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Abstract

Bernard Bolzano (1781-1848) is commonly thought to have attempted to develop

a theory of size for infinite collections that follows the so-called part-whole principle,

according to which the whole is always greater than any of its proper parts. In this

paper, we develop a novel interpretation of Bolzano’s mature theory of the infinite

and show that, contrary to mainstream interpretations, it is best understood as a

theory of infinite sums. Our formal results show that Bolzano’s infinite sums can be

equipped with the rich and original structure of a non-commutative ordered ring,

and that Bolzano’s views on the mathematical infinite are, after all, consistent.

Introduction

Bernard Bolzano (1781-1848) was a Bohemian priest with eclectic interests ranging from

logic and mathematics to political and moral philosophy. One of his more famous writings

is a booklet his pupil Př́ıhonský published under the title Paradoxien des Unendlichen

(from now on PU for short), Paradoxes of the Infinite. Likely contributing to its fame,
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this booklet was read and referred to by both Cantor and Dedekind. Perhaps because

of this association, the booklet is also routinely interpreted as a text anticipating several

ideas of Cantor’s transfinite set theory (cf. Berg 1962, 1992; Šebest́ık 1992; Rusnock

2000), especially in sections §§29-33, in which Bolzano sketches a “calculation of the

infinite”. As a consequence, appraisal of the PU is almost exclusively conducted in terms

of how much Bolzano’s work on the infinite agrees with later developments in set theory.

In particular, many shortcomings of Bolzano’s calculation of the infinite are attributed

to his adherence to the part-whole principle:

PW1 For any sets A,B, if A Ĺ B, then sizepAq ă sizepBq.

In the case of infinite sets, it is well-known that this principle contradicts the bijec-

tion principle, according to which the existence of a one-to-one correspondence between

two sets is a necessary and sufficient condition for the equality of their sizes. One locus

classicus for the tension between these two principles is the seventeenth-century dialogue

of Galileo’s Discourses and Mathematical Demonstrations Relating to Two New Sciences

(Galileo 1958, pp. 44-45). The characters debate among themselves the example of the

set of natural numbers N, which can be put into one-to-one correspondence with the

proper subset Np2q of square natural numbers. Thus N and Np2q have the same size ac-

cording to the bijection principle, while the size of Np2q is strictly smaller than that of N

according to PW1. While Bolzano is commonly taken to have adopted PW1 in the PU,

Cantor successfully founded his theory of powers and cardinal numbers on the bijection

principle. Thus, as long as Cantor’s way out of Galileo’s paradox is perceived as the

“right” way to compute the size of infinite collections, Bolzano’s alternative can only be

seen as an intriguing yet fundamentally flawed attempt.

This privileged status of the bijection principle however has started to be scrutinized

in recent years thanks to a renewed interest in potential alternatives to Cantor’s theory

of the mathematical infinite. In particular, Mancosu (2009) shows that there is a long

historical tradition of thinkers and mathematicians who favored PW1 over the bijection
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principle, and that recent mathematical developments in Benci and Di Nasso (2003) es-

tablish that a consistent theory of the sizes of infinite collections can be founded on PW1

rather than on the bijection principle. This theory, called the theory of numerosities, is

a refinement of the Cantorian theory of cardinals that allows for two sets A and B to be

considered of different sizes even in the presence of a bijection between the two (Benci

and Di Nasso 2003, p. 51). This directly contradicts the claim that Cantor’s theory is the

only viable theory of the infinite, and thus calls for a reappraisal of alternative theories

that until recently had been dismissed as essentially misguided or inconsistent.

Our main goal is to offer such a reappraisal of Bolzano’s mature theory of the math-

ematical infinite. In particular, we propose an interpretation of Bolzano’s calculation of

the infinite in §§29-33 of the PU which stresses its conceptual and mathematical indepen-

dence from set theory proper, and argue that Bolzano is more interested in developing

a theory of infinite sums rather than a way of measuring the sizes of infinite collec-

tions. This leads us to reassess the role that part-whole reasoning plays in Bolzano’s

computations and to provide a formal reconstruction of his position that underscores its

coherence and originality, and is overall a more charitable appreciation of Bolzano’s ideas

on the infinite. In particular, we show that Bolzanian sums in our interpretation form a

non-commutative ordered ring, a well-behaved algebraic structure that nonetheless vastly

differs from Cantorian cardinalities.

We proceed as follows. In Section 1 we discuss several sources of what we call the

received view of the PU, and introduce enough background to set the stage for our novel

interpretation. In Section 2 we focus on Bolzano’s calculation of the infinite and argue

that his work is best understood as a theory of infinite sums. This leads in Sections

3 and 4 to a formal reconstruction of Bolzano’s computations with infinite quantities,

which aims to establish both the consistency and the originality of his position. Finally,

in Section 5, we recap the main points of our formalization and discuss its implications

for the interpretation of the PU.
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1 The received view on the PU

Bolzano’s PU is a short yet ambitious booklet in which the author aims to show that, when

properly defined and handled, the concept of the infinite is not intrinsically contradictory,

and many paradoxes having to do with the infinite in mathematics (but also in physics

and metaphysics) can actually be solved. In the course of addressing the paradoxes

of the infinite in mathematics, Bolzano develops what looks like a theory of transfinite

quantities (§§28-29, 32-33), which is what commentators tend to focus on when appraising

the contents of the PU.

One such commentator is, as is known (Šebest́ık 1992; Rusnock 2000; Ferreirós 2007),

Georg Cantor. Cantor (1883) introduces Bolzano as a proponent of actual infinity, and

specifically actually infinite numbers in mathematics, in contrast to Leibniz’s arguments

against infinite numbers:

Still, the actual infinite such as we confront for example in the well-defined

point sets or in the constitution of bodies out of point-like atoms [. . . ] has

found its most authoritative defender in Bernard Bolzano, one of the most

perceptive philosophers and mathematicians of our century, who has devel-

oped his views on the topic in the beautiful and rich script Paradoxes of the

Infinite, Leipzig 1851. The aim is to prove how the contradictions of the infi-

nite sought for by the sceptics and peripatetics of all times do not exist at all,

as soon as one makes the not always quite easy effort of taking into account

the concepts of the infinite according to their true content. (Cantor 1883 in

Cantor 1932, p. 179)1

And still:

1In this and all other cases for which a published English translation is not cited, the translations are
the authors’. Original German:
Doch den entschiedensten Verteidiger hat das Eigentlich-unendliche, wie es uns beispielsweise in den
wohldefinierten Punktmengen oder in der Konstitution der Körper aus punktuellen Atomen [. . . ] entge-
gentritt, in einem höchst scharfsinnigen Philosophen und Mathematiker unseres Jahrhunderts, in Bernard
Bolzano gefunden, der seine betreffenden Ansichten namentlich in der schönen und gehaltreichen Schrift:
,,Paradoxien des Unendlichen, Leipzig 1851” entwickelt hat, deren Zweck es ist, nachzuweisen, wie die von
Skeptikern und Peripatetikern aller Zeiten im Unendlichen gesuchten Widersprüche gar nicht vorhanden
sind, sobald man sich nur die freilich nicht immer ganz leichte Mühe nimmt, die Unendlichkeitsbegriffe
allen Ernstes ihrem wahren Inhalte nach in sich aufzunehmen.
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Bolzano is perhaps the only one who confers a certain status to actually

infinite numbers, or at least they are often mentioned [by him]; nevertheless I

completely and wholly disagree with the way in which he handles them, not

being able to formulate a proper definition thereof, and I consider for instance

§§29-33 of that book as untenable and wrong. For a genuine definition of

actually infinite numbers, the author is lacking both the general concept of

power, and the accurate concept of number. It is true that the seeds of both

notions appear in a few places in the form of special cases, but it seems to

me he does not work his way through to full clarity and distinction, and this

explains several contradictions and even a few mistakes of this worthwhile

script. (ibid., p. 180)2

Cantor’s comments in many ways set the tone of how the PU are mainly perceived

even today, namely as a rich and interesting essay that nevertheless displays some se-

rious shortcomings. Cantor diagnoses Bolzano’s mistakes as being fundamentally due

to an imprecise characterization of power and number. Without entering a discussion

on Cantorian powers, it is useful for us to notice how Cantor is readily reinterpreting

Bolzano’s text in the light of his own research. The concept and terminology of powers

was Cantor’s own, which he introduced starting from 1878 in his papers. What Cantor

means is that Bolzano did not have the right notion of size for infinite sets, the right

notion being Cantor’s own powers, and this shortcoming causes Bolzano to go astray in

§§29-33. Another aspect of Cantor’s comments on the PU which we want to stress is

that Cantor straightforwardly presents Bolzano’s “calculation of the infinite” (Rechnung

des Unendlichen, §28) as a version of his own transfinite arithmetic, albeit imprecise and

imperfect.

2Bolzano ist vielleicht der einzige, bei dem die eigentlich-unendlichen Zahlen zu einem gewissen Rechte
kommen, wenigstens ist von ihnen vielfach die Rede; doch stimme ich gerade in der Art, wie er mit
ihnen umgeht, ohne eine rechte Definition von ihnen aufstellen zu können, ganz und gar nicht mit ihm
überein und sehe beispielsweise die §§29-33 jenes Buches als haltlos und irrig an. Es fehlt dem Autor zur
wirklichen Begriffsfassung bestimmt-unendlicher Zahlen sowohl der allgemeine Mächtigkeitsbegriff, wie
auch der präzise Anzahlbegriff. Beide treten zwar an einzelnen Stellen ihrem Keime nach in Form von
Spezialitäten bei ihm auf, er arbeitet sich aber dabei zu der vollen Klarheit und Bestimmtheit, wie mir
scheint, nicht durch, und daraus erklären sich viele Inkonsequenzen und selbst manche Irrtümer dieser
wertvollen Schrift.
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All commentaries on the PU we were able to find seem to follow suit from Cantor in

that they evaluate and interpret the PU, and §§29-33 in particular, against the backdrop

of the development of set theory. Thus Bolzano’s PU are about infinite sets according

to editors and translators of Bolzano’s text (e.g., Hans Hahn in Bolzano 1920, Donald

Steele in Bolzano 1950), as well as scholars such as Berg (1992, 1962), Šebest́ık (1992,

2017), Lapointe (2011), Ferreirós (2007) and Rusnock (2000). We now examine the most

informative of these interpretations in some detail.

Among Bolzano scholars, Jan Berg is perhaps the one that embraces a set theoretic

reading of Bolzano with the most conviction. Berg (1962, p. 176) writes:

In PU [. . . ] Bolzano repudiates the notion of equivalence as sufficient condi-

tion for the identity of powers of infinite sets. [. . . ] As a result, a number

of statements follow which do not correspond to Cantor’s view on this sub-

ject. E.g., if “N0” denotes the number of natural numbers (PU 45) [§29; Berg

refers to the page of the 1851 edition], then in the series: N0, N0
2, N0

3, . . .

each N0
m is said to “exceed infinitely” the preceding term N0

m´1 (PU 46)

[§29]. But Bolzano’s comparison of the powers of infinite sets is impossible to

understand, since nowhere does he offer any clear sufficient condition for the

equinumerousness of infinite sets.

Berg makes the same points as Cantor, namely that Bolzano’s writings in PU are

about the powers of infinite sets, and that his reasoning is impossible to follow as he

does not offer sufficient conditions for the equality of size of sets. However Berg (see,

for instance, his 1962, p. 177) remains convinced that a letter3 written by Bolzano in

the last year of his life witnesses a change of heart regarding how infinite sets should be

compared, moving from his rejection of one-to-one correspondence to an acceptance of it

3This letter, dated 9 March 1848 and intended for Bolzano’s former pupil Robert Zimmermann, has
been published in (Bolzano 1978, pp. 187-189). Berg is the editor for the volume and his editorial notes to
the letter are a reiteration of his interpretation of Bolzano having changed his mind regarding part-whole
and one-to-one correspondence for infinite collections.
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as a sufficient criterion for size equality.

On the heels of this interpretation, Berg (1992, pp. 42-43) sketches what he takes to

be Bolzano’s theory of the infinite. In a nutshell, Berg believes that any two infinite sets

of natural numbers are of the same size according to Bolzano just in case “the members

are related to each other by finitely many rational operations (addition, multiplication

and their inverses)” (Berg 1992). Even though Berg does not use this terminology, his

interpretation seems to suggest that N is equinumerous with an infinite subset S Ď N

whenever the bijection f : S Ñ N is primitive recursive. This is an interesting suggestion,

but it would imply that, for example, N´ t1u and N are equinumerous, while this seems

to contradict Bolzano’s reasoning in PU §29 (see Section 2 below). Moreover, Berg’s

interpretation of the letter is far from uncontroversial (see Rusnock 2000, pp. 194-195,

Šebest́ık 1992, pp. 469-470, to be discussed below, and Mancosu 2009, 2016), so his in-

terpretation of this aspect of Bolzano’s work is not a foregone conclusion. We will not

engage with it any more than what we have already done as the controversy has less to

do with PU and more to do with what views about the infinite Bolzano held at the very

moment of his death.

A more nuanced view is offered by Šebest́ık (1992, pp. 435-473). When presenting the

contribution of Bolzano’s PU, Šebest́ık summarizes it thus:

For the first time, the actual infinite, whose properties cease to be contra-

dictory to simply become paradoxical, is admitted in mathematics as a well-

defined concept, having a referent and only attaching to those objects capable

of enumeration or measurement, that is, to sets and quantities.4 (Šebest́ık

1992, p. 435)

Šebest́ık also interprets the PU as about sets and their being infinite. Even though

at p. 445 he more faithfully writes that “the infinite is first and foremost a property

4Original French: Pour la première fois, l’infini actuel dont les propriétés cessent d’être cotradictoires
pour devenir simplement paradoxales, est admis en mathématiques à titre de concept défini, ayant
une référence et attaché aux seuls objets susceptibles de dénombrement ou de mesure, c’est-à-dire aux
ensembles et aux grandeurs.
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of pluralities [our emphasis]”,5 on p. 462 he then reverts to set talk at a crucial point,

namely when giving his interpretation of PU §33:

[Referring to §33] It is the first and last time within the Paradoxes of the

Infinite that Bolzano deduces from the reflexivity of the set of natural numbers

to the equality of number between a set and one of its proper subsets.6

According to Šebest́ık’s interpretation then, and unlike Berg’s, it is not quite the

case that Bolzano changed his mind regarding what criterion to use to compare the size

of infinite sets after the PU and just before his death. Rather, Bolzano’s views in the

PU itself are already inconsistent, because at various points in the text Bolzano either

implicitly or explicitly endorses the following views:

1. The part-whole principle, that is, the whole is greater than any of its proper parts.

2. All infinite sets can be put in one-to-one correspondence with any of their infinite

subsets.

3. Every set has a definite size.

4. If two sets are in one-to-one correspondence then they have the same plurality.

It is quite telling that for 1, 3, and 4 Šebest́ık (1992, pp. 463-464) feels the need to

add set theoretic glosses, so that 1 becomes “cardpAq ă cardpBq iff A is equivalent to a

proper part of B” (‘cardpAq ă cardpBq si et seulement si A est équivalent à une partie

propre de B’), 3 is Every set has a “unique cardinal number” (‘nombre cardinal unique’)

and 4 If two sets are in one-to-one correspondence then they have “the same cardinal

number” (‘ont le même nombre cardinal’).

Thus formulated, 1-4 do indeed yield a contradiction. Consider any two infinite sets

A and B such that A is a proper part of B. By 3, they each have a unique cardinal-

ity, and by 1 cardpAq ă cardpBq. But also, since A and B can be put into one-to-one

5Original: “L’infini est d’abord et avant tout une propriété des multitudes”.
6C’est pour la première et dernière fois que, dans les Paradoxes de l’Infini, Bolzano conclut de la

réflexivité de l’ensemble des nombres naturels à l’égalité numérique entre un ensemble et l’un de ses
sous-ensembles propres.
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correspondence (by 2), they have the same cardinality, by 4, so cardpAq “ cardpBq, con-

tradicting our earlier deduction that cardpAq ă cardpBq. We will give our argument as

per why Šebest́ık’s contradiction does not go through in Section 2, where we highlight

that a crucial ingredient in this family of counterexamples to Bolzano’s claim to internal

consistency in the PU is largely due to the set theoretic interpretation of 4.

The last interpretation we want to consider in detail is Rusnock’s (2000). Rusnock

(2000, p. 193) writes that in §§21-22 Bolzano “apparently based this opinion [of the

insufficiency of one-to-one correspondence for equality of size] on considerations involving

parts and wholes, assuming perhaps that the multiplicity of the whole must be greater

than those of its parts. (Rusnock translates with “multiplicity” what we, following (Russ

2004), translate as “plurality”, namely Vielheit.) Rusnock (2000, ibid.) then continues:

But this seems to be a mistake, even in Bolzano’s own terms. For his sets

(Mengen) are by definition invariant under rearrangements of their members,

and thus the appeal to the “mode of determination” seems to be illegitimate

in this context.

Rusnock then produces an example to show why Bolzano is mistaken by his own

lights when embracing “considerations of parts and whole”. Consider the straight line

abc, where a is to the left of b and b is to the left of c; call A the set of points between

a and b, B the set of points between a and c. Then it is possible to map each point of

A to a point of B via a translation map that is also a one-to-one correspondence. Since

a translation map only “rearranges” points from one region of space to another, then B

is just a rearrangement of A. Thus, A and B should be the same “set”, since Bolzano’s

definition of “set” (Menge) entails that something considered as a “set” is invariant under

rearrangement of parts. Yet, because A is a proper part of B, A should be strictly smaller

than B, in virtue of what from now on we call “the part-whole principle”: The whole is

greater than any of its proper parts. This principle then is inconsistent with Bolzano’s

own definition of multitude.
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It is not warranted however that an example such as Rusnock’s really counts as a re-

arrangement of parts on Bolzano’s terms, essentially because it relies on a metaphorical

use of the term “rearrangement” in a geometric context. This metaphorical use in turn

suggests conceiving of geometric figures (points and lines) as objects that move through

the two-dimensional (Euclidean) space. Yet Bolzano famously rejected metaphorical talk

of motion in mathematical contexts (Bolzano 1817, Introduction), and lacking that, we

are not sure there is a way of rephrasing Rusnock’s example so that it really counts as a

rearrangement of parts on Bolzano’s terms.

On the basis of our overview, we can now distil the received view about the PU into

two theses:

(Sets) In §§29-33, Bolzano is concerned with determining size relationships between

infinite sets.

(Set-PW) Bolzano’s computations in §§29-33 are, at least partially, motivated by the

part-whole principle for sets.

As we have seen above, the combination of these two theses motivates a reading of

Bolzano’s calculation of the infinite as a pre-Cantorian transfinite arithmetic that is either

mistaken or downright inconsistent because of its adherence to the part-whole principle.

As it will soon become apparent, we believe however that both theses incorrectly describe

§§29-33 of the PU. Our main claim is that the standard view’s identification of Bolzanian

collections with the modern notion of set, and of all instances of part-whole reasoning

in the PU to PW1, is too quick. Discussing the standard interpretation of Bolzano’s

calculation of the infinite therefore requires a clarification of the status of collections

in the PU, and an assessment of the role that part-whole reasoning plays in Bolzano’s

arguments. We will take those two issues in turn. First, we briefly recap the various

notions of collections that Bolzano introduces at the beginning of the PU, and explain

the role they play in his definition of the infinite. Second, we review sections §§20-24

of the PU, in which Bolzano is usually interpreted as rejecting the bijection principle in
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favor of something like PW1. We believe this will provide the reader with the necessary

background for our in-depth discussion of §§29-33 in Section 2.

1.1 Bolzano’s collections, multitudes, and sums

Bolzano’s first goal in the PU is to arrive at a rigorous definition of the infinite. To that

end, he relies on his logical system first developed in his Wissenschaftslehre (Theory of

Science, WL for short). In particular, Bolzano devotes the first section of the PU to

defining several distinct notions of collection. Without going into too much detail, we

summarize here the most important definitions.

Collection The concept of collection (Inbegriff ) applies to any and all objects which

are made of parts, i.e. that are not simple. In that sense, [collection] is the most

general concept as it applies to any composite object. Collections, as opposed to

units (Einheiten, sometimes also translated as unity/unities), can be decomposed

into simpler parts. Anything that is made of at least two parts is a collection. (see

PU §3)

Multitude The concept of multitude (Menge) is best illustrated with Bolzano’s own

example of a drinking glass (PU §6). Consider the glass as intact, and then as

shattered into pieces. What changes between these two states of the glass is the

arrangement (Anordnung) of the pieces, although the amount of glass is the same

before and after. When we consider the glass as that which remains unchanged

before and after the breakage, we are considering it as a multitude. “A collection

which we put under a concept so that the arrangement of its parts is unimpor-

tant (in which therefore nothing essential changes for us if we merely change this

arrangement) I call a multitude.” (PU §4)7

Plurality When the parts of a multitude all fall under the same concept A and are

therefore considered as units of kindA (i.e. simple objects of kindA), that multitude

is called a plurality (Vielheit) of kind A. (ibid.)

7Translations of Bolzano’s PU are always from Russ 2004.
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Sum A sum (Summe) is a collection such that (a) its parts can also be collections, and

(b) the parts of its parts can be considered as parts of the whole sum, without the

sum itself having changed (PU §5). Consider the glass example again. Suppose we

break our glass G and it shatters in exactly three pieces, a, b and c. Then suppose

a breaks also into two pieces a1 and a2. Then our glass G, considered as a sum, is

still the same: G “ a` b` c “ a1 ` a2 ` b` c.

Quantity Bolzano defines a quantity (Größe) as an object that can be considered of a

kind A such that any two objects M,N of kind A satisfy a certain law of trichotomy

(not Bolzano’s expression): either they are equal to one another (M “ N) or “one

of them presents itself as a sum which includes a part equal to the other one” (PU

§6), that is to say, M “ N ` ν or N “M `µ. The remaining parts µ, ν themselves

also need to satisfy the condition that, for any other X of kind A, either X “ µ

(X “ ν, respectively) or one of them can be presented as a sum of which the other

is just a part.

To avoid any confusion, it should be noted that the concepts of multitudes, pluralities,

sums and quantities are specifications of the concept of collections, and the same object

can be conceptualized as more than one kind of collection at once. Quantities are a

great example. From their definition, it is clear that anything that is a quantity is also

a plurality, because a quantity is a multitude (of a certain kind, say A) whose parts are

also objects of kind A. At the same time, the way Bolzano expresses the trichotomy

law holding of relationships between quantities suggests that a quantity is also a sum,

namely, an object such that the parts of its immediate parts are also parts of the object

itself, and nothing about the object changes if we consider it as made of the parts of its

parts, instead of just of its own immediate parts.

Moreover, the existence of various notions of collections in Bolzano’s framework is

at odds with the thesis (Sets) of the received view, according to which Bolzano tries

to develop an arithmetic of infinite sets. Indeed, it is far from clear that any of the

notions described above can be straightforwardly mapped onto the modern notion of a

set. Following Incurvati (2020, p. 11), we consider the concept of set as used in (philosophy
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of) mathematics contexts to be sufficiently individuated by the three criteria:

(Unity) A set is a single entity over and above its elements.

(Decomposition) A set can be decomposed in a unique way into its elements.

(Extensionality) Sets are identical if and only if they have exactly the same elements.

Bolzano’s own definitions do not imply that his multitudes, or pluralities, or sums satisfy

all three criteria at once. Since multitudes, pluralities and sums are the infinite collections

Bolzano concerns himself with, the identification of his infinite collections with Cantorian

infinite sets is unwarranted and far from obvious. For more on Bolzano’s multitudes and

sets, see Simons (1997).

Nevertheless, (Sets) might gain some traction from the fact that Bolzano’s definition

of the infinite only applies to collections, or, more precisely, to pluralities:

[. . . ] I shall call a plurality which is greater than every finite one, i.e., a

plurality which has the property that every finite multitude represents only a

part of it, an infinite plurality. (PU §9)

However, the choice of defining an infinite plurality as opposed to simply infinity is

justified in §10, where Bolzano argues that in the use made by mathematicians, “the

infinite” is always an infinite plurality:

Therefore it [is] only a question of whether through a mere definition of what

is called an infinite plurality we are in a position to determine what is [the

nature of] the infinite in general. This would be the case if it should prove

that, strictly speaking, there is nothing other than pluralities to which the

concept of infinity may be applied in its true meaning, i.e., if it should prove

that infinity is really only a property of a plurality or that everything which

we have defined as infinite is only called so because, and in so far as, we

discover a property in it which can be regarded as an infinite plurality. Now

it seems to me that is really the case. The mathematician obviously never
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uses this word in any other sense. For generally it is nearly always quantities

with whose determination he is occupied and for which he makes use of the

assumption of one of those of the same kind for the unit, and then of the

concept of a number. (PU §10)

Bolzano’s target when defining infinity solely as the attribute of certain collections are

the imprecise definitions of infinity given by some philosophers (Hegel and his followers

are cited explicitly here) who consider the mathematical infinity Bolzano talks about to

be the “bad” kind (PU §11), while the one true infinity is God’s absolute infinity. The

strategy to push against this qualitative infinite of the philosophers is to show that, even

in the case of God, who is the unity par excellence, when we assign infinity to Him as

one of His attributes, what we are really saying is that some other attribute of His has

an infinite multitude as a component.

What I do not concede is merely that the philosopher may know an object on

which he is justified in conferring the predicate of being infinite without first

having identified in some respect an infinite magnitude [Größe] or plurality in

this object. If I can prove that even in God as that being which we consider

as the most perfect unity, viewpoints can be identified from which we see

in him an infinite plurality, and that it is only from these viewpoints that

we attribute infinity to him, then it will hardly be necessary to demonstrate

further that similar considerations underlie all other cases where the concept

of infinity is well justified. Now I say we call God infinite because we concede

to him powers of more than one kind that have an infinite magnitude. Thus

we must attribute to him a power of knowledge that is true omniscience, that

therefore comprehends an infinite multitude of truths because all truths in

general etc. (PU §11)

With that, Bolzano considers himself to have exhaustively argued for his definition

of mathematical infinity as being inextricable from the concepts of plurality and quan-

tity and inapplicable to the one-ness of any unity, even God. Thus, we conclude that
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Bolzano’s insistence on defining only an infinite plurality does not lend particular credence

to (Sets) after all. Bolzano’s definition unequivocally makes of infinity a quantifying at-

tribute which, as such, can only apply to pluralities and quantities. But his insistence on

discussing only infinite pluralities should be understood as in contrast with the Hegelian

infinite as an attribute of a single infinite being. Talking about infinite collections, for

Bolzano, is a way of clearly setting apart the quantitative infinite he is interested in from

the qualitative infinite of the hegelians.

1.2 Bolzano’s commitment to part-whole in the PU

As the discussion of the received view on the PU made clear, one point of contention in

interpreting Bolzano’s work on the infinite is whether (and to what extent) the principles

that guide his computations with infinite quantities mirror those later used by Cantor.

While part-whole considerations play an important role in Bolzano’s WL (in particular,

§102 therein; cf. Mancosu 2016, pp. 130-131, Mancosu 2009, pp. 624-625), the discussion

in Berg and Šebest́ık’s interpretations has brought to light the issue of whether, on the

whole, Bolzano’s treatment of infinite quantities in the PU obeys the part-whole principle

or not. Setting aside the issue of whether an adoption of one-to-one correspondence is

implicit in Bolzano’s §33 (something we will come back to in Section 2), here we review

§§20-24, which are usually taken to be Bolzano’s discussion of one-to-one correspondence

as an insufficient criterion for size equality of infinite collections on the grounds of part-

whole considerations.

Let us note first that some form of part-whole reasoning seems to be present in the

very notion of “being greater/smaller than” employed in the PU, as this passage from

§19 witnesses:

Even with the examples of the infinite considered so far it could not escape

our notice that not all infinite multitudes are to be regarded as equal to one

another in respect of their plurality, but that some of them are greater (or

smaller) than others, i.e., another multitude is contained as a part in one

multitude (or on the contrary one multitude occurs in another as a mere

15



part). (PU §19)

Here, Bolzano glosses the claim that some multitudes are greater than others as some

containing others as a part. A similar use of the part-whole principle is to be found in

§20, when Bolzano compares the size of the collection of quantities smaller than 5 and

the size of the collection of those smaller than 12:

If we take two arbitrary (abstract) quantities, e.g. 5 and 12, then it is clear

that the multitude of quantities which there are between zero and 5 (or which

are smaller than 5) is infinite, likewise also the multitude of quantities which

are smaller than 12 is infinite. And equally certainly the latter multitude is

greater since the former is indisputably only a part of it. (PU §20)

This suggests that Bolzano’s writings commit him to upholding the part-whole prin-

ciple even when it comes to the comparison of infinite quantities, because the principle

is part and parcel of the definition of the order relation among quantities.

Having thus established Bolzano’s commitment to part-whole, let us also show his

explicit rejection of what nowadays we call one-to-one correspondence as a sufficient

criterion for equality of size for infinite collections:

I claim that two multitudes, that are both infinite, can stand in such a rela-

tionship to each other that, on the one hand, it is possible to combine each

thing belonging to one multitude, with a thing of the other multitude, into a

pair, with the result that no single thing in both multitudes remains without

connection to a pair, and no single thing appears in two or more pairs, and

also, on the other hand it is possible that one of these multitudes contains

the other in itself as a mere part, so that the pluralities which they represent

if we consider the members of them all as equal, i.e., as units, have the most

varied relationships to one another. (PU §20)

In the quote above, Bolzano remarks that it is possible for two infinite multitudes

to both be in a one-to-one correspondence with each other and be related as a part to
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its whole. This state of affairs can have the appearance of a paradox, because in the

finite case checking whether two multitudes can be put into one-to-one correspondence

suffices to determine whether they have the same number of terms, whereas the part-whole

relation implies that one multitude must be greater than the other. Bolzano insists that

the part-whole relation is what determines the greater-than relation, too:

Therefore merely for the reason that two multitudes A and B stand in such

a relation to one another that to every part a occurring in one of them A,

we can seek out according to a certain rule, a part b occurring in B, with the

result that all the pairs pa` bq which we form in this way contain everything

which occurs in A or B and contains each thing only once—merely from

this circumstance we can—as we see—in no way conclude that these two

multitudes are equal to one another if they are infinite with respect to the

plurality of their parts (i.e., if we disregard all differences between them). But

rather they are able, in spite of that relationship between them that is the

same for both of them, to have a relationship of inequality in their plurality,

so that one of them can be presented as a whole, of which the other is a part.

(PU §21)

This consideration is illustrated in the preceding §20 by way of two examples, or, two

versions of the same example, which considers the two intervals p0, 5q and p0, 12q on the

real line and concludes that, since p0, 5q is only a part of p0, 12q, p0, 12q contains more

quantities (or more points) than p0, 5q.

The reason why one has to drop the apparently successful one-to-one correspondence

criterion when considering infinite quantities is that what makes one-to-one correspon-

dence work in the finite case is precisely that one has to do with finite collections; hence

at some point the process of pairing off each element from the collection with a natural

number stops, whereas in the infinite case there is no last element, so the pairing-off never

ends. Hence the need for a different criterion for size comparison (PU §22). Bolzano gives

a brief explanation of how one-to-one correspondence does not suffice to reach conclusions

regarding comparisons of infinite sums in §24:

17



[From the proposition of §20] follows as the next consequence of it that we may

not immediately put equal to one another, two sums of quantities which are

equal to one another pair-wise (i.e., every one from one with every one from

the other), if their multitude is infinite, unless we have convinced ourselves

that the infinite plurality of these quantities in both sums is the same. That

the summands determine their sums, and that therefore equal summands also

give equal sums, is indeed completely indisputable, and holds not only if the

multitude of these summands is finite but also if it is infinite. But because

there are different infinite multitudes, in the latter case it must also be proved

that the infinite multitude of these summands in the one sum is exactly the

same as in the other. But by our proposition it is in no way sufficient, to be

able to conclude this, if in some way one can discover for every term occurring

in one sum, another equal to it in the other sum. Instead this can only be

concluded with certainty if both multitudes have the same basis for their

determination. (PU §24)

Bolzano considers here the case of a one-to-one correspondence between the terms of

two infinite sums S1 and S2 that would map each term in S1 to an equal term in S2.

Since the existence of a one-to-one correspondence is not enough to guarantee that S1

and S2 have the same number of terms, one cannot conclude that S1 and S2 are equal,

unless the two sums also have the same “basis for their determination”. This phrase does

not have, to our knowledge, a standard interpretation in Bolzanian scholarship. Šebest́ık

(1992, p. 460) does attempt an explanation of what the “determining elements” (bestim-

mende Stücke) of an object can be, according to Bolzano. However, we are not convinced

that the explanation offered there extends to a notion of determination for mathematical

entities. For now, we simply draw the reader’s attention to the fact that Bolzano con-

cludes his discussion of the one-to-one correspondence criterion with a methodological

point about infinite sums which plays a crucial role in §32 and §33 (see Section 2.2 and

Section 2.3 below).
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To sum up, in this section we have presented what we take to be the received view

on Bolzano’s calculation of the infinite, and shown that it relies on the two theses (Sets)

and (Set-PW). We have argued that the existence of various notions of collections in

Bolzano’s framework puts some pressure on (Sets), as it does not seem obvious that any

of Bolzano’s notions closely matches our modern notion of set. Regarding (Set-PW)

we have shown how Bolzano appeals in §§20-24 to part-whole reasoning in the context

of determining size relationships between certain infinite collections. However, we also

noted that, by §24, Bolzano has pivoted from discussing sufficient criteria for the equality

of size of two infinite collections to discussing sufficient criteria for the equality of two

infinite sums. As we will argue in the next section, this is a crucial shift in perspective

that is missed by the standard interpretation of Bolzano’s calculation of the infinite. We

now turn to a close analysis of the text and to our arguments in favour of a different

reading of PU §§29-33.

2 Bolzano’s calculation of the infinite

As discussed in the previous section, up to §24 Bolzano has established the following facts

about infinite multitudes and pluralities:

1. Some infinite multitudes are greater than others “with respect to their plurality”

(§19).

2. Two infinite multitudes can both be related as part and whole and be in a one-to-one

correspondence (§20).

3. One-to-one correspondence is not sufficient to determine equality of infinite multi-

tudes (§§21-22).

4. In the case of comparing two infinite sums, if one wants to conclude that they are

equal, one needs to make sure both that there are as many summands in one as

there are in the other and that each term from one sum is equal to the corresponding

one in the other sum (§24).
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These are the “basic rules” (Grundregeln, PU §28) which govern a proper handling of

the infinite in mathematics. Bolzano is aware however that his readers might still be

skeptical towards the possibility of computing with the infinite, so he explains what he

means by “calculation of the infinite” in the following passage:

Even the concept of a calculation of the infinite has, I admit, the appearance of

being self-contradictory. To want to calculate something means to attempt a

determination of something through numbers. But how can one determine the

infinite through numbers—that infinite which according to our own definition

must always be something which we can consider as a multitude consisting of

infinitely many parts, i.e., as a multitude which is greater than every number,

which therefore cannot possibly be determined by the statement of a mere

number? But this doubtfulness disappears if we take into account that a

calculation of the infinite done correctly does not aim at a calculation of that

which is determinable through no number, namely not a calculation of the

infinite plurality in itself, but only a determination of the relationship of one

infinity to another. This is a matter which is feasible, in certain cases at any

rate, as we shall show by several examples. (PU §28)

Bolzano’s calculation of the infinite is minimal. He does not purport to have extended

the concept of number so as to introduce infinite numbers (pace Cantor—see Section 1

above),8 but he aims to study the relationship—that is, the ratios as well as the “greater

than” relation—between two infinities whenever this can be done in a sound way, that

is, in accordance with the principles he has argued for in the preceding portion of the

PU. Armed with such principles, Bolzano can show his reader how to properly handle

some apparently paradoxical results in mathematics, starting from the general theory of

quantity.

8As Mancosu (2016, p. 163) notes, this refusal to admit infinite numbers was not unique to Bolzano’s
position but was shared also by Dedekind (1888) and perhaps Schröder (1873).
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2.1 Computing with infinite sums

The first computations with infinite quantities are found in earnest in §29; as we will see,

these quantities are always introduced and treated as sums.

Bolzano introduces the symbol
0

N through a symbolic equation—that is, an equation

which establishes that the reference of two signs is the same (cf. definition in Grössenlehre,

Bolzano 1975, pp. 131-132) —to stand for the Menge of all natural numbers. He then

introduces
n

N to stand for the Menge of all natural numbers strictly greater than n P N.
1

S, on the other hand (which is first introduced as
0

S), is the symbol for the sum of all

natural numbers.

In Bolzano’s words:

[. . . ] if we denote the series of natural numbers by

1, 2, 3, 4, ..., n, n` 1, . . . in inf.

then the expression

1` 2` 3` 4` ¨ ¨ ¨ ` n` pn` 1q ` . . . in inf.

will be the sum of these natural numbers, and the following expression

10 ` 20 ` 30 ` 40 ` ¨ ¨ ¨ ` n0 ` pn` 1q0 ` . . . in inf.

in which the single summands, 10, 20, 30, . . . all represent mere units, repre-

sents just the number [Menge] of all natural numbers. If we designate this by
0

N and therefore form the merely symbolic equation

10
` 20

` 30
` 40

` ¨ ¨ ¨ ` n0
` pn` 1q0 ` . . . in inf. “

0

N (1)

and in the same way we designate the number [Menge] of natural numbers

from pn` 1q by
n

N , and therefore form the equation

pn` 1q0 ` pn` 2q0 ` pn` 3q0 ` . . . in inf. “
n

N (2)
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Then we obtain by subtraction the certain and quite unobjectionable equation

10
` 20

` 30
` . . .` n0

“ n “
0

N ´
n

N (3)

This passage mentions several notions that will be central to the remainder of our

analysis of Bolzano’s PU, hence we will briefly go over them now.

First is the notion of “series” (Reihe), which Bolzano defines (PU §7) as a collection

of “terms” (Glieder) a, b, c, d, . . . such that for each term c there is exactly another term d

such that, by using the same rule for any pair c, d we can obtain (determine, bestimmen)

c by applying said rule to d, or the inverse rule to c to obtain d instead. The natural

numbers, that is, the “whole numbers” (ganze Zahlen) are defined as a series of objects

of a certain kind A where the first term is a unit of kind A and the subsequent terms are

sums obtained by adding one unit to their immediate predecessor.

The second concept we want to introduce is that of Gliedermenge (alternatively ex-

pressed by Bolzano as Gliedermenge, Menge von Gliedern or Menge der Glieder). As

one can infer from PU §9, Bolzano considers any number series to have a Gliedermenge.

Because a Gliedermenge is said to be sometimes greater, sometimes smaller, it seems

reasonable to assume that this Gliedermenge is, if not a quantity properly said, at least

something that can be quantified, i.e., treated as a quantity. In the passage we quote from

§29, Bolzano introduces first the series of all natural numbers, then their sum and the

Menge of such a sum. Given what was just said about series and Gliedermenge thereof,

this occurrence of the word Menge should be read as a shorthand for Gliedermenge or

one of its synonyms.

This occurrence of Menge is therefore at odds with any interpretation of Bolzano’s

definition of “multitude”(Menge) that sees it as (almost) synonymous with “set” in the

modern sense. If the concept of multitude is virtually identical with that of set, then

the multitude of 1 ` 2 ` 3 ` 4 ` . . . in inf. should be just 1, 2, 3, 4, . . . in inf. and not

1` 1` 1` 1` . . . in inf. For the sake of preserving coherence in Bolzano’s work in PU

§§29-33 it is therefore sensible to insist that “Gliedermenge” is a quantitative concept.
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As a consequence, since we believe that translating Menge here as “set”, like Steele

(Bolzano 1950), or “multitude”, as we would have to if we were to translate Menge

rigidly, obfuscates this quantitative aspect of the concept of “Gliedermenge”, we prefer

to respect Russ’s (2004) choice and translate Menge as “number” when it seems to be

short for Menge der Glieder or similar. As long as it is clear that we do not think Bolzano

is introducing here genuine infinite numbers (in the sense of the German Zahlen), we will

translate Menge as “number” in these contexts.
0

N thus denotes the number (Menge) of all natural numbers, and for any natural

number n,
n

N represents the size of the collection of all natural numbers strictly greater

than n. This is all written as follows:

10
` 20

` 30
` 40

` ¨ ¨ ¨ ` n0
` pn` 1q0 “

0

N (4)

pn` 1q0 ` pn` 2q0 ` ¨ ¨ ¨ “
n

N (5)

The 0th power works in the standard way here, meaning n0 “ 1 for any natural number

n. So for instance the size of the set of all natural numbers up to n is 10` 20` 30` 40`

¨ ¨ ¨ ` n0 “ 1` 1` 1 ¨ ¨ ¨ ` 1 “ n.

Having defined
0

N and
n

N , Bolzano proceeds to show how they can be added or multi-

plied with one another thanks to distributivity. One then obtains a hierarchy of infinite

quantities of ever-increasing order :

10.
0

N ` 20.
0

N ` 30.
0

N ` . . . in inf. “ p
0

Nq2

10.p
0

Nq2 ` 20.p
0

Nq2 ` 30.p
0

Nq2 ` . . . in inf. “ p
0

Nq3

etc.

The notion of quantities being of different orders of infinity does not start with Bolzano
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and already existed in the context of infinitesimal calculus.9 However, we will argue in

Section 4 that Bolzano’s computation of the product of infinite quantities is in fact very

original and hence very significant for a comparison with Cantor’s theory of the infinite

(which we carry out in Section 5).

Having looked carefully at Bolzano’s first computations with infinite sums, we now

proceed to our next piece of evidence for interpreting Bolzano as primarily interested in

infinite sums, namely, §32 of the PU.

2.2 Grandi’s series

In PU §32, Bolzano criticizes a report by a certain M.R.S. in Gergonne’s Annales (M.R.S. 1830)

which purports to prove that the infinite sum

a´ a` a´ a` a . . . (1)

has value a
2
.

The series Bolzano focuses on is sometimes called Grandi’s series after the Italian

18th century monk who first tried to compute a value for this infinite sum. Kline (1983)

reports that this series was an object of great interest for mathematicians throughout the

19th century, that “caused endless dispute”(Kline 1983, pp. 307-308). It is not necessary

for our summary of Bolzano’s views to rehash the whole debate surrounding Grandi’s

series (and other divergent series) in great detail, though it is perhaps worth mentioning

that Grandi’s opinion, that the value of this series should be a
2
, was shared also by Leibniz

(Kline 1983, p. 307). Kline also reports that Leibniz’s argument—which differed from

Grandi’s—was accepted by the Bernoulli brothers. This acceptance notwithstanding, by

the time Bolzano is active there is still no clear consensus on how to treat what we would

now consider divergent series. For Bolzano and his contemporaries, the question of how

to assign a value to infinite sums such as Grandi’s series was still a live question, one

which would later lead some mathematicians (e.g., the Italian Cesàro) to define different

sorts of summation.

9See for example the debate between Leibniz and Nieuwentijt on the existence of such higher-order
infinitesimal, as presented in (Mancosu 1996, pp. 160-164).
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It is therefore not surprising that one should come across a piece of writing such

as M.R.S.’s. M.R.S. purports to prove that the value of Grandi’s series is a
2

via an

algebraic reasoning, as opposed to Leibniz’s more “probabilistic” (per Kline) approach—

and presumably, as opposed to Grandi’s geometric approach, too. Here we quote M.R.S.’s

own exposition of his proof:

The summation of the terms of a geometric progression decreasing into the

infinite can be easily deduced from the above; in fact, if one has

x “ a` aq ` aq2 ` aq3 ` aq4 ` . . . ,

one can then write

x “ a` qpa` aq ` aq2 ` aq3 ` . . . q,

then x “ a ` qx or p1 ´ qqx “ a, hence x “ a
1´q

. As per the remarks in (5),

the equation

x “ a´ a` a´ a` a´ a` . . .

could not help in the approximation of x, as it successively gives the approx-

imate values a, 0, a, 0, a, 0, . . . among which the differences are constant; but,

without resorting to Leibniz’s subtle reasoning, one can immediately see that

this equation comes to

x “ a´ x,

hence x “ 1
2
a.10 (M.R.S. 1830, pp. 363-364)

As the text shows, M.R.S.’s treatment of Grandi’s series has the virtue of treating it

10Original French: La sommation des termes d’une prógression géométrique décroissante à l’infini se
déduit bien simplement de ce qui précède; si en effet on a

x “ a` aq ` aq2 ` aq3 ` aq4 ` . . . ,

on pourra d’abord écrire
x “ a` qpa` aq ` aq2 ` aq3 ` . . . q,

puis x “ a` qx ou p1´ qqx “ a d’où x “ a
1´q .
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uniformly with other (converging) geometric series. Bolzano however is not impressed

with M.R.S.’s algebraic manipulations and sees two mistakes in them. Bolzano spells out

M.R.S.’s argument as follows. First, he sets

x “ a´ a` a´ a` a´ . . . in inf. (1)

Then, one can rewrite p1q as

a´ pa´ a` a´ a` . . . in inf.q (2)

This yields x “ a´ x and therefore x “ a
2
. Bolzano points out that while x is defined as

a ´ a ` a ´ a ` a ´ . . . in inf., the expression in (2) is not identical with it, because it

does not have the same Gliedermenge as a´ a` a´ a` a´ . . . in inf. in (1). The first a

is missing so that the correct substitution ought to be the tautological x “ a` px´ aq.

Even though Bolzano does not pause to point this out to the reader, M.R.S. is making

exactly one of those mistakes Bolzano was cautioning against in §24: he has assumed

equality of two quantities arising from summing up two series without checking that the

two series have the same Gliedermenge. Note that here again Bolzano seems to be using

Menge in a way that is closer to the meaning of “number” than to that of “set”, and

Russ’s (2004) translation accordingly translates the term as “number”. While again one

should not take the translation literally, we agree with the attempt to capture a more

quantitative use of Menge in this kind of context.

The second criticism Bolzano levels at M.R.S.’s argument is that it presupposes that

a ´ a ` a ´ a ` a . . . refers to an actual quantity, whereas Bolzano argues that it does

not. The argument Bolzano gives for this position is an example of Bolzano putting to

(mathematical) use his logico-philosophical apparatus: Grandi’s infinite sum is a spurious

one because it does not display the sum property (PU §31)

pA`Bq ` C “ A` pB ` Cq “ pA` Cq `B.
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If one tries to rewrite Grandi’s sum according to Bolzano’s equations, the left-hand side

becomes pa ´ aq ` pa ´ aq ` . . . in inf., which according to Bolzano equals 0, whereas

if one rearranges the parentheses as a ` p´a ` aq ` p´a ` aq ` p´a ` aq ` . . . in inf.,

one obtains a as a result. Thus indeed Grandi’s expression does not satisfy Bolzano’s

definition of sum. Tapp (Bolzano 2012, p. 193) notes here that Bolzano’s criterion is

quite similar to Riemann’s result (Apostol 1974, p. 197) which states that every infinite

series is absolutely convergent if and only if it is preserved under permutation (an abso-

lutely convergent series is one in which the series of the absolute values of its terms also

converges). It is unfortunate though that Bolzano’s criterion taken literally is too strong,

as it seems to be also implying that
0

N does not designate an actual quantity (see Section

3 below).

We take this section of the PU as helping our case that Bolzano’s work in §§29-33

should not be read as an imperfect set theory. Indeed, §32 is an example of Bolzano’s

principles for the computations of the infinite at work: a result published by a fellow

mathematician about the computation of infinite sums is rejected on the basis of a vi-

olation of one of these principles. However most other commentators do not devote

particular attention to §32. One notable exception is Steele, who thus summarizes §32:

“Some errors in the pretended summation of Σp´1qna, which is a symbol not expressing

any true quantity at all” (Bolzano 1950, p. 66). Even more intriguingly, he mentions

Grandi’s series and the whole controversy surrounding it when introducing the historical

context of the PU (Bolzano 1950, pp. 3-4). Yet it is as if this does not leave a trace when

giving an overall appraisal of the contributions of the PU, or of Bolzano’s contributions

to mathematics and its philosophy. Bolzano is still presented as someone who almost

anticipated Cantorian set theory, except he did not.

2.3 The sum of all squares

In the previous section, we argued that some passages of the PU offer textual evidence

for the claim that Bolzano’s work on the sizes of infinite collections should be understood
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as about sizes of infinite sums, that is, infinite series in modern terminology, rather than

as about sizes of infinite countable sets. We now make a theoretical case as per why this

interpretation is also the most charitable one.

Just following the discussion of §32, Bolzano writes that

[. . . ] if we wish to avoid getting onto the wrong track in our calculations with

the infinite then we may never allow ourselves to declare two infinitely large

quantities, which originated from the summation of the terms of two infinite

series, as equal, or one to be greater or smaller than the other, because every

term in the one is either equal to one in the other series, or greater or smaller

than it. (PU §33)

So, for two infinite sums α and β, it is not the case that, say, α ą β if for every term

of α there is one in β that is strictly smaller.

He then continues:

We may just as little declare such a sum as the greater just because it includes

all the terms of the other and in addition many, even infinitely many, terms

(which are all positive), which are absent in the other.

As an example of this principle in action, Bolzano asks us to consider the two series

1` 4` 9` 16` . . . in inf. “
2

S

and

1` 2` 3` 4` 5` . . . in inf. “
1

S.

According to Bolzano, “no one can deny that every term of the series of all squares”—

that is,
2

S—“because it is also a natural number, also appears in the series of first powers

of the natural numbers and likewise in the latter series
1

S, together with all the terms

of
2

S there appear many (even infinitely many) terms which are missing from
2

S because

they are not square numbers.” (PU, §33) So, the series
1

S and
2

S are such that the terms

of the latter all appear in the former, and the former also includes infinitely many terms
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that the second series does not include. The next step in Bolzano’s argument is to claim

the following:

Nevertheless
2

S, the sum of all square numbers, is not smaller but is indis-

putably greater than
1

S, the sum of the first powers of all numbers. (PU,

§33)

Bolzano argues for this point by claiming two things: first, that “in spite of all appear-

ance to the contrary, the multitude of terms [Gliedermenge] in both series (not considered

as sums, and therefore not divisible into arbitrary multitudes of parts) is certainly the

same.” Second, that with the exclusion of the first term, all terms of
2

S are greater than

the corresponding term in
1

S. Since then the two series have the same amount of terms,

but the terms of
2

S are greater than all but one of the terms in
1

S, Bolzano concludes that
2

S is greater than
1

S, because it is possible to termwise subtract
1

S from
2

S and one would

still have a positive remainder as a result:

But if the multitude of terms [Menge der Glieder ] in
1

S and
2

S is the same,

then it is clear that
2

S must be much greater than
1

S, since, with the exception

of the first term, each of the remaining terms in
2

S is definitely greater than

the corresponding one in
1

S. So in fact
2

S may be considered as a quantity

which contains the whole of
1

S as a part of it and even has a second part which

in itself is again an infinite series with an equal number of terms as
1

S, [. . . ]

(PU, §33)

As we can see, in §33 Bolzano repeats twice the idea that
1

S and
2

S have the same

Gliedermenge (translated by Russ as “multitude of terms”). He is committed then to the

claim

(Terms) The Gliedermenge in series
1

S and
2

S is the same.

This is often (see, e.g., Berg 1962, 1992; Šebest́ık 1992) interpreted as a sign that

Bolzano was using here one-to-one correspondence to compare the size of the sets cor-

responding to
1

S and
2

S, namely N, the set of all natural numbers, and Np2q, the set of
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all squares, respectively. But if this is the case, then Bolzano is essentially violating

part-whole as applied to sets, the way Šebest́ık suggests (cf. Section 1).

§29 and §33 taken together raise the question of how, if at all, Bolzano envisioned to

generalize his notion of Gliedermenge from the collection of all natural numbers to any

infinite subcollection thereof—or what would be a “Bolzanian enough” way of doing this.

Let us take a step back and reconsider what Bolzano does in §29. Recall that
0

N “

10`20`30`40` . . . in inf., where each n0 is one unit, as Bolzano reminds us. Assuming

that
0

N is what Bolzano intended to be the size of N just in the same way as cardinals

are considered to capture set size in modern set theory, the question is how to extend

Bolzano’s notion of size of N to infinite (proper) subsets of N. Given the importance

that the example of squares has in Bolzano scholarship (see our Section 1), let us try to

answer the question for Np2q, specifically.

Per §29, the procedure to obtain the Menge (of terms, von Gliedern) of a series

α :“ α1, α2, α3 . . . is to first consider it as a sum

α1 ` α2 ` α3 ` . . . in inf.,

and then raise each term to the power of 0. The number of terms in α is then identified

with the value of the infinite sum
α

N “ α0
1`α

0
2`α

0
3` . . . in inf. This means that if we list

all square numbers as sq :“ 1, 4, 9, 16, 25, 36, . . . , the number of terms (hence the number

of square numbers) should be identified with

sq

N “ 10
` 40

` 90
` 160

` 250
` 360

` . . . in inf.

Now notice that if we apply the same procedure to the series of terms of
2

S, we obtain

exactly the same. Since
2

S as a sum is
2

S itself, i.e.,

1` 4` 9` 16` 25` 36` . . . in inf.,
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raising each term to the power of 0 yields

10
` 40

` 90
` 160

` 250
` 360

` . . . in inf. “
sq

N.

Thus the number of square numbers is the same as the number of terms in
2

S. But since

Bolzano endorses (Terms), the number of terms in
2

S is equal to the number of terms in
1

S, which is itself computed as 10 ` 20 ` 30 ` . . . in inf. “
0

N . From this it immediately

follows that
sq

N and
0

N have the same Gliedermenge. Moreover, since any term in each

sum is regarded as a unit, both sums also have equal terms. Now by Bolzano’s remark

(PU §24) that “equal summands also give equal sums”, we must therefore conclude that
sq

N “
0

N . But if the first one is the number of squares and the second one is the number

of natural numbers, then under the standard (set theoretic) interpretation those two

sets have the same size, which directly contradicts the part-whole principle. So it seems

that we have reached a contradiction similar to the one highlighted by Šebest́ık (1992,

pp. 463-464).

The first reaction would be of course to bite the bullet and accept that perhaps Bolzano

did not realize that §29 and §33 would lead to a contradiction, and what is more, to a

violation of part-whole. This seems to be the line that a set theoretic interpretation forces

upon the reader. For, if
0

N , being the Gliedermenge of
1

S, is somehow also the size of N,

and the Gliedermenge of
2

S is also the size of Np2q, then of course Bolzano’s remark in

§33 that
1

S and
2

S have the same Gliedermenge cannot be reconciled with part-whole as

applied to sets (PW1).

A second option would be to reject the generalization of the procedure of §29 to arrive

at
0

N and argue that there is no analogue to
0

N for
2

S. One could defend this position by

pointing out that, in §28, Bolzano only commits to be able to sometimes compute with

the infinite—not always. In particular, he does not commit to be able to determine the

size of every subset of N. We believe however that this answer is not entirely satisfactory.

For one, this solution might feel ad hoc, because even though Bolzano may have not

intended for the procedure of §29 to be applied indiscriminately to any set composed

only of natural numbers, there is nothing intrinsic to the procedure itself that bars such
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a generalization from being carried out. Moreover, while §29 does not explicitly mention

a general procedure for determining the Gliedermenge of an infinite sum, determining

when two sums have the same Gliedermenge is necessary to determine whether one is

greater than another, as Bolzano himself notes (see §§24 and 32). Since Gliedermengen

are Mengen, multitudes, it is natural to ask whether part-whole reasoning applies to, or

is even compatible with, the procedure of determining when the Gliedermengen of two

sums are equal. In a way, then, this second option does not solve the theoretical problem

raised by Bolzano’s work so much as skirt around it via a “monster-barring” move.

There is a third option though, which hinges upon a closer reading of §29. Indeed,

when computing quantities of the form
n

N , which for him corresponds to the number

of natural numbers greater than n, Bolzano does seem to apply the procedure sketched

above, namely writing down the sum pn`1q`pn`2q`pn`3q`. . . in inf., and then raising

each term to the 0th power, thus obtaining the sum pn`1q0`pn`2q0`pn`3q0`. . . in inf..

However, if, as evidenced again in §33, the difference of two infinite sums is computed

termwise,
0

N ´
n

N should be computed as:

p10
´ pn` 1q0q ` p20

´ pn` 2q0q ` . . . in inf.

But each term in this sum is the difference of a unit and a unit, so it equals 0. Hence

Bolzano should conclude
0

N ´
n

N “ 0. Instead, Bolzano writes that

0

N ´
n

N “ 10
` 20

` . . .` n0,

which strongly suggests that Bolzano thinks that
0

N ´
n

N is equal to the infinite sum

p10
q ` p20

q ` . . .` pn0
q ` ppn` 1q0 ´ pn` 1q0q ` ppn` 2q0 ´ pn` 2q0q ` . . . in inf.

But this in turn suggests that a more accurate way of representing
n

N is in fact as

` ` ...`
looooooomooooooon

n times

`pn` 1q0 ` pn` 2q0 ` . . . in inf.
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In other words,
n

N is not obtained by listing all the numbers above n in an infinite sum

and raising each of them to the power of 0, but is instead obtained by erasing the first n

terms from the sum corresponding to
0

N . This procedure clearly changes the number of

terms in the resulting sum. In order to compare
n

N to
0

N , we must therefore make sure

first that the two sums have the same Gliedermenge, which implies adding n terms to
n

N

which act, quite literally, as the “ghosts of departed quantities”.

This reading of Bolzano’s text now gives a way out of the problem of the sum of

all squares presented above. Let us consider again the example of Np2q. If we want to

compute its size as a subset of N, the way to obtain said size is first to compute that of

N, namely,
0

N . We then remove from
0

N the elements whose base is not an element of

Np2q, thus obtaining

SQ

N “ 10
` ` ` ` 40

` ` ` ` ` 90
` ` ` ` ` ` ` 160

` . . . in inf.

The difference between
sq

N and
SQ

N is that, in the former, 40 is the second term of the

sum, while it is the fourth term in
SQ

N—and so on. The idea would be then that such

an erasure procedure does change the number of elements from one set to the other,

because Np2q considered as a subset of N has a different size from when considered as the

set underlying the sum
2

S. Note that this distinction between
sq

N and
SQ

N is not available

to a proponent of the received view: if
sq

N and
SQ

N are sets, i.e. entirely determined by

their elements, then as the two sums clearly have the same terms, they should also be

equal to one another. By contrast, the difference between the two sums is easy to express

in our interpretation of Bolzano’s computations (see next section), because
sq

N would

correspond to a countable sequence with graph tx1, 10y, x2, 40y, x3, 90y, . . . u whereas
SQ

N

has graph tx1, 10y, x2, 0y, x3, 0y, x4, 40y, . . . u. Incidentally, Tapp (Bolzano 2012, p. 191)

suggests a similar idea for the interpretation of §29, raising the question whether such an

interpretation can actually lead to a fully-fledged coherent reading of the PU. Our next

two sections address that question.
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3 An ultrapower construction modelling Bolzano’s

arithmetic of the infinite

Our goal in this section is to offer a model of Bolzano’s computations with infinite sums.

More precisely, we interpret Bolzano’s talk of infinite sums and operations between them

as statements about a certain model and show that all of Bolzano’s positive results as

summarized in the previous section also hold in our model. Additionally, we argue that

our model accurately represents Bolzano’s reasoning, in that several of the proofs we

provide closely match Bolzano’s own arguments in the PU.

Our main idea is to associate to each infinite sum a corresponding infinite quantity.

Our proposal here is closely related to the theory of numerosities (Benci and Di Nasso

2003; more recently Benci and Nasso 2019, Ch. 17), in which the numerosity of a set of

natural numbers is defined as an element in an ultrapower of N. However, since our focus

is on assigning infinite quantities to certain infinite sums of integers, and not on assigning

numerosities to sets of natural numbers, our proposal will be slightly different. Part of

our model is in fact closer to the construction presented by Trlifajová (2018, pp. 20-24),

which we will discuss in Section 3.4. In order to do that, we first need to outline our own

proposal.

3.1 The basic framework

We start by representing Bolzano’s infinite sums of integers as countable sequences of

integers. Formally, we write ω` for the set of positive natural numbers and Z for

the set of all integers, and we consider functions from ω` Ñ Z. To any infinite sum

a1 ` a2 ` a3 ` . . . in inf., we associate the function f : i ÞÑ ai, i.e., the function that

maps each positive natural number i to the ith summand of the infinite sum. As is cus-

tomary, we will often identify a function f : ω` Ñ Z with the countable sequence of

integers pfp1q, fp2q, fp3q, . . . q. In the case of a Bolzanian sum α which has a different

Gliedermenge because it has been obtained from another sum by erasing certain terms,
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we treat the erased terms as 0 and obtain the function associated to α accordingly. For

example, since the sequence associated to
0

N is p1, 1, 1, . . . q, the sequence associated to
2

N is p0, 0, 1, 1, . . . q.

We consider the structure Z :“ pZ,`,´, 0, 1,ăq of integers with their usual ordering

and addition operation, and take an ultrapower ZU of this structure by a non-principal

ultrafilter on ω` (i.e., a non-empty collection U of infinite subsets of ω` closed under

supersets and finite intersections and such that for any A Ď ω`, precisely one of A, ω`zA

belongs to U ). Ultrapowers are standard constructions in mathematical logic, and a

detailed presentation of their theory is beyond the scope of this paper. Instead, we

refer the reader to Bell and Slomson (1974, Chs. 5, 6) for a standard introduction to

ultrapowers and ultraproducts, and simply list some crucial facts below:

Lemma 3.1.

1. Elements in the ultrapower ZU are equivalence classes of functions from ω` to Z.

For any f : ω` Ñ Z, we write its corresponding equivalence class as f˚. For any

f, g : ω` Ñ Z, g˚ “ f˚ if and only if f and g are equal for U -many elements in

ω`, i.e., ti P ω` : fpiq “ gpiqu P U .

2. There is a canonical elementary embedding of Z into ZU , obtained by mapping any

integer z to the equivalence class of the constant function ez : ω` Ñ Z sending any

i P ω` to z. It is customary to identify z with e˚z and to view Z as an elementary

substructure of ZU .

3. Addition and subtraction are defined in ZU . Given f, g : ω` Ñ Z, f˚ ` g˚ is the

equivalence class of the function h : ω` Ñ Z such that hpiq “ fpiq ` gpiq for any

i P ω`. Similarly, f˚ ´ g˚ is the equivalence class of the function h : ω` Ñ Z such

that hpiq “ fpiq ´ gpiq for any i P ω`.

4. Elements in ZU are linearly ordered. More precisely, given any f, g : ω` Ñ Z, we

have that ZU |ù f ă g if and only if ti P ω` : Z |ù fpiq ă gpiqu P U .

35



5. Given any first-order formula φpx1, . . . , xnq and any functions f1, . . . , fn : ω` Ñ Z,

we write ||φpf˚1 , . . . , f
˚
n q|| for the set ti P ω` : Z |ù φpf1piq, . . . , fnpiqqu.  Loś’s

Theorem states that for any φpx1, . . . , xnq and any functions f1, . . . , fn,

ZU |ù φpf˚1 , . . . , f
˚
n q iff ||φpf˚1 , . . . , f

˚
n q|| P U .

6. As a direct consequence of  Loś’s Theorem, Z and ZU are elementarily equivalent.

An intuitive motivation for our use of an ultrapower of Z can be provided along the

following lines. As we have argued, we take Bolzanian infinite quantities to be infinite

sums. Given an infinite sum α, we may decompose α into a sequence of partial sums

tαnunPω` , where, for any positive integer n, αn is the sum of the first n terms in α. Any

such sum can be seen as providing some partial information about α, and if α were a

finite sum with n terms, then αn would be α itself. However, since α is infinite, there is

no last term of α and no partial sum that would give us total information about α. In

order to overcome this difficulty, we must try to organize the partial information given

by each partial sum of the first n terms of α into a coherent whole. This is precisely the

role that a non-principal ultrafilter U on ω` will play for us. One may think of U as a

collection of properties of positive integers that describe a natural number “at infinity”,

distinct from all finite numbers, and providing a vantage point from which all the partial

sums of α form a coherent picture. We therefore encourage the reader who may not be

familiar with ultrapowers to keep the following two principles in mind:

• Properties of an infinite sum α are those that are shared by “most” partial sums of

the form αn;

• What “most” partial sums means is determined by U . Given a set of positive

integers A, the set tαn : n P Au contains “most” partial sums of α if and only if

A P U .

Given a function f : ω` Ñ Z, we define the approximating sequence of f to be the

function σpfq : ω` Ñ Z defined by σpfqpiq “
ři
j“1 fpjq for any i P ω`. In the case of
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a function f representing a Bolzanian sum α, the approximating sequence of f is sim-

ply the sequence of partial sums pα1, α2, . . . q mentioned above. Our proposal consists in

identifying the (possibly infinite) quantity designated by a Bolzanian sum f with σpfq˚,

i.e., with the equivalence class of its approximating sequence. To simplify notation, we

will write f for the element σpfq˚ in ZU , but we will sometimes abuse notation and write

fpiq for σpfqpiq.

We are now able to represent all infinite sums and infinite quantities discussed by

Bolzano, except products of infinite quantities, which we will discuss in Section 4. As

outlined above, the procedure consists in turning a Bolzanian infinite sum into a count-

able sequence of integers, to which (the equivalence class of) an approximating sequence

is then associated. Additions and order relations between infinite sums are then deter-

mined by the ultrapower. As an example, the infinite sum 10 ` 20 ` 30 ` . . . in inf. is

represented by the sequence
0

N :“ p1, 1, 1, . . . q, since, according to Bolzano, each sum-

mand of this sum is a unit. Consequently, the approximating sequence of
0

N is the

sequence σp
0

Nq “ p1, 2, 3, . . . q, which corresponds to the identity function on ω`, and
0

N

is the equivalence class of the sequence p1, 2, 3, . . . q. Similarly, infinite sums of the form

pn ` 1q0 ` pn ` 2q0 ` . . . in inf., which Bolzano writes as
n

N , are sums that according

to him have n fewer terms than
0

N . We therefore propose to model
n

N as a countable

sequence in which the first n summands are 0, i.e., by the sequence p0, . . . , 0
loomoon

n times

, 1, 1, . . . q.

The corresponding approximating sequence σp
n

Nq is p0, . . . , 0
loomoon

n times

, 1, 2, . . . q. Equivalently, for

any i P ω`, σp
n

Nqpiq “ i ´ n, where i ´ n “ 0 if i ď n and i´ n otherwise.

A similar approach can be applied to represent the sums
1

S and
n

S, as well as Grandi’s

series of the form Ga “ a ´ a ` a ´ a ` . . . in inf. For clarity’s sake, we have collected

the representation of
0

N,
n

N,
1

S,
n

S, and Ga in the table below:

37



Bolzanian Infinite Sum Sequence Representation approximating sequence Corresponding Function Infinite Quantity

10 ` 20 ` . . . in inf.
0

N “ p1, 1, 1, 1, . . . q σp
0

Nq “ p1, 2, 3, 4, . . . q σp
0

Nqpiq “ i
0

N “ σp
0

Nq˚

pn` 1q0 ` pn` 2q0 ` . . . in inf.
n

N “ p0, . . . , 0
loomoon

n times

, 1, 1, . . . q σp
n

Nq “ p0, . . . , 0
loomoon

n times

, 1, 2, 3, . . . q σp
n

Nqpiq “ i ´ n
n

N “ σp
n

Nq˚

1` 2` 3` . . . in inf.
1

S “ p1, 2, 3, 4, . . . q σp
1

Sq “ p1, 3, 6, 10, . . . q σp
1

Sqpiq “
ři
j“1 j

1

S “ σp
1

Sq˚

1n ` 2n ` 3n . . . in inf.
n

S “ p1n, 2n, 3n, 4n, . . . q σp
n

Sq “ p1n, p1n ` 2nq, . . . q σp
n

Sqpiq “
ři
j“1 j

n
n

S “ σp
n

Sq˚

a´ a` a´ a` . . . in inf. Ga “ pa,´a, a,´a, . . . q σpGaq “ pa, 0, a, 0, . . . q σpGaqpiq “

#

a if i is even

0 if i is odd
Ga “ σpGaq

˚

Table 1: Representation of Bolzanian sums in ZU

3.2 Modelling Bolzano’s results about infinite sums

We now establish some results that echo Bolzano’s own computations. We will first give

proofs in our framework, then argue that those proofs are very close in spirit to Bolzano’s

arguments. We start with results about infinite sums of the form
n

N and
n

S:

Lemma 3.2.

1. For any natural numbers i, n, ZU |ù i ă
n

N.

2. For any natural number n, ZU |ù
0

N´
n

N “ n.

3. For any natural number i, ZU |ù i
0

N ă
1

S.

4. For any natural numbers i, n, ZU |ù i
n

S ă
n`1

S .

The first result asserts that all sums of the form
n

N are infinite, in the sense that

they are greater than any finite number. The second shows that our model preserves

Bolzano’s part-whole intuition that certain infinite sums might have fewer terms than

some others and that, as a consequence, two infinite quantities might differ by a finite

quantity. Finally, the last two correspond to Bolzano’s claim that some infinite quantities

might be infinitely greater than some others. Note that we write nα as a shorthand for

the sum of α with itself n times, which is defined in the ultrapower.

The proofs for all four items are all similar and can be thought of as “arguments by

cofiniteness”. In all cases, we show that ZU satisfies a formula φ by showing that ||φ||

is a cofinite subset of ω` and must therefore belong to U (since U is non-principal, it

contains no finite set, so it must contain all cofinite sets).
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Proof.

1. Recall that, in ZU , the natural number i corresponds to (the equivalence class of)

the function ei : m ÞÑ i. Moreover, for any natural number n,
n

Npiq “ i ´ n. Thus

||i ă
n

N|| “ tj P ω` : i ă j ´ nu “ tj P ω` : i` n ă ju. Hence ||i ă
n

N|| is a cofinite

subset of ω` and belongs to U , from which it follows that ZU |ù i ă
n

N.

2. Again, in ZU , n is (the equivalence class of) the function en : m ÞÑ n. Moreover,
0

N´
n

N is (the equivalence class of) the function f : ω` Ñ Z such that

fpiq “
0

Npiq ´
n

Npiq “ i´ pi ´ nq

for any i P ω`. Hence ||
0

N´
n

N “ n|| “ ti P ω` : i´pi´nq “ nu “ ti P ω` : i ě nu.

Hence ||
n

N “
0

N´ n|| is a cofinite subset of ω`, and ZU |ù
n

N “
0

N´ n.

3. Since i
0

N “
0

N` . . .`
0

N
loooooomoooooon

i times

, we have that i
0

Npjq “ iˆ j for any j P ω`. On the other

hand,
1

Spjq “
řj
k“1 k which, by Gauss’s summation theorem, is equal to jpj`1q

2
.

Hence

||i
0

N ă
1

S|| “ tj P ω` : iˆj ă
j

ÿ

k“1

ku “ tj P ω` : iˆj ă
jpj ` 1q

2
u “ tj P ω` : i ă

j ` 1

2
u.

Hence ||i
0

N ă
1

S|| is cofinite, and ZU |ù i
0

N ă
1

S.

4. The argument is a simple generalization of the one above. Fix some natural numbers

i and n. Then for any k P ω`, i
n

Spkq “ i
řk
j“1 j

n, and
n`1

S pkq “
řk
j“1 j

n`1. This

means that p
n`1

S ´ i
n

Sqpkq “
n`1

S pkq ´ i
n

Spkq “
řk
j“1pj

n`1 ´ ijnq for any k P ω`.

Now since pjn`1´ ijnq is positive for any j ą i and in fact assumes arbitrarily large

positive values, it follows that p
n`1

S ´ i
n

Sqpkq is positive for any large enough k. Thus

||
n`1

S ´
n

S ą 0|| is a cofinite subset of ω`. Now since Z |ù @x@ypx´y ą 0 Ñ y ă xq, by

 Loś’s Theorem we have that ZU |ù
n`1

S ´i
n

S ą 0 Ñ i
n

S ă
n`1

S . Hence ZU |ù i
n

S ă
n`1

S

for any natural numbers i and n.11

11A more direct proof of this result can also be given using more advanced resources from number
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Let us now compare the proofs above with Bolzano’s arguments in sections 29 and 33

of PU. Bolzano does not explicitly argue for results p1q and p3q: in §29, he seems to take

for granted that sums of the form
0

N and
n

N designate infinite quantities, and he simply

writes that
1

S is “far greater than
0

N”. However, the same section contains the following

argument for p2q:

If we designate [the number of all natural numbers] by
0

N and therefore form

the merely symbolic equation

10
` 20

` 30
` . . .` n0

` pn` 1q0 ` . . . in inf. “
0

N (1)

and in the same way we designate the number of natural numbers from pn`1q
n

N , and therefore form the equation

pn` 1q0 ` pn` 2q0 ` pn` 3q0 ` . . . in inf. “
n

N, (2)

then we obtain by subtraction the certain and quite unobjectionable equation

10
` 20

` 30
` . . .` n0

“ n “
0

N ´
n

N (3)

from which we therefore see how two infinite quantities
0

N and
n

N sometimes

have a completely definite finite difference.

As mentioned in Section 2, we read Bolzano as arguing that subtracting
n

N from
0

N

amounts to subtracting from each term i0 after the nth summand in
0

N the corresponding

term i0 in
n

N . The only terms left in
0

N ´
n

N after this procedure are the first n sum-

mands in
0

N , from which it follows that
0

N ´
n

N “ n. In our setting,
0

N is represented

theory. It is a standard number-theoretic fact (using for example Faulhaber’s formula) that for any

natural numbers k, n,
řk

j“1 j
n is a polynomial of degree n ` 1 in k, with leading term 1

n`1k
n`1. Thus

i
n

Spkq is a polynomial in k of degree n ` 1 with leading term i
n`1k

n`1, while
n`1

S pkq is a polynomial in

k of degree n ` 2 with leading term 1
n`2k

n`2. This means that i
n

Spkq ă
n`1

S pkq for k sufficiently large,

and thus ||i
n

S ă
n`1

S || is a cofinite subset of ω`.
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by (the equivalence class of) the sequence p1, 2, 3, . . . q, while
n

N is represented by the

sequence p0, . . . , 0
loomoon

n times

, 1, 2, 3 . . . q, and
0

N´
n

N is the sequence obtained by subtracting
0

N from

n

N componentwise, i.e., the sequence p1, 2, 3 . . . , n, n, n, . . . q, which over U is equivalent

to n. Similarly to Bolzano’s argument, the difference between the two infinite sums
0

N

and
n

N is determined by the difference between matching summands (i.e., the difference

is computed componentwise) and is precisely n.

Finally, Bolzano does not explicitly argue for p4q in its full generality. In a very

revealing passage in §33, however, he gives a detailed argument for the n “ 1 instance of

p4q when arguing that
2

S is infinitely greater than
1

S:

But if the multitude of terms [Menge der Glieder ] in
1

S and
2

S is the same,

then it is clear that
2

S must be much greater than
1

S, since, with the exception

of the first term, each of the remaining terms in
2

S is definitely greater than

the corresponding one in
1

S. So in fact
2

S may be considered as a quantity

which contains the whole of
1

S as a part of it and even has a second part which

in itself is again an infinite series with an equal number of terms [Gliederzahl ]

as
1

S, namely:

0, 2, 6, 12, 20, 30, 42, 56, . . . , npn´ 1q, . . . in inf.,

in which, with the exception of the first two terms, all succeeding terms are

greater than the corresponding terms in
1

S, so that the sum of the whole

series is again indisputably greater than
1

S. If we therefore subtract from

this remainder the series
1

S for the second time, then we obtain as the second

remainder a series of the same number of terms [Gliedermenge]

´1, 0, 3, 8, 15, 24, 35, 48, . . . , npn´ 2q, . . . in inf.

in which, with the exception of the first three terms all the following terms are
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greater than the corresponding ones in
1

S, so that also this third remainder

is without contradiction greater than
1

S. Now since these arguments can be

continued without end it is clear that the sum
2

S is infinitely greater than the

sum
1

S, while in general we have

2

S´m
1

S “ p1´mq`p22´2mq`p32´3mq`p42´4mq`. . .`pm2´m2q`. . .`npn´mq`. . . in inf.

In this series only a finite multitude of terms [Menge von Gliedern], namely

the first m ´ 1 are negative and the mth is 0, but all succeeding ones are

positive and increase indefinitely.

Let us note two features of Bolzano’s argument that are shared by our interpretation.

First, when determining whether one infinite sum is greater than another one, Bolzano

considers which terms in the first sum are greater than the corresponding terms in the

second one: this is reminiscent of the way relations between (equivalence classes of)

functions are determined in an ultrapower. Moreover, Bolzano’s reason to claim that
2

S is greater than
1

S, 2
1

S, 3
1

S, and so on, is that in all such cases, all but finitely many

terms in
2

S are strictly greater than the corresponding terms in any finite multiple of
1

S.

This seems very similar to the “argument by cofiniteness” that we presented above: even

though the first terms of the sum m
1

S might be greater than the first terms of the sum
2

S,

the terms in the second sum become greater than the corresponding terms in the first one

from some point onwards. In our setting, we prove that ZU |ù
2

S ą m
1

S by showing that
2

Spiq´m
1

Spiq ą 0 for cofinitely many natural numbers i. To establish this, it is enough to

observe, like Bolzano, that i2´mi is positive for any i ą m, as this implies that the sum
ři
j“1pj

2´mjq must be positive for i large enough. It is worth mentioning that, unlike in

Bolzano’s argument, our “tipping point”, i.e., the value i at which
2

Spiq becomes strictly

greater than m
1

Spiq is not m`1. This is because
2

S and
1

S are the approximating sequences

of the sequences p1, 2, 3, . . . q and p1, 4, 9, . . . q respectively, while Bolzano is reasoning with

the sequences of terms themselves. We therefore conclude that the general proof given

for 4 closely matches Bolzano’s own reasoning. In particular, our use of an ultrapower
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construction enables us to lift the following criterion for the inequality of two integers:

@m,npm ă nØ n´m ą 0q (1)

to a criterion for the inequality of two infinite sums:

@α,βpα ă β Ø ti P ω` : pβ ´αqpiq ą 0u P U q. (2)

In other words, in our formalism, in order to determine whether an infinite sum α

is greater than another infinite sum β, it is enough to compute their difference β ´ α,

which is defined termwise, and then determine whether the sum of the first i terms of

β ´α is positive for U -many i. Our claim is that this reasoning is very close to the one

displayed by Bolzano in §33. Moreover, let us note that when he argues that
2

S is greater

than m
1

S for any m, because all but finitely many terms in the infinite sum
2

S ´ m
1

S

are positive, Bolzano can be seen as implicitly displaying a form of part-whole reasoning

about sums, rather than sets: m
1

S is smaller than
2

S because it is contained “as a part”.

This is established by showing that the difference
2

S ´ m
1

S is positive, and this latter

fact is established in turn by noticing that all but finitely many terms in
2

S ´ m
1

S are

positive. Thus Bolzano can be read here as providing a criterion for when the quantity

designated by a sum α is a proper part of the quantity designated by another sum β. We

will come back to this point in Section 5, and we will discuss its implication for the role

that part-whole reasoning plays in Bolzano’s computations with the infinitely large.

3.3 Grandi’s series

Finally, let us address some of Bolzano’s remarks on Grandi’s series. As noted above,

Bolzano disagrees with the claim (attributed to M.R.S.) that the infinite sum

x “ a´ a` a´ a` . . . in inf.
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designates the quantity a
2
. In particular, Bolzano claims that the mistake in M.R.S.’s

proof is to treat the sum obtained by discarding the first term of x as ´x. In our setting,

x designates the quantity Ga, i.e., the equivalence class of the sequence pa, 0, a, 0, . . . q.

On the other hand, following the strategy adopted for “truncated” infinite sums like
n

N, it seems that the infinite sum obtained by discarding the first term in x should be

interpreted as the countable sequence p0,´a, a,´a, a, . . . q. If we write this sequence as
1

Ga, we then have that
1

Ga is the equivalence class of the sequence p0,´a, 0,´a, . . . q. But

then, it follows that

ZU |ù Ga ´
1

Ga “ a.

Indeed, for any i P ω`, Gapiq “ a if i is even and 0 if i is odd, while
1

Gapiq “ 0 if i is even

and ´a if i is odd. Thus Gapiq ´
1

Gapiq “ a for any i. Hence our interpretation agrees

with Bolzano’s diagnostic of the fallacy in M.R.S.’s proof:

The series in the brackets obviously does not have the same multitude of

terms [Gliedermenge] as the one put “ x at first, rather it is lacking the first

a. Therefore its value, supposing it could actually be stated, would have to

be denoted by x´ a. But this would have given the identical equation

x “ a` x´ a.

Moreover, recall that Bolzano raises a second, deeper argument against M.R.S.’s con-

clusion: the infinite sum x cannot designate an “actual quantity”, since different ways of

parsing this infinite sum yield different conclusions regarding which quantity it allegedly

designates. According to Bolzano, the infinite sum

a´ a` a´ a` . . . in inf.

represents the same quantity as the sums

pa´ aq ` pa´ aq ` pa´ aq ` . . . in inf.
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and

a` p´a` aq ` p´a` aq ` p´a` aq ` . . . in inf.

But the first expression simplifies as

0` 0` 0` . . . in inf.,

while the second one simplifies as

a` 0` 0` 0` . . . in inf..

Therefore, if it were a real quantity, x should be equal to both 0 and a, which is a con-

tradiction.

What does this argument become in our interpretation? At first sight, it seems that

we cannot make sense of Bolzano’s claim that Grandi’s series does not represent any

actual quantity, since we attributed to this series the element Ga in ZU . However,

it is straightforward to verify that, depending on which subsets of ω` are in U , Ga

is computed differently in the ultrapower. Indeed, since Ga is the (equivalence class

of) the sequence pa, 0, a, 0, . . . q, we have that ||Ga “ a|| “ t2i ´ 1 : i P ω`u, while

||Ga “ 0|| “ t2i : i P ω`u. Now since U is an ultrafilter, exactly one of ||Ga “ a||

or ||Ga “ 0|| belongs to U . This implies that ZU |ù Ga “ a _ Ga “ 0 regardless

of our choice of ultrafilter, but the choice of U determines whether ZU |ù Ga “ a or

ZU |ù Ga “ 0. Thus we seem to recover at last part of Bolzano’s intuition that the

quantity designated by the sum a´ a` a´ a` . . . in inf. is indeterminate, as it can be

computed to be equal to 0 or to a.

Bolzano also argues that the sum a´a`a´a` . . . in inf. should represent the same

quantity as the sum

´a` pa´ aq ` pa´ aq ` . . . in inf.,
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which simplifies to

´a` 0` 0` . . . in inf.,

and should therefore designate the quantity ´a. His argument is that one may first

compute Grandi’s series as

pa´ aq ` pa´ aq ` . . . in inf.

Using commutativity of addition an infinite number of times, swap each pair of terms in

order to obtain the series

p´a` aq ` p´a` aq ` . . . in inf.,

which, by associativity is then equivalent to

´a` pa´ aq ` pa´ aq ` . . . in inf.

In our setting, the infinite sum ´a ` a ´ a ` a ´ . . . in inf. is represented by its ap-

proximating sequence p´a, 0,´a, 0, . . . q. As a consequence, the infinite sums a ´ a `

a ´ a ` . . . in inf. and ´a ` a ´ a ` a ´ . . . in inf. will be identified in ZU precisely if

t2i : i P ω`u P U . In fact, as shown above, in such a case both series will be identified

with 0.

In light of the remarks above, it might be tempting to conclude that Bolzano’s criterion

for an infinite sum to represent an actual quantity, namely that the order in which the

terms are summed do not change the result of the summation, could be interpreted in

our framework as some kind of absoluteness of the corresponding sequences under the

choice of a non-principal ultrafilter U . However, it is straightforward to observe that

Bolzano’s own criterion is too strong for his purposes. Indeed, let us consider again the

infinite sum
0

N “ 10 ` 20 ` 30 ` . . . in inf. If we interpret, as we have done so far, n0 as

equal to 1 for any natural number n, then this infinite sum may actually be written as
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1` 1` 1` . . . in inf., which is a special case of a geometric series of the form
ř8

n“0 ar
n

where a “ r “ 1. Similarly to Bolzano’s argument for Grandi’s series, we may now

rewrite
0

N as

p1` 1q ` p1` 1q ` p1` 1q ` . . . in inf. “ 2` 2` 2 . . . in inf.

“ 2p1` 1` 1 . . . in inf.q

“ 2
0

N,

from which we would be forced to conclude that
0

N ´
0

N “
0

N , implying that
0

N “ 0.

Thus
0

N does not designate any infinite quantity after all, since it is equal to 0. This

means that the order in which the terms in
0

N are summed determine which quantity the

sum designates, which, by Bolzano’s own criterion, is impossible. Of course, a Bolzanian

could reply to that argument that there is a fallacy in deriving this equality, because the

sum between parenthesis on the second line above does not have the same Gliedermenge

as the original 1 ` 1 ` 1 ` . . . in inf. Note that this response implies that changing the

order in which terms are summed together, although it does not change the quantity

designated by the sum, does change its Gliedermenge. Moreover, this answer is not

entirely satisfactory. Indeed, if we assume that the right-hand side of the first equation

above does not have the same Gliedermenge as
0

N , we may therefore represent the two

sums p1`1q`p1`1q`p1`1q`. . . in inf. and 1`p1`1q`p1`1q`. . . in inf. by the sequences

A1 :“ p0, 2, 0, 2, 0, 2, . . . q and A2 :“ p1, 0, 2, 0, 2, 0, . . . q respectively. Since both sums

correspond to different ways of writing
0

N , we should expect thatA1 “ A2 “
0

N. However,

one quickly notices that σpA1qpiq ă σpA2qpiq whenever i is odd, and σpA2qpiq ă σpA1qpiq

whenever i is even. But this immediately implies that ZU |ù A1 ‰ A2. In other

words, if we interpret the two infinite sums p1 ` 1q ` p1 ` 1q ` p1 ` 1q ` . . . in inf.

and 1 ` p1 ` 1q ` p1 ` 1q ` . . . in inf. by A1 and A2, then in order to satisfy Bolzano’s

requirement that infinite associativity holds, we would need both the set of even numbers

and the set of odd numbers to be in U , which is not possible. Note however that this

has little to do with our formalization: Bolzano himself seems committed to the following
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equalities:

p1` 1q ` p1` 1q ` p1` 1q ` . . . in inf. “
0

N “ 1` p1` 1q ` p1` 1q ` . . . in inf.

2` 2` 2` . . . in inf. “ 1` 2` 2` . . . in inf.,

but there does not seem to be any reasonable way of establishing directly the latter

equality. However, let us conclude this section by noting that a weaker requirement

could be imposed on infinite sums which designate actual quantities, namely that any

finite permutation of the terms or of the order in which such terms are summed does

not change the value of the sum. However, it is straightforward to verify that all sums

in our formalization satisfy this criterion: any two infinite sums that differ from one

another only by a finite permutation of their terms or by finitely many rearrangements of

the order in which those terms are summed are represented by approximating sequences

which agree on a cofinite set and are therefore identified in ZU . Thus this alternative

criterion is too weak to rule out Grandi’s series. In short, while Bolzano’s first argument

against M.R.S can easily be translated in our framework, his second argument seems to

prove either too much, or too little, for his purposes.

3.4 Comparisons with related work

Our central proposal is to model Bolzano’s computations inside an ultrapower of the

integers, and to identify the quantities designated by Bolzanian infinite sums with equiv-

alence classes of functions from the positive integers to the integers. This idea is very close

to a proposal made by Trlifajová (2018), although there are a few important differences

that we must remark on. First, Trlifajová seems to be primarily interested in connecting

Bolzano’s ideas with some modern approaches to non-standard analysis, while we are

more interested in a close reading of Bolzano’s arguments and in establishing the consis-

tency of our interpretation. Second, Trlifajová works mainly with equivalence classes of

functions from ω to the real numbers. By contrast, we work with countable sequences of

integers. Indeed, we believe that determining whether Bolzano’s notion of a real number
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corresponds to our modern notion is a difficult problem. Bolzano, of course, made some

significant contributions to the foundations of analysis. In particular, he developed a the-

ory of measurable numbers (Bolzano 1976, Part VII) which is often seen as an attempt to

define the real numbers (see e.g. Rootselaar 1964; Spalt 1991; Russ and Trlifajová 2016).

Trying to model Bolzano’s computations with real numbers would require us to provide

a detailed discussion of Bolzano’s theory of measurable numbers. Since we are primarily

interested in challenging the received view according to which Bolzano’s computations

should be read as a flawed attempt to develop an arithmetic of the transfinite, we believe

that addressing this issue would take us too far astray. Just as Bolzano’s measurable

numbers are beyond the scope of our goals for this paper, so are Bolzano’s arguments in

PU involving infinitely small quantities or infinitesimal calculus. Third, let us note that,

in Trlifajová’s framework, two sequences are identified if they agree on a cofinite set of

natural numbers. Formally, this means that she works with a reduced power of R rather

than an ultrapower. While we do see the appeal of using only the Fréchet filter on the

natural numbers instead of a non-principal ultrafilter, we have several reasons to believe

that our framework is more suitable to our purposes.

For one, only a weaker version of  Loś’s theorem holds for reduced powers (see Hodges

1993, p. 445), which means that the resulting structure will not be as well-behaved as

the ultrapower construction we are using. While this does not create significant tech-

nical issues at this stage, we will argue in the next section that the most accurate way

of modelling Bolzano’s views on the product of infinite sums is to conceive of it as an

interated infinite summation. This means that one will have to work with either iter-

ated ultrapowers, or iterated reduced powers, the general theory of which is much less

developed.

Moreover, we believe that the use of a non-principal ultrafilter rather than the Fréchet

filter can also be justified on interpretive grounds. Indeed, it is straightforward to ver-

ify that the reduced power ZF , in which two sequences α and β are identified only

if ||α “ β|| is cofinite, does not satisfy trichotomy. For example, for the sequence

α “ p1, 0, 1, 0, . . . q, we have that none of ||α “ 0||, ||α ă 0|| or ||0 ă α|| is a cofinite
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set, and thus ZF |ù  pα ă 0q ^  pα ą 0q ^  pα “ 0q. One might argue that this is a

desirable feature of a formal reconstruction of Bolzano’s ideas about the infinite, since,

in §28, Bolzano writes that “a determination of the relationship of one infinity to one

another [. . . ] is feasible, in certain cases at any rate . . . ”. Nonetheless, we think that

Bolzano should not be read in this passage as claiming that trichotomy may not hold in

the case of infinite quantities. Indeed, as mentioned in Section 1.1, it is part of Bolzano’s

very definition of a quantity that it must obey the law of trichotomy. All things con-

sidered, then, we believe that a formalisation that preserves trichotomy–such as ours,

using ultrapowers–is more faithful to the text than a formalization that preempts the

very possibility of trichotomy for infinite quantities, such as one using the Fréchet filter.

A second related work is the recently proposed theory of numerosities (Benci and

Di Nasso 2003), which we have already mentioned in the introduction to this paper.

Numerosities form a positive semi-ring that is meant to capture an intuitive notion of

the size of sets of natural numbers. Benci and di Nasso introduce the technical notion of

a labelled set of natural numbers, i.e., a set A Ď N with an associated labelling function

`A : AÑ N which is finite-to-one and represents a certain way of counting the elements of

the set. One can then define the sum and product of two labelled sets in a natural way.

Labelling functions allow for the representation of (disjoint unions and finite products

of) subsets of N as approximating sequences, which are non-decreasing functions from

N Ñ N. The numerosity of a set A can then be defined as the equivalence class of its

approximating sequence in an ultrapower NU of N by a Ramsey ultrafilter U . Benci

and di Nasso show that the requirement that U be Ramsey guarantees that any element

of NU is the numerosity of some subset of N. They also show that for any A,B Ď N,

if A Ĺ B then NU |ù numpAq ă numpBq, and that the numerosity of a disjoint sum

(respectively, product) of two labelled sets is equal to the sum (respectively, product) of

the numerosities of the labelled sets as computed by the ultrapower.

Numerosities share some features with our interpretation of Bolzano’s computations,

in particular regarding the way sums of infinite quantities are defined. However, a central
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motivation for the numerosity framework is to develop a theory of the size of sets of natural

numbers that is consistent with what we called the set-theoretic part-whole principle

PW1. As we will argue in Section 5, we take Bolzano’s arithmetic of the infinite to be

compatible with the set-theoretic part-whole principle but not motivated by it, as we do

not believe that Bolzano is primarily concerned with counting sets of natural numbers

but rather with developing a theory of infinite sums.

4 Higher-order infinities

4.1 The product of two infinite quantities

So far, we have shown how to interpret Bolzano’s computations regarding infinite sums

of the form
n

N and
n

S, as well as Grandi’s series. We have, however, refrained from giving

an interpretation of Bolzano’s computations involving products of two infinite quantities.

Although our treatment of Bolzano’s computations so far closely matches Trlifajová’s and

is consistent with numerosities, our account of Bolzanian products of infinite quantities

will be quite different. Indeed, it seems at first sight that there is a natural way to define

the product of two quantities in ZU . Similarly to the way addition is defined, we could de-

fine the product componentwise. Formally, for any f, g : ω` Ñ Z, letting f ¨ g : ω` Ñ Z

be the function mapping any i P ω` to fpiq ˆ gpiq, we may define f˚ ¨ g˚ as pf ¨ gq˚.

This is the definition adopted by Benci and Di Nasso (2003) and Trlifajová (2018), and

it is straightforward to check that, under this definition, the structure pZU ,`, ¨, 0, 1,ăq

is an ordered commutative ring. However, we believe that this definition of the prod-

uct does not satisfactorily account for Bolzano’s ideas as exposed in PU. We will first

lay out our textual evidence for this claim and then explain how our interpretation works.

Bolzano gives explicit computations of the product of two infinite quantities in only

one passage towards the end of §29:

The purely symbolic equation [(1)]12 underlying all this will surely allow the

12The German version of the text reads (4) here, but the context clearly suggests that this is a mistake.
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derivation, through successive multiplication of both sides by
0

N , of the fol-

lowing equations:

10.
0

N ` 20.
0

N ` 30.
0

N ` . . . in inf. “ p
0

Nq2

10.
0

N
2

` 20.
0

N
2

` 30.
0

N
2

` . . . in inf. “ p
0

Nq3 etc.

from which we are convinced that there [are] also infinite quantities of so-

called higher orders, of which one exceeds the other infinitely many times.

But it also certainly follows from this [that] there are infinite quantities which

have every arbitrary rational, as well as irrational, ratio α : β to one another,

because, as long as
0

N denotes some infinite quantity which always remains

the same, α.
0

N and β.
0

N are likewise a pair of infinite quantities which are in

the ratio α : β.

Bolzano defines the product of the quantity
0

N with itself, noted p
0

Nq2, as the result

of summing
0

N with itself
0

N many times. The equation

10.
0

N ` 20.
0

N ` 30.
0

N ` . . . in inf. “ p
0

Nq2

is obtained from the equation

10
` 20

` 30
` . . . n0

` pn` 1q0 ` . . . in inf. “
0

N

by multiplying by
0

N on both sides. This seems to suggest that Bolzano assumes some

form of distributivity of multiplication over infinite summation, which allows him to

equate p10` 20` 30` . . . in inf.q.
0

N with 10.
0

N ` 20.
0

N ` 30.
0

N . . . in inf. on the left-hand

side of the equality symbol. Understood as such, p
0

Nq2 is an infinite sum in which all terms

are infinite quantities. Quantities of the form p
0

Nqn are the only example in Bolzano’s
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text of quantities defined explicitly as infinite sums of infinite quantities. It is also worth

mentioning that, even though Bolzano discusses other examples of infinite quantities be-

ing infinitely smaller or larger than one another, this is the only case in §§29-33 where

some infinite quantities are explicitly referred to as being “of higher order” than some

others.13

If we were to interpret p
0

Nq2 in a similar fashion as Trlifajová and Benci and Di Nasso,

we would have to define the quantity p
0

Nq2 in such a way that p
0

Nq2piq “
0

Npiq¨
0

Npiq “ i2 for

all i P ω`. However, due to the well-known fact that the sum of the first n odd numbers

is always equal to n2, the infinite sum
Odds

S :“ 1` 3` 5` 7 . . . in inf. is also represented

by (the equivalence class of) the sequence p1, 4, 9, 16, ...q. It would therefore follow that

ZU |ù
Odds

S “ p
0

Nq2. We should conclude that the two infinite sums 1` 3` 5` . . . in inf.

and
0

N `
0

N `
0

N ` . . . in inf. actually designate the same quantity. But this seems a clear

violation of Bolzano’s treatment of order relationships between infinite sums. Indeed,

we saw above that, in showing that
2

S was infinitely greater than
1

S, Bolzano reached

his conclusion by showing that the difference between matching summands in
2

S and in

any finite multiple of
1

S is always positive for all but finitely many summands. In this

case too, since
Odds

S and p
0

Nq2 have the same number of terms, we could also argue along

Bolzanian lines that, for any natural number i, the difference p
0

Nq2´ i
Odds

S is given by the

sum p
0

N´ iq`p
0

N´3iq`p
0

N´5iq` . . . in inf., in which all summands are positive (and in

fact infinite). As we have argued in Section 3.2, one can extract from Bolzano’s writings

13The authors thank an anonymous referee for noting that an alternative interpretation of §29 is also

plausible. When introducing p
0

Nq2 and p
0

Nq3, Bolzano writes that this “convinc[es us] that there are also
infinite quantities of so-called higher orders, of which one exceeds the other infinitely many times.” This
can be read as meaning that whenever an infinite quantity A exceeds an infinite quantity B infinitely
many times, then A is an infinite of higher order with respect to B. In other words, the definition of
infinities of higher order is infinities that exceed smaller infinities by an infinitely large factor. This
understanding of “higher order” is problematic, however, for at least two reasons. First, if “of higher

order” simply meant “infinitely larger or smaller”, then the introduction of
1

S in §29 should have sufficed
to establish the existence of infinite quantities of higher-order, since Bolzano has already noted by that

point that
1

S is “far greater than”
0

N . Second, in the definition of “infinite” (§10), Bolzano presents
the concept of infinitely smaller and infinitely greater quantities of higher order as quantities derived
from, but not identical with, infinitely small and infinitely large quantities. The referee’s interpretation,
by contrast, would collapse the notion of infinities of higher order into that of infinities simpliciter, per
Bolzano’s definition.
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a sufficient criterion for one sum α to be strictly greater than another sum β, namely

when all but finitely many terms in the sum α ´ β are positive. We will come back to

this issue at greater length in Section 5. For now, let us note that, if our interpretation is

correct, we must conclude in the present case that p
0

Nq2 is greater than any finite multiple

of
Odds

S , and thus that p
0

Nq2 ‰
Odds

S . The componentwise definition of the product of two

quantities is therefore incompatible with Bolzano’s own criterion for comparing infinite

sums.

Moreover, another passage from §29 seems to explicitly contradict the “component-

wise” interpretation of the product of two infinite quantities. Indeed, when introducing

the sum of all natural numbers
1

S, Bolzano writes:

On the other hand if we designate the quantity which represents the sum of

all natural numbers by [
1

S], or assert the merely symbolic equation

1` 2` 3` . . .` n` pn` 1q ` . . . in inf. “ r
1

Ss (4)

then we will certainly realize that [
1

S] must be far greater than
0

N . But it is

not so easy to determine precisely the difference between these two infinite

quantities or even their (geometrical) ratio to one another. For if, as some

people have done, we wanted to form the equation

r
1

Ss “

0

N ¨ p
0

N ` 1q

2

then we could hardly justify it on any other ground than that for every finite

multitude of terms [Menge von Gliedern] the equation

1` 2` 3` . . .` n “
n.pn` 1q

2

holds, from which it appears to follow that for the complete infinite multitude

of numbers n just becomes
0

N . However it is in fact not so, because with an
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infinite series it is absurd to speak of a last term which has the value
0

N .

Bolzano’s point here seems to be that one cannot infer from the validity of Gauss’s

summation theorem for finite numbers that an “infinitary” version of the summation

theorem also holds for infinite quantities. His rejection of the infinite summation theorem

can be given two readings, one stronger, and one weaker. On the stronger reading,

Bolzano is arguing that the infinite summation theorem is false, because the only way of

justifying it, namely, through an inference from the finite to the infinite, leads to a false

consequence. On the weaker reading, by contrast, Bolzano is not asserting the falsity

of the infinite summation theorem, but he is merely refraining from asserting its truth,

because what is ostensibly the only argument to prove its truth is a defective argument.

Under the first reading, which we tend to find more natural, the componentwise

definition of the product à la Trlifajová (2018) and Benci and Di Nasso (2003) is simply

inconsistent with Bolzano’s own views, as the infinite summation theorem is true in the

structure pZU ,`, ¨, 0, 1,ăq:

Lemma 4.1. Let
0

N ¨ p
0

N ` 1q be such that
0

N ¨ p
0

N ` 1qpiq “
0

Npiq ¨ p
0

N ` 1qpiq for any

i P ω`. Then ZU |ù
0

N ¨ p
0

N` 1q “ 2
1

S.

Proof. By definition, ||
0

N ¨ p
0

N` 1q “ 2
1

S|| “ ti P ω` : p
0

N ¨ p
0

N` 1qqpiq “ 2
1

Spiqu. Now for

any i P ω`, 2
1

Spiq “ 2 ˆ ipi`1q
2

“ ipi ` 1q by Gauss’s summation theorem. On the other

hand, p
0

N ¨ p
0

N` 1qqpiq “
0

Npiq ¨ p
0

N` 1qpiq “ iˆ pi` 1q. Thus ||
0

N ¨ p
0

N` 1q “ 2
1

S|| “ ω`,

and therefore is contained in U .

Since we are interested in establishing at least the consistency of Bolzano’s calculation

of the infinite, the stronger reading of this passage of the infinite summation theorem

compels us to provide an alternative definition of the product of two Bolzanian quantities.

Moreover, we find that this conclusion also follows from the second, weaker reading

mentioned above. Indeed, even if Bolzano is merely punting here on the truth of the

infinite summation theorem, we find it quite revealing that he would object to the infinite

summation theorem being a direct consequence of Gauss’s summation theorem. Indeed,

this passing from the finite to the infinite is very similar to the various “arguments by
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cofiniteness” that Bolzano appeals to in §§29 and 32, and which we discussed at length in

the previous section. As we have noticed above, the formal setting of ultrapowers, in which

operations can be defined componentwise, allows for a straightforward reconstruction of

such arguments by cofiniteness, with the help of  Loś’s theorem. In fact, the proof of

Lemma 4.1 above proceeds precisely in the same way as the inference rejected by Bolzano:

since the summation theorem holds for any i P ω`, it transfers to the infinite quantities
1

S and
0

N. Bolzano therefore seems to have two distinct attitudes with regard to these

inferences from the finite to the infinite: while he uses arguments by cofiniteness when

establishing results about sums and differences of infinite sums, he explicitly rejects this

style of reasoning when discussing ratios of infinite sums, i.e., results about products of

infinite sums. If we were to model such products componentwise, we would be allowing

in our formal setting precisely the type of inference that Bolzano objects to. This seems

cause enough to us to propose an alternative definition of the products of two Bolzanian

sums.

4.2 Second-order infinities via an iterated ultrapower

As shown above, the componentwise interpretation of the product adopted both by Trli-

fajová and Benci and Di Nasso has unfortunate consequences for our project. If we want

to model Bolzanian computations with the infinite as accurately as possible, we must

therefore propose an alternative interpretation. Our solution springs from the observa-

tion above that the product p
0

Nq2 is written by Bolzano as an infinite sum in which the

summands themselves are infinite quantities. Since we decided to model infinite sums of

integers as functions from an index set ω` into the integers, we should therefore model

infinite sums of possibly infinite quantities as functions from ω` into a structure that

contains those infinite quantities, i.e., into ZU .

Formally, this means that we should now work in an ultrapower of ZU , i.e., in an

iterated ultrapower. Letting pZU q
2 denote this ultrapower, we have a straightforward

embedding ι : ZU Ñ pZU q
2, induced by the map sending any f : ω` Ñ Z to the map
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i ÞÑ fpiq, where fpiq is the constant function returning fpiq for any j P ω`. Given an

infinite sum of (possibly infinite) quantities in ZU , say α1`α2`α3` . . . in inf., we pro-

ceed as before by identifying this sum with the countable sequence α :“ pα1, α2, α3, . . . q,

and determining its quantity α as the equivalence class in the iterated ultrapower pZU q
2

of the sequence pα1, α1 ` α2, α1 ` α2 ` α3, . . . q, where the partial sums of the first n

terms in α are computed inside ZU . In the case of p
0

Nq2, this means that we identify the

infinite sum with the sequence p
0

Nq2 :“ p
0

N,
0

N,
0

N, . . . q. The corresponding approximating

sequence is then p
0

N, 2
0

N, 3
0

N, . . . q, which means that p
0

Nq2 is the equivalence class of the

function assigning to each i P ω` the quantity i
0

N. Similarly, we could form the infinite

sum
1

S`
1

S`
1

S` . . . in inf., which corresponds to summing the quantity
1

S
0

N -many times

to itself. This sum is interpreted as the series
0

N.
1

S :“ p
1

S,
1

S,
1

S, . . . ), with approximating

sequence p
1

S, 2
1

S, 3
1

S, . . . q, so
0

N.
1

S is the equivalence class of the function assigning i
1

S to

each i P ω`.

Going one step further, we could also wonder how the product
1

S.
0

N , i.e., summing
1

S-

many times the quantity
0

N , should be interpreted. Just as we computed p
0

Nq2 by taking
0

N as a unit in our summation instead of 1, it seems that, in computing
1

S.
0

N , we should

take
0

N as a unit in the summation 1` 2` 3` . . . in inf. which yields
1

S. This suggests

that summing
0

N
1

S-many times with itself yields the infinite sum

0

N ` 2
0

N ` 3
0

N ` . . . in inf.

According to our interpretation, this sum is represented by the sequence

1

S.
0

N :“ p
0

N, 2
0

N, 3
0

N, . . . q,

whose approximating sequence is p
0

N, 3
0

N, 6
0

N, . . . q. Hence
1

S.
0

N is the equivalence class

of the function that assigns
1

Spiq
0

N “
ipi`1q

2

0

N to any i ă ω. More generally, given any

two infinite quantities α and β in ZU , we may define the product α.β P pZU q
2 as the

equivalence class of the function mapping any i ă ω` to αpiq ˆ β, where αpiq ˆ β “
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β ` β ` . . .` β
loooooooomoooooooon

αpiq times

. The relevant definitions are summarized in the table below:

Bolzanian Infinite Sum Sequence Representation approximating sequence Corresponding Function Infinite Quantity
0

N `
0

N `
0

N ` . . . in inf. p
0

Nq2 “ p
0

N,
0

N,
0

N, . . . q σp
0

Nq2q “ p
0

N, 2
0

N, 3
0

N, . . . q σpp
0

Nq2qpiq “ i
0

N p
0

Nq2 “ σpp
0

Nq2q˚

1

S `
1

S `
1

S ` . . . in inf.
0

N.
1

S “ p
1

S,
1

S,
1

S . . . q σp
0

N.
1

Sq “ p
1

S, 2
1

S, 3
1

S . . . q σp
0

N.
1

Sqpiq “ i
1

S
0

N.
1

S “ σp
0

N.
1

Sq˚

1
0

N ` 2
0

N ` 3
0

N ` . . . in inf.
1

S.
0

N “ p1
0

N, 2
0

N, 3
0

N, 4
0

N, . . . q σp
1

S.
0

Nq “ p1
0

N, 3
0

N, 6
0

N, 10
0

N, . . . q σp
1

S.
0

Nqpiq “
ři
j“1 j

0

N
1

S.
0

N “ σp
1

S.
0

Nq˚

αp1qβ ` αp2qβ ` . . . in inf. α.β “ pαp1qβ, αp2qβ, . . . q σpα.βq “ pσpαqp1qβ, σpαqp2qβ, . . . q σpα.βqpiq “ σpαqpiqβ α.β “ σpα.βq˚

Table 2: Representation of Bolzanian products in pZU q
2

This definition of the product of two infinite quantities has three important conse-

quences. First, as evidenced already by the examples of
0

N.
1

S and
1

S.
0

N above, the product

operation will in general not be commutative. Although this might seem as a highly non-

Bolzanian feature of our setup, we remark that this does not directly contradict any of

Bolzano’s computations in PU. Moreover, contrary to the associativity and commutativ-

ity of addition, which he sees as rooted in the concept of sum and therefore a feature of the

general theory of quantity, associativity and commutativity of multiplication of integers

are introduced as theorems in Part III of his Reine Zahlenlehre, §§19-20, Bolzano 1976,

pp. 62-63, instead of being part of the definition of a product. Moreover, we think that the

non-commutativity of the product of two infinite quantities is itself motivated by Bolza-

nian considerations. Indeed, if one agrees that the correct interpretation for
0

N.
1

S and
1

S.
0

N

are the infinite sums
1

S `
1

S `
1

S ` . . . in inf. and
0

N ` 2
0

N ` 3
0

N ` . . . in inf. respectively,

then the Bolzanian strategy for comparing two infinite sums, namely computing their dif-

ference term by term, yields that
0

N.
1

S´
1

S.
0

N “ p
1

S´
0

Nq`p
1

S´2
0

Nq`p
1

S´3
0

Nq` . . . in inf.

is itself an infinite sum of positive quantities. It is therefore positive, which means that
0

N.
1

S should be stricly greater than
1

S.
0

N .

Second, it is easy to verify that, under this definition of the product, the summation

theorem does not hold in the infinite case. Indeed, in our interpretation,
0

N.p
0

N`1q is the

function mapping any i P ω` to
0

Npiq.p
0

N` 1q. Now since
0

N` 1 is (the equivalence class

of) the function mapping any j P ω` to j ` 1, it follows that
0

Npiq.p
0

N` 1q “ iˆ p
0

N` 1q

maps any j P ω` to ipj ` 1q. On the other hand, in pZU q
2, 2

1

S maps any i P ω` to

2
1

Spiq “ ipi` 1q. Hence ||2
1

S “
0

N.p
0

N ` 1q|| “ ti P ω` : ZU |ù ipi` 1q “ i ˆ p
0

N ` 1qu.

Now for any i, j P ω`, ipi` 1qpjq “ ipi ` 1q, while pi ˆ p
0

N ` 1qqpjq “ ipj ` 1q, hence
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ZU |ù ipi` 1q ă iˆ p
0

N` 1q for all i ă ω`. Therefore pZU q
2 |ù 2

1

S ‰
0

N.p
0

N` 1q.

Finally, we argue that this definition of the product gives a better interpretation of

Bolzano’s remark that quantities like p
0

Nq2 are infinities of a “higher order”. Indeed, our

construction introduces a clear stratification between integers, infinite quantities of the

first order (i.e., elements introduced in the first ultrapower ZU ), and infinite quantities

of the second order (i.e., elements introduced in the second ultrapower pZU q
2). In fact,

in our interpretation, genuine second-order infinite positive quantities are always larger

than any first-order infinite quantity:

Lemma 4.2. Suppose α,β,γ P ZU are such that ZU |ù α ą m^β ą m for any integer

m. Then pZU q
2 |ù α.β ą γ.

Proof. We claim that ||α.β ą γ|| P U . This amounts to showing that, for U -many

j P ω`, ||αpjq ˆ β ą γpjq|| P U . Now suppose αpjq ą 0 (which is true for U -many

j P ω`). Then k P ||αpjq ˆ β ą γpjq|| if and only if βpkq ą γpjq
αpjq

, which is true

for U -many k since, letting m be the smallest integer greater than γpjq
αpjq

, we have that

ZU |ù β ą m.

However, an obvious drawback of modelling second order infinite quantities by iter-

ating the ultrapower construction is that we must repeat this procedure again in order

to account for third-order infinite quantities, and so on. In fact, provided we want to

make sense of quantities of the form p
0

Nqn for any natural number n, we must iterate our

ultrapower construction countably many times. This requires us to construct models of

the form pZU q
n for any n, with embeddings from each pZU q

n into pZU q
n`1:

Z ι0
// ZU ι1

// pZU q
2

ι2
// pZU q

3
ι3
// . . .

Limits of iterated ultrapowers are a standard tool in mathematical logic. The direct

limit B of this chain of ultrapowers contains quantities of arbitrarily large orders of infinity,

and allows for a rigorous definition of the product α.β of two infinite quantities α and

β. In fact, we obtain a particularly well-behaved structure:
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Theorem 4.3. The structure B “ pB,`,´, 0, 1,ă, .q is a non-commutative ordered ring.

We refer the interested reader to the Appendix for a proof of this theorem as well as

details about the structure B. For now, let us simply conclude that this formal result

establishes that our interpretation of Bolzanian sums yields a rich and original structure

which nonetheless shares many properties with the integers.

5 Reassessing the PU

In the preceding sections we have touched on the following three issues:

1. Whether Bolzano’s work truly was about (something like) the sets of set theory,

or not. We argued that Bolzano’s work in PU §§29-33 is best understood as being

an attempt at giving solid foundations to the handling of infinite series (which

correspond to Bolzano’s infinite sums).

2. Whether part-whole reasoning plays an important role or not in Bolzano’s computa-

tions. We argue that a form of part-whole reasoning about infinite sums, not about

infinite sets, plays a central role in Bolzano’s argument, even though Bolzano’s

argument does not contradict set-theoretic part-whole (PW1 in the Introduction).

3. Whether Bolzano’s relation to what we may call the “first generation” of set theo-

rists (specifically Cantor) needs to be reassessed. We think it does.

In this section, we discuss in detail where we stand on each point in turn, making use

of the formalization from Section 3 and Section 4 whenever necessary.

5.1 A theory of infinite sums

We have argued that Bolzano’s primary interest in PU §§29-33 is in infinite sums of

integers, rather than sets and their sizes. To be more specific, we wanted to illustrate
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that by interpreting these sections as trying (and largely failing) to anticipate Cantorian

inventions, one would fundamentally misrepresent Bolzano’s work. Instead of there being

one notion that, like Cantor’s cardinals (or powers) captures the quantitative aspect of a

collection, Bolzano has rather two quantity notions associated to each of his infinite sums:

the Gliedermenge of the corresponding series of summands, and the sum itself (which for

us would be the value, or the result of performing the infinite addition—Bolzano’s notion

of sum does not allow for a distinction between a sum and its value).

These infinite sums (or the underlying series) can undergo certain transformations,

which may induce a change in the Gliedermenge, a change in the value of the sum, or

both. We saw in Bolzano’s work three examples of such operations:

1. raising all the terms in a sum to the same power;

2. “erasing” some of the terms in a sum;

3. permuting terms in a sum or computing summands in a different order.

§§29 and 33 suggest that raising all natural numbers at once to the same power does

not change the Gliedermenge of an infinite sum, but it does change its value. Indeed,
0

N and
2

S are obtained from the infinite sum 1 ` 2 ` 3 ` . . . in inf. (i.e.,
1

S) by raising

all terms in this sum to the 0th and 2nd power, respectively. Bolzano explicitly states

in §33 that this operation does not change the Gliedermenge of the corresponding sum,

which is why he is able to determine that
0

N ă
1

S ă
2

S. On the other hand, the second

operation, which consists in erasing some of the terms in an infinite sum, does change

the Gliedermenge of the infinite sum in such a way that also induces a change in the

overall value of the sum. Bolzano’s clearest examples of this are quantities of the form
n

N ,

which vary from
0

N only in that the first n terms of the sum are removed. Nonetheless,

as we have seen above, this reasoning also appears in §32, where it plays a crucial role in

Bolzano’s rejection of M.R.S’s identification of the infinite sum a´ a` a´ a` . . . in inf.

with the sum within brackets in a´pa´a`a´a`. . . in inf.q. Finally, regarding the third

operation, Bolzano seems to adhere to the idea that because the laws of commutativity

and associativity should always hold for addition, this operation should not change the
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value of the sum if the sum designates any value at all. As we have shown above, Bolzano

uses this criterion to argue that Grandi’s series does not designate any actual quantity,

but seems unaware of the fact that his argument also creates difficulties for infinite sums

like 1 ` 1 ` 1 ` 1 ` . . . in inf. We have also argued that those issues should commit

Bolzano to the thesis that changing the order in which terms are summed in an infinite

sum also changes its Gliedermenge, although he does not explicitly make this point.

In our formalization of Bolzano’s computations, we treat all infinite sums as countable

sequences of integers, to which we associate a countable sequence of partial sums. For

infinite sums which have the same Gliedermenge as
0

N , this can be done in a straight-

forward way by identifying an infinite sum with its sequence of partial sums, and our

ultrapower construction allows us to assign different values to such sums. For infinite

sums which have a different Gliedermenge, like
n

N or
1

Ga, we only need to make some

natural choices in the way we represent them to retrieve Bolzano’s results. We therefore

believe to have established that Bolzano’s computations in PU form a consistent theory

of divergent infinite sums, which paint a picture of the arithmetic of the infinite largely

different from our modern, set-theoretic, conception. In particular, interpreting Bolzano

as developing a theory of infinite sums allows us to reassess the role that part-whole

considerations play in his theory.

5.2 Part-whole reasoning in Bolzano’s computations

As we have mentioned above, we do not think, pace Berg and Šebest́ık, that Bolzano’s

computations in PU §§29-33 are incompatible with his use of part-whole reasoning in

§§17-24. In fact, we argue that part-whole reasoning plays a central role in Bolzano’s

determination of the relationship between infinite quantities. However, since, as we have

argued, Bolzano is developing in §§29-33 a theory of infinite sums and not a theory

of infinite (set-like) collections, we must exert caution in determining how we should

understand the principle that “the whole is always greater than its proper parts”. The

more common interpretation of this principle (see, e.g., Mancosu 2009) is set-theoretic:

PW1 For any sets A,B, if A Ĺ B, then sizepAq ă sizepBq.
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This formulation of the part-whole principle is, by and large, the one satisfied for

labelled sets of natural numbers by numerosities as defined by Benci and Di Nasso (2003).

In particular, in the numerosity structure xN ,ďy constructed by Benci and di Nasso,

the following holds:

Num For any (labelled) set of natural numbers A and any numerosity ξ, ξ ă numpAq if

and only if there is a (labelled) set B Ĺ A such that numpBq “ ξ.

However, a more general version of the part-whole principle, which avoids set-theoretic

parlance entirely, is given by Bolzano in his Größenlehre. This is to be found in the

definition of “greater than”, which we transcribe here together with the immediately

following remark, which shows that Bolzano is aware of the difficulty his definition of

“less/ greater than” creates for determining relationships between quantities which may

be infinitely large or infinitely small, but adopts it nonetheless:

§27 Def. If the quantity N lets itself be considered as a whole, which includes

in itself the quantity M or one that is equivalent to it as part, then we say

that N is greater than M , and M is smaller than N and we write it as N ąM

or M ă N . Should this much be established, that M is not greater or not

smaller than N ; then we write in the first case M ­ą N and in the second case

M ­ă N .

§28 Remark. What I here pick as definition, that each whole must be greater

than its part, and the part smaller than the whole (as long as they are both

quantities) some, namely already Gregory of St. Vincent and in more recent

times also Schultz (in his Foundations of the pure Mathesis), do not want to

concede, because of quantities which are infinitely large or infinitely small. If

M is infinitely large, but m is finite, or M is finite, but m infinitely small,

then people say that the whole pM ` mq composed from the parts m and

M isn’t to be truly called greater than the part M . [. . . ]14 (Bolzano 1975,

p. 237)

14§.27 Erkl. Wenn sich die Größe N als ein Ganzes ansehen läßt, welches die Größe M oder eine ihr
gleichkommende als ein Theil in sich schließt; so sagen wir, N sey größer als M , M aber kleiner als N
und schreiben dieß N ą M oder M ă N . Wenn um so viel bestimmt werden soll, daß M nicht größer
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The quote above clearly indicates both that Bolzano sees himself as employing some

version of the part-whole principle as the criterion for size comparison between quantities,

and that two quantities A and B are related as whole and part, respectively, if and only

if there is a positive (non-negative, non-zero) quantity C such that A “ B ` C. Then

Bolzano’s definition of less-than (ă) can be formulated as follows:

PW2 For any two quantities A,B, A ă B if and only if there is some positive quantity

C such that A` C “ B.

This latter principle can indeed be seen as preserving the part-whole intuition: if A

is a proper part of B, then the part C of B obtained by removing A from B is non-null,

and clearly its sum with A yields back B. In particular, if the operation of taking the

sum of two quantities has an inverse (removing a part from a whole), then PW2 can be

rephrased as follows:

PW3 For any two quantities A,B, A ă B if and only if B ´ A is positive.

Our claim is that Bolzano is endorsing PW3 when determining order relations be-

tween infinite sums. Note that for PW3 to apply to infinite sums, one needs first to

define two things:

a) the difference α ´ β of two infinite sums α and β;

b) when an infinite sum α is positive.

As we have argued above, Bolzano solves those two issues in his calculation of the infinite

as follows:

a) For two infinite sums α and β having the same Gliedermenge, their difference α´β

is computed termwise: α ´ β is the infinite sum in which the ith term is αi ´ βi,

i.e., the difference of the ith terms of α and β respectively;

oder nicht, kleiner als N sey; so schreiben wir im ersten Falle M ­ą N oder im zweyten M ­ă N .
§28 Anm. Was ich hier als Erklärung annehme, daß jedes Ganze größer als sein Theil, und der Theil
kleiner als das Ganze seyn müsse, (so fern beyde Größen sind), haben Einige, nahmentlich schon Gregor
v. St.Vincenz und in neuerer Zeit auch wieder Schultz (in seinen Anfangsgr. d. rei. Mathesis) in Hinsicht
solcher Größen, die unendlich groß oder klein sind, nicht zugestehen wollen. Wenn M unendlich groß, m
aber endlich ist, oder wenn M endlich, m aber unendlich klein ist; so behauptet man daß aus den Theilen
M und m zusammengesetzte Ganze pM `mq sey nicht wirklich größer als der Theil M zu nennen. [. . . ]
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b) An infinite sum α is positive if all but finitely many of its terms are positive.

Bolzano is thus able to derive from PW3 a sufficient criterion for order relationships

between infinite sums:

PW4 For any two infinite sums α, β, α ă β if all but finitely many terms in β ´ α are

positive.

It is worth noting once again that this criterion is exactly the version of PW3 at play

in Bolzano’s proof that
2

S is infinitely greater than
1

S in §33. Moreover, Bolzano explains

his reasoning in terms of part-whole relationships between sums:

So in fact
2

S may be considered as a quantity which contains the whole of
1

S

as a part of it and even has a second part which in itself is again an infinite

series with an equal number of terms as
1

S, namely:

0, 2, 6, 12, 20, 30, 42, 56, . . . , npn´ 1q, . . . in inf.,

in which, with the exception of the first two terms, all succeeding terms are

greater than the corresponding terms in
1

S, so that the sum of the whole series

is again indisputably greater than
1

S. (PU, §33)

We therefore conclude that the part-whole principle plays an important role in Bolzano’s

computations, but also that, in his calculation of the infinite, Bolzano’s text should not

be interpreted as displaying some instances of part-whole reasoning about sets and their

proper subsets. Rather, in deriving those results, part-whole reasoning is applied to infi-

nite sums in the precise sense of PW4.15 In our formalization of Bolzano’s computations,

15This does not mean that PW4 is the correct interpretation of Bolzano’s part-whole reasoning
throughout the PU . As we have noted in Section 1, Bolzano is clearly committed to a form of part-whole
reasoning about collections in §§19 ´ 24. We also thank an anonymous referee for pointing out that in
the following passage from §29, Bolzano seems to endorse a form of set-theoretic part-whole principle
about continuous magnitudes:

the whole multitude (plurality) of quantities which lie between two given quantities, e.g. 7
and 8, although it is equal to an infinite [multitude] and therefore cannot be determined
by any number however great, depends solely on the magnitude of the distance of those
two boundary quantities from one another, i.e. on the quantity 8 ´ 7, and therefore must
be an equal [multitude] whenever this distance is equal.

This suggests that a more fine-grained analysis might be required in order to fully assess the role that
part-whole reasoning plays in the PU as a whole.
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we have shown that computations with infinite sums based on PW4 could be carried out

in a consistent fashion. In fact, as a simple consequence of the fact that our structure B

is elementarily equivalent to the integers, we have that B |ù @α, βpα ă β Ø β ´ α ą 0q.

Moreover, we have also argued that Bolzano’s criterion could also be applied in a produc-

tive way to determine order relations between infinities of higher order. As a consequence,

we showed how a Bolzanian product of infinite quantities could be interpreted as a non-

commutative monoidal operation, i.e., a well-behaved operation which is nonetheless

considerably different from the product of Cantorian cardinalities or even the product of

numerosities.

Finally, let us note that, although we have argued that the correct way to interpret

Bolzano’s part-whole reasoning does not commit him to the set-theoretic part-whole prin-

ciple (PW1), we nonetheless believe that PW1 is compatible with Bolzano’s arguments.

In fact, we are now in a position to fully describe a way out for Bolzano from the ap-

parent contradiction of §33 (cf. Section 2) that we believe is satisfactory even from a

modern standpoint. Indeed, following the position sketched in Section 2, we may argue

that the number (Menge) of natural squares is not equal to the Gliedermenge of the

infinite sum
2

S but that it must be computed, in relation with
0

N , as the value of the sum
SQ

N “ 10` ` `40`. . . in inf. The approximating sequence of this sum is p1, 1, 1, 2, 2, . . . q,

and it is therefore straightforward to verify that, in our model, B |ù
0

N´
SQ

N ą 0. In other

words, this interpretation avoids making Bolzano’s computations inconsistent with his

adherence to the principle that the whole is always greater than its proper parts. The

price to pay is to argue that the existence of a one-to-one correspondence between natural

numbers and squares does not imply that the two sets have the same size, even though,

in the specific case of
1

S and
2

S, it is instrumental in establishing that the two sums have

the same Gliedermenge. In fact, this strategy can be generalized to any set of natural

numbers. Indeed, if A Ď ω`, let χA : ω` Ñ t0, 1u be the characteristic function of A,

i.e., for any n P ω`, χApnq “ 1 if n P A and χApnq “ 0 if n R A. We may then consider

the infinite sum τA “
ř8

i“1 χApiq and identify the number of elements in A with τA. It is
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then straightforward to verify the following fact:

PW5 For any two A,B Ď ω`, if A Ĺ B, then B |ù τA ă τB.

Indeed, if A Ĺ B, let n be the smallest number in BzA, and observe that, for any

j ě n, τApjq “
řj
i“1 χApjq ă

řj
i“1 χBpjq “ τBpjq. Thus ||τA ă τB|| is cofinite, so

B |ù τA ă τB. In fact, this “Bolzanian” way of assigning quantities to sets of natural

numbers completely coincides with how a set of natural numbers is assigned a numerosity

when the structure is constructed out of an ultrapower of the natural numbers, as in Benci

and Di Nasso (2003).

We stop short of arguing that this was Bolzano’s position, as we do not believe that

there is enough evidence in the text of PU to make this claim; nor are we convinced that

Bolzano had a notion of sets of natural numbers and of their sizes that would allow him

to conceive of the problem in those terms. Our point, however, is that Bolzano’s compu-

tations with infinite sums, and his attempts to develop a general theory of a calculation

of the infinite, do not, as our formalization makes clear, commit him to a rejection of the

part-whole principle for sets of natural numbers.

5.3 Bolzano and early set theory

Even though our interpretation sees Bolzano as not necessarily concerned with sets and

their cardinalities, this should not be seen as a claim that Bolzano’s work is completely

separate from, and irrelevant for, the historical development of set theory. We believe

that ours is just a more cautious evaluation of the interactions between the PU and the

early development of set theory as seen mainly in Cantor’s work.

What follows is not an exhaustive comparison between Bolzano’s §§29-33 and Canto-

rian set theory but a selective comparison on just a couple of points: the status of infinite

quantities in Bolzano’s and Cantor’s work and the arithmetic of the infinite, respectively.

Insofar as the actual infinite in mathematics is concerned, Bolzano and Cantor are

both advocates for its existence. In addition to defending the existence of the actual in-

finite, Bolzano provides specific examples of infinite multitudes of mathematical objects
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such as the multitude of all natural numbers, which is an infinitely large quantity (PU,

§16). Infinitely large quantities exist, and they are fully legitimate objects for mathe-

matics, meaning their relationships to one another can be computed. Although Bolzano

asserts this in PU §28, he also makes it clear that he is not claiming to be able to express

the infinite quantities themselves through numbers. The symbols
0

N,
n

N,
1

S,
2

S are just

shorthand for the infinite sum expressions Bolzano concludes with “. . . in inf.”—they

are not separate entities, like cardinals (and ordinals) with respect to sets.16

Indeed, in modern set theory, ordinals are defined as canonical representatives of order

types of well-ordered sets, while cardinals are canonical representatives of equivalence

classes of equipollent sets (i.e., sets that can be bijected with one another). Thus, while

cardinals are sets and each cardinal is the cardinal of itself, in general a set and its cardinal

are two distinct entities. Whether or not Cantor himself held precisely such a view at

some point during his lifetime is a complex issue that depends on how one understands

the role that Cantor assigns to abstraction in his original construction of the transfinite

numbers. Cantor defines the cardinal number or power of a set M to be the result of a

“double act of abstraction” performed on M : first, to abstract from the nature of each

individual element of M , and second, to abstract from the order of the elements relative

to one another. A detailed discussion of the correct interpretation of Cantor’s abstraction

is beyond the scope of this paper, and we therefore refer the interested reader to Hallett

(1984, pp. 119-128) and Mancosu (2016, pp. 52-59).

For our purposes, it suffices to stress that the definition of cardinal Cantor gives is

such that any set, in principle, can be abstracted from twice and hence give rise to its own

cardinal. Thus for instance the cardinal ℵ0 can be obtained from the set of natural num-

bers N by abstracting first from the nature of each single natural number and then from

the order of N as a whole. But one fundamental consequence of Cantor’s double abstrac-

16Florio and Leach-Krouse (2017) have recently proposed a non-objectual interpretation of ordinals.
Provided an analogous treatment can be extended to cardinals, the objectuality of cardinals as a con-
ceptual difference between contemporary set theory and Bolzano’s approach to infinite collections might
appear less significant than what it seems to be right now. However, it would still be the case that
a Cantorian definition by abstraction for cardinals certainly lends itself to a straightforward objectual
interpretation, and thus our point regarding the difference in conception between Cantor and Bolzano
would still hold true.

68



tion definition is that any set has a cardinal.17 For Bolzano instead not all infinite strings

of integers can give rise to a sum, as the case of Grandi’s series witnesses, and determin-

ing which such expressions do correspond to a sum is one of the problems he tries to solve.

A second point of comparison between Cantor’s and Bolzano’s treatments of the

infinite is the computations they perform with infinite quantities. They both strive to

give a meaningful account of arithmetical operations (addition and multiplication, but

also subtraction and division, or “ratios” in Bolzano’s case) between transfinite cardinals

and infinite sums. What this means and how they achieve it is however very different for

each of them.

Cardinal multiplication is defined as taking the cardinal of the product of two sets

A,B, and addition is defined as the cardinality of the disjoint union of two sets (according

to Hallett (1984, p. 82) this was already Cantor’s own definition). In the presence of the

axiom of choice, it is an elementary fact of cardinal arithmetic that for any two infinite

cardinals κ, λ, κ ¨ λ “ κ ` λ “ maxtκ, λu. This was already proved in the early 20th

century by Hessenberg and Jourdain, who were able to generalize Cantor’s result that

ℵ20 “ ℵ0 to ℵα ¨ℵβ “ ℵmaxtα,βu (cf. Hallett 1984, pp. 79, 82). They were also able to show

that for addition the same holds, namely ℵα ` ℵβ “ ℵmaxtα,βu. This collapse of addition

and multiplication into taking the greatest of the addends in the addition case, or factors

in the multiplication case, is very far from Bolzano’s approach to computing with the

infinite.

One important similarity between Cantor and Bolzano is that, for both of them, an

actually infinite quantity, like
0

N for Bolzano or ω for Cantor, can be obtained by iterating

a finite operation (adding units for Bolzano, taking successor ordinals for Cantor) on finite

quantities. But they seem to conceive of this process of infinitary addition in different

terms, as evidenced by the role subtraction plays in their respective systems. Cantor does

not define subtraction of infinite cardinals, while, as we have seen, for Bolzano the ability

17Note however that if one reads Cantor as associating to any set not only its equipollence class but also
a canonical well-ordered representative for it, this is actually equivalent to the Well-Ordering Principle
according to which any set can be well-ordered. Therefore, if one were to reject the Well-Ordering
Principle, not all sets would have a Cantorian cardinal.
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to compute the difference between two infinite sums is an essential tool in determining

order relationships between infinite quantities. Moreover, no two infinite cardinals can

have a finite difference, in the sense that for any two infinite cardinals κ, λ, if κ ă λ and

there is a cardinal µ such that κ ` µ “ λ, then µ must be infinite (in fact µ “ λ). Here

again Bolzano’s infinities behave vastly differently, since one of his most basic results is

that two infinite sums such as
0

N and
n

N have a strictly finite difference, namely n.

Similarly, in §29 we see Bolzano generate new infinities, infinities of higher order,

as he claims, simply by multiplying
0

N by itself, so that
0

N ă p
0

Nq2 ă p
0

Nq3. This is

in stark contrast with Cantor’s result that ℵn0 “ ℵ0, mentioned above. Moreover, we

have argued that a faithful interpretation of Bolzano’s criterion for inequality between

infinite sums implies that the Bolzanian product of two infinite sums should be non-

commutative. In fact, according to us, Bolzanian products are significantly different

from products of cardinals. Bolzano does not conceive of multiplying quantities as akin

to taking Cartesian products of sets. He rather seems to be extending the definition of

multiplication of natural numbers that he had in his Reine Zahlenlehre (Bolzano 1976,

p. 57), without introducing infinite numbers. Just like the product of two finite numbers

mˆn is defined as n` . . .` n
looooomooooon

m times

, i.e., as obtained from the sum m “ 1` . . .` 1
looooomooooon

m times

by replacing

each unit by n, the product of two infinite quantities α.β may be obtained by writing

the corresponding infinite sum for α and replacing each unit by β, as in the case of p
0

Nq2.

Perhaps surprisingly, this latter feature of Bolzano’s computation may in fact be seen

as the most modern one, especially under our interpretation of the Bolzanian product.

Indeed, by allowing not only his finitary operations, but also his infinitary operations

(like infinite summation) to range over both finite and infinite quantities, Bolzano, just

as Cantor, is able to generate a hierarchy of infinities of ever increasing order.

Conclusion

Our goal was to provide a faithful interpretation of the PU and especially of Bolzano’s

calculation of the infinite as presented in §§29-33. We argued that Bolzano’s computations
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should not be judged as failed attempts at anticipating Cantor’s transfinite arithmetic,

and that Bolzano’s primary interest was not in measuring the sizes of infinite collections

of natural numbers, but in developing an arithmetic of infinite sums of integers. As a

consequence, one should not read Bolzano as failing to anticipate Cantor’s work because

of his commitment to a set-theoretic version of the part-whole principle but rather as

developing from part-whole considerations an original and productive way of reasoning

about infinite sums. Moreover, far from shutting Bolzano out of future historiographies

of set theory, this new interpretation clarifies where Bolzano’s approach to the infinite

stands within that history. The intentions and methods of Bolzano when computing with

the infinitely large are radically different from Cantor’s, yet, as we have shown, amenable

to a consistent mathematical interpretation. We hope that the present work may mark

only the beginning of deeper scholarly engagement with Bolzano’s mathematical infinite.
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Appendix

In this appendix, we describe in more detail the ring of Bolzanian quantities B mentioned

in Section 4.2. In particular, we show how to construct B as a direct limit of iterated ul-

trapowers, define rigorously the product of two infinite quantities, and prove Theorem 4.3.

Let us first note that a standard presentation of our construction would require us to

take a direct limit of the structures:

Z ι0
// ZU ι1

// pZU q
2

ι2
// pZU q

3
ι3
// . . .
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where for any natural number n, pZU q
n`1 is the ultrapower of pZU q

n by U , and each

ιn`1 : pZU q
n`1 Ñ pZU q

n`2 maps (any equivalence class of) a function f : ω` Ñ ZnU to

the function mapping any i to fpiq. The inconvenience of this approach is that it requires

us to introduce elements of increasing complexity in our structure, i.e., functions from

ω` into the integers, functions from ω` into functions from ω` into the integers, and so

on. However, we may present our construction differently, by drawing on the well known

fact that for any sets A,B and C, there is a canonical bijection φ between functions

from A into CB and functions from A ˆ B into C: given any f : A Ñ CB, the function

φpfq : A ˆ B is such that φpfqpa, bq “ fpaqpbq for any a P A and b P B. Instead of

working with functions of higher and higher complexity, we may therefore simply work

with functions of finite arity, or, equivalently functions from finite sequences of elements

in ω` into Z. However, since we still need to identify functions using an ultrafilter U , we

also need to generalize our definition of when two n-ary functions are equivalent according

to U . This requires the following definition.

Definition 5.1. Let U be a non-principal ultrafilter on ω`. For any natural number n,

we define U n by induction as follows:

• U 0 “ tpω`q0u

• U n`1 is a collection of subsets of pω`qn`1 such that for any X Ď pω`qn`1, X P U n`1

if and only if ti P ω` : X|i P U nu P U , where for any i P ω`, X|i is the set of

n-tuples j in pω`qn such that the n` 1-tuples ij P X.

Note that pω`q0 is the set of all 0-ary sequences of elements of ω`, i.e., contains only

the empty sequence. It is also straightforward to see that, given the previous defini-

tion, U 1 “ U . The following lemma will be useful later on, and is established by a

straightforward induction on the natural numbers.

Lemma 5.2.

• For any natural number n, U n is an ultrafilter on pω`qn which is non-principal if

n ą 0.
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• Let m,n be two natural numbers and X Ď pω`qm`n. Then X P U n`m if and only

if

ti P pω`qm : tj P pω`qn : ij P Xu P U n
u P U m.

We can then define the following structures:

Definition 5.3. Let n be a natural number. We let ZU n :“ pZU n ,`,´, 0, 1q be the

ultrapower of Z by U n. More precisely, elements in ZU n are equivalence classes of

functions from pω`qn to Z, where for any two functions f, g : ω` Ñ Z:

• f˚ “ g˚ iff ti P pω`q : fpiq “ gpiqu P U n;

• pf ` gq˚ “ f˚ ` g˚, pf ´ gq˚ “ f˚ ´ g˚;

• f˚ ă g˚ iff ti P pω`q : fpiq ă gpiqu P U n.

In particular, it is straightforward to verify that ZU 0 is isomorphic to Z.

Since U n is an ultrafilter on pω`qn for any natural number n, the previous defini-

tion is a generalization of the original construction of ZU . Moreover, we have natural

embeddings λn : ZU n Ñ ZU n`1 . In fact, those embeddings are always elementary:

Lemma 5.4. For any f : pω`qn Ñ Z, let λnpfq : pω`qn`1 Ñ Z be such that for any

n-tuple i and any j P ω`, λnpfqpijq “ fpiq. Then the function λn : ZU n Ñ ZU n`1

defined by λnpf
˚q “ λnpfq

˚ is an elementary embedding.

The proof of this lemma is a simple application of the Tarski-Vaught test of elementary

substructures. For any natural numbers m ď n, we let λm,n be the composition of the

embeddings λn´1˝λn`2˝...˝λm`1˝λm. We can then define the structure pB,`,´, 0, 1,ăq

as the direct limit of the system

ZU 0
λ0

// ZU 1
λ1

// ZU 2
λ2

// . . .

We will refer to elements in B as quantities. By definition of the direct limit of a

directed system, quantities are equivalence classes of elements in some ZU n , where for
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any m ď n and any two equivalence classes f˚ P ZU n , g˚ P ZU m , f˚ and g˚ are identified

if and only if ZU n |ù λm,npf
˚q “ g˚. For any quantity α, we let the order of α be the

smallest natural number n such that there is some f˚ P α such that f˚ P ZU n . Clearly,

any α P B has a finite order n, and moreover, if α has order n witnessed by some f˚,

then for any natural number m, any g˚ P ZU n`m , and any tuples i and j of length n and

m respectively, fpiq “ gpijq. We may therefore abuse notation and view α as a function

from m-tuples of elements in ω` into Z for any m ě n.

Let α and β be two quantities of order m and n respectively, represented by the

functions fα and fβ of arity m and n respectively. We define the product α.β as (the

equivalence class of) the function fα.β : pω`qm`n Ñ Z such that for any tuples i and

j of length m and n respectively, fα.βpijq “ fαpiq ˆ fβpjq, i.e., fβpjq ` . . .` fβpjq
loooooooooomoooooooooon

fαpiq times

. It

is straightforward to verify that this operation is well-defined. Indeed, suppose gα P α

and gβ P β are functions of arity m and n respectively. Clearly for any m-tuple i and

any n-tuple j, if fαpiq “ gαpiq and fβpjq “ gβpjq, then gα.βpijq “ fα.βpijq. Moreover,

since fα and gα are U m equivalent, and fβ and gβ are U n equivalent, it follows that for

U m-many i there are U n-many j such that fα.βpijq “ gα.βpijq. Equivalently,

ti P pω`qm : tj P pω`qn : fα.βpijq “ gα.βpijqu P U n
u P U m,

which by Lemma 5.2 implies that tij P pω`qm`n : fα.βpijq “ gα.βpijqu P U m`n, and

therefore f˚α.β “ g˚α.β.

The next lemma establishes that the product of two quantities of order m and n is of

order m` n. The proof is a simple application of  Loś’s theorem.

Lemma 5.5. Let α and β be two quantities of order m and n respectively, and let γ be

a quantity of order l ă m` n. Then B |ù α.β ‰ γ.

Finally, we can now prove Theorem 4.3 and establish that Bolzanian sums and prod-

ucts form a non-commutative ordered ring.

Theorem 5.6. The structure B “ pB,`,´, 0, 1,ă, .q is a non-commutative ordered ring.
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Proof. Note first that by construction, we have an elementary embedding from Z into the

reduct pB,`,´, 0, 1,ăq, which immediately implies that B is an ordered additive group.

We therefore only need to verify the following properties:

• Associativity: Let α, β and γ be three quantities of order l,m and n respectively.

Then for any tuples i, j and k of arity l,m and n respectively, we have that:

α.pβ.γqpijkq “ αpiq ˆ pβ.γpjkqq

“ αpiq ˆ pβpjq ˆ γpkqq

“ pαpiq ˆ βpjqq ˆ γpkq pby associativity ofˆ in Zq

“ pα.βpijqq ˆ γpkq

“ pα.βq.γpijkq.

• Multiplicative identity: Note that any integer z is represented in B by a quantity

z of order 0, which corresponds to the set of all constant functions from finite

sequences of elements in ω` into Z with range tzu. For any quantity α of order

l, we therefore have that α.z and z.α are quantities of order n such that for any

l-tuple i, α.zpiq “ αpiq ˆ z and z.αpiq “ zˆαpiq. Thus α.z “ z.α “ α` ...`α
looooomooooon

z times

.

Hence in particular 1.α “ α.1 “ α.

• Left-distributivity: Let α,β,γ be as above. Without loss of generality, assume

that the order m of β is greater than or equal to the order n of γ, which implies

that β ` γ is also of order m. Fix an l-tuple i and an n-tuple j. Note that even

though γ is of lower order, we may still write γpjq. Then:

α.pβ ` γqpijq “ αpiq ˆ pβ ` γpjqq

“ αpiq ˆ pβpjq ` γpjqq

“ pαpiq ˆ βpjqq ` pαpiq ˆ γpjqq pby left-distributivity of ˆ over ` in Zq

“ pα.βpijqq ` pα.βpijqq

“ pα.βq ` pα.γqpijq.

• Right-distributivity: Let α,β,γ as above, and assume the order l of α is greater
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than or equal to the order m of β. Let i be an l-tuple and k a n-tuple. Then:

pα` βq.γpikq “ pα` βpiqq ˆ γpkq

“ pαpiq ` βpiqq ˆ γpkq

“ pαpiq ˆ γpkqq ` pβpiq ˆ γpkqq pby right-distributivity of ˆ over ` in Zq

“ pα.γpikqq ` pβ.γpikqq

“ pα.γq ` pβ.γqpikq.

• Order axiom: Suppose α and β are two quantities of order l and m respectively

and are such that B |ù 0 ă α and B |ù 0 ă β. We claim that B |ù 0 ă α.β.

Indeed, since B |ù 0 ă α, we have that ti P pω`ql : 0 ă αpiqu P U l, while it follows

from B |ù 0 ă β that tj P pω`qm : 0 ă βpjqu P U m. Now clearly for any l-tuple i

such that 0 ă αpiq, if j is an m-tuple such that 0 ă βpjq, then 0 ă αpiq ˆ βpjq,

i.e., 0 ă α.βpijq. Thus

ti P pω`ql : tj P pω`qm : 0 ă α.βpijqu P U m
u P U l,

which by Lemma 5.2 implies that tij P pω`ql`m : 0 ă α.βpijqu P U l`m, and hence

B |ù 0 ă α.β.

Let us conclude this appendix with a few remarks regarding the Bolzanian ring of

infinite quantities B. First, our formalization only allows us to represent infinite quantities

of a finite order, i.e., infinite sums of the form αp1q `αp2q `αp3q ` ¨ ¨ ¨ for which there

is an n ă ω` such that for all m ě n, the order of αpmq is less than or equal to the order

of αpnq. For example, the following infinite sum is not represented by any element in B:

0

N ` p
0

Nq2 ` p
0

Nq3 ` . . . in inf.

Of course, if we wanted to include this sum in our model, we would have to take an

ultrapower of B by U and construct another countable sequence of ultrapowers. In fact, if
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we wanted to close our domain of infinite quantities under taking infinite sums, we would

need to keep iterating the ultrapower until the first ordinal with uncountable cofinality,

i.e., until ω1. Our structure B, however, is more than enough to account for Bolzano’s

examples, and we certainly do not want to claim that the consistency of Bolzano’s system

requires anything like uncountable ordinals.

Second, it is quite straightforward to observe that the situation described in Lemma 4.2

generalizes to the full structure B. Indeed, for any n, the product of any nth order quan-

tity with at least a first-order infinite quantity is always greater than or smaller than

any quantity of strictly lower order. Thus, in accordance with Bolzano’s original claims,

multiplying infinite quantities together yields new quantities that are infinitely larger or

infinitely smaller than the previous ones in a very strong sense.
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