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THE LATTICE OF SUPER-BELNAP LOGICS

ADAM PŘENOSIL

Institute of Computer Science, Czech Academy of Sciences, Czechia

Abstract. We study the lattice of extensions of four-valued Belnap–Dunn
logic, called super-Belnap logics by analogy with superintuitionistic logics. We
describe the global structure of this lattice by splitting it into several subin-
tervals, and prove some new completeness theorems for super-Belnap logics.
The crucial technical tool for this purpose will be the so-called antiaxiomatic
(or explosive) part operator. The antiaxiomatic (or explosive) extensions of
Belnap–Dunn logic turn out to be of particular interest owing to their connec-
tion to graph theory: the lattice of finitary antiaxiomatic extensions of Belnap–
Dunn logic is isomorphic to the lattice of upsets in the homomorphism order
on finite graphs (with loops allowed). In particular, there is a continuum of
finitary super-Belnap logics. Moreover, a non-finitary super-Belnap logic can
be constructed with the help of this isomorphism. As algebraic corollaries we
obtain the existence of a continuum of antivarieties of De Morgan algebras and
the existence of a prevariety of De Morgan algebras which is not a quasivariety.

1. Introduction

The present paper is an attempt to map out the landscape of extensions of the
four-valued logic introduced in the 1960’s and 1970’s by Dunn [15, 16, 17] as the
so-called first-degree fragment of the logic of entailment of Anderson and Belnap [3]
and later proposed by Belnap [5, 6] as a logic which a computer could use to handle
inconsistent and incomplete information. This logic will be called Belnap–Dunn
logic here and denoted BD. It is also known as the logic of first-degree entailment
(FDE). For a more complete account of the origins of this logic, see [20, 21].

Belnap–Dunn logic has attracted considerable attention from researchers in logic
and computer science since its introduction in the 1970’s. However, few of its non-
classical extensions have been investigated in detail. Most prominent among these
are Kleene’s strong three-valued logic K [32, 33] and Priest’s Logic of Paradox
LP [38]. These two logics have been widely used by philosophers who accept
truth gaps or truth gluts in their accounts of truth. The intersection of these
two logics, which we call Kleene’s logic of order and denote KO, was occasionally
studied as well. It is mentioned by Makinson [35], who calls it Kalman implication,
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2 THE LATTICE OF SUPER-BELNAP LOGICS

and identified by Dunn [18] as the first-degree fragment of the relevance logic R-
Mingle. More recently, Exactly True Logic was introduced and studied by Pietz &
Rivieccio [37]. This seems to exhaust the list of non-classical super-Belnap logics
which have been studied in any detail.

The idea of studying extensions of BD as a family of logics in its own right was
first proposed by Rivieccio [44], who called such extensions super-Belnap logics by
analogy with super-intuitionistic logics. Among other things, Rivieccio proved that
there are infinitely many super-Belnap logics. We take up his proposal and study
the structure of the lattice of super-Belnap logics.

Unlike in the case of intuitionistic logic, where the axiomatic extensions are the
main objects of interest, here it is the antiaxiomatic extensions (extensions by rules
stating that a certain set of formulas is inconsistent) which are of interest. Indeed,
BD has only one non-trivial proper axiomatic extension, namely LP , while it turns
out that it has a continuum of finitary antiaxiomatic extensions. Before engaging
in the study of super-Belnap logics, we therefore establish some basic facts about
antiaxiomatic (or explosive) extensions (Section 3).

In particular, the antiaxiomatic (or explosive) part of a logic turns out to be a
useful tool in this context. The explosive part ExpB L of an extension L of a base
logic B is the strongest antiaxiomatic extension of B which lies below L. The logic
determined by a product of matrices

∏

i∈I Ai can then be computed from the logics
determined by the matrices Ai and their explosive parts.

Computing the explosive parts of known super-Belnap logics will enable us, after
reviewing their basic properties (Section 4), to prove some new completeness theo-
rems for super-Belnap logics (Section 5). For example, the logic ECQ which extends
BD by the rule of ex contradictione quodlibet p,−p ⊢ q is precisely the explosive
part of the Exactly True Logic ET L of Pietz & Rivieccio [37] which extends BD
by the rule of disjunctive syllogism p,−p ∨ q ⊢ q. (The rule of ex contradictione
quodlibet p,−p ⊢ q is an example of an antiaxiomatic rule: it states that the set
of formulas {p,−p} is inconsistent.) As a consequence, we obtain a completeness
theorem for ECQ.

We then describe the large-scale structure of the lattice of extensions of BD
(Section 6). It has a smallest proper extension LP ∩ECQ, as well as a largest non-
trivial extension, namely classical logic CL. The interval [LP∩ECQ, CL] decomposes
into three disjoint intervals: [LP ∩ ECQ,LP], [ECQ,LP ∨ ECQ], and [ET L, CL].
This last interval moreover has the structure ET L < [ET L2,K−] < K < CL, where
ET L2 is the extension of ET L by the rule (p ∧−p) ∨ (q ∧−q) ⊢ r and K− extends
ET L by the rules (p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn) ∨ q,−q ∨ r ⊢ r for each n ∈ ω.
We then determine which super-Belnap logics enjoy various metalogical properties
such as structural completeness or the proof by cases property.

While lattices of logics have long been studied, especially in the context of modal,
super-intuitionistic, and substructural logics [8, 7, 27], the present study differs from
most of these investigations in two respects. Firstly, we consider all extensions of
BD rather than only axiomatic extensions. Secondly, the link between logic and
algebra is too weak in the realm of super-Belnap logics to permit a straightforward
application of algebraic techniques. In the case of super-intuitionistic logics, there
is a straightforward correspondence between axiomatic extensions of intuitionistic
logic and varieties of Heyting algebras. In contrast, there is no such straightfor-
ward bijective correspondence between super-Belnap logics and quasivarieties of
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De Morgan algebras, which form the algebraic counterpart of Belnap–Dunn logic
in the sense of [24, 25].

In technical terms, intuitionistic logic is algebraizable (its consequence relation
is equivalent, in a suitable sense, to equational consequence in Heyting algebras),
while Belnap–Dunn logic fails to satisfy even the much weaker property of being
protoalgebraic (it lacks an implication satisfying the axiom of Reflexivity and the
rule of Modus Ponens). The present investigation therefore also has some value as
a contribution to the study of lattices of non-protoalgebraic logics.

The above results, it turns out, do not substantially depend on whether the
truth and falsity constants t and f are taken to be part of the signature of the
logic (Section 7). While Belnap–Dunn logic has typically been studied without
these constants, their inclusion changes the picture only marginally. On the other
hand, moving to a multiple-conclusion setting changes the picture dramatically:
the multiple-conclusion form of BD only has finitely many extensions, namely the
multiple-conclusion forms of BD, KO, K, LP , and CL. This is because the move
to the multiple-conclusion setting amounts to forcing the proof by cases property:
Γ, ϕ ∨ ψ ⊢ χ holds if and only if Γ, ϕ ⊢ χ and Γ, ψ ⊢ χ hold. To go beyond these
well-studied extensions of BD, one must be ready to abandon this property.

The second half of the paper is devoted to working out the relationship between
super-Belnap logics and finite graphs (we allow for loops). Each finite reduced
model of BD in the sense of abstract algebraic logic is determined up to isomorphism
by a pair of graphs and a non-negative integer (Section 8). Even better, each finite
reduced model of Exactly True Logic ET L is determined up to logical equivalence
by a single graph and a single bit k ∈ {0, 1}. Ultimately, this follows from the
duality theory for De Morgan algebras [11]. As a consequence, we obtain certain
graph-theoretic completeness theorems (Section 9).

A somewhat unexpected connection between explosive super-Belnap logics and
the homomorphism order on finite graphs now arises (Section 10): the lattice of
finitary antiaxiomatic extensions of BD is dually isomorphic to the lattice of upsets
in the homomorphism order on finite graphs. It immediately follows that there is a
continuum of finitary antiaxiomatic extensions of BD (and consequently a contin-
uum of antivarieties of De Morgan algebras), improving on the result of Rivieccio
that there are infinitely many finitary super-Belnap logics. Moreover, we can use
the countable universality of the homomorphism order on graphs to construct a
non-finitary super-Belnap logic. We can also use this graph-theoretic connection
to prove that the super-Belnap logics ECQn and ET Ln, defined as extensions of
BD and ET L by the rule (p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn) ⊢ q, are not complete with
respect to any finite set of finite matrices for n ≥ 2.

Finally (Section 11), we describe the lattice of all finitary extensions of ET L in
terms of graphs. In particular, its interval [ET L, ET Lω] is isomorphic to the lattice
of classes of non-empty graphs without loops closed under homomorphic images,
disjoint unions, and contracting isolated edges. A description of the full lattice of
finitary super-Belnap logics in terms of classes of triples 〈G,H, k〉, where G and H
are graphs and k ∈ {0, 1}, is possible but rather cumbersome.

The bulk of this paper is based on the author’s thesis [39]. Some of the results
proved here, including the fact that K− is a lower cover of K and ET L2 is an upper
cover of ET L, were already established by Rivieccio in his unpublished research
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notes [43], which he kindly shared with the present author. Some of the research
presented here was also summarized in [2].

2. Logical preliminaries

This preliminary section introduces the basic notions of abstract algebraic logic
which will be used throughout the paper. For a more thorough introduction to the
field, the reader may consult the textbook [24], the monographs [13] and [47], or
the survey paper [26]. Towards the end of the section, we also recall some universal
algebraic preliminaries.

The signature of a logic is given by an infinite set of propositional variables (also
called atoms) and a set of connectives of finite arities. The algebra of formulas is
then the absolutely free algebra generated by these variables. Less abstractly, the
set of formulas is obtained by closing the set of atoms under the given connectives
in the obvious way. Atoms will be denoted by p, q, r, formulas by ϕ, ψ, χ, and
sets of formulas by Γ, ∆. A substitution is an endomorphism of the algebra of
formulas. Equivalently, substitutions may be viewed as mappings which assign a
formula to each atom. Each such mapping then naturally extends to a function σ
which assigns to each formula ϕ its substitution instance σ(ϕ). Let us consider a
certain fixed signature in the following definitions.

A rule is a pair consisting of a set of formulas Γ and a formula ϕ, written as
Γ ⊢ ϕ. A logic L is a set of rules which satisfies the following conditions:

• ϕ ⊢L ϕ (reflexivity),
• if Γ ⊢L ϕ, then Γ,∆ ⊢L ϕ (monotonicity),
• if Γ ⊢L δ for all δ ∈ ∆ and ∆ ⊢L ϕ, then Γ ⊢L ϕ (cut),
• if Γ ⊢L ϕ, then σ[Γ] ⊢L σ(ϕ) for each substitution σ (structurality),

where Γ ⊢L ϕ means that the rule Γ ⊢ ϕ belongs to (holds in, is valid in) the logic
L. If Γ ⊢L ϕ implies that Γ′ ⊢L ϕ for some finite set of formulas Γ′ ⊆ Γ, then L
is called finitary. The finitary part of L is the finitary logic where Γ ⊢ ϕ holds if
and only if there is some finite set of formulas Γ′ ⊆ Γ such that Γ′ ⊢L ϕ. Rules of
the form ∅ ⊢ ϕ are called axiomatic. A formula ϕ is a theorem of L if ∅ ⊢L ϕ. The
trivial logic is the logic where Γ ⊢ ϕ holds for each Γ and ϕ.

A logic L is called an extension of a logic B (in the same signature), symbolically
B ≤ L, if each rule valid in B also holds in L. The extensions of B form a complete
lattice denoted ExtB. The finitary extensions of a finitary logic B form an algebraic
lattice denoted Extω B. If L1 ≤ L2, the interval of ExtL1 (or Extω L1, depending
on context) between L1 and L2 will be denoted [L1,L2].

A logic L is axiomatized by a set of rules ρ (relative to some logic B) if it is the
least logic which validates each rule of ρ (and extends B). We also say that L is
the extension of B by the set of rules ρ. It is finitely axiomatizable (relative to B) if
it is axiomatized (relative to B) by a finite set of rules. If L1 and L2 are extensions
of B by the sets of rules ρ1 and ρ2 respectively, then their join L1 ∨ L2 in ExtB is
axiomatized by ρ1 ∪ ρ2.

The above notion of axiomatization may be given a more proof-theoretic inter-
pretation. By a proof of ϕ from Γ using the rules ρ, we mean a well-founded
tree (i.e. a tree with no infinite branches) where the root is labelled by ϕ, each
terminal node is labelled either by some γ ∈ Γ or by a substitution instance of the
conclusion of an axiomatic rule in ρ, and each non-terminal node is labelled by a
formula obtained from the labels of its parents by a substitution instance of a rule
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in ρ. Saying that a logic L is axiomatized by ρ is then equivalent to saying that
Γ ⊢L ϕ if and only if ϕ has a proof from Γ using the rules ρ.

The models of consequence relations are (logical) matrices. A matrix A = 〈A, F 〉
consists of an algebra A and a set F ⊆ A of designated values. A matrix is trivial
if F = A, and it is almost trivial if F = ∅. A valuation on A is a homomorphism
from the algebra of formulas into A. A rule Γ ⊢ ϕ is valid in A if v[Γ] ⊆ F implies
v(ϕ) ∈ F for each valuation v on A. Each matrix A thus determines a logic LogA
such that Γ ⊢ ϕ in LogA if and only if Γ ⊢ ϕ is valid in A. If K is a class of matrices
in the given signature, then LogK will denote the logic

⋂

A∈K
LogA. The finitary

part of LogK will be denoted Logω K.
A logic L is complete with respect to a class of matrices K if L = LogK. Likewise,

a finitary logic L is complete as a finitary logic (or ω-complete) with respect to a
class of matrices K if L = Logω K, i.e. if a finitary rule holds in L if and only if it
holds in each matrix in K. The two notions coincide if K is a finite class of finite
matrices: in that case LogK is always finitary.

A matrix A is a model of a logic L if each rule of L is valid in A, i.e. if L ≤ LogA.
The class of all models of L is denoted ModL. Each logic L is the logic determined
by the class of its models: L = LogModL. However, ModL is usually too broad
a class to give us a good grip on the properties of L. Models of a particular kind,
called reduced models, will be needed.

We call a congruence θ of an algebra A compatible with F ⊆ A if

a ∈ F and 〈a, b〉 ∈ θ implies b ∈ F.

If θ is compatible with F , we define F/θ := {a/θ | a ∈ F}, where a/θ denotes
the equivalence class of a with respect to θ. For each F ⊆ A there is a largest
congruence ofA compatible with F , called the Leibniz congruence of F and denoted
ΩA(F ). The Leibniz congruence of a matrix A = 〈A, F 〉 is ΩA(F ) and the Leibniz
reduct of A is the matrix A∗ := 〈A/ΩA(F ), F/ΩA(F )〉.

A matrix is called reduced if its Leibniz congruence is the identity relation. The
Leibniz reduct of A is always a reduced matrix. The class of all reduced models of
a logic L will be denoted Mod∗ L. Crucially, each matrix is logically equivalent to
(i.e. yields the same logic as) its Leibniz reduct. Each logic L is thus determined
by the class of its reduced models: L = LogMod∗ L.

Each matrix is a structure in the sense of model theory, therefore we may de-
fine submatrices and products and ultraproducts of matrices in the usual model-
theoretic way. More explicitly, consider the matrices A = 〈A, F 〉, B = 〈B, G〉, and
Ai = 〈Ai, Fi〉 for i ∈ I. Then A is a submatrix of B, symbolically A ≤ B, if A is a
subalgebra of B, symbolically A ≤ B, and F = G ∩A. The matrix A is the direct
product of the matrices Ai if A =

∏

i∈I Ai and F =
∏

i∈I Fi. Given two classes
of matrices K1 and K2, the class of all matrices A1 × A2 such that A1 ∈ K1 and
A2 ∈ K2 will be denoted K1 × K2, with A× K := {A} × K.

A matrix homomorphism h : A → B is an algebraic homomorphism h : A → B

such that h[F ] ⊆ G. It is strict if in fact F = h−1[G]. If the homomorphism h
is surjective (and strict), we call B a (strict) homomorphic image of the matrix A,
and we call A a (strict) homomorphic preimage of B.

If K is a class of matrices in the given signature, the classes of all homo-
morphic preimages, strict homomorphic images, strict homomorphic preimages,
submatrices, products, and ultraproducts of matrices in K will respectively be de-
noted H−1(K), HS(K), H

−1
S (K), S(K), P(K), and PU(K).
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The class ModL is always closed under submatrices, products of matrices, strict
homomorphic images, and strict homomorphic preimages. Conversely, the follow-
ing analogue of the ISP theorem for quasivarieties characterizes those classes of
matrices which arise as ModL for some finitary logic L. The theorem is due to
Czelakowski [12] for languages with countably many connectives and to Dellunde
& Jansana [14] for arbitrary languages.

Theorem 2.1. ModLogω K = H−1
S HSSPPU(K) for any class of matrices K.

In particular, the map L 7→ ModL is an isomorphism between the lattice Extω B
of finitary extensions of a finitary logic B and the lattice of classes of models of B
closed under the appropriate constructions. If the class Alg∗ B of algebraic reducts
of reduced models of B moreover generates a locally finite variety, then the following
theorem states that this map yields an isomorphism between the lattice of finitary
extensions of B and a certain lattice of classes of finite reduced models of B. This
theorem is merely the matrix version of a theorem of Grätzer & Quackenbush [29,
Theorem 2.3]. Here S∗(K) and P∗

ω(K) denote respectively the class of all Leibniz
reducts of submatrices of matrices in K and the class of finite products of matrices
in K. Mod∗ω L denotes the class of all finite reduced models of L.

Theorem 2.2. Let B be a finitary logic such that Alg∗ B generates a locally finite
variety. Then Extω B is dually isomorphic to the lattice of subclasses of Mod∗ω B
closed under S∗ and P∗

ω via the maps L 7→ Mod∗ω L and K 7→ Logω K.

Proof. The two maps are isotone, and L = Logω Mod∗ω L for each L in Extω B by the
finitarity of L and the local finiteness of Alg∗ B. Moreover, K ⊆ Mod∗ω Logω K for
each class K ⊆ Mod∗ω B. It therefore remains to prove that Mod∗ω Logω K ⊆ S∗P∗(K).

Let A be a finite reduced model of Logω K of cardinality n with K ⊆ Mod∗ω B.
Then A ∈ HSSPPU(K) by Theorem 2.1. There is an n-generated (hence finite)
matrix B ∈ SPPU(K) such that A ∈ HS(B). The condition B ∈ SPPU(K) implies
that there are finitely many Ci ∈ PU(K) for i ∈ I with strict homomorphisms
hi : B → Ci such that

⋂

{Kerhi | i ∈ I} = ∆B, where ∆B is the identity relation
on B and Kerhi is the kernel of the homomorphism hi. It follows that there are
n-generated (hence finite) matrices Di ≤ Ci such that Di is the range of hi. Each
such matrix Di is an n-generated submatrix of an ultraproduct of matrices in K,
and therefore embeds into an ultraproduct of n-generated submatrices of matrices
in K ⊆ Alg∗ K. Since Alg∗ L generates a locally finite variety, there are only finitely
many such n-generated submatrices. The matrices Di are thus submatrices of
matrices in K, i.e. Di ∈ S(K) for i ∈ I. Therefore A ∈ HSSPωS(K) ⊆ HSSPω(K),
where Pω stands for finite products. Since the matrix A is reduced, we in fact have
A ∈ S∗Pω(K) ⊆ S∗P∗

ω(K). �

Finally, we recall some basic notions of universal algebra. The reader may consult
the textbook [9] for an introduction to universal algebra and the monograph [28]
for an introduction to the study of quasivarieties and antivarieties.

If K is a class of algebras in a given signature, then H−1(K), S(K), P(K), and
PU(K) denote the algebraic analogues of the corresponding matrix constructions.
We use H(K) to denote the class of all homomorphic images of algebras in K and we
use P∗

U(K) to denote the class of all ultraproducts of non-empty families of algebras
in K. An equation in a given signature is a formula of the form t ≈ u, where t and u
are terms in the given signature and ≈ is the equality predicate. A quasiequation
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has the form t1 ≈ u1 & . . . & tn ≈ un =⇒ t ≈ u. Finally, a negative clause has
the form t1 6≈ u1 ∨ · · · ∨ tn 6≈ un.

A variety (quasivariety, antivariety) is a class of algebras in a given signature
axiomatized by a set of universally quantified equations (quasiequations, negative
clauses). The variety (quasivariety, antivariety) generated by K is the smallest
variety (quasivariety, antivariety) which contains K.

Theorem 2.3 ([28, Theorem 2.1.12, Corollary 2.3.4, and Theorem 2.3.11]).

(1) The variety generated by K is HSP(K).
(2) The quasivariety generated by K is ISPPU(K).
(3) The antivariety generated by K is H−1SP∗

U(K).

3. Explosive extensions

In our study of the lattice of super-Belnap logics, the extensions of Belnap–
Dunn logic by an antiaxiomatic (or explosive) rule will play an important role.
An antiaxiomatic rule is, roughly speaking, a rule which states that a certain set of
propositions is inconsistent. In this section, we study such antiaxiomatic extensions
of a given base logic in full generality.

Definition 3.1. A set of formulas Γ is an antitheorem of the logic L, symbolically
Γ ⊢L ∅, if no valuation on a non-trivial model of L designates all of Γ.

Fact 3.2. Let p be a variable which does not occur in Γ. Then Γ is an antitheorem
of L if and only if Γ ⊢L p.

If all the variables of L occur in Γ, one has to resort to renaming the variables.
Pick a variable p and substitutions σp and τp such that (τp ◦ σp)(ϕ) = ϕ for each
formula ϕ, τp(p) = p, and moreover p does not occur in σp(ϕ) for any ϕ.

Fact 3.3. The following are equivalent:

(1) Γ is an antitheorem of L,
(2) σp[Γ] ⊢L p,
(3) σ[Γ] ⊢L ϕ for each formula ϕ and each substitution σ.

Proof. If σ[Γ] 0L ϕ, then there is a model 〈A, F 〉 of L and a valuation v on it such
that v[σ[Γ]] ⊆ F but v(ϕ) /∈ F . Thus 〈A, F 〉 is a non-trivial model of L and the
valuation w(ϕ) = v(σ(ϕ)) witnesses that Γ is not an antitheorem.

Conversely, if Γ is not an antitheorem of L, then there is a valuation v on some
non-trivial model 〈A, F 〉 of L such that v[Γ] ⊆ F . Consider the valuation w on
〈A, F 〉 such that w(p) /∈ F and w(q) = v(q) otherwise. Then (w ◦ τp)[σp[Γ]] =
w[(τp ◦ σp)[Γ]] = w[Γ] ⊆ F while (w ◦ τp)(p) = w(p) /∈ F . Thus σp[Γ] 0L p.

The remaining implication is trivial: we instantiate σ by σp and ϕ by p. �

When we talk about the explosive rule Γ ⊢ ∅, we mean the rule σp[Γ] ⊢L p.
If p is a variable which does not occur in Γ, we may identify Γ ⊢ ∅ with the rule
Γ ⊢ p. For logics which validate the rule f ⊢ p for some constant f, we may identify
explosive rules with rules of the form Γ ⊢ f.

An explosive extension of B is an extension of B by a set of explosive rules.
The following lemma describes the consequence relation of such an extension.

Lemma 3.4. Let L be the extension of B by a set of explosive rules ∆i ⊢ ∅ for
i ∈ I. Then Γ ⊢L ϕ if and only if either Γ ⊢B ϕ or there is some substitution σ and
some i ∈ I such that Γ ⊢B σ(δ) for each δ ∈ ∆i.
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Proof. The right-to-left direction is obvious, since Γ ⊢L ∅ implies σ[Γ] ⊢L ∅. To
prove the opposite direction it suffices to verify that the condition on the right-hand
side of the equivalence indeed defines a logic. �

The explosive part of a logic (relative to some base logic) will turn out to be a
very useful construction in the following. Throughout this section, we assume that
L and Li for i ∈ I are extensions of some base logic B.

Definition 3.5. The explosive part of L relative to B, denoted ExpB L, is the logic
such that Γ ⊢ ϕ holds in ExpB L if and only if either Γ ⊢B ϕ or Γ ⊢L ∅.

Fact 3.6. L is an explosive extension of B if and only if L = ExpB L.

The logic ExpB L is the largest extension of B by a set of explosive rules which
lies below L. Two extensions of B have the same explosive part if and only if they
have the same antitheorems. Let us now make some basic observations about the
explosive part operator ExpB.

Fact 3.7. ExpB is an interior operator on ExtB. That is, it is isotone and
ExpB ExpB L = ExpB L ≤ L.

Fact 3.8. ExpB
⋂

i∈I Li =
⋂

i∈I ExpB Li.

Proof. The inequality ExpB
⋂

i∈I Li ≤
⋂

i∈I ExpB Li holds because ExpB is an in-
terior operator. Conversely, suppose that Γ ⊢ ϕ is valid in ExpB Li for each i ∈ I.
Then either Γ ⊢B ϕ or Γ ⊢Li

∅ for each i ∈ I. But then either Γ ⊢B ϕ or Γ is an
antitheorem of

⋂

i∈I Li. �

Fact 3.9.
∨

i∈I ExpB Li =
⋃

i∈I ExpB Li.

Proof. This is an immediate consequence of Lemma 3.4. �

Fact 3.10. Let L1 ≤ L2. Then L1 ∨ ExpB L2 = L1 ∪ ExpB L2.

Proof. By Lemma 3.4, Γ ⊢ ϕ holds in L1 ∨ExpB L2 if and only if either Γ ⊢L1
ϕ or

there is some antitheorem ∆ of L2 and some substitution σ such that Γ ⊢L1
σ(δ)

for each δ ∈ ∆. But then L1 ≤ L2 implies that Γ is an antitheorem of L2, therefore
Γ ⊢ ϕ holds in ExpB L2. �

Proposition 3.11. The explosive extensions of a logic B form a completely dis-
tributive complete sublattice of ExtB. We denote it ExpExtB.

Proposition 3.12. The finitary explosive extensions of a finitary logic B form an
algebraic distributive sublattice of Extω B. We denote it ExpExtω B.

The lattices of explosive extensions of any logic L0 and of its explosive part
ExpB L0 are in fact isomorphic via the maps L 7→ ExpB L and L 7→ L0∨L = L0∪L.
If B and L0 are finitary, this isomorphism restricts to an isomorphism between the
lattices of finitary explosive extensions of L0 and ExpB L0.

Theorem 3.13. Let L0 be an extension of B. Then the lattices ExpExtL0 and
ExpExtExpB L0 are isomorphic via the maps L 7→ ExpB L and L 7→ L0 ∪ L.

Proof. The two maps are isotone and clearly L0 ∨ExpB L ≤ L for L in ExpExtL0.
Conversely, if Γ ⊢L ϕ for L ∈ ExpExtL0, then either Γ ⊢L0

ϕ or Γ ⊢L ∅. In either
case Γ ⊢ ϕ holds in L0 ∨ ExpB L. Thus L = L0 ∨ ExpB L. Fact 3.10 now implies
that L = L0 ∪ ExpB L for each L ∈ ExpExtL0.
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On the other hand, L ≤ ExpB(L0 ∨ L) for L ∈ ExpExt(ExpB L0). Conversely,
if Γ ⊢ ϕ holds in ExpB(L0 ∨ L) for L ∈ ExpExt(ExpB L0), then either Γ ⊢B ϕ or
Γ ⊢ ∅ holds in L0 ∨ L. But L0 ∨ L is the extension of L0 by the explosive rules
Γ ⊢ ∅ valid in L, therefore Γ ⊢L0∨L ∅ implies Γ ⊢L0

∅ or Γ ⊢L ∅. If Γ ⊢ ∅ holds in
L0, then it holds in ExpB L0, and therefore also in L. Thus Γ ⊢B ϕ or Γ ⊢L ∅. In
either case Γ ⊢L ϕ. Thus ExpB(L0 ∨ L) = L for L ∈ ExpExt(ExpB L0). �

Although axiomatizing the intersection of two logics may be a non-trivial task
in general, axiomatizing the intersection of an explosive extension of B with an
arbitrary extension of B turns out to be much easier.

We call two rules Γ ⊢ ϕ and ∆ ⊢ ψ variable disjoint if no propositional atom
occurs as a subformula both in Γ∪{ϕ} and in ∆∪{ψ}. The following two proposi-
tions hold, mutatis mutandis, for the intersection

⋂

i∈I Li of a family Li with i ∈ I
of explosive extensions of B (instead of L∩Lexp), provided that we can find axiom-
atizations ρi of Li such that each rule in ρi is variable disjoint from each rule in ρj
if i and j are distinct.

Proposition 3.14. Let L be an extension of B by the rules Γi ⊢ ϕi for i ∈ I.
Let Lexp be an explosive extension of B by the rules ∆j ⊢ ∅ for j ∈ I such that
Γi ⊢ ϕi is variable disjoint from ∆j ⊢ ∅ for each i ∈ I, j ∈ J . Then L∩Lexp is the
extension of B by the rules Γi,∆j ⊢ ϕi for i ∈ I, j ∈ J .

Proof. Clearly Γi,∆j ⊢L∩Lexp
ϕi for each i ∈ I, j ∈ J . Conversely, Γ ⊢Lexp

ϕ
implies that Γ ⊢B ϕ or for some σ and some j ∈ J we have Γ ⊢B σ(δj) for all
δj ∈ ∆j , thus Γ ⊢ ϕ holds in the extension of B by the rules Γ,∆j ⊢ ϕ if Γ ⊢L ϕ.
But the rule Γ,∆j ⊢ ϕ can be derived from the rules Γi,∆j ⊢ ϕi if Γ ⊢L ϕ. �

Proposition 3.15. Mod(L ∩ Lexp) = ModL ∪ModLexp for each L ∈ ExtB and
Lexp ∈ ExpExtB.

Proof. Clearly ModL ⊆ Mod(L∩Lexp) and ModLexp ⊆ Mod(L∩Lexp). Conversely,
suppose that a non-trivial matrix 〈A, F 〉 is a model of neither L nor Lexp. Then
there are rules Γ ⊢ ϕ and ∆ ⊢ ∅, without loss of generality variable disjoint, and
valuations v and w on A such that Γ ⊢L ϕ and ∆ ⊢Lexp

∅ and moreover v[Γ] ⊆ F ,
v(ϕ) /∈ F , and w[∆] ⊆ F . Any valuation u such that u(p) = v(p) if p occurs in
Γ or ϕ and u(p) = w(p) if p occurs in ∆ then witnesses that the rule Γ,∆ ⊢ ϕ,
which is valid in L ∩ Lexp, fails in the matrix 〈A, F 〉. �

The logic determined by a product of matrices may be described in terms of
the logics determined by the factors and their explosive parts. In the following
proposition and its corollaries, the matrices A, K, and Ai for i ∈ I are assumed to
be non-trivial models of B.

Proposition 3.16. Log
∏

i∈I Ai =
⋂

i∈I LogAi ∪
⋃

i∈I (ExpB LogAi).

Proof. The right-to-left inclusion is clear. Conversely, suppose that Γ ⊢ ϕ holds in
Log

∏

i∈I Ai. If no valuation on Ai designates Γ, then Γ ⊢ ϕ holds in ExpB LogAi.
Otherwise, take a valuation vi on Ai which designates Γ for each i ∈ I. If there
were some j ∈ I such that Γ 0 ϕ in LogAj, as witnessed by a valuation wj , then
the product of the valuation wj with the valuations vi for i 6= j would witness that
Γ 0 ϕ in Log

∏

i∈I Ai. Thus Γ ⊢ ϕ in each LogAi. �
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This formula for computing the logic determined by a product of matrices will
be used throughout the paper. We recommend that the reader keep it in mind. We
now state some of its immediate corollaries.

Corollary 3.17. Log(K × A) = ExpB LogK ∪ ExpB LogA ∪ (LogK ∩ LogA).

Proof.

Log(K× A) =
⋂

B∈K

Log (B× A)

=
⋂

B∈K

(ExpB LogB ∪ ExpB LogA ∪ (LogB ∩ LogA))

= ExpB LogB ∪

(

⋂

B∈K

(ExpB LogB ∪ LogA) ∩
⋂

B∈K

LogB

)

= ExpB LogA ∪

(

(LogA ∪
⋂

B∈K

ExpB LogB) ∩
⋂

B∈K

LogB

)

= ExpB LogA ∪ ExpB LogK ∪ (LogA ∩ LogK).

�

Corollary 3.18. If B = LogA and L = LogK, then ExpB L = Log(K× A).

Corollary 3.19. Let L be an explosive extension of B. Then
∏

i∈I Ai is a model
of L if and only if Ai is a model of L for some i ∈ I.

The following corollary describes the opposite extreme case. Let us call Γ a
potential antitheorem of B if the extension of B by Γ ⊢ ∅ is a non-trivial logic.

Corollary 3.20. Let L be the extension of B by a set of rules of the form Γ ⊢ ϕ
where Γ is not a potential antitheorem of B. Then

∏

i∈I Ai is a model of L if and
only if each Ai is a model of L.

Proof. A rule Γ ⊢ ϕ holds in Log
∏

i∈I Ai if and only if it either holds in each Ai or
Γ is an antitheorem of some LogAi. But LogAi is a non-trivial extension of B. �

4. Belnap–Dunn logic and its closest kin

It is now time to turn our attention from the general theory towards super-
Belnap logics. In this section, we review some known facts about Belnap–Dunn
logic and its closest relatives.

The algebraic counterpart of Belnap–Dunn logic is the variety of De Morgan
algebras. A De Morgan algebra 〈A,∧,∨, t, f,−〉 is a bounded distributive lattice
〈A,∧,∨, t, f〉 with an order-inverting involution −x called De Morgan negation.
The constants t and f denote the top and bottom elements respectively.

The variety of De Morgan algebras is axiomatized by the equation −−x ≈ x and
either of the De Morgan laws −(x ∨ y) ≈ −x ∧ −y or −(x ∧ y) ≈ −x ∨ −y relative
to an axiomatization of the variety of bounded distributive lattices.

The only subdirectly irreducible De Morgan algebras are the two-element Boolean
algebra B2, the three-element chain K3 with the unique order-inverting involution,
and the four-element diamond DM4 with the unique order-inverting involution
with two fixpoints (see [31, 41]). Clearly B2 ≤ K3 ≤ DM4.
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Figure 1. Some important models of BD

BD4 (BD) B2 (CL) K3 (K) P3 (LP) ETL4 (ET L)

Each De Morgan algebra is therefore a subdirect power of DM4. Moreover,
each Kleene algebra (De Morgan algebra which satisfies x ∧ −x ≤ y ∨ −y) is a
subdirect power ofK3, and each Boolean algebra (De Morgan algebra which satisfies
x∧−x ≤ y) is a subdirect power of B2. There are no other varieties of De Morgan
algebras, apart from the trivial one.

The best-known super-Belnap logics are determined by matrices over one of
the algebras B2, K3, DM4 where the designated elements form a lattice filter.
These matrices are shown in Figure 1, where De Morgan negation is interpreted by
reflection across the horizontal axis of symmetry. The logics determined by these
matrices are recorded in parentheses.

Belnap–Dunn logic BD itself is determined by the matrix BD4. The four elements
of this matrix can be interpreted as the truth values True, False, Neither (True nor
False), and Both (True and False). The matricesK3 and P3 are submatrices of BD4:
the former drops the truth value Both, the latter drops the truth value Neither.
The familiar matrix B2 which determines classical logic CL is a submatrix of both
K3 and P3. It is obtained from BD4 by restricting to the two classical values True
and False.

A Hilbert-style axiomatization of Belnap–Dunn logic (i.e. an axiomatization in
the sense of Section 2) was provided independently by Pynko [40] and Font [23].
Both papers also contain sequent calculi for BD. More precisely, Pynko and Font
study Belnap–Dunn logic without the constants t and f. However, to obtain an
axiomatization of BD with the constants it suffices to add the rules

f ∨ p ⊢ p, ∅ ⊢ t,

−t ∨ p ⊢ p, ∅ ⊢ −f.

We shall see in Section 7 that the presence or absence of these constants makes
very little difference. One benefit of including them is that doing so collapses the
distinction between the trivial logic axiomatized by ∅ ⊢ p and the almost trivial
logic axiomatized by p ⊢ q, as well as between classical logic CL and almost classical
logic CL− where Γ ⊢CL− ϕ if and only if Γ is non-empty and Γ ⊢CL ϕ.

Kleene’s strong three-valued logic K is determined by the matrix K3. This
logic, or at least the three-valued semantics for its connectives, was introduced
by Kleene [32, 33] in connection with partial recursive functions. It was later used
by Kripke [34] in his theory of truth. The logic K is axiomatized relative to BD by
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Figure 2. Some super-Belnap logics

BD

KO

LP K

CL

(p ∧ −p) ∨ q ⊢ q, or equivalently by the rule of resolution p ∨ q,−q ∨ r ⊢ p ∨ r, as
observed by Rivieccio [44] and proved in [2].

The Logic of Paradox LP is determined by the matrix P3. It was introduced by
Priest [38], who proposed to use it to handle semantic paradoxes such as the Liar
Paradox. Pynko [40] later proved that LP is axiomatized relative to BD by the
law of the excluded middle ∅ ⊢ p ∨ −p. This logic is the only non-trivial proper
axiomatic extension of BD.

The intersection of LP and K is the logic determined by the set of matrices
{K3,P3}. We call it Kleene’s logic of order, following Rivieccio [44], and we denote
it KO. This logic was called Kalman implication by Makinson [35] and studied by
Dunn [18], who identified it as the so-called first-degree fragment of the relevance
logic R-Mingle. (Recall that BD itself is the first-degree fragment of the logic of
entailment [17].) Kleene’s logic of order is axiomatized by the rule (p ∧ −p) ∨ r ⊢
(q ∨−q) ∨ r relative to BD, as observed by Rivieccio [44] and proved in [2]. It can
also be axiomatized by a rule in two variables, namely (p ∧ −p) ∨ q ⊢ q ∨ −q.1

In addition to the above logics, super-Belnap logics of course also include classical
logic CL, determined by the matrix B2. Figure 2 shows the super-Belnap logics
introduced so far ordered by their logical strength.

A more recent addition to the super-Belnap family is the Exactly True Logic ET L
introduced by Pietz & Rivieccio [37] as the logic of the matrix ETL4. It was also
studied by Rivieccio in [44], where it was denoted B1.

2 This logic is axiomatized
relative to BD by the rule of disjunctive syllogism p,−p ∨ q ⊢ q. Classical logic
is precisely the extension of ET L by the law of the excluded middle. That is,
CL = LP ∨ ET L. We shall see that, in a way, this is the canonical decomposition
of CL in the lattice of super-Belnap logics.

We now review some known properties of these logics, which will be used through-
out the paper. The logics CL, KO, and BD are directly related to the equational
theories of Boolean, Kleene, and De Morgan algebras.

Fact 4.1. Let Γ be a finite set of formulas. Then:

(1) Γ ⊢BD ϕ if and only if
∧

Γ ≤ ϕ holds in all De Morgan algebras.
(2) Γ ⊢KO ϕ if and only if

∧

Γ ≤ ϕ holds in all Kleene algebras.

1Dunn [19] provides an axiomatization of KO which relies on a metarule which allows one to
infer ϕ ∨ ψ ⊢ χ from ϕ ⊢ ψ and ψ ⊢ χ. It is therefore not a (Hilbert-style) axiomatization in our
sense of the word.

2The idea of preserving exact truth (truth and non-falsity) had previously been considered by
Marcos [36], although the signature of his logic was larger than the signature of ET L.
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(3) Γ ⊢CL ϕ if and only if
∧

Γ ≤ ϕ holds in all Boolean algebras.

The following observations follow immediately from the semantic definitions of
the logics in question.

Fact 4.2. The logics BD, KO, and CL enjoy the contraposition property:

ϕ ⊢L ψ =⇒ −ψ ⊢L −ϕ.

The logics K and LP are related by contraposition as follows:

ϕ ⊢K ψ =⇒ −ψ ⊢LP −ϕ, ϕ ⊢LP ψ =⇒ −ψ ⊢K −ϕ.

Fact 4.3. The logics BD, K, LP, KO, CL enjoy the proof by cases property:

Γ, ϕ ∨ ψ ⊢L χ ⇐⇒ Γ, ϕ ⊢L χ and Γ, ψ ⊢L χ.

The reduced models of BD were described by Font [23], and the reduced models
of ET L by Rivieccio [44]. We will only need the following observations here.

Proposition 4.4. Each reduced model of BD is a De Morgan algebra with a lattice
filter. Conversely, each De Morgan algebra equipped with a lattice filter is a model
of BD (although it need not be a reduced model).

Proposition 4.5. Each reduced model of ET L is a De Morgan algebra with F =
{t}. Conversely, each De Morgan algebra equipped with F = {t} is a model of ET L
(although it need not be a reduced model).

The following propositions shows that consequence in LP , K, and ET L may be
reduced to consequence in BD. Throughout the paper, by (classical) tautologies
and contradictions we mean the tautologies and contradictions of classical logic.

Proposition 4.6.

(1) Γ ⊢LP ϕ if and only if Γ, τ ⊢BD ϕ for some classical tautology τ .
(2) Γ ⊢K ϕ if and only if Γ ⊢BD ϕ ∨ χ for some classical contradiction χ.
(3) Γ ⊢ET L ϕ if and only if Γ ⊢BD ψ and ψ ⊢BD −ψ ∨ ϕ for some formula ψ.

Proof. The claim for LP is equivalent to the fact that LP is axiomatized by the
law of the excluded middle relative to BD. (For a direct semantic proof of the
equivalence, see [39, Proposition 3.5].) The claim for K then follows from the
contraposition relation between K and LP . Finally, the claim for ET L was proved
by Pietz & Rivieccio [37, Lemma 3.2]. �

We define conjunctive and disjunctive normal forms of formulas of BD as in
classical logic: a literal is an atom or a negated atom, a conjunctive (disjunctive)
clause is a conjunction (disjunction) of literals, and a formula is in conjunctive
(disjunctive) normal form if it is a conjunction of disjunctive clauses (a disjunction
of conjunctive clauses). The empty conjunction (disjunction) is identified with t (f).
A clause is positive if it does not contain negated atoms.

Each formula is equivalent in BD to a formula in conjunctive normal form, and
therefore also to a formula in disjunctive normal form (see [23]). More precisely,
each formula is equivalent to t or to f or to a non-empty disjunction (conjunction)
of non-empty conjunctions (disjunctions) of literals.

Proposition 4.7. Let ϕ be a disjunctive clause. Then Γ ⊢BD ϕ if and only if
γ ⊢BD ϕ for some γ ∈ Γ.
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Proof. Since each formula is equivalent in BD to a conjunction of disjunctive
clauses, we may assume without loss of generality that each formula of Γ is a
disjunctive clause. If γ 0BD ϕ for each γ ∈ Γ, then each γ ∈ Γ contains a literal
which does not occur in ϕ. The unique valuation on BD4 which assigns an undes-
ignated value to every literal which occurs in ϕ and a designated value to every
other literal then witnesses that Γ 0BD ϕ. �

Unlike in classical logic, the equivalent conjunctive and disjunctive normal form
of a formula is essentially unique in BD (see [39, Theorem 3.15]).

5. Completeness theorems and explosive parts

In this section, we prove several new completeness theorems for super-Belnap
logics. The explosive part operator Exp turns out to be a useful tool for this
purpose.

Let us first introduce two related sequences of super-Belnap logics. The logic
ECQn (ET Ln) for n ≥ 1 extends BD (ET L) by the explosive rule

(p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn) ⊢ ∅.

We use ECQ as a synonym for ECQ1. Clearly ECQ ≤ ET L, so ET L1 = ET L.
These logics are ordered as follows:

ECQn ≤ ET Ln, ECQn ≤ ECQn+1, ET Ln ≤ ET Ln+1.

The joins (unions) of these sequences of logics will be denoted ECQω and ET Lω:

ECQω :=
⋃

n≥1

ECQn, ET Lω :=
⋃

n≥1

ET Ln.

The logics ET Ln and their union ET Lω were first introduced by Rivieccio [44]
under the names Bn and Bω. Rivieccio provided a completeness theorem for ET Lω

and proved that ET Ln < ET Ln+1. It follows that ECQn < ECQn+1 and that the
logics ECQω and ET Lω are not finitely axiomatizable. The inequality ECQn <
ET Ln also holds: if p,−p ∨ q ⊢ q were valid in ECQn, then we would have either
p,−p ∨ q ⊢BD q or p,−p ∨ q ⊢ECQn

∅. But ECQn ≤ CL and p,−p ∨ q 0CL ∅.
We now determine the explosive parts of LP , ET L, and CL. These logics are

finitary, therefore it only suffices to consider antitheorems of the form {γ}.

Proposition 5.1. ExpBD LP = BD.

Proof. If γ ⊢LP ∅, then γ, τ ⊢BD ∅ for some classical tautology τ by Proposition 4.6,
so either γ ⊢BD ∅ or τ ⊢BD ∅ by Proposition 4.7. But τ 0BD ∅ because τ 0CL ∅. �

Proposition 5.2. ExpBD ET L = ECQ.

Proof. If γ ⊢ET L ∅, then γ ⊢ET L −γ, so γ ⊢BD −γ by Proposition 4.6 and γ ⊢ECQ ∅.
Thus ExpBD ET L ≤ ECQ. Conversely, ECQ ≤ ET L. �

Proposition 5.3. ExpBD CL = ECQω.

Proof. The inclusion ECQω ≤ ExpBD CL is clear. Conversely, suppose that γ ⊢CL ∅.
Let γ1 ∨ · · · ∨ γn be a disjunction of conjunctive clauses which is equivalent γ in
BD. Then γi ⊢CL ∅ for each γi by the proof by cases property. It follows that γi
is equivalent in BD to pi ∧ −pi ∧ ϕi for some atom pi and some formula ϕi. Thus
γ ⊢BD (p1 ∧−p1) ∨ · · · ∨ (pn ∧ −pn) and γ ⊢ECQω

∅. �
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The following lemma will help us identify classical contradictions. Throughout
the paper, we take

χn := (p1 ∧−p1) ∨ · · · ∨ (pn ∧ −pn).

Lemma 5.4. A formula χ is a classical contradiction if and only if there is some
substitution σ such that χ ⊢BD σ(χn).

Proof. This follows from the fact that ExpBD CL = ECQω by Lemma 3.4. �

Proposition 5.5. (LP ∩ ECQω) ∨ ECQ = ECQω.

Proof. We first prove that ECQω ≤ LP ∨ ECQ. It suffices to show that the rule
(p∧−p)∨ (q ∧−q)∨ r ⊢ (ϕ∧−ϕ)∨ r is derivable in LP for some ϕ. In particular,
let ϕ = (p∨q)∧(−p∨−q). Then (ϕ∧−ϕ)∨r is equivalent to the conjunction of the
formulas p∨q∨r, p∨−q∨r, −p∨q∨r, −p∨−q∨r, p∨−p∨r, q∨−q∨r. But the last
two formulas are theorems of LP and the rest are derivable from (p∧−p)∨ (q∧−q)
in BD.

It remains to prove that ECQω ≤ (LP ∩ ECQω) ∨ ECQ. Consider a model A of
(LP ∩ECQω)∨ECQ. Then A is a model of ECQ, as well as a model of either LP or
ECQω by Proposition 3.15. In the former case, A is still a model of ECQω because
ECQω ≤ LP ∨ ECQ. �

Cashing in our general observations about the explosive part operator from Sec-
tion 3, we can immediately infer that

LP ∨ ECQ = LP ∨ ECQω = LP ∨ ExpBD CL = LP ∪ ExpBD CL = ExpLP CL.

Similarly, LP ∩ ECQω ≤ KO (P3 is a model of LP and K3 of ECQω), therefore

KO ∨ ECQ = KO ∨ ECQω = KO ∨ ExpBD CL = KO ∪ ExpBD CL = ExpKO CL.

Now recall how a completeness theorem for ExpB L is obtained from completeness
theorems for L = LogA and B = LogB if L is an extension of B:

ExpB L = LogA× B.

We immediately obtain the following batch of completeness theorems. The com-
pleteness theorem for LP ∨ ECQ was already proved by Pynko [42].3

3A completeness theorem for ET Lω was already proved by Rivieccio [44] with respect to the
slightly more complicated matrix ETL4×K3. This is no contradiction: the logic ET Lω is complete

with respect to any matrix of the form A × B such that LogA ≤ ET Lω ≤ Log B ≤ CL. Observe
that the algebraic reducts of B2 × ETL4 and K3 × ETL4 do not generate the same quasivariety.
In particular, the algebraic reduct of ETL4 × B2 satisfies the quasiequation x ≈ −x =⇒ x ≈ y,
while the algebraic reduct of ETL4 ×K3 does not.
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Proposition 5.6. ECQ = LogETL4 × BD4.

Proposition 5.7. ECQω = LogB2 × BD4.

Proposition 5.8. ET Lω = LogB2 × ETL4.

Proposition 5.9. LP ∨ ECQ = LogB2 × P3.

Proposition 5.10. KO ∨ ECQ = Log{B2 × P3,K3}.

Proof. This holds because LP ∨ ECQ = LogB2 × P3 and (LP ∨ ECQ) ∩ K =
(LP ∪ ECQω) ∩ K = (LP ∩ K) ∪ (ECQω ∩ K) = KO ∪ ECQω = KO ∨ ECQ. �

The observations that ExpBD LP = BD and ExpBD ET L = ECQ are easy to
prove but crucial for understanding the structure of the lattice of explosive exten-
sions of BD, as we now show.

Proposition 5.11. For each L ≥ BD either ECQ ≤ L or L ≤ LP.

Proof. If ECQ � L, then L has a non–trivial reduced model 〈A, F 〉 such that a ∈ F
for some a ≤ −a. But then the three- or four-element submatrix f < a ≤ −a < t

of 〈A, F 〉 is a model of L. In either case the Leibniz reduct of this submatrix is
isomorphic to P3, therefore P3 is a model of L and L ≤ LP . �

Proposition 5.12. ECQ is the smallest proper explosive extension of BD.

Proof. If L is an explosive extension of BD such that L ≤ LP , then L = ExpBD L ≤
ExpBD LP = BD. �

In other words, ExpExtECQ is the lattice of proper explosive extensions of BD.
Because ExpBD ET L = ECQ, this lattice is isomorphic to ExpExt ET L.

Theorem 5.13. The lattices ExpExt ECQ and ExpExt ET L are isomorphic via
the maps L 7→ ET L ∨ L = ET L ∪ L and L 7→ ExpBD L = ExpECQ L.

Proof. This is a particular instance of Theorem 3.13. �

Corollary 5.14. ExpBD ET Ln = ECQn and ET Ln = ET L ∪ ECQn.

ExpExtECQ is also isomorphic to the lattice LP ∩ExpExt ECQ of all intersec-
tions of LP with an explosive extension of ECQ.

Theorem 5.15. The lattices ExpExtECQ and LP ∩ExpExtECQ are isomorphic
via the maps L 7→ LP ∩ L and L 7→ L ∨ ECQ.

Proof. Consider an extension L of ECQ by the explosive rules Γi ⊢ ∅ for i ∈ I.
Intersecting with LP yields a logic axiomatized by the rules Γi ⊢ pi∨−pi for i ∈ I,
where the atom pi does not occur in Γi by Proposition 3.14. (We rename the
variables of Γ if necessary.) But a matrix validates Γi ⊢ pi ∨ −pi if and only if it
validates either Γi ⊢ ∅ or ∅ ⊢ pi ∨ −pi. Since ECQ is the smallest proper explosive
extension of BD, it follows that a matrix validates both p,−p ⊢ ∅ and Γi ⊢ pi∨−pi
if and only if it validates either Γi ⊢ ∅ or both ∅ ⊢ p ∨ −p and p,−p ⊢ ∅. But
L ≤ ECQω ≤ LP ∨ ECQ, therefore a matrix is a model of both ECQ and LP ∩L if
and only if it is a model of L, i.e. (LP ∩ L) ∨ ECQ = L. �
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Figure 3. The matrix ETL8

a

b

c

ETL8 (K−)

In the rest of this section, we prove some more completeness theorems for super-
Belnap logics. The methodology used above will not apply here, since these logics
will not be identified as explosive parts of other super-Belnap logics.

We introduce K− as the logic determined by the eight-element matrix ETL8

shown in Figure 3, where De Morgan negation again corresponds to reflection across
the horizontal axis of symmetry. This may seem like a very ad hoc logic to study
at first sight, but we shall see that this logic is one of the two lower covers of K in
ExtBD (hence the name), the other being KO ∨ ECQ.

Proposition 5.16 (Consequence in K−). Γ ⊢K−
ϕ if and only if Γ ⊢BD χ∨ψ and

Γ ⊢BD −ψ ∨ ϕ for some formula ψ and some classical contradiction χ.

Proof. Right to left, it suffices to verify that the rule χn ∨ q,−q ∨ r ⊢ r holds in
ETL8 for each n ≥ 1, where χn := (p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn). This is true
because for each valuation v on ETL8 we have v(χn) ≤ a ∨ c, so v(χn ∨ q) = t

implies v(q) ≥ b. But then v(−q) ≤ c, so v(−q ∨ r) = t implies v(r) = t.
Conversely, suppose that Γ ⊢K−

ϕ. By finitarity, we may assume that Γ =
{γ}. We first prove two auxiliary claims. Firstly, we show that if the left-to-right
implication holds for each γ ∈ {δ1, δ2, δ3}, where

δ1 := γ2 ∨ γ3, δ2 := γ3 ∨ γ1, δ3 := γ1 ∨ γ2

then it holds for γ := γ1 ∨ γ2 ∨ γ3. If the implication holds in these three cases,
then we have formulas ψi and classical contradictions χi for 1 ≤ i ≤ 3 such that

δi ⊢BD χi ∨ ψi and δi ⊢BD −ψi ∨ ϕ.

Observe that

γ1 ⊢BD δ2 ∨ δ3, γ2 ⊢BD δ3 ∨ δ1, γ3 ⊢BD δ1 ∨ δ2.

Now take

ψ := (ψ1 ∨ ψ2) ∧ (ψ2 ∨ ψ3) ∧ (ψ3 ∨ ψ1), χ := χ1 ∨ χ2 ∨ χ3.
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Then

γ1 ⊢BD δ2 ∧ δ3 ⊢BD (χ2 ∨ ψ2) ∧ (χ3 ∨ ψ3) ⊢BD χ2 ∨ χ3 ∨ (ψ2 ∧ ψ3) ⊢BD χ ∨ ψ,

and likewise γ2 ⊢BD χ ∨ ψ and γ3 ⊢BD χ ∨ ψ. Moreover,

γ1 ⊢BD δ2 ∧ δ3 ⊢BD (−ψ2 ∧−ψ3) ∨ ϕ ⊢BD −ψ ∨ ϕ,

and likewise γ2 ⊢BD −ψ ∨ ϕ and γ3 ⊢BD −ψ ∨ ϕ. By the proof by cases property
for BD (Fact 4.3) we have

γ1 ∨ γ2 ∨ γ3 ⊢BD χ ∨ ψ and γ1 ∨ γ2 ∨ γ3 ⊢BD −ψ ∨ ϕ,

therefore the implication holds for γ := γ1 ∨ γ2 ∨ γ3.
Secondly, we show that if the left-to-right implication holds for ϕ1 and ϕ2, then

it holds for ϕ := ϕ1∧ϕ2. The assumption yields formulas ψ1, ψ2 and contradictions
χ1, χ2 such that

γ ⊢BD χi ∨ ψi and γ ⊢BD −ψi ∨ ϕi.

But then taking χ := χ1 ∨ χ2 and ψ := ψ1 ∧ ψ2 yields that

γ ⊢BD χ ∨ ψ and γ ⊢BD −ψ ∨ ϕ.

We now prove the left-to-right implication for arbitrary γ using these two auxil-
iary claims. By the first claim, it suffices to prove the implication for γ := γ1 ∨ γ2,
where γ1 and γ2 are conjunctive clauses. By the second claim, it suffices to prove
the implication under the assumption that ϕ is a disjunctive clause.

If γ is a classical contradiction, the implication holds trivially for χ := γ and
ψ := −γ. Otherwise, we may suppose that without loss of generality the conjunctive
clause γ2 is not a classical contradiction.

Suppose now that the right-hand side of the implication fails and γ1 is not a
classical contradiction. Taking ψ := γ, either γ1 0BD −γ ∨ ϕ or γ2 0BD −γ ∨ ϕ. In
particular, either γ1 0BD ϕ or γ2 0BD ϕ. Suppose without loss of generality that
γ2 0BD ϕ. Then γ2 has no literal in common with ϕ, therefore there is a valuation
v on ETL8 such that v(l) = t for each literal l of γ2 while v(l) ∈ {f, b, c} for each
literal l of ϕ. This valuation v witnesses that γ 0K−

ϕ.
On the other hand, suppose that the right-hand side of the implication fails and

γ1 is a classical contradiction. Taking χ := γ1 and ψ := γ2, either γ1 0BD −γ2 ∨ ϕ
or γ2 0BD −γ2 ∨ ϕ. The latter case, where γ2 0BD ϕ, has already been dealt with.
Suppose therefore that γ1 0BD −γ2 ∨ ϕ.

Now consider the following valuation v on ETL8. If p and −p are both literals
of γ1, take v(p) := a. If p but not −p is a literal of γ1, take v(p) := t, while if
−p but not p is a literal of γ1, take v(p) := f. For atoms such that neither p nor
−p is a literal of γ1, take v(p) := b if p is a literal of γ2 and v(p) := c if −p is a
literal of γ2. (These two subcases are mutually exclusive, since γ2 is not a classical
contradiction.) For other atoms p take arbitrary v(p) ∈ {b, c}.

We have v(γ1) = a, since γ1 contains both p and −p for some atom p. Moreover,
v(γ2) ∈ {t, b}, since γ2 is a conjunction of literals l with v(l) ∈ {t, b}: if l is a
literal of both γ1 and γ2, then −l is not a literal of γ1, since γ1 0BD −γ2. Thus
v(γ) = v(γ1 ∨ γ2) = t. But v(ϕ) ∈ {f, b, c} because all literals take values in
{f, b, c, t} and no literal of ϕ takes the value t because γ1 0BD ϕ, so γ 0K−

ϕ. �
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A completeness theorem for K− now follows as a corollary. Let EDSn with n ≥ 1
be the extension of BD by the rule

χn ∨ q,−q ∨ r ⊢ r, where χn := (p1 ∧ −p1) ∨ . . . (pn ∧ −pn).

We call this rule the n-explosive disjunctive syllogism: as special cases it subsumes
both the ordinary disjunctive syllogism p,−p∨q ⊢ q and the rule of ex contradictione
quodlibet in the form χn ⊢ q.

In particular, EDS1 is axiomatized by the rule (p ∧−p) ∨ q,−q ∨ r ⊢ r. Clearly
EDSn ≤ EDSn+1. The join (union) of this chain of logics will be denoted EDSω.

Fact 5.17. ET Ln+1 < EDSn.

Proof. We have χn+1 ⊢BD χn∨pn+1 and χn+1 ⊢BD −pn+1∨χn, hence χn+1 ⊢EDSn

χn. But ET Ln ≤ EDSn, so χn+1 ⊢EDSn
∅. On the other hand, EDS1 � ET Lω

because χn ∨ q,−q ∨ r is not a classical contradiction. �

The inequalities EDSn ≤ EDSn+1 are in fact strict (Fact 9.7). We postpone the
proof of this fact until we have the appropriate tools to separate these logics.

Proposition 5.18 (Completeness for K−). The logic K− is axiomatized by the
infinite set of rules χn ∨ q,−q ∨ r ⊢ r for n ≥ 1, i.e. K− = EDSω.

We may also axiomatize the intersections of the logics ET L, EDSn, and K− with
LP. We shall use the notation KO− := LP ∩ K−. This is because KO− turns out
to be the only lower cover of KO.

Proposition 5.19. LP ∩ ET L is axiomatized by p,−p ∨ q ∨ −q ⊢ q ∨ −q.

Proof. Suppose that Γ ⊢LP∩ET L ϕ and Γ 0BD ϕ. In BD the formula ϕ is equivalent
to a conjunction of disjunctive clauses ϕi for i ∈ I. Then Γ, τ ⊢BD ϕ for some
classical tautology τ by Proposition 4.6. But Γ 0BD ϕ, so τ ⊢BD ϕi by Proposition
4.7. Each ϕi is thus a tautology, hence it is equivalent to qi∨−qi∨ψi for some atom
qi and some formula ψi. By Proposition 4.6, Γ ⊢ET L ϕ implies that Γ ⊢BD δ and
Γ ⊢BD −δ∨q∨−q∨ψi for some δ. The rule p,−p∨q∨−q∨r ⊢ q∨−q∨r then suffices to
derive ϕi from Γ. The equivalence of this rule and the rule p,−p∨ q ∨−q ⊢ q ∨−q
follows from the fact that in any De Morgan algebra, the elements of the form
q ∨ −q ∨ r are precisely the elements of the form q ∨ −q. Finally, we can derive ϕ
from the set of formulas {ϕi | i ∈ I} in BD. �

Proposition 5.20 (Completeness for LP ∩ EDSn). The logic LP ∩ EDSn is ax-
iomatized by the infinite set of rules χn ∨ q,−q ∨ r ∨ −r ⊢ r ∨−r for n ≥ 1.

Proof. Suppose that Γ ⊢KO−
ϕ and Γ 0BD ϕ. We may assume that ϕ is a dis-

junctive clause, as in the proof of Proposition 5.19. Then Γ, τ ⊢BD ϕ for some
tautology τ by Proposition 4.6, hence τ ⊢BD ϕ by Proposition 4.7. It follows that
ϕ is equivalent to r ∨−r ∨ α for some atom r and some formula α. Then Γ ⊢K−

ϕ
implies that Γ ⊢BD χ∨ψ and Γ ⊢BD −ψ ∨ r∨−r∨α for some formula ψ and some
contradiction χ by Proposition 5.16. The formula ϕ is thus derivable from Γ in the
extension of BD by the rules χn ∨ q,−q ∨ r ∨ −r ∨ s ⊢ r ∨ −r ∨ s for n ∈ ω. But
these rules are derivable from the simpler rules χn ∨ q,−q ∨ r ∨ −r ⊢ r ∨ −r, as in
the proof of Proposition 5.19. �

Proposition 5.21 (Completeness for KO−). The logic KO− := LP ∩ K− is ax-
iomatized by the infinite set of rules χn ∨ q,−q ∨ r ∨ −r ⊢ r ∨−r for n ≥ 1.
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6. The lattice of super-Belnap logics

In this section, we study the global structure of the lattice of super-Belnap logics.
We prove that lattice of non-trivial proper extensions of BD splits into the three
disjoint intervals [LP ∩ ECQ,LP ], [ECQ,LP ∨ ECQ], and [ET L, CL]. That is, each
logic in [BD, CL] lies in exactly one of these intervals. Moreover, the lattice of
non-trivial proper extensions of ET L has the structure [ET L2,K−] < K < CL.
We then identify some other splittings of ExtBD and use these results to list all
super-Belnap logics which satisfy various natural metalogical properties.

We first provide an example which shows that the lattice of super-Belnap logics
is non-modular (and therefore non-distributive). Recall that a lattice is modular if
it satisfies the equation (a ∧ b) ∨ c = (a ∨ c) ∧ b for c ≤ b.

Proposition 6.1. (LP ∩ ET L) ∨ ECQ < (LP ∨ ECQ) ∩ ET L.

Proof. By Fact 3.10 we have (LP ∩ ET L) ∨ ECQ = (LP ∩ ET L) ∨ Exp ET L =
(LP ∩ ET L) ∪ ExpET L = (LP ∩ ET L) ∪ ECQ and (LP ∨ ECQ) ∩ ET L = (LP ∪
ECQω) ∩ ET L = (LP ∩ ET L) ∪ (ECQω ∩ ET L). It therefore suffices to find Γ and
ϕ such that Γ ⊢ECQω∩ET L ϕ but Γ 0ECQ ϕ and Γ 0LP ϕ.

The rule (p1 ∧ −p1) ∨ (p2 ∧ −p2), q,−q ∨ r ⊢ r holds in ECQω ∩ ET L but not
in LP = LogP3. Moreover, ECQ = LogETL4 × BD4 and there is a valuation on
ETL4×BD4 which designates (p1∧−p1)∨ (p2∧−p2), therefore the rule in question
holds in ECQ only if q,−q ∨ r ⊢ECQ r. But q,−q ∨ r 0ECQ r. �

Corollary 6.2. Extω BD is not a modular lattice.

We now identify some natural splittings of ExtBD. We already know that
[BD, CL] splits into [BD,LP ] and [ECQ, CL] (Proposition 5.11).

In the following, θ(a, b) for a, b ∈ A will denote the principal congruence of the
De Morgan algebra A generated by the pair 〈a, b〉. A result of Sankappanavar [45]
states that for a ≤ b we have 〈x, y〉 ∈ θ(a, b) if and only if the following equations
are satisfied:

x ∧ a ∧ −b = y ∧ a ∧ −b, (x ∧ a) ∨−a = (y ∧ a) ∨ −a,

x ∨ b ∨ −a = y ∨ b ∨ −a, (x ∨ b) ∧ −b = (y ∨ b) ∧ −b.

Proposition 6.3. LP ∩ ECQ is the smallest proper extension of BD.

Proof. Suppose that LP ∩ ECQ � L. Then p ∧ −p 0L q ∨ −q, so L has a reduced
model 〈A, F 〉 with a ∈ F and b /∈ F such that a ≤ −a and −b ≤ b. The congruence
θ(a,−a) is compatible with F : if x ∈ F and 〈x, y〉 ∈ θ(a,−a), then x ∧ a = y ∧ a
by the above description of principal congruences on De Morgan algebras. Since
x ∧ a ∈ F , we have y ∈ F . Since the matrix 〈A, F 〉 is reduced, the congruence
θ(a,−a) is the identity relation, therefore a = −a.

Consider the submatrix 〈B, G〉 of 〈A, F 〉 generated by a and c = (a ∧ b) ∨ −b.
Note that c = −c = (a ∨ −b) ∧ b. The elements a and c are distinct, since a ∈ F
but c /∈ F (because b /∈ F ). The universe of B is the set {f, a ∧ c, a, c, a ∨ c, t} and
G := F ∩ B = {a, a ∨ c, t}. The congruence θ(a ∨ c, t) is compatible with G and
the matrix 〈B/θ(a ∨ c, t), G/θ(a ∨ c, t)〉 is isomorphic to BD4. Therefore BD4 is a
model of L and L ≤ BD. �
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Figure 4. The free two-generated De Morgan algebra modulo b ≤
a and a ≤ −a ∨ b
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Proposition 6.4. CL is the largest non-trivial extension of BD.

Proof. If L is a non-trivial extension of BD, then it has a non-trivial reduced model
〈A, F 〉. Then t ∈ F and f /∈ F , so the submatrix of 〈A, F 〉 with the universe {f, t}
is isomorphic to B2. Therefore B2 is a model of L and L ≤ CL. �

Proposition 6.5. The interval [BD, CL] splits into [BD,K] and [LP , CL]. All logics
in [BD,K] have the same theorems, as do all logics in [LP , CL].

Proof. Suppose that LP � L. Then ∅ 0L p∨−p, so L has a reduced model 〈A, F 〉
such that a /∈ F for some a ∈ A such that −a ≤ a. Consider the submatrix
〈B, G〉 of 〈A, F 〉 generated by a. The universe of B is the set {f,−a, a, t} and
G := F ∩A = {t}. The congruence θ(−a, a) on B is compatible with G and the
matrix 〈B/θ(−a, a), G/θ(−a, a)〉 is isomorphic to K3. Therefore K3 is a model of
L and L ≤ K.

The claim that LP and CL have the same theorems was proved by Priest [38].
To prove that K and BD also have the same theorems, recall the contrapositive
relation between K and LP : ∅ ⊢K ϕ implies −ϕ ⊢LP ∅. But ExpBD LP = BD, so
−ϕ ⊢BD ∅, and by contraposition ∅ ⊢BD ϕ. �

Note that the constants t and f are part of our signature, therefore BD does have
theorems. We omit the straightforward verification of the following fact.

Lemma 6.6. The algebra in Figure 4 is the free De Morgan algebra generated by
a and b modulo the inequalities b ≤ a and a ≤ −a ∨ b.

Proposition 6.7. [BD, CL] splits into [BD,LP ∨ ECQ] and [ET L, CL].

Proof. Suppose that ET L � L. Then p,−p ∨ q 0L q and L has a reduced model
〈A, F 〉 such that a ∈ F and −a ∨ b ∈ F but b /∈ F for some a, b ∈ A. Without loss
of generality we may take b := a∧ b and a := a∧ (−a∨ b), i.e. we may assume that
b ≤ a and a ≤ −a ∨ b.
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Consider the submatrix 〈B, G〉 of 〈A, F 〉 generated by a and b. Let C be the
algebra shown in Figure 4. By Lemma 6.6 there is a homomorphism h : C → B.
Take H := h−1[G]. Then the matrix 〈C, H〉 is a model of L, being an strict
homomorphic preimage of a model of L. We have a ∈ H and b /∈ H .

We distinguish two cases. If a ∧ −a /∈ H , then H = {a, a ∨ −a, b ∨ −b, t}, hence
θ(a, a∨−a) is compatible with H and the matrix 〈C/θ(a, a∨−a), H/θ(a, a∨−a)〉
is isomorphic to P3 × B2. On the other hand, if a ∧−a ∈ H , then H = {a, a ∨−a,
b ∨ −b, t, a ∧ −a,−a,−b}, hence θ(a ∧ −a, t) is compatible with H and the matrix
〈C/θ(a∧−a, t), H/θ(a∧−a, t)〉 is isomorphic to P3. Thus either P3×B2 is a model
of L and L ≤ LP ∨ ECQ, or P3 is a model of L and L ≤ LP ≤ LP ∨ ECQ. �

It follows that the join CL = LP ∨ ET L is canonical in the following sense.

Corollary 6.8. If CL = L1 ∨L2 with L1 < CL and L2 < CL, then either LP ≤ L1

and ET L ≤ L2 or ET L ≤ L1 and LP ≤ L2.

Proof. If LP � L1 and LP � L2, then L1 ∨ L2 ≤ K. Likewise, if ET L � L1 and
ET L � L2, then L1 ∨ L2 ≤ LP ∨ ECQ. But if LP ≤ L1 and ET L ≤ L1, then
CL ≤ L1, and likewise for L2. �

Taking the above splittings together yields the following theorem.

Theorem 6.9. Each non-trivial proper extension of BD lies in one of the disjoint
intervals [LP ∩ ECQ,LP], [ECQ,LP ∨ ECQ], or [ET L, CL].

Proof. These intervals are indeed disjoint: ECQ � LP and ET L � LP ∨ ECQ
because p,−p ⊢ ∅ fails in P3 and p,−p ∨ q ⊢ q fails in B2 × P3. �

Each of these three intervals in fact contains a continuum of finitary logics (Corol-
lary 10.8). We can also split the lattice of super-Belnap logics into a finite upper
part and an infinite lower part. We omit the tedious but straightforward verification
of the following claim.

Lemma 6.10. The algebra shown in Figure 5 is the free algebra generated by a
and b modulo the inequalities a ≤ −a and b ≤ −b.

The following proposition extends the unpublished result of Rivieccio that K is
an upper cover of K− (defined semantically).

Proposition 6.11. [BD, CL] splits into [BD,K−] and [KO, CL].

Proof. Suppose that KO � L. Then (p ∧ −p) ∨ r 0L (q ∨ −q) ∨ r and L has a
reduced model 〈A, F 〉 such that a ∨ d ∈ F and c ∨ d /∈ F for some a, c, d ∈ A such
that a ≤ −a and −c ≤ c. Let b := −d. Without loss of generality we may take
d := c ∨ d. It follows that b ≤ −b and −b /∈ F .

Consider the submatrix 〈B, G〉 of 〈A, F 〉 generated by the elements a and b.
Let C be the algebra shown in Figure 5. By Lemma 6.10 there is a surjective
homomorphism h : C → B. Then the matrix 〈C, H〉 with H := h−1[G] is a model
of L, being a strict homomorphic preimage of a model of L. We have a ∨ −b ∈ H
and −b /∈ H . The congruence θ(−a ∨ −b, t) is then compatible with H , thus
〈D, I〉 := 〈C/θ(−a ∨ −b, t), H/θ(−a ∨ −b, t)〉 is a model of L.

There are now several cases to consider. If −a ∨ b /∈ I, then the congruence
θ(a,−a) is compatible with I and 〈D/θ(a,−a), I/θ(a,−a)〉 is isomorphic to the
matrix ETL8 (recall Figure 3). In that case ETL8 is a model of L and L ≤ K−.
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Figure 5. The free two-generated De Morgan algebra modulo a ≤
−a and b ≤ −b
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On the other hand, if a∨ (−a∧ b) ∈ I, then the rule p∧−p ⊢ q ∨−q fails in 〈D, I〉,
hence LP ∩ ECQ � LogD and L ≤ LogD = BD.

Finally, if −a ∨ b ∈ I and a ∨ (−a ∧ b) /∈ I, then θ(a ∨ b ∨ (−a ∧ −b), t) is a
congruence compatible with I and it yields either the matrix BD4 × B2 or the
matrix ETL4 × B2. In the former case L ≤ LogBD4 × B2 = ECQω ≤ K−, while in
the latter case L ≤ LogETL4 × B2 = ET Lω ≤ K−. �

Recall the definition of KO− as LP ∩ K−.

Proposition 6.12. (LP ∩ EDSn) ∨ ET L = EDSn. KO− ∨ ET L = K−.

Proof. Let χn := (p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn) and Γ = {χn ∨ q,−q ∨ r}. Because
χn ∨ q,−(χn ∨ q) ∨ r ⊢ET L r, to prove that Γ ⊢ q holds in (LP ∩ EDSn) ∨ ET L it
will suffice to show that Γ ⊢ −(χn ∨ q)∨ r holds in LP ∩EDSn. But Γ ⊢BD −q ∨ r,
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therefore it suffices to show that Γ ⊢ p ∨ −p ∨ r holds in LP ∩ EDSn. Let ψ :=
r ∨ (p∧−p). Then Γ ⊢BD −q ∨ ψ ∨−α and Γ ⊢BD χn ∨ q, so Γ ⊢LP∩EDSn

ψ ∨−ψ.
But ψ ∨ −ψ ⊢BD p ∨ −p ∨ r. �

Theorem 6.13. The interval [KO−, CL] splits into the intervals [LP , CL], [KO,K],
and [KO−,K−], where

[LP , CL] = {LP,LP ∨ ECQ, CL},

[KO,K] = {KO,KO ∨ ECQ,K},

[KO−,K−] = {KO−,KO− ∨ ECQ,K−}.

Proof. The claim for [LP , CL] holds because each non-trivial super-Belnap logic lies
in one of the intervals [BD,LP ], [ECQ,LP∨ECQ], [ET L, CL] and CL = LP ∨ET L.
The claim for [KO,K] holds because KO = LP∩K and KO∨ECQ = (LP∨ECQ)∩K
andK = KO∨ET L, therefore [KO,K]∩[BD,LP ] = {KO} and [KO,K]∩[ECQ,LP∨
ECQ] = {KO ∨ ECQ} and [KO,K] ∩ [ET L, CL] = {K}. Likewise, the claim for
[KO−,K−] holds because KO− = LP ∩ K− and KO− ∨ ECQ = (LP ∨ ECQ) ∩ K−

and KO− ∨ ET L = K−. The second equality holds because (LP ∨ ECQ) ∩ K− =
(LP∪ECQω)∩K− = (LP∩K−)∪ECQω = KO−∨ECQ, since (LP∩ECQω)∨ECQ =
ECQω and ECQω ≤ K−. �

The interval [LP , CL] was already described by Pynko [42].

Theorem 6.14. Each non-trivial proper extension of BD lies in one of the disjoint
intervals [KO, CL], [LP ∩ ECQ,KO−], [ECQ,KO− ∨ ECQ], or [ET L,K−].

Proof. This follows immediately from Theorems 6.9 and 6.13. �

The following proposition extends the unpublished result of Rivieccio that ET L2

is the smallest proper extension of ET L.

Proposition 6.15. [BD, CL] splits into [BD, ET L] and [LP ∩ ECQ2, CL].

Proof. Suppose that LP ∩ ECQ2 � L. Then (p ∧ −p) ∨ (q ∧ −q) 0L r ∨ −r by
Proposition 3.14 and L has a reduced model 〈A, F 〉 such that a ∨ b ∈ F for some
a, b ∈ A with a ≤ −a and b ≤ −b, and c /∈ F for some c ∈ A with −c ≤ c.

Consider the submatrix 〈B, G〉 of 〈A, F 〉 generated by the elements a and b. Let
C be the algebra shown in Figure 5. As in the proof of Proposition 6.11 there
is a surjective homomorphism h : C → B, therefore 〈C, H〉 is a model of L for
H := h−1[G]. We have a ∨ b ∈ H .

If −a ∈ H or −b ∈ H , then there is some d ∈ F such that d ≤ −d: either
d = h(a ∨ (−a ∧ −b)) or d = h(b ∨ (a ∧ −b)). Since c /∈ F for some c ∈ A

such that −c ≤ c, it follows that the rule p ∧ −p ⊢ q ∨ −q fails in 〈A, F 〉, hence
LP ∩ ECQ � Log〈A, F 〉 and L ≤ Log〈A, F 〉 = BD.

Finally, if −a /∈ H and −b /∈ H , then H is the principal filter generated by a∨ b
and θ(a ∨ b, t) is compatible with H . The matrix 〈C/θ(a ∨ b, t), H/θ(a ∨ b, t)〉 is
then isomorphic to ETL4, hence ETL4 is a model of L and L ≤ ET L. �

Theorem 6.16. [ET L, CL] has the structure ET L < [ET L2,K−] < K < CL.

In other words, the rule schema χ ∨ p,−p ∨ q ⊢ q, where χ ranges over all
classical contradictions, is the strongest set of rules which lies properly between the
disjunctive syllogism and the resolution rule.
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Figure 6. Part of the lattice of super-Belnap logics
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Proposition 6.17. For each super-Belnap logic L either L ≤ ET Lω or the rule
(p ∧ −p) ∨ q ∨ −q, (q ∧ −q) ∨ p ∨−p ⊢ p ∨ −p holds in L.

Proof. Suppose that (p ∧−p) ∨ q ∨−q, (q ∧−q) ∨ p ∨−p 0L p ∨−p. Then L has a
reduced model 〈A, F 〉 such that a ∨ −b ∈ F and b ∨ −a ∈ F but −b /∈ F for some
a, b ∈ A such that a ≤ −a and b ≤ −b.

We proceed as in the proofs of the previous propositions. Again, if we have
a ∨ (−a ∧ b) ∈ H , then the rule p ∧ −p ⊢ q ∨ −q fails in 〈C, H〉, hence L ≤
Log〈C, H〉 = BD. Suppose therefore that a ∨ (−a ∧ b) /∈ H . Then H is a principal
filter generated either by a ∨ (−a ∧−b) or by a ∨ b or by a ∨ b ∨ (−a ∧−b). In the
first two cases, the Leibniz reduct of 〈C, H〉 is isomorphic to the matrix BD4 ×B2,
while in the third case it is isomorphic to the matrix ETL4 × B2. But we know
that LogBD4 × B2 = ECQω ≤ ET Lω and LogETL4 × B2 = ET Lω. Therefore
L ≤ Log〈C, H〉 ≤ ET Lω. �

Proving an informative completeness theorem for the logic axiomatized by the
above rule remains an open problem. Apart from this logic, Figure 6 shows the
relative positions of the logics discussed above. It only depicts the inclusions among
the selected logics – it does not faithfully represent meets and joins.
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The splittings established above can be used to determine which super-Belnap
logics satisfy various metalogical properties. This was already done in [2] to classify
non-trivial super-Belnap logics within the Leibniz and Frege hierarchies of abstract
algebraic logic. The only protoalgebraic one is CL, the only Fregean one is also
CL, and the only selfextensional ones are BD, KO, and CL.4 We shall provide two
alternative proofs of this last fact below.

Following Cintula & Noguera [10], we say that a super-Belnap logic L enjoys the
(weak) proof by cases property if (for Γ = ∅)

Γ, ϕ ∨ ψ ⊢L χ ⇐⇒ Γ, ϕ ⊢L χ and Γ, ψ ⊢L χ.

Proposition 6.18. The only non-trivial super-Belnap logics which enjoy the (weak)
proof by cases property are BD, KO, LP, K, and CL.

Proof. Let L be a proper extension of BD with the weak proof by cases property.
Then LP ∩ ECQ ≤ L, i.e. p ∧ −p ⊢L q ∨ −q. By the weak proof by cases property,
(p∧−p)∨ r ⊢L (q ∨−q)∨ r, i.e. KO ≤ L. Moreover, if ECQ ≤ L, then p∧−p ⊢L q
and (p∧−p)∨q ⊢L q, i.e. K ≤ L. But the only non-trivial proper extensions of KO
are LP , KO ∨ ECQ, LP ∨ ECQ, K, and CL. The logics KO ∨ ECQ and LP ∨ ECQ
do not enjoy the weak proof by cases property: they validate p ⊢ p and (q∧−q) ⊢ p
but not p ∨ (q ∧ −q) ⊢ p. �

We say that L enjoys the contraposition property if ϕ ⊢L ψ implies −ψ ⊢L −ϕ.

Proposition 6.19. The only non-trivial super-Belnap logics which enjoy the contra-
position property are BD, KO, and CL.

Proof. Let L be a super-Belnap logic with the contraposition property. Then ϕ ⊢L

χ and ψ ⊢L χ imply −χ ⊢L −ϕ and −χ ⊢L −ψ. Thus −χ ⊢L (−ϕ ∧ −ψ) and
−(−ϕ ∧ −ψ) ⊢L −−χ, hence ϕ ∨ ψ ⊢L χ. The contraposition property therefore
implies the weak proof by cases property. It now suffices to verify that K and LP do
not satisfy the contraposition property: we have p∧−p ⊢K q but −q 0K −(p∧−p),
and likewise q ⊢LP p ∨ −p but −(p ∨ −p) 0LP −q. �

Proposition 6.20. The only non-trivial selfextensional super-Belnap logics are
BD, KO, and CL.

Proof. These logics are selfextensional by virtue of their relation to varieties of
Boolean, Kleene, and De Morgan algebras (Proposition 4.1). Conversely, if L is
a selfextensional super-Belnap logic, then it enjoys the contraposition property:
ϕ ⊢L ψ implies ϕ ⊣⊢L ϕ∧ψ, hence −(ϕ∧ψ) ⊣⊢L −ϕ and −ψ ⊢L −(ϕ∧ψ) ⊢L −ϕ.
Therefore L is one of the logics BD, KO, or CL by Proposition 6.19.

Alternatively, suppose that L is a selfextensional proper extension of BD. Then
LP ∩ ECQ ≤ L, so (p ∧ −p) ⊣⊢L (p ∧ −p) ∧ (q ∨ −q). By selfextensionality,
(p∧−p)∨ r ⊣⊢L ((p∧−p)∧ (q ∨−q)) ∨ r, therefore (p∧−p)∨ r ⊢L q ∨−q ∨ r and
KO ≤ L. By a similar argument, ECQ ≤ L implies K ≤ L.

4Recall that a logic L is called protoalgebraic if there is a set of formulas in two variables ∆(p, q)
such that p,∆(p, q) ⊢L q and ∅ ⊢L δ(p, p) for each δ(p, p) ∈ ∆(p, p). It is selfextensional if the

equivalence or interderivability relation ϕ ⊣⊢L ψ is a congruence on the algebra of formulas, i.e. if
replacing a subformula of α by an interderivable formula results in a formula β which is interderiv-
able with α. The logic is called Fregean if this replacement principle holds for interderivability
modulo any set of formulas Γ, i.e. for the relation Γ, ϕ ⊢L ψ and Γ, ψ ⊢L ϕ.
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It follows that L (if non-trivial) is one of the logics KO, LP, K, CL. It remains
to prove that neither LP nor K is selfextensional: we have q ⊣⊢LP (p∨−p)∨ q but
(p ∧ −p) ∨ −q 0LP −q. Likewise, q ⊣⊢K (p ∧−p) ∨ q but −q 0K p ∨ −p. �

A rule Γ ⊢ ϕ is called admissible in a logic L if adding it to L does not change
the set of theorems of L, or equivalently if for each substitution σ

∅ ⊢L σ(γ) for each γ ∈ Γ =⇒ ∅ ⊢L σ(ϕ).

A logic L is structurally complete if each admissible rule of L is valid (derivable)
in L, or equivalently if each proper extension of L adds some new theorems to L.

Proposition 6.21. The only non-trivial structurally complete super-Belnap logics
are K and CL.

Proof. By Proposition 6.5 each non-trivial super-Belnap logic lies below K (in which
case it has the same theorems as BD) or above LP (in which case it has the same
theorems as CL). Thus K and CL are the only non-trivial super-Belnap logics which
cannot be properly extended without adding new theorems. �

While the proof by cases property among super-Belnap logics is only enjoyed by
the five logics listed above, we shall see that other super-Belnap logics may satisfy
a weaker form of this property. We say that a super-Belnap logic L enjoys the
restricted proof by cases property in case

Γ, ϕ ∨−ϕ ⊢L ψ ⇐⇒ Γ, ϕ ⊢L ψ and Γ,−ϕ ⊢L ψ.

For example, ET L and K− enjoy this property by virtue of the fact that a∨−a = t

if and only if a = t or −a = t in ETL4 and ETL8. We now show that this extends
to every extension of ET L axiomatized by rules of a suitable form.

The key observation here is that if a∨−a = t in a De Morgan algebra A, then A

is isomorphic to [f, a]× [f,−a], where the De Morgan negations on the two intervals
are a∧−x and −a∧−x. The isomorphism is given by the maps x 7→ 〈a∧x,−a∧x〉
and 〈x, y〉 7→ x ∨ y.

Proposition 6.22. Let L be an extension of ET L axiomatized by rules of the form
Γ ⊢ ϕ where Γ is not an antitheorem of CL. Then L enjoys the restricted proof by
cases property.

Proof. Suppose that Γ, ϕ ∨ −ϕ 0L ψ, as witnessed by a valuation v on a model
〈A, {t}〉 of L where A is a De Morgan algebra. Let a := v(ϕ). Then a ∨ −a = t,
so 〈A, {t}〉 is isomorphic to the binary product of the matrices 〈[f, a], {a}〉 and
〈[f,−a], {−a}〉. By Corollary 3.20, both of these matrices are models of L (using the
assumption about the axiomatization of L). This yields two valuations wi = πi ◦ v,
where π1(x) := a ∧ x and π2(x) := −a ∧ x. Because v(ψ) is not designated in
〈A, {t}〉, it fails to be designated by at least one of these two valuations, say by
w1. Because each formula in Γ is designated in 〈A, {t}〉, it is also designated by
w1. Finally, w1(ϕ) = π1(v(ϕ)) = π1(a) = a. The valuation w1 thus witnesses that
Γ, ϕ 0L ψ. �

In particular, this proposition applies to the logics EDSn.
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7. Different frameworks

We now consider what happens if we modify the definition of super-Belnap logics
adopted above. The picture only changes marginally if we drop the constants t and
f from the signature. By contrast, if we use a multiple-conclusion framework instead
of the single-conclusion one, then the super-Belnap family reduces to BD, KO, K,
LP, and CL.

Let us first consider constant-free super-Belnap logics : extensions of the fragment
of BD without constants. This fragment has no theorems or antitheorems.

Proposition 7.1. Each super-Belnap logic is axiomatized relative to BD by a set
of rules which do not contain t and f.

Proof. Each formula is equivalent in BD to t or to f or to a constant-free formula.
(This is an immediate consequence of the fact that each formula can be transformed
into an equivalent formula in conjunctive normal form.) But the rule Γ, t ⊢ ϕ is
equivalent to the rule Γ ⊢ ϕ, the rule Γ ⊢ f is equivalent to Γ ⊢ p for some p not
occurring in Γ (renaming the variables in Γ if necessary), and the rules Γ ⊢ t and
Γ, f ⊢ ϕ hold in BD. �

Dropping the constants from the signature of BD means that the undesignated
singleton matrix now becomes a submatrix of BD4. Such matrices, where the set
of designated elements is empty, will be called almost trivial. Each almost trivial
matrix determines the almost trivial logic axiomatized by p ⊢ q.

Proposition 7.2. An extension of the constant-free fragment of BD is the constant-
free fragment of an extension of BD if and only if it is complete with respect to a
class of matrices which are not almost trivial.

Proof. Left to right, no model of BD is almost trivial. Conversely, let L be an
extension of the constant-free fragment of BD complete with respect to a class of
matrices which are not almost trivial. Let Ltf be the super-Belnap logic obtained
by adding constants t and f and the rules ∅ ⊢ t and ∅ ⊢ −f and f ∨ p ⊢ p and
−t∨ p ⊢ p to L. The logic Ltf is a conservative extension of the logic Lf which only
adds the constant f and the rules ∅ ⊢ −f and f ∨ p ⊢ p. This is because in each
proof in Ltf we can substitute −f for t throughout to obtain a proof in Lf . We now
show that Lf is a conservative extension of L.

Let us fix a variable p. It will suffice to prove that Γ ⊢Lf
ϕ implies Γ ⊢L ϕ for Γ

and ϕ where p does not occur as a subformula. To see this, consider substitutions σp
and τp such that (τp◦σp)(ϕ) = ϕ for each ϕ and moreover σp(ϕ) never contains p as a
subformula. If Γ ⊢Lf

ϕ, then σp[Γ] ⊢Lf
σp(ϕ), hence, supposing that conservativity

holds in the special case where p does not occur in Γ and ϕ, σp[Γ] ⊢L σp(ϕ) and
Γ = (τp ◦ σp)[Γ] ⊢L (τp ◦ σp)(ϕ) = ϕ.

Now consider a proof of ϕ from Γ in Lf , where Γ and ϕ are constant-free and
the variable p does not occur in Γ and ϕ. Then ϕ has a proof from Γ∪ {−f} which
only uses the (constant-free) rules of L and instances the rule f ∨ p ⊢ p. We now
prove that all applications of this rule are redundant.

Suppose therefore that f ∨ ψ has a proof from Γ ∪ {−f} in Lf which only uses
the rules of L. Then −p,Γ ⊢L p ∨ ψ, where p does not occur in Γ or ψ, since we
can uniformly replace f by p in the proof (each step of the proof is a substitution
instance of a constant-free rule). We need to show that in fact Γ ⊢L ψ.



THE LATTICE OF SUPER-BELNAP LOGICS 29

If Γ 0L ψ, there is a non-trivial model 〈A, F 〉 of L and a valuation v on A such
that v[Γ] ⊆ F and v(ψ) /∈ F . Since L is complete with respect to a class of matrices
which are not almost trivial, we may assume that 〈A, F 〉 is not almost trivial. Let
v(ψ) = a. It suffices to find b ∈ A such that −b ∈ F and b ∨ a /∈ F , since taking
v(p) = b then witnesses that −p,Γ 0L p ∨ ψ. But we can always take b = a ∧ −c
for some c ∈ F (which exists because 〈A, F 〉 is not almost trivial).

This proves, by induction over well-founded trees, that every proof of ϕ from Γ
in Lf can be transformed into a proof of ϕ from Γ in L. �

Intersecting the almost trivial logic (axiomatized by the rule p ⊢ q) with the
constant-free fragments of LP , LP ∨ECQ, and CL yields the following three logics:
LP−, axiomatized by p ⊢ q ∨ −q relative to the constant-free fragment of BD,
LP− ∨ ECQ, and CL− = LP− ∨ ET L. We can observe that Γ ⊢LP− ϕ if and only
if Γ is non-empty and Γ ⊢LP ϕ, and likewise for LP− ∨ ECQ and CL−.

Theorem 7.3. There are exactly four extensions of the constant-free fragment of
BD which are not constant-free fragments of extensions of BD, namely the logics
LP−, LP− ∨ ECQ, CL− = LP− ∨ ET L, and the almost trivial logic.

Proof. Let L be a constant-free super-Belnap logic which is neither trivial nor
almost trivial. If L lies below the constant-free reduct of K, then the constant-free
reduct of K3 is a model of L. An almost trivial matrix is a submatrix of this reduct.
Thus each constant-free super-Belnap logic L below the constant-free fragment of K
is complete with respect to a class of matrices which are not almost trivial. It thus
constitutes the constant-free fragment of some super-Belnap logic by the previous
proposition.

On the other hand, if L does not lie below the constant-free reduct of K, then
LP− ≤ L. This is because if L invalidates the rule p ⊢L q ∨−q, then the constant-
free reduct of K3 is a model of L. (The argument is identical to the proof that LP
and K form a splitting pair.) But each model of LP− which is not almost trivial
validates the rule ∅ ⊢ p∨−p, i.e. it is a model of the constant-free fragment of LP .
Each extension of LP− is thus either an extension of the constant-free fragment of
LP or its intersection with the almost trivial logic. But it was shown by Pynko [42]
that the only non-trivial extensions of the constant-free fragment of LP are the
constant-free fragments of LP , LP ∨ ECQ, and CL. �

In the constant-free framework, the lattice of super-Belnap logics therefore has
two co-atoms, namely classical logic and the almost trivial logic.

Moving to a multiple-conclusion setting has more profound consequences. Recall
(e.g. from [46]) that a multiple-conclusion consequence relation is a relation between
sets of formulas, written Γ ⊢ ∆, which satisfies the following:

• ϕ ⊢L ϕ (reflexivity),
• if Γ ⊢L ∆, then Γ,Γ′ ⊢L ∆,∆′ (monotonicity),
• if Γ,Φ1 ⊢L ∆ and Γ ⊢L ∆,Φ2 whenever Φ1 ∪ Φ2 = Φ, then Γ ⊢L ∆ (cut),
• if Γ ⊢L ∆, then σ[Γ] ⊢L σ[∆] for each substitution σ (structurality).

The multiple-conclusion logic determined by a class of matrices K is defined as
expected. That is, Γ ⊢ ∆ if and only if for each valuation v on a matrix 〈A, F 〉 ∈ K

we have that v(δ) ∈ F for some δ ∈ ∆ whenever v[Γ] ⊆ F .
By the multiple-conclusion versions of BD, LP , K, CL, denoted BDmc, LPmc,

Kmc, CLmc, we mean the multiple-conclusion logics defined semantically via the
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matrices BD4, P3, K3, and B2. The multiple-conclusion version of KO is defined as
KOmc = LPmc∩Kmc. The multiple-conclusion version of the trivial logic is defined
as the logic axiomatized by the rule ∅ ⊢ ∅. (Note that this logic is only complete
with respect to the empty class of matrices.)

The designated sets of the above finite matrices form prime filters, therefore
Γ ⊢ ∆ holds in the multiple-conclusion version of one of the logics above if and only
if Γ ⊢

∨

∆′ holds in the single-conclusion version for some finite ∆′ ⊆ ∆. We can
infer that the logic BDmc is axiomatized by the (“positive”) rules

p, q ⊢ p ∧ q, p ∧ q ⊢ p, p ∧ q ⊢ q,

p ∨ q ⊢ p, q, p ⊢ p ∨ q, q ⊢ p ∨ q,

and the (“negative”) rules

−p,−q ⊢ −(p ∨ q), −(p ∨ q) ⊢ −p, −(p ∨ q) ⊢ −q,

−(p ∧ q) ⊢ −p,−q, −p ⊢ −(p ∧ q), −q ⊢ −(p ∧ q),

and the four rules

p ⊢ −−p, −−p ⊢ p, ∅ ⊢ t, f ⊢ ∅.

The logic LPmc extends BDmc by the rule ∅ ⊢ p,−p, the logic Kmc extends it by
p,−p ⊢ ∅, the logic KOmc by p,−p ⊢ q,−q, and CL = LPmc ∨ Kmc (see [4]).

Theorem 7.4. The only proper non-trivial multiple-conclusion extensions of BDmc

are KOmc, Kmc, LPmc, and CLmc.

Proof. We show that each multiple-conclusion rule Γ ⊢ ∆ is equivalent over BDmc

to one of the rules

∅ ⊢ ∅, p,−p ⊢ ∅, p,−p ⊢ q,−q, p ⊢ p.

Since each formula is equivalent over BD to a formula in conjunctive normal form
and a formula in disjunctive normal form, we may assume by appeal to cut that all
formulas in Γ and ∆ are either atoms or negated atoms. Consider the substitution
which assigns t to each p such that p ∈ Γ, p /∈ ∆, −p ∈ ∆, −p /∈ Γ and f to each
q such that −q ∈ Γ, −q /∈ ∆, q ∈ ∆, q /∈ Γ. The effect of this substitution is to
erase all such atoms p from the premises and all such atoms q from the conclusions.
Moreover, if there is some p ∈ Γ ∩ ∆ or some −q ∈ Γ ∩ ∆, then the rule Γ ⊢ ∆
already holds in BD. We may therefore assume without loss of generality that if
p ∈ Γ (q ∈ ∆), then p /∈ ∆ and −p /∈ ∆ (q /∈ Γ and −q /∈ Γ).

If p,−p ∈ Γ for some p and q,−q ∈ ∆ for some q, then the substitution which
assigns p to each variable in Γ and q to each variable in ∆ shows that the rule
Γ ⊢ ∆ is equivalent to p,−p ⊢ q,−q. If p,−p ∈ Γ for some p and there is no q such
that q,− ∈ ∆, then the substitution which assigns p to each variable in Γ and f (t)
to each (negated) atom in ∆ shows that the rule Γ ⊢ ∆ is equivalent to p,−p ⊢ ∅.
Dually, if q,−q ∈ ∆ for some q and there is no p such that p,−p ∈ Γ, then the
rule Γ ⊢ ∆ is equivalent to ∅ ⊢ q,−q. Finally, if at most one of the formulas p, −p
occurs in Γ and at most one the formulas q,−q occurs in ∆, a suitable substitution
again shows that Γ ⊢ ∆ is equivalent to ∅ ⊢ ∅. �

The above argument does not depend essentially on the presence of t and f.
Dropping the constants from the signature would merely complicate the picture by
forcing us to distinguish (i) between the rules ∅ ⊢ ∅, p ⊢ ∅, ∅ ⊢ q, and p ⊢ q, (ii)
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between the rules ∅ ⊢ p,−p and q ⊢ p,−p, and (iii) between the rules p,−p ⊢ ∅ and
p,−p ⊢ q. It would not, however, yield any substantially new logic.

8. Constructing finite reduced models of BD from graphs

In the second half of this paper, we study the relationship between finitary ex-
tensions of BD and finite graphs. It turns out that graphs naturally come into play
when we restrict the duality for De Morgan algebras due to Cornish & Fowler [11] to
finite reduced models of BD. This allows us to describe each finite reduced model of
BD up to isomorphism by a triple 〈G,H, k〉 where G and H are graphs and k ∈ ω.
Conversely, each such triple gives rise to a finite reduced model µ(G,H, k) of BD.
Moreover, µ(G,H, k) is a model of ET L if and only if H = ∅.

Our first task will be to review the duality for finite De Morgan algebras and
extend it to finite De Morgan matrices, i.e. De Morgan algebras equipped with
a lattice filter. In particular, we need to describe the dual counterparts of strict
homomorphisms and reduced matrices.

The duality for finite De Morgan algebras expands the Birkhoff duality for finite
distributive lattices by an order-inverting involution on both sides. On the one
side, we have involutive posets, i.e. posets 〈P,≤〉 equipped with an order-inverting
involution ∂. Their homomorphisms (embeddings) are monotone maps (order em-
beddings) which commute with the involutions.

To obtain a De Morgan algebra from an involutive poset, we take the bounded
distributive lattice of upsets and expand it by the operation −U = P \ ∂[U ]. This
results in the complex algebra of the involutive poset P , denoted P+ here. Each
homomorphism of involutive posets f : P → Q then yields a homomorphism of
De Morgan algebras f+ := f−1 : Q+ → P+.

On the other side, we have De Morgan algebras and their homomorphisms. To
obtain an involutive poset from a De Morgan algebra A, we take the poset of prime
filters ordered by inclusion and expand it by the operation ∂U = A \−[U ]. (Recall
that a prime filter is a proper lattice filter U such that a∨ b ∈ U if and only if a ∈ U
or b ∈ U .) This results in the dual poset of A, denoted A+ here. A homomorphism
of De Morgan algebras h : A → B then yields a homomorphism of involutive posets
h+ := h−1 : B+ → A+.

The map η(a) = {a ∈ U | U ∈ A+} embeds the De Morgan algebra A into
(A+)

+. This embedding is an isomorphism if A is finite. Conversely, the map
ε(u) = {u ∈ U | U ∈ P+} embeds the involutive poset P into (P+)+. This
embedding is also an isomorphism if P is finite.

Theorem 8.1. The complex algebra and dual involutive poset constructions are
functors which form a dual equivalence between the categories of finite De Morgan
algebras and finite involutive posets, with unit η and counit ε.

Fact 8.2. Embeddings (surjective homomorphisms) between finite De Morgan al-
gebras are precisely the duals of surjective homomorphisms (embeddings) between
finite involutive posets.

The duals of De Morgan matrices are involutive posets expanded by an upset
of designated points. For the sake of brevity, let us simply call such structures
frames. Frames will be denoted by P or Q and the upset of designated points
of P (Q) will be denoted DP (DQ). Homomorphisms of frames are defined as
homomorphisms of involutive posets which preserve designation. That is, f : P → Q
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is a homomorphism of frames if f is a homomorphism of involutive posets and
DP ⊆ h−1[DQ].

The complex matrix of a frame P is the complex algebra P+ of the involutive
poset reduct of P equipped with the principal filter generated by the upset D ∈ P+.
Conversely, the dual of a De Morgan matrix 〈A, F 〉 is the involutive poset A+

expanded by the upset D := {G ⊇ F | G ∈ A+}.

Theorem 8.3. The complex matrix and dual frame constructions are functors
which form a dual equivalence between the categories of finite De Morgan matrices
and finite frames, with unit η and counit ε.

Proof. Given Theorem 8.1, it suffices to make the following two observations. If
h : 〈A, F 〉 → 〈B, G〉 is a homomorphism of De Morgan matrices and V is a prime
filter of B such that V ⊇ G, then h−1[V ] is a prime filter of A and h−1[V ] ⊇
h−1[G] ⊇ F , therefore the map h−1 is a homomorphism of frames.

Conversely, if f : P → Q is a homomorphism of frames and U is an upset of Q
such that U ⊇ DQ, then f−1[U ] ⊇ f−1[DQ] ⊇ DP , therefore the map f−1 is a
homomorphism of De Morgan matrices. �

We now describe the duals of strict homomorphisms. The following notation will
be useful: ↑X will denote the upward closure of a set X in some given poset, and
minX (maxX) will denote the set of minimal (maximal) elements of X .

Proposition 8.4. Let f : P → Q be a homomorphism of finite frames. Then f+

is strict if and only if DQ = ↑f [DP ], or equivalently DQ ⊆ ↑f [DP ].

Proof. The inclusion ↑f [DP ] ⊆ DQ holds for each homomorphism of frames. Sup-
pose therefore that DQ ⊆ ↑f [DP ] and consider an upset U of Q such that f+(U) is
designated in P+. Then f−1[U ] ⊇ DP , hence U ⊇ f [DP ] and U = ↑U ⊇ ↑f [DP ] ⊇
DQ. The homomorphism f+ is therefore strict.

Conversely, let U := ↑f [DP ]. Then f+(U) = f−1[↑f [DP ]] ⊇ f−1[f [DP ]] ⊇ DP ,
hence f+(U) is designated in P+. If f is strict, then U is designated in Q+, therefore
↑f [DP ] ⊇ DQ. �

In view of the above proposition, let us call a homomorphism f : P → Q of finite
frames strict if DQ = ↑f [DP ], or equivalently if DQ ⊆ ↑f [DP ].

The duals of strict homomorphic images of P+ can be identified with certain
substructures of P . We say that a subframe of a finite frame P is a subposet Q
closed under ∂ with DQ := DP ∩ Q. A strict subframe of P is then a subframe Q
such that DP = ↑DQ, or equivalently minDP ⊆ Q.

Proposition 8.5. Let P be a finite frame. Up to isomorphism, the strict homo-
morphic images of P+ are the complex algebras of strict subframes of P .

Proof. By Proposition 8.4 and Fact 8.2, Q+ is a strict homomorphic image of P+

if and only if there is a homomorphism of frames f : Q→ P such that f is an order
embedding and DP = ↑f [DQ]. Such a map f reflects designation: if f(u) ∈ DP ,
then there is v ∈ DQ such that f(v) ≤ f(u), thus v ≤ u because f is an order
embedding, and u ∈ DQ because DQ is an upset. The map f is therefore an
isomorphism between Q and a strict subframe of P . �

Proposition 8.6. Let P be a finite frame and Q be the subframe P over minDP ∪
∂[minDP ]. Then the Leibniz reduct of P+ is isomorphic to Q+.
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Proof. The Leibniz reduct of P+ is the smallest strict homomorphic image of P+.
The claim now follows from the previous proposition and the observation that the
subframe Q is strict if and only if minDP ⊆ Q. �

Corollary 8.7. Let P be a finite frame. Then P+ is a reduced matrix if and only
if P = minDP ∪ ∂[minDP ].

Accordingly, we call a finite frame P reduced if P = minDP ∪ ∂[minDP ], and
we call the subframe Q of P over minDP ∪ ∂[minDP ] the Leibniz subframe of P .

Each frame P is a disjoint union of its components, where a component of P
is a subframe whose underlying set is closed upward as well as downward in P
(in addition to being closed under ∂). Each component of P is a frame in its own
right. We call P connected if it has no non-empty proper components.

Proposition 8.8. If P is a finite reduced frame, then P = minP ∪maxP . If P is
moreover connected, then either P = {u, ∂u} for some u ∈ P or minP and maxP
are disjoint. In the latter case either DP = P or DP = maxP .

Proof. Because ∂u ∈ maxP if and only if u ∈ minP , for the first claim it suffices to
prove that for each u ∈ P either u ∈ maxP or ∂u ∈ maxP . Suppose therefore that
there are v > u and w > ∂u. If u /∈ minDP , then ∂u ∈ minDP , so w /∈ minDP

and ∂w ∈ minDP . But ∂w < u < v, therefore v /∈ minDP and ∂v ∈ minDP . This
is a contradiction: ∂v ∈ minDP and ∂u ∈ minDP but ∂v < ∂u. This proves that
P = minP ∪maxP .

If u ∈ minP ∩ maxP , then there is no v > u and no v < u. Because P is
connected, P = {u, ∂u}. Let us therefore assume that minP ∩maxP = ∅.

Suppose that u /∈ DP for some u ∈ P . Then ∂u ∈ minDP , therefore v > ∂u
implies v /∈ minDP and ∂v ∈ minDP . But ∂v < u /∈ DP , contradicting the fact
that DP is an upset. It follows that there can be no v > ∂u if u /∈ DP . In other
words, if u /∈ DP , then u ∈ minP . Equivalently, maxP ⊆ DP .

Conversely, suppose that u ∈ DP for some u ∈ minP . We wish to show that
w ∈ DP for each w ∈ minP . By connectedness, it suffices to prove that (i) w ∈ DP

if u < ∂w ∈ DP , and (ii) w ∈ DP if u < v > w for some v ∈ P . The first claim
holds because u < ∂w implies ∂w /∈ minDP , so w ∈ DP . To prove the second
claim, we apply (i) twice: u < v implies ∂v ∈ DP , and now ∂v < ∂w implies
w = ∂∂w ∈ DP . �

We can now determine every finite reduced frame up to isomorphism by a pair of
graphs G, H and a natural number k. The graph G will describe the non-singleton
components where each element is designated, the graph H will describe the non-
singleton components where exactly one of the elements u, ∂u is designated, and k
will specify the number of singleton components.

Let us first clarify our terminology. By a graph we mean a finite symmetric graph
with loops allowed, i.e. a finite (possibly empty) set X equipped with a symmetric
binary relation R. Vertices u ∈ X and v ∈ X will be called neighbors or adjacent
vertices if uRv (allowing for u = v). A vertex u ∈ X is reflexive if uRu, otherwise it
is irreflexive. The vertex u is isolated if it has no neighbors. (No reflexive vertex is
isolated.) The complete graph Kn on n vertices is the set {1, . . . , n} equipped with
the inequality relation. Thus K1 is the irreflexive singleton graph and K2 is a single
edge between two vertices. We prefer the more suggestive notation • := K1. The
disjoint union of two graphs will be denoted G ⊔H . A homomorphism h : G→ H
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Figure 7. The frame P (G2,K2, 1)

of graphs G = 〈X,R〉 and H = 〈Y, S〉 is a map h : X → Y such that uRv implies
f(u)Sf(v).

A De Morgan matrix can be constructed from a finite graph G = 〈X,R〉 as
follows. Let X ⊔ ∂X be the disjoint union of two copies of X , denoted X and ∂X ,
with ∂ being an involution in X ⊔ ∂X switching between the two copies. That is,
each element of X ⊔ ∂X has one of the forms u or ∂u for some u ∈ X . We define a
partial order on this set:

u ≤G v ⇐⇒ either u = v or v = ∂w for some w ∈ X such that uRw.

This partial order with the involution ∂ defines the involutive poset P (G).
We may now equip P (G) with two different sets of designated elements:

D+(G) := X ∪ ∂X, D−(G) := ∂X.

This results in the two frames P+(G) and P−(G), respectively. The frame P (G,H, k)
is then defined as the disjoint union of the frames P+(G) and P−(H) and k singleton
reduced frames. An example is shown in Figure 7, where G2 is the graph consisting
of a reflexive vertex u, an irreflexive vertex v, and an edge between u and v, and
K2 is the complete graph on 2 vertices, i.e. it consists of two irreflexive vertices
connected by an edge. Observe that the complex matrix of P+(G2) is precisely the
matrix ETL8 of Figure 3.

The complex matrices of the frames P+(G), P−(H), and P (G,H, k) will be
denoted µ+(G), µ−(H), and µ(G,H, k), respectively. That is:

µ(G,H, k) ∼= µ+(G)× µ−(H)× Bk
2.

In particular, the matrix µ(∅, ∅, k) is isomorphic to Bk
2. The matrices µ(G,H, 1)

and µ(G,H, n) are logically equivalent for n ≥ 1.5

Fact 8.9. µ(G ⊔G′, H ⊔H ′, i+ i′) is isomorphic to µ(G,H, i)× µ(G′, H ′, i′).

Fact 8.10. µ+(G) is a model of ET L. µ−(G) is not a model of ECQ.

Proof. µ+(G) is a model of ET L because only its top element is designated. The
rule p,−p ⊢ ∅ fails in µ−(G) if p is interpreted by D−(G). �

In particular, Logµ−(G) ≤ LP because [BD, CL] splits into [BD,LP ] and
[ECQ, CL]. Let us explicitly compute the logics of these matrices:

Logµ(G,H, 0) = (Logµ+(G) ∩ Logµ−(H)) ∪ ExpBD Logµ+(G),

Logµ(G,H, 1) = (Logµ+(G) ∩ Logµ−(H)) ∪ ECQω.

5The notation µ+(G) is unrelated to the notation A+ for the dual frame of a De Morgan

matrix. No confusion threatens: the notation µ(G) does not mea anything here.



THE LATTICE OF SUPER-BELNAP LOGICS 35

Because ExpBD Logµ−(H) ≤ ExpBD LP = BD, we have

ExpBD Logµ(G,H, 0) = ExpBD Logµ+(G),

ExpBD Logµ(G,H, 1) = ECQω.

Fact 8.11. Let L ∈ ExpExtBD be non-trivial. Then µ(G,H, 0) is a model of L if
and only if µ+(G) is a model of L. Each µ(G,H, 1) is a model of L.

The above construction covers all finite reduced models of BD.

Theorem 8.12. The finite reduced models of BD are, up to isomorphism, precisely
the matrices µ(G,H, k) for some graphs G and H and some k ∈ ω.

Proof. Let P be a connected finite reduced frame which is not a singleton. Take
X := minP and define the binary relation R on X as folows: uRv if and only if
u ≤ ∂v. By Proposition 8.8 the frame P is isomorphic either to P+(G) or P−(G)
where G = 〈X,R〉.

If P is an arbitrary finite reduced frame, then P is the disjoint union of its
components, which either have the forms P+(G) or P−(G) or they are designated
singletons. Taking G to be the disjoint union of all graphs G such that P+(G) is a
component of P , H to be the disjoint union of all graphs H such that P−(H) is a
component of P , and k to be the number of designated singleton components, we
see that P is isomorphic to P (G,H, k). �

Theorem 8.13. The finite reduced models of ET L are, up to isomorphism, pre-
cisely the matrices µ(G, ∅, k) for some graph G and some k ∈ ω.

Proof. Recall Proposition 4.5: a reduced model 〈A, F 〉 of BD is a model of ET L if
and only if F = {t}. �

9. Graph-theoretic completeness theorems

Because the finite reduced models of BD correspond precisely to triples 〈G,H, k〉
where G and H are graphs and k ∈ ω, a completeness theorem for a super-Belnap
logic may take the form of specifying a class of such triples. Fortunately, for many
logics, including the logics ECQn, ET Ln, and EDSn, it will suffice to only consider
triples of the form 〈G, ∅, 0〉. This will yield genuine graph-theoretic completeness
theorems for such logics. For example, ET Ln turns out to be complete, in a suitable
sense, with respect to the class of all non-n-colorable graphs.

Recall that a logic L is said to be ω-complete with respect to a class of matrices
K if it is complete with respect to K as a finitary logic, i.e. if L = Logω K.

Theorem 9.1. Let L < ET Lω be a finitary explosive extension of ET L. Then L
is ω-complete with respect to all matrices of the form µ+(G)×ETL4 where µ+(G)
is a model of L and G has no isolated vertices.

Proof. Each non-trivial reduced model of L is logically equivalent to a model of the
form µ+(G) for G non-empty or a model of the form µ+(G)× B2.

Among models of L of the form µ+(G), we may restrict to those where G has
exactly one isolated vertex, since Logµ+(G⊔•⊔•) = Logµ+(G⊔•) ≤ Logµ+(G).
This holds because Logµ+(G) × B2 = Logµ+(G) ∪ ET Lω and Logµ+(G ⊔ •) =
Logµ+(G)×ETL4 = ET L∪ExpET L Logµ+(G). But the models µ+(G) where G
has exactly one isolated vertex are up to isomorphism precisely the models µ+(G)×
ETL4 where G has no isolated vertices.
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Among models of L of the form µ+(G) × B2, we may restrict to ETL4 × B2 =
µ+(•) × B2. This is because Logµ+(G) × B2 = Logµ+(G) ∪ ET Lω ≥ ET Lω =
LogETL4×B2. Finally, L < ET Lω, so L must have at least one model of the form
µ+(G)×ETL4. But then Logµ+(G)×ETL4 = ET L∪ExpET L Logµ+(G) ≤ ET Lω,
therefore we may also disregard the model ETL4 × B2. �

Theorem 9.2. Let L be a proper finitary explosive extension of BD such that
L < ECQω. Then L is ω-complete with respect to all matrices of the form µ+(G)×
BD4 where µ+(G) is a model of L and G has no isolated vertices.

Proof. Recall that L = ExpBD(ET L ∨ L) and ET L ∨ L = ET L ∪ L for L in
ExpExtECQ by Theorem 3.13. The inequality L < ECQω implies L < ET Lω,
since ET L ∨ L = ET L ∪ L. The logic ET L ∨ L is ω-complete with respect to
all of its models of the form µ+(G) × ETL4 where G has no isolated vertices, or
equivalently with respect to matrices µ+(G)×ETL4 where µ+(G) is a model of L
and G has no isolated vertices. Let us call this class of graphs K. Then

L = ExpBD(ET L ∨ L) ≈ ExpBD

⋂

G∈K

Logµ+(G)× ETL4

=
⋂

G∈K

ExpBD Logµ+(G)× ETL4 =
⋂

G∈K

Logµ+(G)× BD4,

where the last equality holds because

ExpBD Logµ+(G)× ETL4 = ExpBD(ET L ∪ ExpBD µ+(G))

= ECQ ∪ ExpBD µ+(G)

= ExpBD µ+(G)

= Logµ+(G) × BD4,

and by L1 ≈ L2 we mean that the finitary parts of L1 and L2 coincide. �

To obtain a completeness theorem for a finitary explosive extension of BD or
ET L, it thus suffices to describe the class of graphs G without isolated vertices for
which µ+(G) is a model of L. The following theorem records another situation
where satisfactory graph-theoretic completeness results may be obtained.

Theorem 9.3. Let L be a finitary non-classical extension of ET L (of BD) by a
set of rules of the form Γ ⊢ ϕ where Γ is not an antitheorem of CL. Then L is
ω-complete with respect a class of matrices of the form µ+(G) (or µ−(H)).

Proof. It suffices to observe that Corollary 3.20 applies to L, so µ(G,H, k) is a
model of L if and only if µ+(G), µ−(H), and B2 (if k ≥ 1) are. �

This applies in particular to the logic introduced in Proposition 6.17 as the
smallest super-Belnap logic which does not lie below ET Lω, axiomatized by the
rule (p∧−p)∨q∨−q, (q∧−q)∨p∨−p ⊢ p∨−p. Proving a non-trivial completeness
theorem for this logic is a problem that we leave open.

To understand which matrices of the form µ+(G) are models of a given logic, it
will be helpful to consider a different, simpler matrix based on the graph G. This
matrix γ(G) is the bounded distributive lattice of subsets of X equipped with the
operation −U := X \ R[U ] for U ⊆ X and with the set of designated values {X},
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where R[U ] := {v ∈ X | uRv for some u ∈ U}. In other words, −U is the set of all
vertices of G which are not neighbors of any vertex in U .6

The matrices γ(G) themselves are almost never models of BD: the equality
−(U ∩ V ) = −U ∪ −V will fail unless each vertex has at most one neighbor.
However, the following lemma demonstrates the value of these matrices for under-
standing which rules hold in the matrices µ+(G).

Lemma 9.4. Let Γ∪{ϕ} be a set of formulas where negation is only applied directly
to atoms, and let G = 〈X,R〉 be a graph without isolated vertices. If the rule Γ ⊢ ϕ
is valid in µ+(G), then it is valid in γ(G). If ϕ does not contain negation, then
the opposite implication also holds.

Proof. Recall that we identify the set X with a subset of P+(G). We define the
maps ↑ : γ(G) → µ+(G) and ↓ : µ+(G) → γ(G) as follows: ↑U for U ⊆ X is the
upward closure of U in P+(G), while ↓V for V ⊆ P+(G) is the restriction of V to
X as a subset of P+(G), i.e. V ∩X . These are not homomorphisms, but they enjoy
some of the useful properties of homomorphisms:

↓(U ∪ V ) = ↓U ∪ ↓ V , ↓−↑U = −U,

↓(U ∩ V ) = ↓U ∩ ↓ V , ↓−U ⊆ −↓U.

Moreover, U is designated in γ(G) if and only if ↑U is designated in µ+(G). Con-
versely, V is designated in µ+(G) if and only if ↓V is designated in γ(G). (Here
we use the assumption that G does not contain isolated vertices.)

Given a valuation v on γ(G), we define a valuation u on µ+(G) such that u(p) :=
↑v(p). We prove by induction over the complexity of the formula ψ that ↓u(ψ) =
v(ψ). The inductive steps for meets and joins are trivial, as are the base cases for
t and f. The only non-trivial cases are

↓u(p) = ↓↑v(p) = v(p), ↓u(−p) = ↓−↑v(p) = −v(p) = v(−p).

Consequently, v(ψ) is designated in γ(G) if and only if u(ψ) is designated in µ+(G).
A counterexample v to the rule Γ ⊢ ϕ on γ(G) thus yields a counterexample u to
this rule on µ+(G).

Conversely, let v be a valuation on µ+(G) which invalidates the rule Γ ⊢ ϕ. Let
w be the valuation on γ(G) such that w(p) = ↓v(p). We prove by induction over
the complexity of the formula ψ that ↓v(ψ) ⊆ w(ψ). The inductive steps for meets
and joins are again trivial, as are the base cases for t and f and for atoms p. The
only non-trivial case is ↓−v(p) ⊆ −↓v(p). Similarly, if ψ does not contain negation,
we prove by induction over the complexity of ψ that ↓v(ψ) = w(ψ). Consequently,
if v(ψ) is designated in µ+(G), then w(ψ) is designated in γ(G), and the converse
implication holds if ψ does not contain negation. A counterexample v to the rule
Γ ⊢ ϕ on µ+(G) thus yields a counterexample w to this rule on γ(G), provided
that negation does not occur in ψ. �

With the help of this lemma, we can easily identify the graph-theoretic counter-
parts of various logical rules considered so far. Recall that a graph G is called
n-colorable if there is an n-coloring of G, i.e. a homomorphism G→ Kn.

6The reader will observe that the operation −x can be expressed as �¬x where ¬ is the Boolean
negation and � is the usual box operator of classical modal logic. The matrices γ(G) are thus
reducts of matrices which arise in the context of classical modal logic.
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Fact 9.5. The graph G is not n-colorable (for n ≥ 2) if and only if the rule
(p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn) ⊢ ∅ holds in γ(G).

Proof. There is an immediate bijective correspondence between valuations on γ(G)
which invalidate the rule and n-colorings of G. �

The rules axiomatizing the logics EDSn correspond to a stronger property.
We define a partial homomorphism h : G → H as a homomorphism h : G′ → H
where G′ is a subgraph of G. That is, G′ = 〈Y, S〉 where Y ⊆ X and S = R ∩ Y 2.
A weak n-coloring of G is a partial homomorphism h : G → Kn such that for at
least one vertex u of G the map h is defined on all the neighbors of u. In other
words, the set of vertices where h is undefined is small in the very modest sense
that not every vertex of G is adjacent to this set.

Fact 9.6. The graph G is not weakly n-colorable (for n ≥ 1) if and only if the rule
(p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn) ∨ q,−q ∨ r ⊢ r holds in γ(G).

Proof. There is again an immediate correspondence between valuations on γ(G)
which invalidate the rule and weak n-colorings of G. �

A matrix separating EDSn and EDSn+1 may now be supplied.

Fact 9.7. ET Ln+2 � EDSn. Consequently, EDSn < EDSn+1.

Proof. The graphKn+2 is (n+2)-colorable but not weakly n-colorable, so µ+(Kn+2)
is a model of EDSn but not ET Ln+2. Because ET Ln+2 ≤ EDSn+1, it follows that
EDSn � EDSn+1. �

The graph-theoretic counterparts of ET Lω and EDSω can immediately be in-
ferred from the counterparts of ET Ln and EDSn.

Fact 9.8. The graph G contains a reflexive vertex if and only if the rules (p1 ∧
−p1) ∨ · · · ∨ (pn ∧−pn) ⊢ ∅ hold in γ(G) for all n ∈ ω.

Proof. The graph G is not n-colorable for any n if and only if it contains a reflexive
vertex. �

Fact 9.9. Each irreflexive vertex of G has a reflexive neighbor if and only if γ(G)
validates the rules (p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn) ∨ q,−q ∨ r ⊢ r for all n ∈ ω.

Proof. A graph in which each irreflexive vertex has a reflexive neighbor is not
weakly n-colorable for any n, since a weak coloring is undefined on reflexive vertices.
Conversely, if u is a vertex of a graph G with no reflexive neighbors, then for large
enough n there is a partial homomorphism h : G→ Kn defined on all neighbors of
u. Such a partial homomorphism is a weak n-coloring. �

Given Theorems 9.1 and 9.2 and Lemma 9.4, the above facts yield graph-theoretic
completeness theorems for the logics ECQn, ET Ln, and EDSn.

Theorem 9.10. The logic ECQn (for n ≥ 2) is ω-complete with respect to the
class of all matrices of the form µ+(G)×BD4, where G is a graph without isolated
vertices which is not n-colorable.

Theorem 9.11. The logic ET Ln (for n ≥ 2) is ω-complete with respect to the
class of all matrices of the form µ+(G)×ETL4, where G is a graph without isolated
vertices which is not n-colorable.
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Theorem 9.12. The logic EDSn (for n ≥ 1) is ω-complete with respect to the class
of all matrices of the form µ+(G), where G is a graph without isolated vertices which
is not weakly n-colorable.

This last batch of completeness theorems is perhaps less satisfying than the
completeness theorems of ECQ and ET L, but we shall see in the following section
that for the logics ECQn and ET Ln this is unavoidable: apart from ECQ and ET L,
none of these logics are complete with respect to a finite set of finite matrices. We
do not know whether this holds for EDSn.

10. Super-Belnap logics and the homomorphism order on graphs

Our description of the finite reduced models of BD yields a connection between
finitary explosive extensions of BD and homomorphisms of finite graphs: the lattice
of finitary explosive extensions of BD turns out to be dually isomorphic to the
lattice of homomorphic classes of non-empty graphs, i.e. classes K such that H ∈ K

whenever G ∈ K and there is a homomorphism of graphs G→ H . In the following,
we write simply G → H to abbreviate the claim that there is a homomorphism of
graphs G→ H .

Such classes correspond to upsets in the so-called homomorphism order on finite
graphs. The relation G→ H between finite non-empty graphs yields a pre-order on
the class of all finite graphs. The homomorphism order on finite graphs is obtained
by factoring this pre-order on a proper class down to a partially ordered set. The
least element of this order is the equivalence class of •, consisting of graphs without
any edges. The least element above the equivalence class of • is the equivalence
class of K2, consisting of all bipartite graphs. The top element of this order is the
class of all graphs with a loop. The fact that we allow for loops therefore does not
have a substantial effect on the homomorphism order.

The homomorphism order on graphs has been the object of much mathematical
attention, see in particular the monograph of Hell & Nešetřil [30]. We shall only
need the following property of this partial order, called countable universality.

Theorem 10.1. Each countable partial order embeds into the homomorphism order
on finite graphs.

We now prove that almost every homomorphic class of non-empty graphs arises
as the class of all non-empty graphs G such that µ+(G) ∈ ModL of some L ∈
ExpExtω ET L. Moreover, our proof will be constructive: for each non-empty graph
G without isolated vertices we construct a certain rule (αG) and we take L to be
the extension of ET L by the rules (αG) for such G /∈ K.

There is only exception, namely the class of all graphs G such that K2 → G, or
equivalently the class of all graphs with at least one edge. We denote this class by
↑K2. To see that it does not correspond to any L ∈ ExpExtω ET L, observe that
ET L corresponds to the class of all non-empty graphs, and ET L2 corresponds to
the class of all non-2-colorable graphs. The logic L corresponding to ↑K2 would
thus have to lie between ET L and ET L2. But no such logic exists.

We now define the rules (αG). Consider a non-empty graph G = 〈X,R〉 without
isolated vertices. We want to describe the non-empty graphs H without isolated
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vertices such that H 6→ G by means of an explosive rule. Let us assign a proposi-
tional atom pu to each u ∈ X and define the formula ϕu for u ∈ X as

ϕu := pu ∧
∧

v∈X
¬uRv

−pv.

In other words, the conjunctive clause ϕu contains the atom pu and a negated atom
for each vertex which is not adjacent to u. The explosive rule (αG) will be defined
as

∨

u∈X

ϕu ⊢ ∅.(αG)

Fact 10.2. Each homomorphism of graphs G → H yields a homomorphism of
matrices µ+(H) → µ+(G).

Proof. Each graph homomorphism g : G → H extends to a homomorphism of
frames ĝ : P+(G) → P+(H) such that ĝ(∂u) = ∂g(u), which corresponds dually
to a homomorphism of matrices µ+(H) → µ+(G) by Theorem 8.3. �

Lemma 10.3. Let G and H be non-empty graphs without isolated vertices. Then
(αG) holds in µ+(H) if and only if H 6→ G.

Proof. The valuation v on γ(G) such that v(pu) := {u} witnesses that the rule fails
in γ(G), since u ∈ v(ϕu). By Lemma 9.4 the rule thus fails in µ+(G). If there
is a graph homomorphism H → G, then there is a homomorphism of matrices
µ+(G) → µ+(H). But (αG) is an explosive rule, therefore if it fails in µ+(G) and
µ+(H) is non-trivial, then it fails in µ+(H).

Conversely, suppose that the rule (αG) fails in µ+(H). By Lemma 9.4 it also
fails in γ(H), as witnessed by a valuation w. Let G = 〈X,R〉 and H = 〈Y, S〉.
Consider the relation Q ⊆ Y × X so that u′Qu if and only if u′ ∈ w(ϕu) for
u ∈ X and u′ ∈ Y . Firstly, each u′ ∈ Y is related to some u ∈ X by Q because
w(
∨

u∈X ϕu) = Y . Secondly, we claim that u′Qu, v′Qv, and u′Sv′ imply uRv.
Suppose therefore that u′Qu and v′Qv. If u and v are not adjacent in G, then

w(ϕu) ⊆ w(−pv), therefore u′ ∈ w(ϕu) ⊆ w(−pv) = −w(pv). On the other hand,
v′ ∈ w(ϕv) ⊆ w(pv). Thus u′ and v′ are not adjacent in H : no vertex in −w(pv)
can be adjacent to a vertex in w(pv).

Now consider any function f : Y → X whose graph is contained in Q, i.e. u′ and
f(u′) are related by Q. By the first claim made above, such a function exists. By
the second claim, it is a graph homomorphism f : H → G. �
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Theorem 10.4. The lattice ExpExtω ET L of finitary explosive extensions of ET L
is dually isomorphic to the lattice of homomorphic classes of non-empty graphs K

other than ↑K2 via the maps

L 7→ KL := {G | µ+(G) ∈ ModL}, K 7→ LK := ET L+ {(αG) | G /∈ K}.

Proof. Consider a non-trivial finitary explosive extension L of ET L. If L < ET Lω,
then Theorem 9.1 states that L is complete with respect to models of the form
µ+(G) × ETL4 where G is non-empty. Moreover, ET Lω is the largest non-trivial
explosive extension of ET L and it is complete with respect to the matrix K3 ×
ETL4

∼= µ+(H) × ETL4 where H is a reflexive singleton graph. Each non-trivial
finitary explosive extension of ET L is therefore uniquely determined by its models
of the form µ+(G)×ETL4. But if G is non-empty, then µ+(G)×ETL4 is a model
of an explosive extension of ET L if and only if µ+(G) is. Moreover, the matrix
µ+(∅) × ETL4 is logically equivalent to µ+(•) × ETL4. Each non-trivial finitary
explosive extension of ET L is thus uniquely determined by the class of all non-
empty graphs G such that µ+(G) ∈ ModL. Let us call this class KL. Observe that
KL = ∅ if and only if L is the trivial logic.

The previous paragraph shows that L1 ≤ L2 if and only if KL2
⊆ KL1

, where
L1 and L2 are finitary explosive extensions of ET L. Moreover, KL is a homo-
morphic class of graphs: each homomorphism of non-empty graphs G → H yields
a homomorphism of non-trivial matrices µ+(H) → µ+(G), so µ+(G) ∈ ModL
implies µ+(H) ∈ ModL for each explosive extension L of ET L.

It remains to prove that each homomorphic class K of non-empty graphs other
than ↑K2 has the form KL for some suitable L. For each such K either K2 /∈ K or
• ∈ K. In the latter case, we take L = ET L. Let us thus assume that K2 /∈ K.

Now consider the extension LK of ET L by the rules (αG) for each non-empty
graph G /∈ K without isolated vertices. Let G denote the result of removing all
isolated vertices from G. If G is non-empty, then µ+(G) ∈ ModLK if and only if

µ+(G) ∈ ModLK. Moreover, G → H if and only if G → H , and H → G if and

only if H → G. Thus G ∈ K if and only if G ∈ K, provided that G 6= ∅.
Suppose first that G is non-empty. Then µ+(G) ∈ ModLK is equivalent to

µ+(G) ∈ ModLK, which is equivalent by Lemma 10.3 to the claim that G 6→ H ,
or equivalently G 6→ H , for each non-empty H /∈ K without isolated vertices. This
is equivalent to the claim that if H is non-empty for H /∈ K, then G 6→ H, or
equivalently G 6→ H . Because G is non-empty, H = ∅ implies that G 6→ H ,
therefore we may simplify this claim to: there is no homomorphism G → H for
H /∈ K. Because K is a homomorphic class, this is equivalent simply to G ∈ K.
Thus µ+(G) ∈ ModLK if and only if G ∈ K, provided that G is non-empty.

On the other hand, suppose that G = ∅. Then G /∈ K because • /∈ K. The
matrix µ+(G) is logically equivalent to ETL4, therefore it remains to show that
ETL4 /∈ ModLK. But K2 /∈ K, so LK validates the rule (αG) for G = K2. This rule
is precisely the rule (p ∧−p) ∨ (q ∧ −q) ⊢ ∅ which axiomatizes ET L2. �

Theorem 10.5. The lattice ExpExtω ECQ of finitary explosive extensions of ECQ
is dually isomorphic to the lattice of homomorphic classes of non-empty graphs K

other than ↑K2 via the maps

L 7→ {G | µ+(G) ∈ ModL}, K 7→ ECQ+ {(αG) | G /∈ K}.
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Proof. ExpExtω ECQ and ExpExtω ET L are isomorphic via L 7→ L ∨ ET L and
L 7→ ExpBD L. Concatenating these maps with the isomorphism from the previous
theorem yields the isomorphism L 7→ KL and K 7→ ExpBD LK = ECQ+{(αG) | G /∈
K}. �

The lattice ExpExtω BD consists of BD and ExpExtω ECQ (Theorem 5.13),
therefore it can be described even more easily.

Theorem 10.6. The lattice of finitary explosive extensions of BD is dually iso-
morphic to the lattice of homomorphic classes of non-empty graphs.

The countable universality of the homomorphism order (Theorem 10.1), or more
precisely the fact that it contains an infinite antichain, yields a continuum of finitary
explosive extensions of ET L and BD.

Corollary 10.7. The lattices ExpExtω ET L and ExpExtω BD both have the car-
dinality of the continuum.

Corollary 10.8. Each of the three intervals [BD,LP], [ECQ,LP ∨ ECQ], and
[ET L, CL] contains a continuum of finitary logics.

Proof. The lattices ExpExtω ET L, ExpExtω ECQ ⊆ [ECQ,LP ∨ ECQ], and LP ∩
ExpExtω ECQ ⊆ [BD,LP ] are isomorphic by Theorems 5.13 and 5.15. �

We can now answer positively the question posed in [44] whether there are logics
strictly between ET Ln and ET Ln+1 for some n.

Corollary 10.9. There is an infinite increasing chain of explosive extensions of
ET L strictly between ET L2 and ET L3.

Proof. It suffices to find in the homomorphism order a decreasing chain of finite
3-colorable graphs which are not 2-colorable. The sequence of cycles of lengths
2n+ 1 for n ≥ 1 is an example of such a chain. �

We can also use the countable universality of the homomorphism order in a more
sophisticated way to construct a non-finitary explosive extension of ET L.

Proposition 10.10. There is a non-finitary explosive extension of ET L.

Proof. Given a graph G, let L′
G be the extension of ET L by the rule (αG). Given

a countable set of graphs K, let L′
K
:=
⋂

G∈K
L′
G. By the remarks preceding Propo-

sitions 3.14 and 3.15 this logic is axiomatized by the rule {ϕG | G ∈ K} ⊢ ∅,
provided that we use distinct variables in each of the formulas ϕG, and moreover
ModL′

K
=
⋃

G∈K
ModL′

G. By Lemma 10.3 the matrix µ+(H) fails to be a model
of L′

K
if and only if H → G for each G ∈ K.

If the logic L′
K
is finitary, then there is some finite K

′ ⊆ K such that the rule
{ϕG | G ∈ K

′} ⊢ ∅ axiomatizes L′
K
. In other words, there is some finite K′ such that

L′
K
= L′

K′ . But then these two logics agree on models of the form µ+(H). That is,
a graph lies below all the graphs of K in the homomorphism order whenever it lies
below all the graphs in the finite set K′. All we have to do now is use the countable
universality of the homomorphism order to pick some K such that this equivalence
does not hold for any finite K

′ ⊆ K. For example, consider an embedding of the
free countably generated meet-semilattice into the homomorphism order and take
K to be the set of its maximal elements. �
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Some algebraic corollaries concerning antivarieties of De Morgan algebras may
be inferred from the above description of ExpExtω ET L. The finitary extensions of
ET L are precisely those finitary logics which are ω-complete with respect to classes
of De Morgan matrices of the form 〈A, {t}〉. They are thus in bijective correspon-
dence with quasivarieties of De Morgan algebras axiomatized by quasiequations
where each equality takes the form t ≈ u for some term u. Similarly, the finitary
explosive extensions of ET L are almost in bijective correspondence with antivari-
eties of De Morgan algebras axiomatized by negative clauses where each equality
takes the form t ≈ u: the only difference is that the trivial singleton matrix is a
model of each extension of ET L, but it can be excluded by the negative clause t 6≈ f.
Finally, observe that the negative clause t 6≈ u1 or . . . or t 6≈ un is equivalent to
t 6≈ u1 ∧ · · · ∧ un.

Corollary 10.11. There are continuum many antivarieties of De Morgan algebras
(axiomatized by negative clauses of the form t 6≈ u).

Corollary 10.12. There is a class of De Morgan algebras axiomatized by an in-
finitary negative clause which is not an antivariety of De Morgan algebras.

These results depend essentially on the fact that the constants t and f are part of
the signature of De Morgan algebras. If we drop them from this signature, we obtain
the variety of De Morgan lattices, which has only finitely many subquasivarieties
as shown by Pynko [41]. In particular, the only non-empty proper antivariety of
De Morgan lattices is axiomatized by x ≈ −x.

The existence of continuum many antivarieties of De Morgan algebras comple-
ments the result of Adams & Dziobiak [1] that there are continuum many quasi-
varieties of Kleene algebras. Let us observe, for the sake of completeness, that by
contrast the lattice of proper antivarieties of Kleene algebras is rather trivial. Here
by a proper antivariety of Kleene algebras we mean an antivariety strictly included
in the whole variety.

Proposition 10.13. There are only two non-empty proper antivarieties of Kleene
algebras, namely those axiomatized by t 6≈ f and by x 6≈ −x.

Proof. The antivariety axiomatized by t 6≈ f is the largest proper antivariety of
Kleene algebras, since it only excludes the trivial algebra. Conversely, let K be a
non-empty antivariety of Kleene algebras. Then K contains a non-trivial algebra,
therefore B2 ∈ K and B2 × K3 ∈ K by closure under homomorphic preimages.
Pynko [41, Proposition 4.5] shows that B2 × K3 generates the quasivariety of
Kleene algebras axiomatized by x ≈ −x. The antivariety axiomatized by x ≈ −x
is therefore the smallest non-empty antivariety of Kleene algebras. On the other
hand, if K contains a non-trivial Kleene algebra which fails x 6≈ −x, then it contains
K3 and therefore all Kleene algebras. �

Finally, we can use the isomorphism between finitary explosive super-Belnap
logics and homomorphic classes of non-empty graphs to show that certain logics
are not complete with respect to any finite set of finite matrices.

For the purposes of the following theorems, a homomorphic class of non-empty
graphs is called non-exceptional if it is not ↑K2. Given a class K of non-empty
graphs, the non-exceptional homomorphic class generated by K is the homomorphic
class generated by K, except when this class would be ↑K2. In that case, we take
it to be the class of all non-empty graphs instead.
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Theorem 10.14. Consider a finitary explosive extension L of ET L and a class
of non-empty graphs K. Then L is ω-complete with respect to µ+[K] × ETL4 :=
{µ+(G) × ETL4 | G ∈ K} if and only if KL is generated as a non-exceptional
homomorphic class of non-empty graphs by K.

Proof. By Theorem 10.4, the logic L is the largest finitary explosive extension of
L such that µ+[K] ⊆ ModL (or equivalently, µ+[K]× ETL4 ⊆ ModL) if and only
if KL is the smallest non-exceptional homomorphic class of non-empty graphs such
that K ⊆ KL. �

Theorem 10.15. Consider a proper finitary explosive extension L of BD and
a class of non-empty graphs K. Then L is ω-complete with respect to µ+[K] ×
BD4 := {µ+(G)×BD4 | G ∈ K} if and only if KL is generated as a non-exceptional
homomorphic class of non-empty graphs by K.

Proof. Replace ETL4 by BD4 and Theorem 10.4 by Theorem 10.5 in the previous
proof. �

Fact 10.16. ECQn and ET Ln are not complete with respect to any finite set of
finite matrices for n ≥ 2.

Proof. If L = ET Ln or L = ECQn, then KL is the class of all non-n-colorable
graphs. It suffices to prove that KL is not finitely generated as a homomorphic
class of graphs. This is a corollary of the classical theorem of Erdős [22] which
states that for each positive n and g there is a graph of girth at least g which is
not n-colorable. Here the girth of a graph is the length of its shortest cycle (1 if
the graph contains a loop). If G→ H , then the girth of H is at most equal to the
girth of G. Thus if KL were finitely generated, there would be an upper bound on
the girth of graphs in KL, contradicting the theorem of Erdős. �

11. A graph-theoretic description of Extω ET L

In theory, the whole lattice Extω BD may be described in graph-theoretic terms.
In practice, such a description is rather cumbersome and inelegant, owing to the
fact that we need to deal with triples 〈G,H, k〉 rather than merely with individual
graphs. Fortunately, restricting to Extω ET L will allow us to disregard the H
component of these triples, and further restricting to the interval [ET L, ET Lω] will
allow us to disregard the k component as well. In this section, we work out the
graph-theoretic description of Extω ET L and its restriction to [ET L, ET Lω].

The key observation to recall here is that the lattice Extω BD (Extω ET L) is
isomorphic, by Theorem 2.2, to the lattice of classes of finite reduced models of
BD (ET L) closed under isomorphisms, Leibniz reducts of submatrices (S∗), and
Leibniz reducts of finite products (P∗

ω). Because the class of finite reduced models
of BD (ET L) is closed under finite products, the last condition amounts to closure
under finite products (Pω).

Theorem 11.1. Extω BD (Extω ET L) is isomorphic via L 7→ Mod∗ω L to the lattice
of classes of matrices µ(G,H, k) (with H = ∅) closed under finite direct products
and Leibniz reducts of submatrices.

We already know that finite products correspond dually to finite disjoint unions.
We also know that the Leibniz reduct A∗ of a finite De Morganmatrix A corresponds
to the Leibniz subframe of the dual frame A+ of A (Proposition 8.6), obtained by
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restricting to minA+ ∪ ∂[minA+]. The only remaining task is to describe in dual
terms the submatrices of a given finite De Morgan matrix A.

Subalgebras correspond dually to quotients of involutive posets in the duality of
Cornish & Fowler [11] for De Morgan algebras. If . is a compatible preorder on P ,
i.e. u ≤ v implies u . v and moreover u . v implies ∂v . ∂u, then the quotient
P/. is the involutive poset of equivalence classes of . equipped with the natural
order and involution. If the relation . is the smallest compatible preorder on P
such that u . v, we say that . is the principal preorder generated by 〈u, v〉, or less
formally that . is obtained by adding u ≤ v to P . A principal quotient of P is a
quotient by a preorder generated by some pair 〈u, v〉.

If P is moreover a frame and . is a compatible preorder on P , then we can turn
P/. into a frame by taking the designated set to be the upward closure of DP with
respect to .. This is the only way to define a designated set on P/. which makes
the canonical map π : P → P/. strict. Submatrices of P+ thus correspond dually
to quotients of P in this sense, and up to isomorphism S∗(P+) consists of complex
algebras of Leibniz subframes of quotients of P .

It will be convenient to describe the result of taking the Leibniz reduct of a
submatrix, or dually the Leibniz subframe of a quotient frame, by a sequence of
simpler constructions. A proper immediate submatrix of a matrix A is a submatrix
of A which is a co-atom in the lattice of submatrices of A. An immediate submatrix
of A is either A itself or a proper immediate submatrix of A.

Dually, a proper immediate quotient of a finite frame P is a quotient of P with
respect to a compatible preorder which is an atom in the lattice of compatible
preorders on P . Each proper immediate quotient is principal.

Fact 11.2. If A is an immediate submatrix of B, then A∗ is isomorphic to C∗ for
some immediate submatrix C of B∗.

Proof. Let B = 〈B, G〉 and A = 〈A, F 〉 with A ≤ B and F = G ∩ B. Let θ be
the Leibniz congruence ΩB(G). Then the restriction of θ to A is compatible with
F , hence A∗ is isomorphic to the Leibniz reduct of the submatrix C := 〈A/θ, F/θ〉
of B∗. But C is an immediate submatrix of B∗: if A/θ ≤ D ≤ B/θ, then A ≤
π−1[D] ≤ B, where π is the projection map π : B → B/θ, so π−1[D] = A or
π−1[B], and thus D = A/θ or D = B/θ. �

Lemma 11.3. Let A and B be finite reduced models of BD. Then A ∈ S∗(B) if
and only if A can be obtained from B by repeatedly taking Leibniz reducts of proper
immediate submatrices. Equivalently, A ∈ S∗(B) if and only if A+ can be obtained
from B+ by taking Leibniz subframes of proper immediate quotients.

Proof. The second claim is simply a dual translation of the first claim. The right-
to-left direction holds because S∗S∗(K) = S∗(K). Conversely, A ∈ S∗(B) if and
only if there is a matrix C ≤ B such that A = C∗. But C ≤ B if and only if
there is a sequence of matrices C0 := C ≤ C1 ≤ · · · ≤ Ck := B such that Ci is an
immediate submatrix of Ci+1. By the previous lemma, C∗

i is the Leibniz reduct of
an immediate submatrix of C∗

i+1. But C
∗
0 = A and C∗

k = B. �

The task of describing Extω ET L has therefore been reduced to the task of
describing the Leibniz subframes of immediate quotients of the frames P (G, ∅, k).
This can be achieved by a straightforward case analysis.
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Here by a homomorphic image of a graph G we mean a graph H such that
there is a surjective homomorphism G → H . In other words, H can be obtained
from G by identifying (collapsing) certain vertices and adding some edges. This
should be contrasted with the previous section, where we considered closure in the
homomorphism order, with no requirement of surjectivity.

Lemma 11.4. µ(H, ∅, j) ∈ S∗(µ(G, ∅, i)) if and only if the pair 〈H, j〉 can be
obtained from 〈G, i〉 by some sequence of operations of the following types:

(1) 〈G, i〉 7→ 〈H, i〉 if H is a homomorphic image of G,
(2) 〈G ⊔K2, i〉 7→ 〈G ⊔ •, i〉,
(3) 〈G ⊔H, i〉 7→ 〈G, i + 1〉,
(4) 〈G, i + 1〉 7→ 〈G, i〉 if i ≥ 1,
(5) 〈G, 1〉 7→ 〈G, 0〉 if there is a loop in G.

Proof. The following case analysis shows that each of these operations can be ob-
tained by taking Leibniz subframes of immediate quotients repeatedly, and con-
versely that taking the Leibniz subframe of an immediate quotient corresponds to
some sequences of these operations.

Consider points x and y in the frame P (G, ∅, i) with x � y such that the pair
〈x, y〉 generates an immediate quotient of P (G, ∅, i). Let P (H, ∅, j) be the Leibniz
subframe of this immediate quotient.

If x = u and y = ∂v for u, v ∈ G, then H is obtained from G by adding an edge
between u and v. If x = u and y = v, then the quotient is immediate only if each
neighbor of v in G is also a neighbor of u. If v has no neighbors, then H is obtained
by adding an edge between u and v. Otherwise, H is obtained by removing v from
G. This is equivalent to identifing u and v in G (even if u and v are neighbors or
if v has a loop).

If x = ∂u and y = v, then the quotient is immediate only if each neighbor of u
is adjacent to each neighbor of v. If u = v is an isolated vertex, then H is obtained
from G by adding a loop on this vertex. If u = v has a loop but no neighbors other
than itself, then H is obtained from G by removing this loop and j = i + 1. If
u = v has neighbors other than itself, then H is obtained from G by removing u.
Otherwise, we may assume that u 6= v.

If the only neighbor of u is v (if the only neighbor of v is u), then H is obtained
by removing u (removing v) from G. If v (u) has neighbors other than u (v), this
amounts to identifying u (v) with some neighbor of v (u). Otherwise, this amounts
to replacing a K2 component by •. Finally, if u has a neighbor other than v and
vice versa, then H is obtained by removing u and v. This amounts to identifying
u with some neighbor of v and vice versa.

If x = u for u ∈ G and y = ∂y, then the quotient is immediate only if u has a
loop. Then H = G and j = i− 1. If x = ∂u and y = ∂y, then the quotient is never
immediate, being included in the quotient generated by 〈∂u, u〉.

Finally, if x = ∂x and y = ∂y, then H = G and j = i− 1. �

We now have all the necessary ingredients to describe the lattice Extω ET L in
terms of graphs. In the following, we refer to the operation of replacing G ⊔K2 by
G ⊔ • as contracting an isolated edge.

Theorem 11.5. The map

L 7→ 〈{G 6= ∅ | µ+(G) ∈ ModL}, {H 6= ∅ | µ+(H)× B2 ∈ ModL}〉
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is a dual isomorphism between Extω ET L and the lattice (ordered by componentwise
inclusion) of pairs of classes of non-empty graphs 〈K0,K1〉 with K0 ⊆ K1 such that
K0 and K1 are closed under taking homomorphic images and disjoint unions and
under contracting isolated edges, and moreover

(1) if G ⊔H ∈ K1, then G ∈ K1,
(2) if G ∈ K1 and G has a loop, then G ∈ K0.

Proof. By Lemma 11.4 this map yields a pair of classes of non-empty graphs satis-
fying the required conditions. (The condition K0 ⊆ K1 follows from closure under
products and the fact that B2 is a model of each non-trivial super-Belnap logic.)
Each finitary extension of ET L is complete with respect to its models of the forms
µ+(G) and µ+(H) × B2 for G non-empty, therefore the map is an order embed-
ding. (The trivial logic is complete with respect to the empty class of such models.)
Finally, consider a pair of classes of non-empty graphs 〈K0,K1〉 satisfying these con-
ditions. We prove that this pair arises from the logic L determined by the matrices
µ+(G) for G ∈ K0 and µ+(H)× B2 for H ∈ K1.

By Theorem 2.2 we know that the class of all finite reduced models of L is
obtained by taking the Leibniz reducts of submatrices of finite direct products of
the above matrices µ+(G) and µ+(H)×B2. We must therefore show that this does
not result in any new matrices of the forms µ+(G) and µ+(H)× B2.

If the direct product only contains matrices of the form µ+(G), then the closure
of K0 under disjoint unions and the operations mentioned in Lemma 11.4 ensures
this. If the product contains at least one matrix of the form µ+(H) × B2, then
by the inclusion K0 ⊆ K1 and the closure of K0 and K1 under disjoint unions
the product has the form µ+(H) × Bk

2
for some H ∈ K1 and some k ≥ 1. The

closure of 〈K0,K1〉 under the conditions listed in Lemma 11.4 again ensures that
µ+(G) ∈ S∗(µ+(H)×Bk

2
) implies that G ∈ K0, and µ+(G)×B2 ∈ S∗(µ+(H)×Bk

2
)

implies that G ∈ K1. �

We shall not explicitly state the analogue of Theorem 11.5 for the whole lat-
tice Extω BD, on account of it being too cumbersome. However, it is clear how
such a theorem would be obtained: one would merely extend the case analysis of
Lemma 11.4 to all matrices of the form µ(G,H, k). (There are no technical obsta-
cles to be overcome here, merely some tedious case analysis.) Instead of talking
about pairs of classes of graphs, one would talk about pairs of classes of pairs of
graphs 〈G,H〉.

Instead of going in the direction of increased complexity, let show how this
isomorphism can be simplified if we restrict to the interval [ET L, ET Lω ]. For such
logics L it suffices to record the non-empty loopless graphs G for which µ+(G) is a
model of L. This yields a much neater description of [ET L, ET Lω].
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Theorem 11.6. The map

L 7→ {G 6= ∅ | µ+(G) ∈ ModL and G has no loops}

is a dual isomorphism between the interval [ET L, ET Lω] ⊆ Extω BD and the lattice
(ordered by inclusion) of classes of non-empty graphs without loops closed under
taking homomorphic images, disjoint unions, and contracting isolated edges.

Proof. Each of the matrices µ+(H) × B2 is a model of ET Lω, while µ+(G) ∈
ModET Lω if and only if G contains a loop (Fact 9.8). Theorem 11.5 therefore
yields a dual isomorphism between [ET L, ET Lω] and the lattice of pairs 〈K0,K1〉
satisfying the conditions of Theorem 11.5 such that K0 contains each graph with a
loop and K1 contains each non-empty graph. Now consider the map which assigns
to 〈K0,K1〉 the restriction L0 of K0 to loopless graphs. The closure conditions of
Theorem 11.5 for 〈K0,K1〉 imply the required closure conditions for L0. Conversely,
if L0 satisfies the closure conditions of the current theorem and we take K1 to be
the class of all non-empty graphs and K0 to be the union of L0 and the class of
all graphs with at least one loop, then 〈K0,K1〉 rather trivially satisfies the closure
conditions of Theorem 11.5. �

Of course, closure under homomorphic images is interpreted here as closure re-
stricted to the class of loopless graphs.

We end with an example of how looking at super-Belnap logics from this dual,
graph-theoretic perspective can simplify our proofs. Namely, we provide an alter-
native, and perhaps more transparent, proof of the completeness theorem for the
logic K− (Proposition 5.18) defined semantically by the matrix ETL8 shown in
Figure 3.

Proposition 11.7. K− = LogETL8.

Proof. Observe that ETL8 = µ+(G2), where G2 is obtained by adding a loop to
K2, i.e. the graph G2 consists of a reflexive and an irreflexive vertex which are
neighbors. By Theorem 9.3 and Fact 9.9, the logic K− is complete with respect to
the class of all matrices µ+(G) such that each irreflexive vertex of G has a reflexive
neighbor. We must therefore show that if µ+(G2) is a model of a super-Belnap logic
L, then so is each such matrix µ+(G). By Theorem 11.5 it suffices to show that
each such graph G can be obtained from G2 by means of the operations allowed
by this theorem. Indeed, we can take a copy of G2 for each irreflexive vertex, a
reflexive singleton for each reflexive vertex, and consider their disjoint union H . A
graph homomorphism from H onto G is easily constructed using the assumption
that each irreflexive vertex has a reflexive neighbor. �
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