j)} | j ∈ Ag(A)},

{✷B1, . . . ,✷Br′} ∪
⋃

{{[i]Bi
1, . . . , [i]B

i
r(i))} | i ∈ Ag(B)}) (52)

is separable. Now the contraposition of Lemma 3.2 entails that in this case also the
pair:

(Ξ✷

0 ∪
⋃

{{[j]Aj
1, . . . , [j]A

j

r(j)} | j ∈ Ag(A)},

Ξ✷

1 ∪
⋃

{{[i]Bi
1, . . . , [i]B

i
r(i)} | i ∈ Ag(B)}) (53)

must be separable. Next, for every j ∈ Ag(A) and every i ∈ Ag(B), we set:

αj := Aj
1 ∧ . . . ∧ Aj

r(j); βi := Bi
1 ∧ . . . ∧Bi

r(i).

By Lemma 2.1 and the separability of the pair (53), we know that also the following
pair must be separable:

(Ξ✷

0 ∪ {[j]αj | j ∈ Ag(A)},Ξ✷

1 ∪ {[i]βi | i ∈ Ag(B)}. (54)

For every j ∈ Ag(A), the formulas [j]Aj
1, . . . , [j]A

j

r(j) were chosen in Γj , therefore,

it follows from Lemma 2.1 and maxiconsistency of Γj that also [j]αj ∈ Γj . By S5
properties of ✷, this means that also ✸[j]αj ∈ Γj so that, by consistency, ✷¬[j]αj /∈ Γj .
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The latter means, by Lemma 7, that ✷¬[j]αj /∈ Ξ0, therefore, by maxiconsistency,
✸[j]αj ∈ Ξ0. By a parallel argument, one can also show that, for every i ∈ Ag(B),
✸[i]βi ∈ Ξ1. Therefore, by Lemma 5, the separability of the pair (54) entails the
separability of (Ξ0,Ξ1) which contradicts the choice of the latter pair. The obtained
contradiction shows that the pair (51) must be inseparable.

Therefore, by Lemma 3.1, the pair (51) can be extended to a pair (Γ0,∆0) such that
Γ0 is (Ag(A), |A|)-maxiconsistent and ∆0 is (Ag(B), |B|)-maxiconsistent. By the choice
of (51), it is also clear that both Ξ✷

0 ⊆ Γ0 and Ξ✷

1 ⊆ ∆0, which means that (Γ0,∆0)
is a standard pair. Therefore, we must have h(Γ0,∆0) ∈ HS

† . Now, let j ∈ Ag(A).

Then, by the choice of (51), Γ
[j]
j ⊆ Γ0, whence we get, by (50) and the definition of

Choice, that h(Γ0,∆0) ∈ Choice†j(h(Γj ,∆j)) = f(j). Similarly, if i ∈ Ag(B), then, by the

choice of (51), ∆
[i]
i ⊆ ∆0, whence we get, by (50) and the definition of Choice, that

h(Γ0,∆0) ∈ Choice†i (h(Γi,∆i)) = f(i). Summing up, we obtain that:

h(Γ0,∆0) ∈
⋂

j∈Ag(A)∪Ag(B)

f(j) 6= ∅,

and (IA) is thus satisfied.

For the defined model S, we show the following truth lemma:

Lemma 9. Let S be as defined above, let (Γ,∆) be a standard pair, let C ∈ L
Ag(A)
|Γ| ,

and let D ∈ L
Ag(B)
|∆| . Then:

1. S, †, h(Γ,∆) |= C ⇔ C ∈ Γ;

2. S, †, h(Γ,∆) |= D ⇔ D ∈ ∆.

Proof. We show Part 1, the other part is similar. The proof proceeds by induction on
the construction of C.

Basis. C = p ∈ |Γ|. Then:

S, †, h(Γ,∆) |= p ⇔ (†, h(Γ,∆)) ∈ V (p) ⇔ p ∈ Γ,

by the definition of V above.
Induction step. The Boolean cases are strightforward. We treat the modal cases:
Case 1. C = ✷D. (⇐) Assume that ✷D ∈ Γ and take an arbitrary g ∈ HS

† . We
will show that S, †, g |= D. Indeed, we must have g = h(Γ0,∆0) for an appropriate
standard pair (Γ0,∆0). By Lemma 7, we must have Γ✷ = Ξ✷

0 = Γ✷

0 , whence it follows
that ✷D ∈ Γ0. By S5 properties of ✷ and (Ag(A), |A|)-maxiconsistency of Γ0, it follows
further that D ∈ Γ0, whence S, †, g(= h(Γ0,∆0)) |= D by induction hypothesis. Since g

was chosen in HS

† arbitrarily, it follows that S, †, h(Γ,∆) |= ✷D.
(⇒). Assume that ✷D /∈ Γ. By (Ag(A), |A|)-maxiconsistency of Γ, we must have

then that ¬✷D ∈ Γ, which, by Lemma 6.1, means that the pair (Γ✷ ∪ {¬D},∆✷)
must be inseparable. By Lemma 7, we know that also the pair (Ξ✷

0 ∪ {¬D},Ξ✷

1 ) must
be inseparable. We then extend the latter pair, using Lemma 3.1, to a standard pair
(Γ0,∆0). It is clear that D /∈ Γ0, hence, by induction hypothesis, S, †, h(Γ0,∆0) 6|= D.

Since h(Γ0,∆0) ∈ HS

† , this further means that S, †, h(Γ,∆) 6|= ✷D, as desired.
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Case 2. C = [j]D for some j ∈ Ag(A). (⇐) Assume that [j]D ∈ Γ and take an

arbitrary g ∈ Choice†j(h(Γ,∆)). We will show that S, †, g |= D. Indeed, we must have

g = h(Γ0,∆0) for an appropriate standard pair (Γ0,∆0). Given that h(Γ0,∆0) = g ∈ Choice†j(h(Γ,∆)),

we must also have, by the definition of Choice, that Γ[j] ⊆ Γ0. Therefore, [j]D ∈ Γ0,
and it follows by S5 properties of [j] and (Ag(A), |A|)-maxiconsistency of Γ0, that also
D ∈ Γ0 whence S, †, g(= h(Γ0,∆0)) |= D by the induction hypothesis. Since g was

chosen in Choice†j(h(Γ,∆)) arbitrarily, we have shown that S, †, h(Γ,∆) |= [j]D.
(⇒). Assume that [j]D /∈ Γ. By (Ag(A), |A|)-maxiconsistency of Γ, we must have

then that ¬[j]D ∈ Γ, which, by Lemma 6.3, means that the pair (Γ✷∪Γ[j]∪{¬D},∆✷)
must be inseparable. By Lemma 7, we know that also the pair (Ξ✷

0 ∪ Γ[j] ∪ {¬D},Ξ✷

1 )
must be inseparable. We then extend the latter pair, using Lemma 3.1, to a standard
pair (Γ0,∆0). It is clear thatD /∈ Γ0, hence, by induction hypothesis,S, †, h(Γ0,∆0) 6|= D.

We also clearly have Γ[j] ⊆ Γ0, which means that h(Γ0,∆0) ∈ Choice†j(h(Γ,∆)). There-
fore, we get that S, †, h(Γ,∆) 6|= [j]D, as desired.

We can now finish our proof of Theorem 1 by recalling the fact that we have,
according to the above assumption, both A ∈ Ξ0 and ¬B ∈ Ξ1, so that it follows from
Lemma 9, that:

S, †, h(Ξ0,Ξ1) |= A ∧ ¬B.

The latter is in contradiction with the assumption that ⊢ A → B, and this contradiction
means that there must be an interpolant for this implication.

4 The case n > 3

The main result of this section looks as follows:

Theorem 2. For every n > 3, stit logic does not have (RCIP )n.

Again, we start with some technicalities:

Lemma 10. Let j1, j2, j3, j4 ∈ Ag and propositional variables p, q, r be pairwise differ-
ent. Then:

⊢ ✸([j1]p ∧ [j2](p → q)) → ¬✸([j3]r ∧ [j4](r → ¬q)).

Proof. We reason as follows:

✸([j1]p ∧ [j2](p → q)) ∧✸([j3]r ∧ [j4](r → ¬q)) (premise) (55)

✸([j1]p ∧ [j2](p → q)) → (✸[j1]p ∧✸[j2](p → q)) (✷ is S5) (56)

✸([j3]r ∧ [j4](r → ¬q)) → (✸[j3]r ∧✸[j4](r → ¬q)) (✷ is S5) (57)

✸[j1]p ∧✸[j2](p → q) ∧✸[j3]r ∧✸[j4](r → ¬q) (from (55)–(57)) (58)

✸([j1]p ∧ [j2](p → q) ∧ [j3]r ∧ [j4](r → ¬q)) (from (58), (A3)) (59)

([j1]p ∧ [j2](p → q) ∧ [j3]r ∧ [j4](r → ¬q)) →

→ (p ∧ (p → q) ∧ r ∧ (r → ¬q)) ([j1]–[j4] are S5) (60)

([j1]p ∧ [j2](p → q) ∧ [j3]r ∧ [j4](r → ¬q)) → ⊥ (from (60) by prop. logic) (61)

✸([j1]p ∧ [j2](p → q) ∧ [j3]r ∧ [j4](r → ¬q)) → ⊥ (from (61) since ✷ is S5) (62)

⊥ (from (59) and (62)) (63)
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Definition 2. Let S = 〈Tree,≤, Choice, V 〉 and S
′ = 〈Tree′,≤′, Choice′, V ′〉 be

(Ag, V )-stit models, and let m ∈ Tree and m′ ∈ Tree′. Relation B ∈ HS
m ×HS

′

m′ we
will call a bisimulation between (S,m) and (S′,m′), iff the domain of B is HS

m, the
counter-domain of B is HS

′

m′ , and the following holds for all p ∈ V , all j ∈ Ag, all

h1, h2 ∈ HS
m and all h′

1, h
′
2 ∈ HS

′

m′ :

h1 B h′
1 ⇒ (S,m, h1 |= p ⇔ S

′,m′, h′
1 |= p) (atoms)

(h1 B h′
1&h2 ∈ Choicemj (h1)) ⇒ (∃h′

3 ∈ (Choice′)m
′

j (h′
1))(h2 B h′

3) (forth)

(h1 B h′
1&h′

2 ∈ (Choice′)m
′

j (h′
1)) ⇒ (∃h3 ∈ Choicemj (h1))(h3 B h′

2) (back)

We show that existence of a bisimulation implies the equality of theories:

Lemma 11. Let S = 〈Tree,≤, Choice, V 〉 and S
′ = 〈Tree′,≤′, Choice′, V ′〉 be (Ag, V )-

stit models, and let B ∈ HS
m × HS

′

m′ be a bisimulation between (S,m) and (S′,m′).

Then, for all A ∈ LAg
V and all h1 ∈ HS

m and h′
1 ∈ HS

′

m′ :

h1 B h′
1 ⇒ (S,m, h1 |= A ⇔ S

′,m′, h′
1 |= A).

Proof. By induction on the construction of A. The basis follows from (atoms), and the
Boolean cases in the induction step are trivial. We consider the modal cases:

Case 1. A has the form ✷B. (⇒) Assume that S,m, h1 |= ✷B and let h′
2 ∈ HS

′

m′

be arbitrary. Then, since the counter-domain of B is HS
′

m′ , choose any h2 ∈ HS
m

such that h2 B h′
2. We have S,m, h2 |= B, whence, by induction hypothesis, it

follows that S
′,m′, h′

2 |= B. Since h′
2 ∈ HS

′

m′ was chosen arbitrarily, we infer that
S

′,m′, h′
1 |= ✷B = A. (⇐) Similarly to the (⇒)-part, using this time the fact that the

domain of B is HS
m .

Case 2. A has the form [j]B for some j ∈ Ag. (⇒) Assume thatS,m, h1 |= [j]B and
let h′

2 ∈ Choice′m
′

j (h′
1) be arbitrary. Using condition (back), choose a h3 ∈ Choicemj (h1)

such that h3 B h′
2. We have S,m, h3 |= B, whence, by induction hypothesis, it follows

that S
′,m′, h′

2 |= B. Since h′
2 ∈ Choice′m

′

j (h′
1) was chosen arbitrarily, we infer that

S
′,m′, h′

1 |= [j]B = A. (⇐) Similarly to the (⇒)-part, using this time condition (forth)
instead of (back).

Now we need to define two models: a ({1, 2, 3, 4}, {p, q})-stitmodelS = 〈Tree,≤, Choice, V 〉,
and a ({1, 2, 3, 4}, {q, r})-stit model S′ = 〈Tree′,≤′, Choice′, V ′〉 to be used in the
proof of Theorem 2. First, we define one auxiliary set:

4Tup := {(a, b, c, d)+, (a, b, c, d)− | a, b, c, d ∈ {0, 1}}.

Next, we start with the definitions of the models, beginning with their temporal sub-
structures.

Definition 3. We set:

1. Tree := {†} ∪ 4Tup.

2. ≤ is the reflexive closure of {(†,m) | m ∈ 4Tup}.
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3. Tree′ := {‡} ∪ 4Tup.

4. ≤′ is the reflexive closure of {(‡,m) | m ∈ 4Tup}.

For an integer 1 ≤ j ≤ 4, by the j-th projection of m ∈ 4Tup = Tree ∩ Tree′

we will mean the j-th projection of the corresponding 4-tuple, regardless of whether
m is signed by + or −. Thus, for any appropriate a, b, c, d ∈ {0, 1}, the two ele-
ments (a, b, c, d)+ and (a, b, c, d)− have the same j-th projection for every 1 ≤ j ≤ 4.
For an m ∈ 4Tup and an integer 1 ≤ j ≤ 4, the j-th projection of m will be de-
noted by prj(m). The element from {+,−} by which m is signed, we will denote
sign(m) so that, e.g., sign((a, b, c, d)+) = +. Finally, the complete 4-tuple signed
by sign(m) will be called the core of m and will be denoted by core(m) so that
core(m) = (pr1(m), pr2(m), pr3(m), pr4(m)).

The history structure induced by these definitions is as follows. For S we get that:

Hist(S) = {hm = (†,m) | m ∈ 4Tup} = HS

† (64)

Similarly, for S′ we get that:

Hist(S′) = {gm = (‡,m) | m ∈ 4Tup} = HS
′

‡ (65)

Once we know the sets of histories induced by S and S
′, respectively, it is immediate

to deduce the fans of histories passing through any given moment in these models.
Namely, it follows that:

HS

† = Hist(S), HS

m = {hm}, for all m ∈ 4Tup (66)

and:
HS

′

‡ = Hist(S′), HS
′

m = {gm}, for all m ∈ 4Tup (67)

This insight into the history structure allows for a handy definition of choice func-
tions and variable evaluations for the two models:

Definition 4. We set that:

1. Choice†j = {{hm | prj(m) = 0}, {hm | prj(m) = 1}} for all 1 ≤ j ≤ 4.

2. Choicemj = {HS
m} = {{hm}} for all m ∈ 4Tup and 1 ≤ j ≤ 4.

3. V (p) = {(†, hm) | pr1(m) = 0},

V (q) = {(†, hm) | (pr1(m) = pr2(m) = 0)∨(pr3(m) = pr4(m) = 0)∨sign(m) = +}.

4. Choice′‡j = {{gm | prj(m) = 0}, {gm | prj(m) = 1}} for all 1 ≤ j ≤ 4.

5. Choice′mj = {HS
′

m } = {{gm}} for all m ∈ 4Tup and 1 ≤ j ≤ 4.

6. V ′(q) = {(‡, gm) | (pr3(m) = pr4(m) = 0)∨(sign(m) = +&(pr3(m) 6= 1∨pr4(m) 6= 0))},

V ′(r) = {(‡, gm) | pr3(m) = 1}.

We now establish a number of further lemmas and corollaries.

Corollary 1. Let 1 ≤ j ≤ 4. Then Choice†j(hm) = {hm1 | prj(m) = prj(m1)} and

Choice′‡j (gm) = {gm1 | prj(m) = prj(m1)} for all m ∈ 4Tup.
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Proof. The Corollary follows immediately from Definition 4.1 and 4.4, and the fact
that for every m ∈ 4Tup we have either prj(m) = 0 or prj(m) = 1.

Lemma 12. S, as given in Definitions 3 and 4, is a ({1, 2, 3, 4}, {p, q})-stit model,
whereas S

′, as given in the same Definitions, is a ({1, 2, 3, 4}, {q, r})-stit model.

Proof. We consider S first. Indeed, ≤ is obviously a forward-branching partial or-
der and † is the ≤-least element in Tree so that (HC) is satisfied. Also, there
are no undivided histories at any moment of Tree so that (NCUH) is also satisfied
trivially. Next, for any m ∈ 4Tup and 1 ≤ j ≤ 4, Choicemj is a trivial parti-

tion of HS
m . As for † itself, we have, by Definition 4.1, that, for any 1 ≤ j ≤ 4,

Choice†j = {{hm | prj(m) = 0}, {hm | prj(m) = 1}}, which is obviously a pair of

disjoint subsets of HS

† = Hist(S) such that their union makes up HS

† = Hist(S) it-

self. The non-emptiness of both sets in this pair follows from the fact that (0, 0, 0, 0)+

and (1, 1, 1, 1)+ are in 4Tup. Finally, we tackle (IA). Assume that f is defined on
{1, 2, 3, 4} in such a way that, for a given m ∈ Tree, we have f(j) ∈ Choicemj for

all 1 ≤ j ≤ 4. If m 6= †, then clearly
⋂

1≤j≤4 f(j) = HS
m 6= ∅. On the other

hand, if m = †, then, for every 1 ≤ j ≤ 4, choose an hj ∈ f(j) so that we get

f(j) = Choice†j(hj) for all 1 ≤ j ≤ 4. Then it follows from (64) that, for every
1 ≤ j ≤ 4, there must exist an mj ∈ 4Tup such that hj = hmj

. But then, consider the
4-tuple m0 = (pr1(m1), pr2(m2), pr3(m3), pr4(m4))

+. It is immediate from Definition

4.1 and Corollary 1 that for every 1 ≤ j ≤ 4 we have hm0 ∈ Choice†j(hmj
) = f(j)

whence hm0 ∈
⋂

1≤j≤4 f(j) 6= ∅.
The proof of the Lemma for S′ is similar.

Lemma 13. We have both:

S, †, hm |= ✸([1]p ∧ [2](p → q)),

and:

S
′, ‡, gm |= ✸([3]r ∧ [4](r → ¬q)),

for all m ∈ 4Tup.

Proof. As for the first part of the Lemma, let m := (0, 0, 0, 0)+ and consider hm. If

h ∈ Choice†1(hm) is chosen arbitrarily, then, by (66), h = hm1 for some m1 ∈ 4Tup
and, moreover, pr1(m1) = pr1(m) = 0. But then, by Definition 4.3, (†, hm1) ∈ V (p)

so that S, †, hm1 |= p. Since hm1 ∈ Choice†1(hm) was arbitrary, this means that
S, †, hm |= [1]p.

Furthermore, let h ∈ Choice†2(hm) be chosen arbitrarily. Then, again by (66),
h = hm1 for some m1 ∈ 4Tup and, moreover, pr2(m1) = pr2(m) = 0. If S, †, hm1 |= p,
this means that (†, hm1) ∈ V (p) so that also pr1(m1) = 0. But in this case we will have
pr1(m1) = pr2(m1) = 0 which means that also S, †, hm1 |= q. Thus we have shown,

for an arbitrary hm1 ∈ Choice†2(hm), that whenever S, †, hm1 |= p, it is also the case
that S, †, hm1 |= q whence it follows that S, †, hm |= [2](p → q).

Summing up, we must haveS, †, hm |= [1]p∧[2](p → q) form = (0, 0, 0, 0)+, whence,
given the semantics of ✷ and (66), it follows that S, †, hm |= ✸([1]p ∧ [2](p → q)) for
all m ∈ 4Tup.
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Turning now to the second part of the Lemma, we set m := (0, 0, 1, 0)+ and con-

sider gm. If g ∈ Choice′‡3 (gm) is chosen arbitrarily, then, by (66), g = gm1 for some
m1 ∈ 4Tup and, moreover, pr3(m1) = pr3(m) = 1. But then, by Definition 4.6,

(‡, gm1) ∈ V ′(r) so that S
′, ‡, gm1 |= r. Since gm1 ∈ Choice′‡3 (gm) was arbitrary, this

means that S′, ‡, gm |= [3]r.

Furthermore, let g ∈ Choice′‡4 (gm) be chosen arbitrarily. Then, again by (66),
g = gm1 for some m1 ∈ 4Tup and, moreover, pr4(m1) = pr4(m) = 0. If S′, ‡, gm1 |= r,
this means that (‡, gm1) ∈ V ′(r) so that also pr3(m1) = 1. But in this case we will
have both pr3(m1) = 1 and pr4(m1) = 0 which means that also S

′, ‡, gm1 |= ¬q. Thus

we have shown, for an arbitrary gm1 ∈ Choice′‡4 (gm), that whenever S′, ‡, gm1 |= r, it
is also the case that S′, ‡, gm1 |= ¬q whence it follows that S′, ‡, gm |= [4](r → ¬q).

Summing up, we must have S
′, ‡, gm |= [3]r ∧ [4](r → ¬q) for m = (0, 0, 1, 0)+,

which means, given the semantics of ✷ and (67), that S′, ‡, gm |= ✸([3]r∧ [4](r → ¬q))
for all m ∈ 4Tup.

In what follows we letSq andS
′
q stand for the reducts ofS andS

′ to ({1, 2, 3, 4}, {q})-
stit models.

Lemma 14. The relation B := {(hm, gm1) | (m,m1 ∈ 4Tup), &((†, hm) ∈ V (q) ⇔ (‡, gm1) ∈ V ′(q))}
is a bisimulation between (Sq, †) and (S′

q, ‡).

Proof. We first note that it follows from Definition 4.6 that (‡, g(0,0,0,0)+) ∈ V ′(q) and
(‡, g(0,0,1,0)+) /∈ V ′(q). Now if m ∈ 4Tup then either (†, hm) ∈ V (q) or (†, hm) /∈ V (q).
In the former case, we get hm B g(0,0,0,0)+ , in the latter case we get hm B g(0,0,1,0)+ .

Therefore, by (64) and (66), the domain of B is {hm | m ∈ 4Tup} = HS

† , as desired.
As for the counterdomain, we may argue in the same fashion, noting that it follows
from definition of V that (†, h(0,0,0,0)+) ∈ V (q) and (†, h(0,1,0,1)−) /∈ V (q). Thus, we

also get that the counterdomain of B is {gm | m ∈ 4Tup} = HS
′

‡ .
The condition (atoms) from Definition 2 holds simply by definition of B. It remains

to check the other two conditions in this definition.
Condition (forth). Assume that m1,m2,m3 ∈ 4Tup and 1 ≤ j ≤ 4 are such that

we have both hm1 B gm2 and hm3 ∈ Choice†j(hm1). We need to consider the following
cases:

Case 1. We have (†, hm1) ∈ V (q) ⇔ (†, hm3) ∈ V (q). Then note that we have both

gm2 ∈ Choice′‡j (gm2) and hm3 B gm2 , the latter by definition of B.
Case 2. We have (†, hm1) ∈ V (q), but (†, hm3) /∈ V (q).
Case 2a. We have core(m2) 6= (a, b, 0, 0) for all a, b ∈ {0, 1}. Then we must have

(‡, gcore(m2)−) /∈ V ′(q) so that hm3 B gcore(m2)− . On the other hand, we have, by the

identity of cores and Corollary 1, that gcore(m2)− ∈ Choice′‡j (gm2).
Case 2b. We have core(m2) = (a, b, 0, 0) for some a, b ∈ {0, 1}. Now, if j ∈ {1, 2, 4}

we note that form4 := (a, b, 1, 0)+ we have gm4 ∈ Choice′‡j (gm2) and also (‡, gm4) /∈ V ′(q)

so that hm3 B gm4 . On the other hand, if j = 3, then we set m4 := (a, b, 0, 1)− and,

again, get gm4 ∈ Choice′‡j (gm2) and also (‡, gm4) /∈ V ′(q) so that hm3 B gm4 .
Case 3. We have (†, hm1) /∈ V (q), but (†, hm3) ∈ V (q). Then, by hm1 B gm2 , also

(‡, gm2) /∈ V ′(q) which means that core(m2) 6= (a, b, 0, 0) for all a, b ∈ {0, 1}.
Case 3a. We have, moreover, that core(m2) 6= (a, b, 1, 0) for all a, b ∈ {0, 1}. Then

we must have (‡, gcore(m2)+) ∈ V ′(q) so that hm3 B gcore(m2)+ . On the other hand, we
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have, by the identity of cores and Corollary 1, that gcore(m2)+ ∈ Choice′‡j (gm2).
Case 3b. We have core(m2) = (a, b, 1, 0) for some a, b ∈ {0, 1}. Now, if j ∈ {1, 2, 4}

we note that form4 := (a, b, 0, 0)+ we have gm4 ∈ Choice′‡j (gm2) and also (‡, gm4) ∈ V ′(q)

so that hm3 B gm4 . On the other hand, if j = 3, then we set m4 := (a, b, 1, 1)+ and,

again, get gm4 ∈ Choice′‡j (gm2) and also (‡, gm4) ∈ V ′(q) so that hm3 B gm4 .
Condition (back). Assume that m1,m2,m3 ∈ 4Tup and 1 ≤ j ≤ 4 are such that

we have both hm1 B gm2 and gm3 ∈ Choice′‡j (gm2). We need to consider the following
cases:

Case 1. We have (‡, gm2) ∈ V ′(q) ⇔ (‡, gm3) ∈ V ′(q). Then note that we have both

hm1 ∈ Choice†j(hm1) and hm1 B gm3 , the latter by definition of B.
Case 2. We have (‡, gm2) ∈ V ′(q), but (‡, gm3) /∈ V ′(q).
Case 2a. For all a, b ∈ {0, 1}, we have both m1 6= (a, b, 0, 0) and m1 6= (0, 0, a, b).

Then we must have (†, hcore(m1)−) /∈ V (q) so that hcore(m1)− B gm3 . On the other

hand, we have, by the identity of cores, that hcore(m1)− ∈ Choice†j(hm1).
Case 2b. We have core(m1) = (0, 0, 0, 0). Now, if j ∈ {1, 3}, we note that for

m4 := (0, 1, 0, 1)− we have gm4 ∈ Choice†j(hm1) and also (†, hm4) /∈ V (q) so that

h(0,1,0,1)− B gm3 . On the other hand, if j ∈ {2, 4}, then we set m4 := (1, 0, 1, 0)−

and, again, get h(1,0,1,0)− ∈ Choice†j(hm1) and also (†, h(1,0,1,0)−) /∈ V (q) so that
h(1,0,1,0)− B gm3 .

Case 2c. We have core(m1) = (0, 0, a, b) for some a, b ∈ {0, 1} such that (a, b) 6= (0, 0).
Then we have to instantiate j:

For j = 1, we set m4 := (0, 1, a, b)−.
For j ∈ {2, 3, 4}, we set m4 := (1, 0, a, b)−.

Under these settings, we always get both hm4 ∈ Choice†j(hm1) for the respective j,
and (†, hm4) /∈ V (q) so that hm4 B gm3 .

Case 2d. We have core(m1) = (a, b, 0, 0) for some a, b ∈ {0, 1} such that (a, b) 6= (0, 0).
Then we have to instantiate j:

For j ∈ {1, 2, 3}, we set m4 := (a, b, 0, 1)−.
For j = 4, we set m4 := (a, b, 1, 0)−.

Under these settings, we always get both hm4 ∈ Choice†j(hm1) for the respective j,
and (†, hm4) /∈ V (q) so that hm4 B gm3 .

Case 3. We have (‡, gm2) /∈ V ′(q), but (‡, gm3) ∈ V ′(q). Then we must have
(†, hcore(m1)+) ∈ V (q) so that hcore(m1)+ B gm3 . On the other hand, we have, by the

identity of cores and Corollary 1, that hcore(m1)+ ∈ Choice†j(hm1).

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Assume for reductio, that stit logic has (RCIP )n for some n > 3.
Then n ≥ 4 and both A := ✸([1]p∧ [2](p → q)) and B := ¬✸([3]r∧ [4](r → ¬q)) are in

L
{1,...,n}
{p,q,r} . By Lemma 10, we have ⊢ A → B, therefore, by Definition 1, there must be

a C ∈ L
{1,2,3,4}
{q} such that both ⊢ A → C and ⊢ C → B. We choose such a C and note

that, by Lemma 13, we haveS, †, h(0,0,0,0)+ |= A, therefore, by ⊢ A → C and the strong
completeness of S w.r.t. stit logic, we must also have S, †, h(0,0,0,0)+ |= C. The latter

means that, moreover, Sq, †, h(0,0,0,0)+ |= C, since C ∈ L
{1,2,3,4}
{q} . Note that it follows

from the definition of B as given in Lemma 14 that h(0,0,0,0)+ B g(0,0,0,0)+ , therefore,
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it follows from Lemmas 14 and 11 that also S
′
q, ‡, g(0,0,0,0)+ |= C. Again, by the fact

that C ∈ L
{1,2,3,4}
{q} , we infer that S′, ‡, g(0,0,0,0)+ |= C, whence it follows by ⊢ C → B,

that we must also have S
′, ‡, g(0,0,0,0)+ |= B. But the latter is in contradiction with

Lemma 13 which says that, on the contrary, S′, ‡, g(0,0,0,0)+ 6|= B. So we have got our
contradiction in place.

5 Further developments and ramifications

The main topic of this paper is the Restricted Interpolation Property as given
by Definition 1. This property is much weaker than the simple Craig Interpolation
Property which has attracted much more attention in the existing literature, and for
a good reason. In the context of stit logic, we may formulate the Craig Interpolation
Property as follows:

Definition 5. Stit logic has the n-Craig Interpolation Property (abbreviated by (CIP )n)

iff for any set of propositional variables V , and all A,B ∈ L
{1,...,n}
V , whenever ⊢ A → B,

then there exists a C ∈ L
Ag(A)∪Ag(B)
|A|∩|B| such that both ⊢ A → C and ⊢ C → B.

Then the relevance of the above results to this latter much more important version
of interpolation can be summed up in two following corollaries:

Corollary 2. For all positive integers n, if stit logic does not have (RCIP )n, then stit
logic does not have (CIP )n.

Proof. Immediately from Definition 1 and Definition 5.

Corollary 3. For all n > 3, stit logic does not have (CIP )n.

Proof. Immediately from Corollary 2 and Theorem 2.

Thus we may infer from the results of the above sections that stit logic fails (CIP )n
for almost all positive integers n. The failure of (CIP )n further entails, by the standard
argument, the failure of the Robinson Consistency Property for the respective values
of n. Furthermore, Theorem 1 allows us to considerably limit our search for counterex-
amples to (CIP )n for the remaining few values of n. Namely, it follows from Theorem
1 that whenever ⊢ A → B does not have an interpolant in the sense of Definition 5,
then we must have Ag(A) ∩Ag(B) 6= ∅.

Turning again to the Robinson Consistency Property and its variants, Definition 1
raises a natural question whether (RCIP )n has its accompanying restricted version of
the Robinson Consistency Property. The answer is yes, and the respective version of
the Robinson Consistency Property can be formulated as follows:

Definition 6. Stit logic has the Restricted n-Robinson Consistency Property (abbrevi-

ated by (RRCP )n) iff for any set of propositional variables V , and all Γ,∆ ⊆ L
{1,...,n}
V ,

if (Γ,∆) is inseparable, then Γ ∪∆ is consistent.

On the basis of this definition and the proofs given in Sections 3 and 4, the following
theorem can be established:

Theorem 3. For every positive integer n, stit logic has (RRCP )n iff it has (RCIP )n.
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Proof (a sketch). By a standard argument, one can show that whenever stit logic fails
(RCIP )n, it also fails (RRCP )n. In the other direction, an obvious modification of the
proof of Theorem 1 given above shows that stit logic has (RRCP )n for all n ≤ 3.

Finally, we tackle the question of the logical status of action modalities. Definition
1 treats action modalities of the form [j] for a j ∈ Ag as logical symbols, and this is
in accordance with the standard view of modalities. But it is easy to see that one can
also argue in favor of non-logical status of these modalities, since the agent indices are
often treated as proper names of respective agents, and proper names are non-logical.
If this attitude is carried out systematically, then we get the following strengthening
of Definition 1:

Definition 7. Stit logic has the Strong Restricted n-Craig Interpolation Property (ab-

breviated by (SRCIP )n) iff for any set of propositional variables V , and all A,B ∈ L
{1,...,n}
V ,

whenever ⊢ A → B and Ag(A)∩Ag(B) = ∅, then there exists a C ∈ L∅
|A|∩|B| such that

both ⊢ A → C and ⊢ C → B.

One immediately sees that (SRCIP )n only differs from (RCIP )n in placing stricter
requirements on the interpolant. Therefore, for any given positive integer n, the failure
of (RCIP )n for stit logic entails the failure of (SRCIP )n so that it follows from
Theorem 2 that stit logic fails (SRCIP )n for all positive integers n > 3. This result,
however, can be improved as follows:

Theorem 4. For every n > 1, stit logic does not have (SRCIP )n.

In order to prove this theorem, we again need to establish a number of technical
claims:

Lemma 15. Let j1, j2 ∈ Ag be different and let p be a propositional variable. Then:

⊢ ✸[j1]p → ¬✸[j2]¬p.

Proof. We reason as follows:

(✸[j1]p ∧✸[j2]¬p) → ✸([j1]p ∧ [j2]¬p) (by (A3)) (68)

([j1]p ∧ [j2]¬p) → ⊥ ([j1], [j2] are S5) (69)

✸([j1]p ∧ [j2]¬p) → ⊥ (from (69) since ✷ is S5) (70)

(✸[j1]p ∧✸[j2]¬p) → ⊥ (from (68) and (70)) (71)

Lemma 16. Let S = 〈Tree,≤, Choice, V 〉 and S
′ = 〈Tree′,≤′, Choice′, V ′〉 be an

(Ag, V )-stit model and an (Ag′, V )-stit model, respectively, and let m ∈ Tree and
m′ ∈ Tree′. Let relation B ⊆ HS

m × HS
′

m′ be such that the domain of B is HS
m, the

counter-domain of B is HS
′

m′ , and assume that B satisfies condition (atoms). Then,

whenever A ∈ L∅
V , we will have, for all h1 ∈ HS

m and h′
1 ∈ HS

′

m′ :

h1 B h′
1 ⇒ (S,m, h1 |= A ⇔ S

′,m′, h′
1 |= A).

Proof. We reason in the same way as in the proof of Lemma 11, the only difference
being that Case 2 in the induction step can be omitted.
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We are now in a position to prove Theorem 4.

Proof of Theorem 4. Consider the following sets and structures:

• Tr = {m,m0,m1}.

• ✂ is the reflexive closure of the relation {(m,m0), (m,m1)}.

The two histories induced by (Tr,✂) are h0 = {m,m0} and h1 = {m,m1}. We now
define two further sets:

• U = {(m,h0)}.

• F = {(m, {{h0}, {h1}}), (m0, {{h0}}), (m1, {{h1}})}.

It is immediate to establish that the structure Mj,p = (Tr,✂, Fj , Up), in which if Fj

interprets F as the choice function for a given single agent j and Up interprets U as
the evaluation for a given single propositional variable p, is a ({j}, {p})-stit structure.

We now consider two stit models, M1,p and M2,p, and we set B as the diagonal
of Hist(Tr,✂), in other words, we set B := {(h0, h0), (h1, h1)}. It is clear that B
satisfies the conditions of Lemma 16 so that for every C ∈ L∅

{p} which contains no

action modalities, we will have:

M1,p,m, h0 |= C ⇔ M2,p,m, h0 |= C. (72)

Now assume that (SRCIP )n holds for any n greater than one. We will show that this
assumption leads to a contradiction. Indeed, it follows then from Lemma 15 that there
must be a formula C ∈ L∅

{p} such that the following holds:

⊢ ✸[1]p → C (73)

⊢ C → ¬✸[2]¬p (74)

Choose any such C. We obviously have M1,p,m, h0 |= ✸[1]p so that it follows from (73)
and the soundness of S that M1,p,m, h0 |= C, whence, by (72), also M2,p,m, h0 |= C.
From the latter, together with (74), it follows that we should haveM2,p,m, h0 |= ¬✸[2]¬p,
whereas the direct check shows that we in fact have M2,p,m, h0 |= ✸[2]¬p. Thus we
have got our contradiction in place.

The Strong Restricted Craig Interpolation Property admits of the following unre-
stricted companion:

Definition 8. Stit logic has the Strong n-Craig Interpolation Property (abbreviated by

(SCIP )n) iff for any set of propositional variables V , and all A,B ∈ L
{1,...,n}
V , there

exists a C ∈ L
Ag(A)∩Ag(B)
|A|∩|B| such that both ⊢ A → C and ⊢ C → B.

Of course, for a given positive integer n, (SCIP )n is at least as strong as (SRCIP )n,
whence we get the following corollary to Theorem 4:

Theorem 5. For every n > 1, stit logic does not have (SCIP )n.
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6 Conclusion

In the preceding text, we have looked into the question of whether stit logic has the
Restricted n-Craig Interpolation Property, showing that the answer is in the affirma-
tive iff n ≤ 3. We have also briefly looked into some related properties, showing that
the Restricted Craig Interpolation for stit logic has its natural accompanying version of
the Robinson Consistency Property which turns out to be equivalent to the Restricted
Craig Interpolation for every positive integer n. From these results, we have drawn
the corollary that the unrestricted n-Craig Interpolation fails for stit logic under every
instantiation of n > 3, that is to say, for almost all positive integers n. We have also
shown that if one treats action modalities as non-logical symbols, the scope of interpo-
lation failures extends to include the case when n ∈ {2, 3}, and this extension occurs
for the strengthened versions of both unrestricted and restricted n-Craig Interpolation
Property.

The import of this almost universal failure of Craig Interpolation for stit logic can be
seen sharper if one takes into an account that the axiomatic system S for this logic, as
given in Section 2 above, suggests that stit logic is an extension of propositional multi-
S5. It is a well-known fact, see e.g. [12], that multi-S5 has the Craig Interpolation
Property.5 Thus the fact that this property fails for stit logic highlights the fact that
the difference between multi-S5 and stit logic is quite substantial. Another conclusion
is that, in extending multi-S5, stit logic upsets the delicate balance between deductive
power and expressivity which is present in multi-S5.

As the main problem for the future research remains the question whether unre-
stricted n-Craig Interpolation Property holds for all or at least some n ≤ 3 and whether
the natural Robinson Consistency companions of the n-Craig Interpolation Property
can be distinguished from this property on this, rather limited, set of values.
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