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Abstract

We develop an untyped framework for the multiverse of set theory. ZF is extended with
semantically motivated axioms utilizing the new symbols Uni(U) and Mod(U , σ), expressing
that U is a universe and that σ is true in the universe U , respectively. Here σ ranges over
the augmented language, leading to liar-style phenomena that are analysed. The framework
is both compatible with a broad range of multiverse conceptions and suggests its own philo-
sophically and semantically motivated multiverse principles. In particular, the framework is
closely linked with a deductive rule of Necessitation expressing that the multiverse theory
can only prove statements that it also proves to hold in all universes. We argue that this
may be philosophically thought of as a Copernican principle that the background theory
does not hold a privileged position over the theories of its internal universes.

Our main mathematical result is a lemma encapsulating a technique for locally inter-
preting a wide variety of extensions of our basic framework in more familiar theories. We
apply this to show, for a range of such semantically motivated extensions, that their consis-
tency strength is at most slightly above that of the base theory ZF, and thus not seriously
limiting to the diversity of the set-theoretic multiverse. We end with case studies applying
the framework to two multiverse conceptions of set theory: arithmetic absoluteness and Joel
D. Hamkins’ multiverse theory.

1 Introduction

ZF set theory serves as a foundation for mathematics, but has also turned out to be interesting
in itself as a field of mathematical study. Much of the interest lies in that it raises questions
that are not only undecidable, but also lacking clear-cut intuitive answers and demanding deep
mathematical developments. The continuum hypothesis is a primary historical example: It seems
implausible to reach a consensus on affirming or denying it, and it motivated two techniques
central to set theory: the inner model and forcing constructions. It is natural to view these
techniques as enabling constructions of set-theoretic universes from other set-theoretic universes,
thus taking a multiverse view of the subject matter of set theory, rather than adopting the
universe view that there is a single absolute universe of sets. In the words of Hamkins, an
advocate of the multiverse view (2012, p. 418):

A large part of set theory over the past half-century has been about constructing
as many different models of set theory as possible /.../ Would you like to live in a
universe where CH holds, but 3 fails? Or where 2ℵn = ℵn+2 for every natural number
n? Would you like to have rigid Suslin trees? Would you like every Aronszajn tree
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to be special? Do you want a weakly compact cardinal κ for which 3κ(REG) fails?
Set theorists build models to order.

Hamkins follows this perspective on set-theoretic practice with his argument for adopting the
multiverse view:

This abundance of set-theoretic possibilities poses a serious difficulty for the universe
view, for if one holds that there is a single absolute background concept of set, then
one must explain or explain away as imaginary all of the alternative universes that set
theorists seem to have constructed. This seems a difficult task, for we have a robust
experience in those worlds, and they appear fully set theoretic to us. The multiverse
view, in contrast, explains this experience by embracing them as real, filling out
the vision hinted at in our mathematical experience, that there is an abundance of
set-theoretic worlds into which our mathematical tools have allowed us to glimpse.

Methodologically, it makes sense to represent the universes of sets as models of a theory of
sets, as that makes them accessible to the well-developed techniques of model theory. This raises
two questions:

1. Which set theory?

2. Which models of that set theory?

In answer to the first question the authors have decided on limiting scope to ZF. This is
the most utilized set theory, established in the mathematical community as a robust foundation
of mathematics. All of the results of this paper go through for extensions of ZF (axiom of
choice, large cardinals, . . . ). Although one development of this paper uses full ZF,1 the authors
conjecture that for most of the results much weaker fragments suffice.

On the second question this paper takes a liberal approach. In particular, scope is not
limited to well-founded models. The framework is intended to be applicable to a wide range of
multiverse conceptions, for example the conceptions that every universe is of the form Vα, that
every universe is well-founded, that every universe is countable and recursively saturated (and
therefore ill-founded), or that every model is a universe.

Why consider ill-founded universes? There is a sense in which a model M of set theory
can be situated as an element in two different models N0 and N1 of set theory, such that N0

satisfies that M is well-founded while N1 satisfies that M is ill-founded.2 Thus, we may think
of the property of well-foundedness as depending on the set-theoretic background. In Hamkins’s
multiverse conception this is a key feature (Hamkins, 2012, p. 438-9):

The concept of well-foundedness [. . . ] depends on the set-theoretic background, for
different models of set theory can disagree on whether a structure is well-founded.
[. . . ] Indeed, every set-theoretic argument can take place in a model, which from
the inside appears to be totally fine, but actually, the model is seen to be ill-founded
from the external perspective of another, better model. Under the universe view,
this problem terminates in the absolute set-theoretic background universe, which
provides an accompanying absolute standard of well-foundedness. But the multiverse
view allows for many different set-theoretic backgrounds, with varying concepts of
the well-founded, and there seems to be no reason to support an absolute notion of
well-foundedness.

1The proof of Theorem 2.4 requires full ZF. This is used in the proof of Theorem 5.7, a consistency result.
2Using Definition 2.1, the precise sense is that M = AN0

= BN1
, for some A ∈ N0 and B ∈ N1, such that N0

satisfies that A is well-founded while N1 satisfies that B is ill-founded.
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To approach the set-theoretic multiverse mathematically, we need a foundational theory to
situate the universes in. Just as the foundational background theory of ZF is useful for studying
groups and topological spaces, it is useful for studying set-theoretic universes. So we find ourselves
in a situation of studying models of ZF from the background theory ZF. The multiverse theorist
may extend the background theory of ZF to a multiverse theory (in an expanded language), with
axioms specifying properties of the multiverse. In such a background multiverse theory, it is
natural to consider the universes as themselves being models of multiverse theories, having their
own internal universes, and so on. This raises an important question:

Main Question. What is the relationship between the external universe of the background
multiverse theory, and the universes internal to the background theory? Similarly, what is the
relationship between each universe and the universes within that universe?

We shall investigate several responses to the Main Question. Most fundamentally, the authors
propose that the background multiverse theory obeys the following principle:

Copernican Principle. The background theory of the multiverse should not have a privi-
leged position compared to the multiverse theories of the internal universes; specifically, if the
background multiverse theory proves a statement, it should also prove that holds in all universes.

We have an analogy with the heliocentric model of the solar system: Earth corresponds
to the universe of the background multiverse theory, as the basis for our point of view. The
geocentric model gives earth a privileged central position as an absolute reference point, while
the heliocentric model puts earth on a par with all of the planets. So the heliocentric model differs
from the geocentric model in that it obeys the principle that for any appropriately fundamental
assumption we make about our point of view, we are committed to making the same assumption
about every other plausible point of view. Similarly, in the context of set theory, the authors
propose the Copernican Principle as the constraint that for every assumption introduced by a
multiverse theorist, s/he is committed to that it holds from the vantage point of an arbitrary
universe of sets. The name is borrowed from a modern principle in physics, which Peacock
states as “that humans are not privileged observers”. Peacock applies the principle arguing “if
the universe appears isotropic about our position, it would also appear isotropic to observers
in other galaxies” (1998, p. 66). So for the physicist, the principle is a conceivably falsifiable
statement about the uniformity of the physical universe; while for the theorist of the multiverse
of sets, it is an a priori postulate. Below we explicate a formal deductive rule, NEC, expressing
this principle.

To approach the Main Question, we require a framework that makes sense of the notion of
truth-in-a-universe. If the universes are mere models of ZF, then the usual satisfaction-relation
expressed in the language of set theory suffices. But as soon as we consider each universe to
contain a multiverse in its own right, it is more natural to consider the universes as structures
in the language of the multiverse theory.

The main contribution of this paper is an untyped framework for handling the notion of
truth-in-a-ZF-universe. It is intended to be applicable to just about any theory of the multiverse
of sets. A primitive predicate Uni(U) is introduced to express that U is a universe, and the
primitive relation Mod(U , σ) is introduced to express that the LUni,Mod-statement σ is true in the
universe U , where LUni,Mod is the language of set theory, L, augmented with the symbols Uni and
Mod. The multiverse theories considered in this paper are expressed in LUni,Mod.

1.1 Multiverse principles

Now that the language LUni,Mod and the intuitive intended meaning of its symbols has been
briefly explained, the next task is to give natural and useful axioms for Uni and Mod. Axioms for
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Uni specify what universes comprise the multiverse, what closure properties it satisfies, etc.; for
example the multiverse axioms of Hamkins (2012). In this paper we are focused on semantically
motivated axioms, meant to be applicable to a wide range of multiverse conceptions. The appli-
cation of this framework to Hamkins’s multiverse is discussed in §6.2. Since Mod is an untyped
semantic relation, it is not surprising that it is exposed to liar-style phenomena. Our Theorem
4.6 shows, e.g., that the schema

(

∀U (Uni(U) → Mod(U , pσq)
)

→ σ, over LUni,Mod-statements σ,
expressing that whatever holds in every universe also holds in the background universe, is incon-
sistent with a natural and mild theory in LUni,Mod. However, this contradiction is not derivable
when this schema is restricted to L.

The basic theory introduced is called CM− (Compositional satisfaction for the Multiverse).3

CM− is formed by adding compositional semantically motivated LUni,Mod-axioms to the back-
ground theory ZF, for each logical connective and quantifier, and by extending the Separation
and Replacement schemas of ZF to LUni,Mod. For example, the compositional axiom for ∧ is

if θ ∈ LUni,Mod is the conjunction of φ and ψ, then Mod(U , θ) ⇐⇒ Mod(U , φ) ∧Mod(U , ψ).

These are also called the Tarskian laws of satisfaction. The analogue in the present framework
of the well-known Tarskian schema Tr(pσq) ↔ σ (for σ ∈ L) would say roughly that σ is true
in every universe if, and only if, it holds in the background universe. So this would say that the
multiverse is not very diverse, and certainly not closed under forcing, for example. But analogues
of Tr(pσq) → σ (for σ ∈ L) and the rule of Necessitation ⊢ σ ⇒⊢ Tr(pσq) (for σ ∈ LUni,Mod) are
highly relevant.

In CM− we can prove the soundness principle that the set of statements true in any particular
universe is deductively closed. CM is CM− plus an axiom called MultiverseZF saying that every
universe satisfies ZF, which is just intended to set the scope of the present treatment. (For
most of the results, the authors believe that natural generalizations to weak fragments of ZF
are possible.) Theorem 5.6 shows that an extension of CM interpreting the Gödel-Löb modal
logic is conservative over ZF. So by the soundness principle, MultiverseZF, and Gödel’s second
incompleteness theorem, CM does not prove the statement ∃U Uni(U), saying that there exists a
universe.

A flexible revision-semantic technique for expanding models of the background theory ZF to
models of extensions of CM− is developed. This technique builds on ideas from Gupta (1982),
Herzberger (1982a) and Herzberger (1982b), for circumventing truth-theoretic paradoxes. In
short, one starts by setting parameters specifying the particular multiverse conception desired.
Among other things, this pins down the interpretation of Uni. Then the interpretation of Mod is
determined by a revision-semantic process. Intuitively, a basic definition of truth-in-a-universe
is supplied among the parameters, and this definition is revised step-by-step to more adequate
definitions. Theorems 5.4 and 5.5 show that some natural settings of the parameters lead to
that further semantically motivated axioms and deductive rules are validated in the constructed
model, more on this further below.

We introduce several axioms and deductive rules in response to the Main Question. The most
fundamental such principle for this framework is the deductive rule of Necessitation, NEC, which
is a formal expression of the Copernican Principle:

If σ is provable, then ∀U (Uni(U) → Mod(U , pσq)) is provable,

where pσq is the Gödel code of σ. Under mild assumptions on the parameters, NEC is validated
in the revision-semantic model construction. Theorem 4.8 shows that CM+NEC is conservative
over ZF.

3The precise specification of CM− is given in System 4.1.
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Dually, the deductive rule of Co-Necessitation, CONEC, states:

If ∀U (Uni(U) → Mod(U , pσq)) is provable, then σ is provable.

In the context of NEC as formalizing the Copernican Principle, CONEC may be thought of as
expressing that the theory is maximal within the bounds of the Copernican Principle. On the
other hand, as a stand-alone principle, CONEC can be used to boost the expressive power: For
example, we will consider CM extended by CONEC and the statement that no universe satisfies a
Σ0

1-statement that does not already hold in the standard model of arithmetic in the background
theory; in other words, a Turing machine that does not halt in the background theory, halts in
no universe. In CM extended with this axiom we can use basic model-theoretic considerations to
prove that every universe satisfies the Reflection schema iterated ωCK

1 times over ZF.4 Now, by
adding CONEC we can prove ωCK

1 -iterated Reflection schema over ZF outright in the background
theory. So in general, CONEC enables outright proofs of statements that are provably satisfied
across a model-theoretically delimited multiverse, thus in some sense “extracting the deductively
accessible content” of higher-order non-recursive properties.

We write MS (Multiverse theory of Satisfaction) for the theory CM + NEC + CONEC. This
theory is analogous to the the Firedman—Sheard theory of truth (FS) from Friedman & Sheard
(1987). A revision-semantic technique for constructing models of CM + NEC and/or CONEC
(building on a technique from the aforementioned two papers) is embodied in the Main Lemma
(in §5) and its Corollary 5.2.

We now proceed to discuss three axioms motivated by the Main Question that have a reflective
character in that they assert that the background universe is in some sense reflected in the
multiverse. We will establish bounds on the consistency strength of these in terms of iterated
reflection principles. The reader is referred to Systems 2.8 and 5.3 for the definition of these
principles.

A very basic multiverse axiom is Non-Triviality, ∃U Uni(U), saying that there is a universe.
In the presence of NEC, this also yields that every universe contains a universe, and so on. We
show in Theorem 5.4 (and in Theorem 5.6) that CM+Non-Triviality+NEC is locally interpreted
in (and conservative over) the theory of iterated consistency over ZF.

A stronger axiom motivated by the Main Question, called Self-Perception, expresses that
the background universe is isomorphic (over the set theoretic language) to one of the internal
universes. This embodies the idea that the universe of the background theory should also be
available in its internal multiverse, and has a distinct reflective character. It turns out to be
convenient to take the universes to be countable recursively saturated models when modelling
CM+ Self-Perception+NEC, a phenomenon that corresponds to the multiverse model of Gitman
and Hamkins in (2010). This suggests that their multiverse theory would harmonize well with
CM + Self-Perception+ NEC, a hypothesis we explore briefly in subsection 6.2. In Theorem 5.7,
we use the revision-semantic technique to interpret CM + Self-Perception + NEC in the theory
of ω-iterated Global Reflection over ZF. The latter is a natural untyped theory of truth, that
mildly strengthens ZF. All universes are countable recursively saturated in this interpretation.

Self-Perception is closely related to the notion of condensible models studied by Enayat in
(2020). The definition of condensability is somewhat technical, involving an infinitary language:
A model M of ZF is condensible, if there is some ordinal α ∈ M such that M ∼= M(α) ≺LM

M,
where M(α) denotes the substructure of M of ranks below α and LM denotes the intersection
of Lω1,ω with the well-founded part of M. In particular, Enayat positively answers a question
that sprung from the present paper: Is there an ω-standard model of ZF with unboundedly
many ordinals α such that M ∼= M(α) ≺ M? Note that recursively saturated models are

4See System 5.3 for the definition of this theory.
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ω-non-standard. Enayat’s result means that the door also appears to be open for models of
CM+ Self-Perception+ NEC with ω-standard universes.

We also introduce the axiom schema of Multiverse Reflection, stating for each sentence σ in
the language L of set theory:

(

∀U (Uni(U) → Mod(U , pσq))
)

→ σ. Over CM, this principle is
implied by Self-Perception and implies Non-Triviality. Using the revision-semantic technique, we
show in Theorem 5.5 (and Theorem 5.6) that MS+Multiverse Reflection is locally interpreted in
(and conservative over) the theory of ω-iterated proof-theoretic reflection schema over ZF.

The body of the paper ends with case studies, where we look at two independent multiverse
conceptions through the lens of the framework we have developed. The first of these is a concep-
tion of the multiverse as being arithmetically absolute, in the sense that arithmetic truth does
not vary across the multiverse. The second is a conception due to Hamkins which is fundamen-
tally based on the principles that the multiverse is closed under the forcing and inner model
techniques, and that every universe is countable and ω-non-standard from the perspective of
some other universe. We close with a concluding section reflecting on the contributions of the
paper and the relevance of this framework for future research on the set-theoretic multiverse.

2 Preliminaries

2.1 A term-calculus for representation of syntax

We shall work with various recursively enumerable set theories, in languages obtained by adding
finitely many new non-logical symbols to the usual language of set theory on the signature {∈}.
We define a set theory to be any recursively enumerable system proving Mac Lane set theory
(excluding Choice)5 or proving Kripke–Platek set theory with Infinity6, in a language with finitely
many non-logical symbols including a term-calculus for arithmetic and Gödel coding explained
below. Our specific choice of set theories underlying this definition is somewhat arbitrary (even
weaker theories may well suffice). Both of these theories are sufficient for constructing the
structure of the natural numbers and implementing basic model theory; these are the important
features for this paper.

Since we will be reasoning about syntactic objects, it is convenient to employ a Gödel coding
of syntax. Let K be a language with finitely many non-logical symbols. In any set theory T
(in language L) under consideration, we can define the arithmetic functions needed to formulate
a natural Gödel coding in T of terms and formulas of K. Through the Gödel coding, the
“grammatical structure” of K is coherently represented in T . The complicated details of this
procedure are described in any rigorous account of Gödel’s incompleteness theorems. The gist
is that for each syntactic object (symbol, term or formula) s of K, there is a definable number
psq in L (the Gödel code of s), which represents s in T , and there are operations definable in
T corresponding to syntactic operations on such objects. The authors trust that the reader is
familiar with this.

It is customary in set theory to informally introduce defined constant, relation and function
symbols to the language, in order to make the presentation more readable. For example, one may
use a function symbol +, as if it belonged to the language and there was an axiom expressing that
+ is addition on the finite von Neumann ordinals. In this paper we assume that a finite number
of such symbols needed for arithmetic and Gödel coding are already present in the language
of every set theory, and that the appropriate axioms regulating them are available in every set

5Its axioms are Extensionality, Null set, Pair, Union, Power set, Separation for ∆0-formulas, and Infinity.
6Its axioms are Extensionality, Null set, Pair, Union, Separation for ∆0-formulas, Collection for ∆0-formulas,

Foundation for Π1-formulas, and Infinity.
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theory. Here follows a semi-formal account of some of the main principles of this expanded
language L for a set theory T , also serving to specify the notation:

1. We have a constant 0 and function symbols S,+,× for the successor, addition and multi-
plication operations in arithmetic. For each n ∈ N, n is shorthand for Sn(0).

2. Each variable, constant, relation or function symbol s ofK is represented in T by a numeral
psq in L.

3. Recursively, each term f(t1, . . . , tn) of K is represented by the term pfq(pt1q, . . . , ptnq) of
L. Formally, the term pfq(pt1q, . . . , ptnq) is the result of applying a function symbol of
L to the numerals pfq, pt1q, . . . , ptnq. Moreover, pf(t1, . . . , tn)q denotes a numeral that T
proves to equal pfq(pt1q, . . . , ptnq).

4. Each atomic formula R(t1, . . . , tn) of K is represented by the numeral pR(t0, . . . , tn)q of L.
Analogous remarks apply as in the case of terms described above.

5. The syntactic operations, standardly used to build up complex formulas from atomic for-
mulas, are all available. For example:

(a) L has a function symbol ¬. , such that for each φ in K, ¬. pφq represents ¬φ. Moreover,
T proves that p¬φq = ¬. pφq.

(b) L has a function symbol ∧. , such that for each φ and each ψ inK, pφq ∧. pψq represents
φ ∧ ψ. Moreover, T proves that pφ ∧ ψq = pφq ∧. pψq.

(c) L has a function symbol ∀. , such that for each variable v and each formula φ in K,
∀.pvq pφq represents ∀v φ. Moreover, T proves that p∀v φq = ∀.pvq pφq.

(d) For any φ in K, φ[t/x] denotes the formula obtained from φ by replacing each free
occurrence of the variable x by the term t (if t has variables, then their bound oc-
currences in φ are renamed as necessary). L has a function symbol (written −[−/.−])
which represents this primitive recursive substitution operation. Moreover, T proves
that pφ(x)[y/x]q = pφ(x)q[pyq/.pxq]. Somewhat less formally, if φ has been introduced

as φ(x), we may write φ(t) for the formula φ[t/x].

In the context of a set theory T in a set-theoretic language L, Σ0
n, Π0

n and ∆0
n denote the

usual arithmetic hierarchy as defined for L-formulas (all quantifiers are bounded to N), up to
equivalence in T . It is well-known that for any recursive system S, there is a Σ0

1-formula PrS. ,
representing S-provability in T . We write ConS. for the sentence ¬PrS. (p⊥q), expressing that S
is consistent. In both cases, the dot under S is sometimes omitted, when it can be inferred from
the context.

As an example, consider this consequence of Gödel’s second incompleteness theorem:

ZF 6⊢ ConZF.

From the perspective of the meta-theory, “ZF” refers to a set of sentences (the object theory of
ZF) whereas “ZF. ” refers to a formula representing the recursive set of Gödel codes of that set in
the object theory ZF.

Suppose now that a set theory T ′ in language L′ is represented in a set theory T in language
L. Then L′ is Gödel coded in T , as explained above. But T ′, in turn, also Gödel codes languages;
say that T ′ Gödel codes the language L′′. Note that the whole Gödel coding of L′′ in T ′ is then
carried along by the representation of T ′ in T . For example, if φ is a formula in L′′, then there
is a term pφq in L′ which represents φ in T ′. If ψ(x) is a formula of L′, we can then form the
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formula ψ[pφq/x] of L′. This formula, in turn, is represented in T by an L-term pψ[pφq/x]q. So
if θ(y) is an L-formula, we can form the L-formula θ[pψ[pφq/x]q/y]. Thus, Gödel codes may be
nested, as a set theory represents a set theory, which in turn represents a language.

2.2 Miscellaneous logical preliminaries

L is the language with the symbol “∈” along with a finite number of arithmetic and syntactic
symbols as explained in Subsection 2.1. We assume that ZF is formulated as an L-theory, with
the natural axioms for defining the arithmetic and syntactic symbols of L. L+ denotes any
extension of L with a finite number of new symbols.

If L is a language and S1, · · · , Sn are symbols, then LS1,··· ,Sn
denotes the language obtained

by augmenting L with S1, · · · , Sn. The Separation schema applying to all formulas of a language
L is denoted Sep(L), and the Replacement schema applying to all formulas of a language L is
denoted Rep(L).

Any set theory suffices as meta-theory. Suppose that in the meta-theory we consider a
definable set A = {x | φ(x)}, such as a theory. We may then refer to the corresponding set
within an object-theory, for example as follows: Using the symbol A somewhat ambiguously, we
write a statement of the form ZF ⊢ · · ·M |= A. · · · for the more formally precise statement of the
form ZF ⊢ · · · ∃X

(

∀x(x ∈ X ↔ φ(x)) ∧ ∀x ∈ X (M |= x)
)

· · · . The dot under A is occasionally
omitted, when clear from the context. To illustrate, we might express a special case of Gödel’s
completeness theorem within T as T ⊢

(

ConZF ↔ ∃M(M |= ZF)
)

. We say that a theory T1
bounds the consistency strength of (or has at least as high consistency strength as) a theory T0
if the consistency of T1 implies the consistency of T0.

An interpretation I from a language L0 to a language L1 is a function I : L0 → L1 which is
generated (by structural recursion) from the non-logical symbols of L0. Moreover, we say that I
interprets or validates the L0-system T0 in the L1-system T1 if for any L0-formula φ, T1 ⊢ I(φ)
whenever T0 ⊢ φ.

As default, we work with first-order languages and classical logic, but we will consider addi-
tional deductive rules (NEC and CONEC). φ ≡ ψ is the statement that φ and ψ are identical
formulas. If S and T are systems in languages both including L, then S ≡L T is the statement
that S and T have the same L-theorems. If S is a system involving deductive rules, and A is
an axiom, then S +A denotes the natural extension of S in which these deductive rules may be
applied to proofs also involving A. For example, in MS+ ∃xUni(x), we may use NEC to derive
∀U ∈ Uni Mod(U , p∃xUni(x)q).

It is sometimes notationally convenient to introduce classes of the form A = {x | φ(x)} (the
class of all sets x such that φ(x)), where φ is an L+-formula. Then x ∈ A may be regarded as
an alternative notation for φ(x). Thus, we have no need to specify a formal class theory. For
example V = {x | ⊤} is the class of all sets.

Formally, Var is the set of variables {x1, x2, . . . }, indexed by the positive natural numbers.
But we use other symbols informally (such as x, y, p, f,U , · · · ) for variables as well. VA is the
class of variable-assignments, {f | f : Var → V }. If a is a set (or a structure), then VAa

is the set {f | f : Var → a} of all variable-assignments to elements of (the underlying set
of) a. If f is a variable-assignment and v is a variable, then VAf,v is the set of all variable-
assignments g, such that for all u ∈ Var, u 6= v → g(u) = f(u). Suppose that we are working
in a set theory T in a language L containing terms t1, · · · tn. Note that for n < ω, T proves
from v1 ∈ Var, · · · , vn ∈ Var that there is a primitive recursive variable-assignment f satisfying
f(v1) = t1, · · · , f(vn) = tn, and ∀m ∈ N (m > n → f(vm) = 0). Such a variable assignment f is
denoted 〈v1, . . . vn〉 7→ 〈t1, · · · tn〉 (or just v1 7→ t1 in the case n = 1).

We assume that model theory is set up so that any structure M uniquely determines its
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language, which we denote by L(M), and we take the symbol “M” to refer ambiguously to both
the structure and its domain. Let M be an L-structure, φ a formula in L and f ∈ VAM. We
use the arrow-notation ~a for finite tuples 〈a1, · · · , an〉, and the shorthand ~a ∈ M for that each
component ai of ~a is an element of M. We write M |= (φ, f) for the statement “φ is true in
M under the variable-assignment f”, as defined in the usual Tarskian semantics of first-order
logic. If ~a ∈ M and ψ(~x) ∈ L, then we write M |= ψ(~a) for M |= (ψ, ~x 7→ ~a). We write M |= φ
for ∀f ∈ VAM M |= (φ, f). If K is a sublanguage of L, then M↾K denotes the reduct of M to
K. We write M ≡K N for the statement that M satisfy the same K-sentences as N . We write
M ∼=K N for the statement that M↾K is isomorphic to N↾K . When the subscripts are dropped,
they are assumed to be L(M).

We use abbreviations for certain variations of the quantifiers:

1. ∃x ∈ y φ stands for ∃x (x ∈ y ∧ φ) .

2. ∀x ∈ y φ stands for ∀x (x ∈ y → φ).

3. ∃!x φ stands for ∃x (φ(x) ∧ ∀y (φ(y) → x = y)).

If P is a predicate symbol, we may write x ∈ P for P (x). Similarly, we write ∃x ∈ P φ for
∃x (P (x) ∧ φ) , and so on.

We will introduce primitive relation symbols “Sat”, “Uni” and “Mod”. Informally, Sat(φ, f)
expresses that φ is satisfied under the variable assignment f ; Uni(U) expresses that U is a universe;
and Mod(U , φ, f) expresses that φ is satisfied in the universe U under the variable assignment f .
Recall that LSat denotes the language L augmented with the symbol Sat, while LUni,Mod denotes
L augmented with Mod and Uni.

Again, we introduce some abbreviations:

1. Sat(φ) and Tr(φ) stand for ∀f ∈ VA Sat(φ, f).

2. Mod(U , φ) stands for ∀f ∈ VAU Mod(U , φ, f).

3. Tr2(φ) stands for ∀U ∈ Uni ∀f ∈ VAU Mod(U , φ, f).

4. Tr3(φ) stands for ¬Tr2(¬̇φ).

If X is a formula, term or definable object in the language L of the structure M, then XM

denotes its interpretation in M; e.g. φM =df {~a ∈ M | M |= φ(~a)}.
Informally speaking, if M is a model of set theory, N ∈ M, and M |= “N is a model of set

theory”, so that N is an internal model of M, then we may need to extract N into an external
model that can be studied on a par with M. This is achieved by the following formal definition.

Definition 2.1. If M is a model of set theory and a ∈ M, then

aM =df {x ∈ M | M |= x ∈ a}.

This notation is generalized in the cases that a is considered as a relation or as a structure: If
M is a model of set theory, R ∈ M and M satisfies that R is an n-ary relation (for a natural
number n under consideration), then

RM =df

{

〈x1, · · · , xn〉 | ∃p ∈ M [M |= p ∈ R ∧
∧

1≤i≤n

“xi is the i:th component of p”]
}

.
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If M is a model of set theory, N , N,R1, · · · , Rn are elements of M, and M satisfies that N is a
structure with domain N and relations R1, · · · , Rn (of arities r1, · · · , rn, respectively), then

NM =df 〈NM, (R1)M, · · · , (Rn)M〉.

In either of the above cases aM is called the M-externalization of a.

For example, ωM denotes the element of M such that M |= φ(ω), where φ defines ω. On
the other hand, (ωM)M denotes the subset {a ∈ M | M |= a ∈ ω} of M, consisting of all a such
that M |= a ∈ ω.

2.3 Recursive saturation

A type p(~x), over a theory T in a language L, is a set of L-formulas such that T ∪ p is consistent
when the variables ~x are considered as fresh constant symbols. If M |= T , then p(~x) is realized

in M if there is ~a ∈ M, such that for all φ(~x) ∈ p, we have M |= φ(~a). A type p(~x,~b), over M

with parameters ~b ∈ M, is a type over Th(M,~b) (the theory of M with parameters ~b). Such a

type p(~x,~b) is recursive if it is a recursive set (under some fixed Gödel coding of the formulas as
natural numbers). A structure M is recursively saturated if it realizes every recursive type over
M. A crsm is a countable recursively saturated model.

Theorem 2.2 (Completeness of the crsm-semantics). Let M be a countable model in a recursive
language. There is a countable recursively saturated elementary extension of M. In particular,
every consistent theory in a recursive language is modelled by a crsm.

Proof. See the proof of Theorem 2.4.1 in Chang & Keisler (1990).

Let M be a model of a set theory T . The interpretations of the numerals in M are called
the standard natural numbers of M. For each n < ω, let us make the identification n = nM. We
say that M is ω-non-standard if there is c ∈ (ωM)M \ ω. Such a c is said to be a non-standard
number of M.

Proposition 2.3. If M is a recursively saturated model of a set theory, then M is ω-non-
standard.

Proof. By recursive saturation, M realizes the type {x ∈ N} ∪ {n < x | n ∈ N}.

Suppose that M is ω-non-standard. We say that a subset A of ω is coded in M, if there is
(a code) a ∈ (ωM)M, such that A = {n ∈ N | M |= n < a}. We define the standard system of
M as

SSy(M) =df {A ⊆ ω | “A is coded in M”}.

The following result is due to Wilmers (1975), employing Friedman’s back-and-forth technique
(1973):

Theorem 2.4 (Canonicity of countable recursively saturated models). Let M and N be crsms
modelling ZF. If M ≡L N and SSy(M) = SSy(N ), then M ∼=L N .

Proof. See the proof of Theorem 7.14 in Gorbow (2019).

Remark. As far as the authors can see, the proof of the above Theorem requires both the full
Separation and Replacement schemas of ZF, as well as its Foundation axiom.

We define the class

crsm =df {M | M↾L|= ZF ∧ “M is a crsm”}.
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2.4 Systems of satisfaction over ZF

Before embarking on developing a framework for a notion of truth-in-a-universe relevant to the
set-theoretic multiverse, we shall go through some related systems of truth over ZF. An intuitive
philosophical perspective is that systems of truth capture various absolute notions of truth,
as motivated by the universe view of set theory, while our framework for truth-in-a-universe
captures various relative notions of truth, as motivated by the multiverse view of set theory.
From a mathematical perspective, it is interesting to relate these two approaches. Moreover,
since we will generalize techniques that have been developed for studying systems of truth, these
provide a relevant context for viewing our results.

Right at the start of the endeavour to axiomatize truth, one faces the choice between intro-
ducing (to the base language of set theory) a unary truth-predicate Tr(σ), applying to sentences
σ, or a binary satisfaction-relation Sat(φ, f), applying to formulas φ and variable-assignments
f : Var → V . In the former option, σ needs to range over a class-sized language where there is
a constant-symbol cx corresponding to each x ∈ V . The authors have chosen the latter option.
As a general heuristic, one is justified to expect any theory of satisfaction to be interpretable
in a corresponding theory of truth; the idea being to interpret Sat(φ(x), f) by Tr(φ[cf(x)/x]).
Fujimoto has made a comprehensive study of theories of truth over set theory, following the
former option (2012).

System 2.5 (CT). Let S be a set theory in L+. The system CT(S)↾ (for Compositional Truth)
consists of these axioms in the language L+

Sat:

Base S
CT= ∀y0, y1

(

Sat(px0 = x1q, 〈px0q, px1q〉 7→ 〈y0, y1〉) ↔ y0 = y1
)

CT∈ ∀y0, y1
(

Sat(px0 ∈ x1q, 〈px0q, px1q〉 7→ 〈y0, y1〉) ↔ y0 ∈ y1
)

CT¬ ∀φ ∈ L+
Sat ∀f ∈ VA (Sat(¬. φ, f) ↔ ¬Sat(φ, f))

CT∧ ∀φ, ψ ∈ L+
Sat ∀f ∈ VA (Sat(φ ∧. ψ, f) ↔ Sat(φ, f) ∧ Sat(ψ, f))

CT∀ ∀φ ∈ L+
Sat ∀f ∈ VA (Sat(∀.u φ, f) ↔ ∀g ∈ VAf,u Sat(φ, g))

We write CT↾ for CT(ZF)↾. The axioms of the form CT− are called compositional axioms. By
basic logic, CT↾ also proves the axioms CT∨, CT→ and CT∃ (analogously defined). We use
phrases such as “Sat is ∨-compositional” to express that we have CT∨, for example.

CT is CT↾ + Sep(LSat) + Rep(LSat).

A routine induction argument in the meta-theory shows this Proposition:

Proposition 2.6. For all L-formulas φ(x), CT↾ ⊢ Sat(pφ(x)q, pxq 7→ y) ↔ φ(y).

The theory of satisfaction CT↾ + Sep(LSat) corresponds to the theory of truth TC↾ + Sep+

in (Fujimoto, 2012, §4). It is straightforward to interpret the former in the latter. Using this,
it follows from Theorem 20 in (Fujimoto, 2012, §4.1) that CT↾ + Sep(LSat) is conservative over
ZF. In contrast, in CT we have access to the Reflection theorem for LSat-formulas, enabling
us to prove that there is a Vα modelling ZF. See (Fujimoto, 2012, §4.1) for more details and
refinements.

Proposition 2.7. CT↾ + Sep(LSat) ⊢ “Transfinite Induction over LSat”

Proof. Let φ(x) ∈ LSat. Assuming ¬φ(α), for some ordinal α, we shall refute the corresponding
induction hypothesis. By Sep(LSat), the set S = {ξ ≤ α | ¬φ(ξ)} exists, and by assumption it is
non-empty. Let β be the least ordinal in S. Then ¬φ(β) and ∀ξ < β φ(ξ), refuting the induction
hypothesis.
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System 2.8 (GRω). Let S be a set theory in L+. Here we present the systems of iterated Global
Reflection over S, denoted GRα(S), for ordinals α ≤ ω. For any set theory T in the language
LSat, the axiom of Global Reflection over T is

GRT. ∀φ ∈ L.
+
Sat (PrT. (φ) → Tr(φ)).

(The dot under T is sometimes omitted, when it can be inferred from the context.)
Recursively, for each α ≤ ω, we define the system GRα(S):

GR0(S) =df CT(S)↾ + Sep(L+
Sat)

GRα+1(S) =df GR
α(S) + GRGRα

GRω(S) =df

⋃

n<ω

GRn(S)

We write GRα for GRα(ZF).

Remark. Observe that GRα is defined with CT↾ + Sep(LSat) as base case, thus without Re-
placement for formulas with the Satisfaction predicate. The reason for this is that it is intended
to express iterated Global Reflection over ZF, which CT↾ + Sep(LSat) conservatively extends. If
it were defined with CT as base case, then it would not be morally “over ZF”, since CT proves
strong reflection principles of its own.

System 2.9 (FS). The systems FS↾ and FS (for Friedman–Sheard) are obtained by adding these
rules of proof to CT↾ and CT, respectively:

NEC For each φ ∈ Sent(LSat): If FS ⊢ φ, then FS ⊢ Tr(pφq).
CONEC For each φ ∈ Sent(LSat): If FS ⊢ Tr(pφq), then FS ⊢ φ.

Recall that Tr(θ) is defined as ∀f ∈ VA Sat(θ, f).

Given a set-theoretic system S in language L, the following rule will be considered:

Reflection rule For each φ in L: If S ⊢ PrS(pφq), then S ⊢ φ.

Definition 2.10. A set-theoretic system S in language L is ω-inconsistent if there is an L-formula
Z(x) such that:

S ⊢ ∀x (Z(x) → x ∈ N)

S ⊢ ∃x Z(x)

For each n ∈ N, S ⊢ ¬Z(n)

We say that Z(x) witnesses the ω-inconsistency of S.7

Proposition 2.11. If ZF is ω-consistent, then ZF is closed under the Reflection rule.

Proof. Suppose ZF 6⊢ φ. Then ZF ⊢ ¬PrZF(n, pφq), for every standard n ∈ N (where PrZF(n, pφq)
is the formula expressing that n is the Gödel code of a proof of φ). Now, by ω-consistency,
ZF ⊢ ¬PrZF(pφq).

Let c be a fresh constant symbol. Note that the schema {m < c < ω | m ∈ N}, expressing that
there is a non-standard natural number, yields ω-inconsistency when added to a set-theoretic
system (proof: take x = c as Z).

7The symbol “Z” (Uranus) used here is meant to help the reader remember that its extension consists of
non-standard numbers: The arrow may be taken to point outwards from the standard model N.
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Proposition 2.12. GRω and FS are ω-inconsistent. GRω+GRGRω and FS+GRFS are inconsistent.

Proof. This is a corollary of McGee’s paradox, see McGee (1985), and can be proved analogously
as Theorem 13.9 and Corollary 14.39 in Halbach (2014), respectively. The arguments in Halbach
(2014) are written for theories of truth over PA, not for theories of satisfaction over ZF. But they
go through with these natural modifications:

1. Replacing instances of the truth predicate “T ” by our defined predicate “Tr”, except for
instances quantifying over terms, of the form ∀~t T (φ[.

~t/.p~xq].), which are replaced by ∀~y ∈

ω Sat(φ, p~xq 7→ ~y), where ~y is fresh.

2. Replacing quantifiers of the form “∀x” by “∀x ∈ ω”.

These arguments rely on that GRω admits NEC, which we proceed to show: Let σ ∈ Sent(LSat)
and suppose that GRω ⊢ σ. Then there is k < ω, such that GRk ⊢ σ. since this proof can be
represented in GRω, we have GRω ⊢ PrGRk(pσq), so that by Global Reflection, GRω ⊢ Tr(pσq).
Since GRω ⊢ CT↾, it follows that GRω ⊢ σ, as desired.

So if we were to naturally extend the definition of GRα to all ordinals α, then we would get
that GRα is inconsistent for all α > ω.

Later on we will introduce a multiverse axiom, called Self-Perception, to the effect that the
universe of the background theory is isomorphic (over L) to one of its internal universes; this
axiom is motivated by the idea that the universe of the background theory should be available in
its multiverse. The following lemmas establish technical results needed to validate that axiom.

Lemma 2.13. Let U be a crsm of GR0 and let V ∈ U , such that U satisfies

V |= {σ ∈ Sent(LSat) | Tr(σ)}.

Then U ∼=L VU .

Recall that VU is the U-externalization of V , see Definition 2.1.

Proof. We shall establish U ∼=L VU by invoking Theorem 2.4. Thus we need to show that VU is
a crsm, that SSy(U) = SSy(VU ) and that U ≡L VU .

Note that U is ω-non-standard, by U ∈ crsm and Proposition 2.3. That VU is a crsm now
follows from Lemma 2.2 in Gitman & Hamkins (2010).8

(ωU)U is mapped initially into (ω(VU))(VU ) by an embedding j (for each x ∈ (ωU)U , j(x) is
defined as the unique y ∈ U such that U |= y = xV). Therefore, we obtain SSy(U) = SSy(VU )
as follows: Let A ∈ SSy(U), coded by a ∈ (ωU )U . Since j is an embedding, j(a) is a code for
A in (ω(VU))(VU ). Conversely, let B ∈ SSy(VU ), coded by b ∈ (ω(VU ))(VU ). Since j is initial and
U is ω-non-standard, there is a non-standard c ∈ (ωU)U , such that j(c) ≤VU b. So since j is an
embedding, c is a code for B in (ωU )U .

To see U ≡L VU , let φ be a sentence of L. By absoluteness of |= for standard formulas,

VU |= φ ⇐⇒ U |= “V |= (pφq)”.

Since Sat satisfies the Tarski-biconditionals for L, we have

U |= φ ⇐⇒ U |= Tr(pφq).

Moreover, by CT¬ and the condition of the Lemma,

U |= Tr(pφq) ⇐⇒ U |= “V |= (pφq)”.

By combining these we obtain U ≡L VU , as desired.
8That Lemma is stated for ZFC, but it is easily seen that its proof does not make use of Choice.
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Remark. U |= ZF is needed for the proof of this lemma, as it relies on Theorem 2.4. Thus, the
authors do not expect it to generalize to GR0(S), unless S ⊢ ZF.

Lemma 2.14. Let k < α ≤ ω, and let U |= GRα. Then there is V ∈ U , such that U satisfies

V ∈ crsm ∧ V |= {σ ∈ Sent(LSat) | Tr(σ)}.

In particular, U satisfies that V |= GRk. Moreover, if U ∈ crsm, then U ∼=L VU .

Proof. We work in U . From ZF + Sep(LSat) we get that the set Tr = {φ ∈ Sent(LSat) | Tr(φ)}
exists. For the first statement, by completeness of the crsm-semantics (Theorem 2.2), it suffices
to establish Con(Tr); and for this it suffices to establish Con(σ), where σ is an arbitrary finite
conjunction of sentences in Tr. By ∧-compositionality of Sat, we have Sat(σ). By GRZF+Sep(LSat),
we have PrZF+Sep(LSat)(¬. σ) → Sat(¬. σ), and by ¬-compositionality of Sat, we have Sat(¬. σ) ↔
¬Sat(σ). So since Sat(σ), we obtain PrZF+Sep(LSat)(¬. σ) → ⊥, whence Con(σ). By Theorem 2.2,
we can let V be a model of Tr in crsm.

It follows from GRGRk that GRk ⊆ Tr, yielding the second statement.
The last statement now follows from Lemma 2.13.

Axiom 2.15. Let ι be a function symbol and self be a constant symbol. Iso(x) denotes an L+
ι -

formula expressing that x is an L+-structure and that ι is an ∈-isomorphism from the universe
V onto x. We shall study this axiom in L+

ι,self :

Iso(self)

(This formulation is chosen over ∃x Iso(x), as it is convenient to have a reference to a witness.)

By the ∈-isomorphism property, and the absoluteness of |= for standard formulas, we have:

Proposition 2.16. For each φ(~x) ∈ L, ZF+ Iso(self) ⊢ (self |= pφ(ι(~x))q) ↔ φ(~x).

System 2.17. Let S be a set theory in L+. By recursion, for each α ≤ ω, we define the system
SPα(S) (standing for Self-Perception):

SP0(S) =df GR
0(S) = CT(S)↾ + Sep(L+

Sat)

SPα+1(S) =df GR
α+1(S) + self ∈ crsm + Iso(self) + self |= Tr ∪ SP.

α(S. )

SPω(S) =df

⋃

n<ω

SPn(S),

where Tr =df {σ ∈ Sent(LSat) | Tr(σ)}. We write SPα for SPα(ZF).

Remark. A clarificatory note on the role of the languages in SPα. Let α ≥ 1. The language of
SPα is LSat,ι,self . SPα proves Separation for LSat,self , and it proves Replacement for Lself (since
self can be treated as a parameter in these schemas).

Lemma 2.18. Let α ≤ ω. Every crsm U of GRα expands to a model U∗ of SPα. Moreover, if U
is a definable model, then we can also obtain that U∗ is definable.

Proof. We start by showing the case α < ω by induction. The base case α = 0 is trivial.
The induction hypothesis is that if U |= GRα, then U expands to a model of SPα; and if U is
definable, then the expansion is definable. Let U |= GRα+1. Applying Lemma 2.14, we find a
crsm V in U , such that U ∼=L VU (as witnessed by an L-isomorphism i : U → VU) and U satisfies
that V |= Tr ∪ GR.

α. So by the induction hypothesis applied in U , U satisfies that V expands
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to a model W of SP.
α. Let U∗ be the model obtained from U by interpreting self by W and

interpreting ι by i. It is immediate from the construction that U∗ |= SPα+1.
Now to the case that α = ω: Assume that U |= GRω. Working in U , letTr = {φ ∈ Sent(LSat) |

Tr(φ)}. By the above,
{x ∈ crsm ∧ x |= Tr ∪ SP.

n | n < ω}

is a recursive type over U . So since U is recursively saturated, it is realized by some W in U . It
now follows from Lemma 2.13 that U ∼=L WU . So just as in the former case, U can be expanded
to a model U∗ of SPω.

Assume now that U is definable. W can then be defined as the least element of a definable
enumeration of U that satisfies the appropriate conditions. An isomorphism witnessing U ∼=L WU

can also be defined: As seen from a close look at the proof of Theorem 2.4, the isomorphism is
constructed by recursion on enumerations of U and WU , both of which can be chosen definable
since U and WU are definable and countable.

Lemma 2.19. GRω interprets SPω.

Proof. Since GRω is ω-inconsistent, there is a formula Z(x) such that GRω ⊢ ∃x < ω Z(x), but
for each n ∈ N, GRω ⊢ ¬Z(n).

We start by working in GRω. By ZF+ Sep(LSat), the theory Tr = {σ ∈ Sent(LSat) | Tr(σ)} of
truth is a set; and by the argument starting the proof of Lemma 2.14, it is a consistent theory.
So there is a definable S ∈ crsm that models truth.9 Since S is a model of truth, the Global
Reflection axioms allow us to prove S |= GRn, for each standard natural number n. Let d < ω
be the minimal number such that Z(d), and let c be the maximal number such that c ≤ d and
S |= GRc. Note that for each standard natural number n, we can prove n < c. By Lemma 2.18,
S expands to a definable model S ′ of SPc.

Working in the meta-theory, it follows that GRω interprets SPω by an interpretation J map-
ping each sentence σ in the language of SPω to the LSat-sentence S ′ |= pσq.

3 Revision-semantic truth-in-a-universe

We shall now go through the key revision-semantic technique introduced in this paper, which
may be used to construct a variety of untyped truth-in-a-universe relations for the multiverse of
set theory. Revision-semantics was independently invented in Gupta (1982), Herzberger (1982a)
and Herzberger (1982b). In Friedman & Sheard (1987), the axiomatic theory of truth FS was
presented and shown to be validated by a model constructed through such a revision process.
The revision process starts with an arbitrary extension S0 of truth, and recursively defines Sn+1

as the theory of the structure (N, Sn). In particular, the theory of N is a subset of S1, and the
liar sentence is in Sn+1 iff it is not in Sn.

The construction in this paper is somewhat different in that it is intensional. We start with a
more-or-less arbitrary formula defining truth-in-a-universe, and revise the definition in a revision-
semantic fashion. The construction can be modified by adjusting parameters. For example, we
shall see that certain conditions on the parameters result in that the eventual definition of
truth-in-a-universe validates the multiverse theory MS, introduced in System 4.5. This theory is
analogous to FS, but is actually weaker. The parameters need to satisfy some basic conditions
as specified in this definition:

9This follows from the proof of Theorem 2.4.1 in Chang & Keisler (1990). The key observation to see that the
model is definable is that it is essentially a Henkin-construction by recursion on an enumeration of a recursive
language and on an enumeration of the set of all recursive subsets of that language, both of which can be chosen
definable.
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Definition 3.1. Let Tn(φ), Unin(U) and Mod0(U , φ, f) be formulas of the meta-language (L),
in the free variables {n, φ}, {n,U} and {U , φ, f}, respectively.10 For each n ∈ N:

Tn =df {φ | Tn(φ)}

Tω =df

⋃

n<ω

Tn

Unin =df {U | Unin(U)}

Uniω =df

⋂

n<ω

Unin

(Tn)n∈N is intended to be a sequence of first-order set theories, and (Unin)n∈N is intended to be
a sequence of classes of models, as formally specified below. Let LT,LRev be recursive languages.
We say that T,Uni,Mod0 are revision parameters (in LT,LRev) if the following conditions (closed
under ∀n ∈ N, where appropriate) are provable in the meta-theory and in a given set theory (as
object theory):

1. L ⊆ LRev ⊆ LT

2. “The symbols Uni,Mod do not appear in LT.”

3. “T0 is a set theory in LT.”

4. Tn+1 ⊢ Tn

5. Uni0(U) → “U is an LT-structure.”

6. Unin+1 ⊆ Unin

7. Mod0(U , φ, f) → Uni0(U) ∧ φ ∈ LRev
Uni,Mod ∧ f ∈ VAU

In the construction below we shall see how, given revision parameters, an untyped revision-
semantic truth-in-a-universe predicate can be defined as an L-formula Modn(U , φ, f), with this
intended reading of the variables: n is the stage in the revision process, U is a universe, φ is a
formula in (the representation of) LRev

Uni,Mod and f is an assignment of variables to elements of U .

So LT is the language of the theories Tn, LRev is any sublanguage of LT, and LRev
Uni,Mod is the

language undergoing revision. The L-formula Mod� is also introduced as a variant of Modn.
Actually, only the Unin and Mod0 parameters influence the construction. The Tn parameter
comes into play later on, in the Main Lemma (in §5), where we show (under certain conditions
on the revision parameters) that the Modn formula satisfies desirable semantically motivated
axioms when constructed in the theory Tω .

The construction may intuitively be thought of as a recursive procedure, where Mod0 is a
more-or-less arbitrary truth-in-a-universe relation and each Modn+1 revises Modn into a more
adequate relation. It turns out to be efficient to perform the construction using Gödel’s fixed-
point lemma. It is in fact possible to choose Mod0 such that it gets revised to itself (see the
definition of Mod� below). This phenomenon contrasts with the revision-semantics ordinarily
used to construct a model of the Friedman–Sheard theory of truth, where the revision-operation
has no fixed-point (see Lemma 14.9(iii) in Halbach (2014)). A key difference between the present
revision-process and that one is that the former is intensional and the latter is extensional. In the
present framework we start with an arbitrary formula defining truth-in-a-universe and revise it to

10Even though the n is notationally in subscript-position, it is a free variable of the formulas T and Uni. This
pattern will also be used for the formula Mod introduced below.
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more adequate definitions, while in the other framework one starts with an arbitrary extension
of truth and revise it more adequate extensions. The move from extensional to intensional
revision-semantics is highly relevant for the present framework.

Construction 3.2 (Construction of Revision-semantics for the Multiverse). Let Tn(φ), Unin(U)
and Mod0(U , φ, f) be revision parameters.

By Gödel’s fixed-point lemma, there is an L-formula Modn(U , φ, f), in the free variables
n,U , φ, f , such that provably:

Modn(U , φ, f) ↔







n ∈ N ∧ Unin(U) ∧ φ ∈ LRev
Uni,Mod ∧ f ∈ VAU

∧
(

n = 0 → Mod0(U , φ, f)
)

∧
(

n > 0 → 〈U↾LRev , pUnin−1q
U , pModn−1q

U〉 |= (φ, f)
)






(†)

Recall that if φ(~x) is a formula in the language of a structure M, then φM = {~a ∈ M |
M |= φ(~a)}. Above, this notation is used for formulas in a represented language, hence the
Gödel quotes, pq. Working in ZF, 〈U↾LRev , pUnin−1q

U , pModn−1q
U〉 is the expansion of U↾LRev

to LRev
Uni,Mod, interpreting pModq by {~a ∈ U | U |= pModn−1q(~a)}, and interpreting pUniq by

{u ∈ U | U |= pUnin−1q(u)}.
Formally, we now have two references for the expression “Mod0”, the formula Mod0 and the

formula Modn, with the variable assignment n 7→ 0. However, it is clear that these are equivalent.
The above construction works for a very wide range of choices for Mod0. But by the fixed-

point lemma, we can choose Mod0 to be “equivalent to its own revision”, so that Modn turns
out to be constant with respect to n. Indeed, there is an L-formula Mod�, such that provably:

Mod�(U , φ, f) ↔

(

Uni0(U) ∧ φ ∈ LRev
Uni,Mod ∧ f ∈ VAU

∧〈U↾LRev , pUni0q
U , pMod�qU 〉 |= (φ, f)

)

End of Construction.

For the reader familiar with the extensional revision-procedure used to construct a model of
FS (this construction is reasonably well-known for FS formulated over PA, see (Halbach, 2014,
ch. 14.1) for a detailed treatment), note how the recursive call in the fixed-point formula of
our construction operates on an intension (the formula Mod), which is interpreted in internal
models. In contrast, the recursive call of the revision procedure for constructing a model of FS
(say as a theory of truth over arithmetic) operates on an extension (the set of true sentences
from the previous step), which is obtained from the external model. The authors take this to
explain why it is possible to define a truth-in-a-universe relation Mod� which is fixed by the
revision-procedure. In the extensional revision-semantics, this is not possible simply because the
liar sentence must switch truth-value in the external model at every step of the revision.

Necessity was the mother of the intensional revision-semantics of this paper; the authors do
not see any way to construct models of “the Copernican multiverse of sets” (as formalized by
various theories in this paper, e.g. CM + Non-Triviality + NEC) by the extensional approach.
Conversely, the authors do not see that the intensional approach can replace the extensional
approach, as the former relies on that the intension acted upon in the recursive call is interpreted
in an internal model. For arithmetic this may be a serious obstacle, as arithmetic does not have
that kind of internal models.

Some conditions and rules for revision parameters, relevant for showing that the Modn formula
constructed as above satisfies a desirable semantically motivated theory (see the Main Lemma in
§5), are shown in Figure 3.1. If one of the rules holds, we say that the revision parameters admit
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Revision rules

NEC∗ ∀n ∈ N ∀φ ∈ LRev
(

(Tn ⊢ φ) → (Tn+1 ⊢ ∀U ∈ Unin+1 (U |= pφq))
)

CONEC∗ ∀n ∈ N ∀φ ∈ LRev
(

(Tn+1 ⊢ ∀U ∈ Unin+1 (U |= pφq)) → Tn+2 ⊢ φ
)

Reflection rule∗ ∀n ∈ N ∀φ ∈ LRev
(

(Tn+1 ⊢ PrTn
(pφq)) → Tn+2 ⊢ φ

)

Revision conditions

Soundness∗ ∀n ∈ N ∀U ∈ Unin+1 (U |= Tn)
Completeness∗ ∀n ∈ N ∀φ ∈ LRev

(

(∀U ∈ Unin+1 (U |= φ)) → Tn ⊢ φ
)

Figure 3.1: Rules and conditions for the revision parameters

it. Essentially, if the revision parameters admit NEC∗ or CONEC∗, then the multiverse theory
interpreted admits NEC or CONEC, respectively. In practice it is often easier to work with the
other rule and conditions in Figure 3.1, using this Lemma:

Lemma 3.3. Let T,Uni,Mod0 be revision parameters.

(a) If Soundness∗ is provable, then the parameters admit NEC∗.

(b) If Completeness∗ is provable and the parameters admit the Reflection rule∗, then the parame-
ters admit CONEC∗.

Proof. (a) Let n ∈ N and φ ∈ LRev. Assume that Soundness∗ is provable (in the meta-theory
ZF) and that Tn ⊢ φ. By the latter, encoding the proof in ZF, we have ZF ⊢ PrTn

(pφq).
Combining these, we get ZF ⊢ ∀U ∈ Unin+1 (U |= pφq)). Since Tn+1 ⊢ ZF, we are done.

(b) Let n ∈ N and φ ∈ LRev. Assume that Completeness∗ is provable and the parameters admit
the Reflection rule∗. Since Tn+1 ⊢ ZF, we have Tn+1 ⊢ Completeness∗. Now suppose that
Tn+1 ⊢ ∀U ∈ Unin+1 (U |= pφq). Then Tn+1 ⊢ PrTn

(pφq). So by the Reflection rule∗,
Tn+2 ⊢ φ, as desired.

4 Theories of untyped satisfaction for the multiverse

Section 3 showed how a revision-semantic relation of truth-in-a-universe can be constructed in
set theory. We turn now to the task of finding appropriate axioms for truth-in-a-universe that
are validated by such revision-constructions.

System 4.1 (CM). CM−, standing for Compositional satisfaction for the Multiverse, is axiom-
atized as follows:

Base ZF+ Sep(LUni,Mod) + Rep(LUni,Mod)

CM= ∀U ∈ Uni ∀f ∈ VAU
(

Mod(U , px = yq, f) ↔ f(x) = f(y))
)

CM¬ ∀U ∈ Uni ∀φ ∈ LUni,Mod ∀f ∈ VAU
(

Mod(U ,¬. φ, f) ↔ ¬Mod(U , φ, f)
)

CM∧ ∀U ∈ Uni ∀φ, ψ ∈ LUni,Mod ∀f ∈ VAU
(

Mod(U , φ∧.ψ, f) ↔ (Mod(U , φ, f) ∧Mod(U , ψ, f))
)

CM∀ ∀U ∈ Uni ∀φ ∈ LUni,Mod ∀f ∈ VAU
(

Mod(U , ∀.u φ, f) ↔ ∀g ∈ VAU
f,uMod(U , φ, g)

)

Define ZFUni,Mod =df ZF + Sep(LUni,Mod) + Rep(LUni,Mod). We write CM for CM− plus the
axiom:

MultiverseZF ∀U ∈ Uni ∀σ ∈ ZF. Uni,Mod Mod(U , σ)
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If L′ expands L, then we write CM−(L′) and CM(L′) for the corresponding systems obtained
by replacing all occurrences of LUni,Mod in the axioms of the form CM− above by the language
L′
Uni,Mod. (So the Separation and Replacement schemas remain unchanged, ranging only over

LUni,Mod.)

Remark. The natural analogue axioms CM∨,CM→,CM∃ are easily derived in CM−.

Remark. In CM−, each U ∈ Uni may be viewed as an LUni,Mod-structure, by performing this
assignment:

∈U =df

{

〈a, b〉 | Mod(U , px ∈ yq, 〈x, y〉 7→ 〈a, b〉)
}

UniU =df

{

a | Mod(U , pUni(x)q, x 7→ a)
}

ModU =df

{

〈a, b, c〉 | Mod(U , pMod(x, y, z)q, 〈x, y, z〉 7→ 〈a, b, c〉)
}

Accordingly, we will occasionally use the notation U |= φ for satisfaction in that LUni,Mod-
structure. Using the compositional axioms of CM−, it is easily shown that Mod(U , φ, f) ⇐⇒
U |= (φ, f).

In applications, it is natural to add further axioms to CM−, ensuring e.g. that we can prove:

Non-Triviality ∃UUni(U)

Note that over CM−, Non-Triviality is equivalent to Tr2(p⊥q) → ⊥. Recall that the formulas
Tr2(σ) and Tr3(σ) are defined as ∀U ∈ Uni (Mod(U , σ)) and ¬Tr2(¬. σ), respectively. We may
naturally consider the interpretation of the modal operators 2,3, generated by interpreting 2σ
by Tr2(pσq). Therefore, it is useful to exhibit some compositional conditions easily provable for
Tr2 in CM− and CM− + Non-trivility:

Proposition 4.2. CM− proves:

CM2

→ ∀φ, ψ ∈ Sent(LUni,Mod)
(

Tr2(φ→. ψ) → (Tr2(φ) → Tr2(ψ))
)

CM2

↔ ∀φ, ψ ∈ Sent(LUni,Mod)
(

Tr2(φ↔. ψ) → (Tr2(φ) ↔ Tr2(ψ))
)

CM2

∧ ∀φ, ψ ∈ Sent(LUni,Mod)
(

Tr2(φ∧. ψ) ↔ (Tr2(φ) ∧ Tr2(ψ))
)

3CM ∀φ ∈ Sent(LUni,Mod)
(

Tr3(φ) ↔ ∃U ∈ Uni Mod(U , φ)
)

Proposition 4.3. CM− + Non-Triviality proves:

CM2

⊥ Tr2(p⊥q) ↔ ⊥
CM2

¬ ∀φ ∈ Sent(LUni,Mod)
(

Tr2(¬. φ) → ¬Tr2(φ)
)

DCM ∀φ ∈ Sent(LUni,Mod)
(

Tr2(φ) → Tr3(φ)
)

Lemma 4.4 (Soundness Lemma). CM− proves that for all U ∈ Uni, {φ ∈ LUni,Mod | Mod(U , φ)}
is deductively closed.

Proof. Using the compositional axioms CM¬, CM∧ and CM∀, this is proved just like the soundness
theorem for the usual semantics of first-order logic.

The theory MS (standing for Multiverse theory of Satisfaction) is analogous to the Friedman–
Sheard theory of truth FS:

System 4.5 (MS). Consider these rules of proof:

NEC For each φ ∈ Sent(LUni,Mod): If MS ⊢ φ, then MS ⊢ Tr2(pφq).
CONEC For each φ ∈ Sent(LUni,Mod): If MS ⊢ Tr2(pφq), then MS ⊢ φ.
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Scope and Completeness axioms

Given a set theory S in language L+:

MultiverseS. ∀φ ∈ L.
+
Uni,Mod

(

φ ∈ S. → ∀U ∈ Uni Mod(U , φ)
)

CompletenessS. ∀φ ∈ L.
+
Uni,Mod

(

∀U ∈ Uni Mod(U , φ) → PrS. (φ)
)

Reflective axioms

Non-Triviality ∃UUni(U)
Multiverse Reflection ∀σ ∈ Sent(L) : Tr2(pσq) → σ
Self-Perception Iso(self) + Uni(self)

Modal axioms

KCM ∀σ, τ ∈ Sent(LUni,Mod) : Tr2(pσ → τq) →
(

Tr2(pσq) → Tr2(pτq)
)

DCM ∀σ ∈ Sent(LUni,Mod) : Tr2(pσq) → Tr3(pσq)
TCM ∀σ ∈ Sent(LUni,Mod) : Tr2(pσq) → σ
4CM ∀σ ∈ Sent(LUni,Mod) : Tr2(pσq) → Tr2(pTr2(pσq)q)
LöbCM ∀σ ∈ Sent(LUni,Mod) :

(

Tr2(pTr2(pσq) → σq) → Tr2(pσq)
)

Gödel-Löb multiverse

CompCM CM− +MultiverseComp. CM
+ CompletenessComp. CM

Figure 4.1: Semantically motivated multiverse axioms

The system MS− is CM− + NEC+ CONEC and the system MS is CM+ NEC+ CONEC.
If L′ expands L, then we write MS−(L′) and MS(L′) for the corresponding systems ob-

tained by replacing all occurrences of LUni,Mod, in the axioms of the form CM− and in the rules
NEC,CONEC, by the language L′

Uni,Mod.

Recall that if S is a system involving deductive rules, and A is an axiom, then S+A denotes
the natural extension of S in which these deductive rules may be applied to proofs also involving
A. For example, in MS+ ∃xUni(x) we may use NEC to derive ∀U ∈ Uni Mod(U , p∃xUni(x)q).

Figure 4.1 displays reflective axioms, modal axioms and the system GLCM− interpreting Gödel-
Löb logic.

The reflective axioms may be viewed as statements, of increasing strength, that the universe
of the background theory is reflected in the multiverse: Non-Triviality just says that there is a
universe in the multiverse; Multiverse Reflection is equivalent to that any L-sentence holding in
the background universe also holds in some universe; and Self-Perception goes as far as saying
that the background universe is isomorphic to a universe in the multiverse.

The next theorem applies standard arguments from axiomatic theories of truth to exhibit
semantically motivated axioms that turn out to be paradoxical.

Theorem 4.6. (a) The following axiom schema is inconsistent over CM− + NEC:

TCM ∀σ ∈ Sent(LUni,Mod), Tr
2(pσq) → σ

(b) The following axiom schema is inconsistent over CM− + NEC+ Non-Triviality:

4CM ∀σ ∈ Sent(LUni,Mod), Tr
2(pσq) → Tr2(pTr2(pσq)q)
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Remark. Note that TCM is the untyped version of Multiverse Reflection.

Proof. By Gödel diagonalization, there is an LUni,Mod-sentence λ, such that

CM ⊢ λ↔ ¬Tr2(pλq).

By TCM, Tr
2(pλq) → λ, so we get ¬Tr2(pλq), and therefore λ. Now Tr2(pλq) follows by

NEC, a contradiction.
By 4CM, Tr

2(pλq) → Tr2(pTr2(pλq)q), so by CM2

↔, Tr2(pλq) → Tr2(p¬λq), and by CM2

¬

(using Non-Triviality), Tr2(pλq) → ¬Tr2(pλq). So we get ¬Tr2(pλq) and therefore λ. Now
Tr2(pλq) follows by NEC, a contradiction.

The following Proposition relates the natural systems obtained by adding reflective axioms
to CM− + NEC.

Proposition 4.7. Over CM− + NEC:

(a) Multiverse Reflection ⊢ Non-Triviality

(b) Self-Perception ⊢ Multiverse Reflection

Proof. (a) From Tr2(p⊥q) → ⊥ we get ¬∀U ∈ Uni Mod(U , p⊥q), whence Non-Triviality.

(b) Let σ ∈ L, and assume Tr2(pσq). Then Mod(self, pσq). So by Proposition 2.16, we have σ.

CompCM in Figure 4.1 includes two axioms that refer to the theory CompCM. These axioms
can be constructed by Gödel’s fixed-point lemma. The following theorem shows that (2 7→
Tr2) generates an interpretation of Gödel-Löb provability logic in CompCM, which in turn is
interpretable in ZF.

Theorem 4.8. (a) There is an interpretation B of the system K of modal propositional logic11

in CM− + NEC, satisfying any given assignment of the propositional variables, and

B(2σ) = Tr2(B. (pσq)), for each modal propositional formula σ.

(b) B above interprets the system GL of modal predicate logic12 in CompCM. In particular,

CompCM ⊢ KCM + 4CM + LöbCM + NEC.

(c) ZF interprets CompCM. If ZF is closed under the Reflection rule (or if ZF is ω-consistent),
then ZF interprets CompCM + CONEC.

Proof. (a) The interpretation B can be constructed by primitive recursion, using the technique
described in Halbach (2014)[Ch. 5.3]. By NEC, B validates the modal necessitation rule, and
by CM2

→ (from which KCM is easily derived), it validates K.

11The system K is regulated by the rule of modal necessitation, ⊢ σ ⇒ ⊢ 2σ, and the axiom schema K,
2(σ → θ) → (2σ → 2θ).

12The system GL extends K with the axiom schema 4, 2σ → 22σ, and with Löb’s schema, 2(2σ → σ) → 2σ.
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(b) By the Soundness Lemma,

CompCM ⊢ ∀σ ∈ Sent(LUni,Mod) (Pr GLCM
(σ) ↔ Tr2(σ)). (*)

We apply the Hilbert-Bernays-Löb provability conditions. For NEC, note that for each
σ ∈ LUni,Mod, CompCM ⊢ σ ⇒ CompCM ⊢ PrCompCM

(pσq), and apply (*). For 4CM, note that
for each σ ∈ LUni,Mod, CompCM ⊢ PrCompCM

(pσq) → PrCompCM
(pPrCompCM

(pσq)q), and apply
(*) both externally and internally. By Löb’s Theorem (see Lemma 13.7 in Halbach (2014))
and the preceding item, we are done.

(c) Let C be the interpretation generated by:

Uni(U) 7→ U |= CompCM

Mod(Uni, φ, f) 7→ U |= (φ, f)

By the Tarskian conditions of satisfaction, ZF ⊢ C(CM−). By construction of C, ZF ⊢
C(MultiverseCompCM

). By construction of C and the Completeness theorem, ZF ⊢ C(CompletenessCompCM
).

From (*), it is easily seen that the Reflection rule yields CONEC. By Proposition 2.11, ω-
consistency suffices.

5 Interpreting the Copernican multiverse of sets

Now we proceed to lay forth a technique for validating the theories in §4 by means of the
revision-semantic construction in §3. The Main Lemma establishes that a variety of Copernican
multiverse theories can by interpreted in a suitable hierarchy of theories.

First we need a lemma establishing a normal form for derivation in MS. The analogous result
for the case of the Friedman–Sheard theory of truth (over arithmetic) was established by Broberg
(2021). The authors are grateful to Broberg for allowing the inclusion of his proof re-worked
for the system MS. We write MS−NC + S for the system whose theorems are the conclusions of
Hilbert-style proofs in MS− + S such that all applications of NEC are before all applications of
CONEC.

Lemma 5.1. Let S be a theory. If MS−+S ⊢ ψ, then there exists χ such that CM−+NEC+S ⊢ χ
and CM− + CONEC+ S + χ ⊢ ψ.

Proof. For simplicity, we assume that all formulas in all theories and proofs considered are
sentences; there is an adequate Hilbert-style proof system meeting this assumption. It suffices
to show that MS−NC + S ⊢ ψ.

Let ρ be a Hilbert-style proof, with ψ0, · · · , ψl−1 as rows, of ψl−1 in MS− + S. By induction,
we may assume that MS−NC + S ⊢ ψr, for each r < l − 1. There are four cases to consider as to
how the last row of ρ is obtained:

(Axiom) ψl−1 is an axiom.

(First-order) ψl−1 is derived by a rule of inference of first-order logic.

(CONEC) ψl−1 is derived from ψr by CONEC, for some r < l − 1.

(NEC) ψl−1 is derived from ψr by NEC, for some r < l− 1.

We proceed to establish MS−NC + S ⊢ ψl−1 for each case.
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(Axiom) In this case ψl−1 is also an axiom of MS−NC + S (a proof of length 1).

(First-order) In this case ψl−1 is also derived by the same rule in MS−NC + S, utilizing the
induction hypothesis.

(CONEC) In this case ψl−1 is also derived by CONEC in MS−NC + S, utilizing the induction
hypothesis and that this application of CONEC is right at the end, after all applications of
NEC.

(NEC) This is the case requiring work. We have that ψl−1 is the sentence Tr2(pψrq) and that
MS−NC + S ⊢ ψr. Let θ0, · · · , θk−1 = ψr be the rows of a Hilbert-style proof π witnessing
this. We proceed to show MS−NC + S ⊢ Tr2(pθqq), for each q ≤ k − 1. By induction, we
may assume that this holds for each q < k − 1. Again there are four cases to consider as
to how the last row of π is obtained:

(Axiom’) θk−1 is an axiom.

(First-order’) θk−1 is derived by a rule of inference of first-order logic.

(CONEC’) θk−1 is derived from θq by CONEC, for some q < k − 1.

(NEC’) θk−1 is derived from θq by NEC, for some q < k − 1.

We proceed to establish MS−NC + S ⊢ Tr2(pθk−1q) for each case.

(Axiom’) In this case we apply NEC to θk−1 to obtain a proof of Tr2(pθk−1q) (of length
2).

(First-order’) We have q0 < · · · < qn < k − 1, such that {θq0 , · · · , θqn} ⊢ θk−1. By the
induction hypothesis, MS−NC+S ⊢ Tr2(pθqiq), for each 0 ≤ i ≤ n. Clearly, these proofs
can be merged (respecting the requirement on the order of the applications of NEC and
CONEC) into one Hilbert-style proof in MS−NC+S in which Tr2(pθq0q), · · · ,Tr

2(pθqnq)
are derived.

Now note that by the Soundness Lemma,

CM− + {Tr2(pθq0q), · · · ,Tr
2(pθqnq)} ⊢ Tr2(pθk−1q).

We add a proof of that (which has no applications of NEC or CONEC) to the end of
the previous proof, obtaining MS−NC + S ⊢ Tr2(pθk−1q), as desired.

(CONEC’) In this case Tr2(pθk−1q) equals θq, which we already have a proof of.

(NEC’) In this case the last step of π is obtained by NEC, so there cannot be any appli-
cation of CONEC in π. Hence, we can make an extra application of NEC at the end
of π to obtain a proof of Tr2(pθk−1q) in MS−NC + S.

Before embarking on proving the Main Lemma of the paper, we introduce notation for the kind
of interpretations involved. The Main Lemma encapsulates the revision-semantic construction
of a model of “the Copernican multiverse of sets”.

Let T,Uni,Mod0 be revision parameters. Let S be a set theory in a language L and let t
be an L-term such that S ⊢ t ∈ N. Then IUni,Mod0

L,t denotes the interpretation of the language
LUni,Mod into L generated by interpreting Mod as Modt (obtained from Construction 3.2) and

Uni as Unit. (Although the full notation is IUni,Mod0

L,t , with L,Uni,Mod fixed, for example, we
denote this interpretation by It.) Note that this interpretation fixes each formula in L.

More generally, if S ⊢ ∃!x (φ(x) ∧ x ∈ N), then Iφ denotes the interpretation generated by
interpreting Mod by ∀x ∈ N (φ(x) → Modx) and Uni by ∀x ∈ N (φ(x) → Unix). We may expand
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the language with a constant symbol cφ and extend S with the axiom ∀x (φ(x) ↔ x = cφ), to
produce an interpretation Icφ equivalent to Iφ.

Let T0 and T1 be theories in the languages L0 and L1, respectively. Let F be a family (set)
of interpretations from L0 to L1. We say that F is a local interpretation of T0 in T1 if for any
finite set T ′

0 of consequences of T0, there is an I ∈ F which interprets T ′
0 in T1. Alternatively, we

say that T1 locally interprets T0 by F, respectively.
Given revision parameters T,Uni,Mod0, recall that LT is the language of the theories Tn

and that LRev is any sublanguage of LT.

Main Lemma. Let T, Uni and Mod0 be revision parameters such that Tω ⊢ ZF, let F = {Ik |
k ∈ N} and let S be an LRev

Uni,Mod-theory such that for any finite Γ ⊆ S,

∃A ∈ N ∀k ∈ N [A ≤ k → Tk ⊢ IUni,Mod0

k (Γ)].

(a) If T,Uni,Mod0 admit NEC∗, then Tω locally interprets CM− + NEC+ S by F.

(b) If T,Uni,Mod0 admit CONEC∗, then Tω locally interprets CM− + CONEC+ S by F.

(c) If T,Uni,Mod0 admit NEC∗ and CONEC∗, then Tω locally interprets MS− + S by F.

Proof. We prove the latter, most complicated assertion; the other two assertions follow by re-
stricting the proof to the appropriate cases. Assume that T,Uni,Mod0 are revision parameters
admitting NEC∗ and CONEC∗.

Assume that MS− + S ⊢ ψ. By Lemma 5.1, we have that MS−NC + S ⊢ ψ. Let ρ be a linear
Hilbert-style proof witnessing this. Let Γ be the axioms of CM− + S occurring in ρ. We shall
start by showing that

∃A′ ∈ N ∀k ∈ N [A′ ≤ k → Tk ⊢ IUni,Mod0

k (Γ)]. (*)

We have by the assumption of the lemma that there is A < ω, such that for any k < ω with
A ≤ k, we have Tk ⊢ IUni,Mod0

k (φ), for every axiom φ of S in Γ. Moreover, note that for any

k < ω, and any axiom φ of ZF + Sep(LUni,Mod) + Rep(LUni,Mod), I
Uni,Mod0
k (φ) is an axiom of ZF.

So since Tω ⊢ ZF, there is A′ ≥ 1 with A ≤ A′ < ω, such that for any k < ω with A′ ≤ k, we
have Tk ⊢ IUni,Mod0

k (φ), for every axiom φ of ZF+ Sep(LUni,Mod) + Rep(LUni,Mod) in Γ.

Suppose that φ is a compositional axiom (of the form CM−). Then ∀A′ ≤ k < ω [Tk ⊢

IUni,Mod0

k (φ)] follows from that for all LT-structures U and all LRev
Uni,Mod-formulas φ, it is provable

that for all A′ ≤ k < ω,

Modk(U , φ) ⇐⇒ 〈U↾LRev , pUnik−1q
U , pModk−1q

U 〉 |= φ

(using 1 ≤ A′), and from that the corresponding compositional conditions hold for |=.
Hence, A′ satisfies (*) as desired. We introduce shifted parameters T′,Uni′,Mod′0 defined

by T′
k ≡df Tk+A′ , Uni′k ≡df Unik+A′ and Mod′k ≡df Modk+A′ . Note that Mod′ also satisfies

(†) in Construction 3.2. It is easily seen that T′,Uni′,Mod′0 are revision parameters admitting
NEC∗ and CONEC∗, and that T′

ω = Tω. Note that for all φ, it is provable that for all k < ω,

I
Uni′,Mod′

0

k (φ) ↔ IUni,Mod0

k+A′ (φ).

We index the sequence of steps in the proof by numbers 0, 1, · · · , l − 1, where l is the length
of ρ. For each q < l, let ψq be the derived formula (or axiom) at step q of ρ (so ψ = ψl−1), let
Nq be the number of applications of NEC in the derivation of ψq, and let Cq be the number of
applications of CONEC in the derivation of ψq. It suffices to show that there are natural numbers

m,n, such that T′
m ⊢ I

Uni′,Mod′

0

n (ψq), for each q < l. We do so by induction on the steps of ρ.
Let r < l. Here is our induction hypothesis:
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(IH) T′
2Cq+k

⊢ I
Uni′,Mod′

0

k (ψq), for any step q < r, and for any k ≥ Nq + 1.

We need to show that T′
2Cr+k

⊢ I
Uni′,Mod′

0

k (ψr), whenever Nr + 1 ≤ k. There are four cases,

as to which rule of inference (if any) is applied to obtain ψr from {ψq | q < r}:

(Axiom) ψr is an axiom in Γ.

(First-order) ψr is derived by a rule of inference of first-order logic.

(NEC) ψr is derived from ψr′ by NEC, for some r′ < r.

(CONEC) ψr is derived from ψr′ by CONEC, for some r′ < r.

Let k ≥ Nr + 1. We proceed to show T′
2Cr+k

⊢ I
Uni′,Mod′

0

k (ψr) in each of the above cases. The

fact that T′
a ⊢ T′

b, for any 0 ≤ b ≤ a ∈ N, will be used repeatedly without mention.

(Axiom) Suppose that ψr is an axiom in Γ. We have T′
k ⊢ I

Uni′,Mod′

0

k (φr), since T′
k ⊢ Tk+A′

and Tk+A′ ⊢ IUni,Mod0

k+A′ (φr).

(First-order) By (IH), T′
2Cr+k

⊢ I
Uni′,Mod′

0

k (φq), for each q < r. Since I
Uni′,Mod′

0

k is an

interpretation, it respects the inference rules of first-order logic. Therefore, T′
2Cr+k

⊢

I
Uni′,Mod′

0

k (ψr).

(NEC) In this case ψr is ∀U ∈ Uni (Mod(U , pψr′q)). Note that Cr = 0 and Nr′ < Nr.

T′
k−1 ⊢ I

Uni′,Mod′

0

k−1 (ψr′) (IH)

T′
k ⊢ ∀U ∈ Uni′k (U |= pI

Uni′,Mod′

0

k−1 (ψr′)q) NEC∗

T′
k ⊢ ∀U ∈ Uni′k (Mod′k(U , pψr′q)) (†) in Construction 3.2

T′
k ⊢ I

Uni′,Mod′

0

k

(

∀U ∈ Uni (Mod(U , pψr′q))
)

Definition of I
Uni′,Mod′

0

k

(CONEC) In this case ψr′ is ∀U ∈ Uni (Mod(U , pψrq)).

T′
2Cr′+k+1 ⊢ I

Uni′,Mod′

0

k+1

(

∀U ∈ Uni (Mod(U , pψrq))
)

(IH)

T′
2Cr′+k+1 ⊢ ∀U ∈ Uni′k+1 (Mod′k+1(U , pψrq)) Definition of I

Uni′,Mod′

0

k+1

T′
2Cr′+k+1 ⊢ ∀U ∈ Uni′k+1 (U |= pI

Uni′,Mod′

0

k (ψr)q) (†) in Construction 3.2

T′
2Cr′+k+1 ⊢ ∀U ∈ Uni′2Cr′+k+1 (U |= pI

Uni′,Mod′

0

k (ψr)q) Uni′2Cr′+k+1 ⊆ Uni′k+1

T′
2Cr′+k+2 ⊢ I

Uni′,Mod′

0

k (ψr) CONEC∗

T′
2Cr+k ⊢ I

Uni′,Mod′

0

k (ψr) Cr′ < Cr

This completes the proof of the lemma. We close by recording the more detailed statement
that we have actually proved: If N,C are the number of applications of NEC and CONEC,
respectively, in a proof of ψ in MS−NC + S, then

T′
2C+N+1+A′ ⊢ I

Uni′,Mod′

0

N+1+A′ (ψ).
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Corollary 5.2. Let T, Uni and Mod0 be revision parameters such that for some B ∈ N, TB ⊢ ZF.
Let F = {Ik | k ∈ N} and let S be a theory (possibly with Uni,Mod in its language) such that for
any finite Γ ⊆ S,

∃A ∈ N ∀k ∈ N [A ≤ k → Tk ⊢ IUni,Mod0

k (Γ)].

(a) If T,Uni,Mod0 admit NEC∗, then Tω locally interprets CM+ NEC+ S by F.

(b) If T,Uni,Mod0 admit CONEC∗, then Tω locally interprets CM+ CONEC+ S by F.

(c) If T,Uni,Mod0 admit NEC∗ and CONEC∗, then Tω locally interprets MS+ S by F.

Proof. Let B ∈ N, such that TB ⊢ ZF. Since T, Uni and Mod0 are revision parameters, we have

∀k ∈ N [B + 1 ≤ k → Tk ⊢ ∀U ∈ Unik (U |= ZF. )].

So by the definition of IUni,Mod0 and (†) in Construction 3.2,

∀k ∈ N [B + 1 ≤ k → Tk ⊢ IUni,Mod0

k (MultiverseZF)].

Applying the Main Lemma with S +MultiverseZF for S, and the maximum of A and B + 1 for
A, we obtain the desired result.

The following systems, along with GRα from Definition 2.8, are useful for measuring the
consistency strength of various extensions of CM.

System 5.3. Let S be a set-theoretic system. For any set theory T in language L, RT is the so
called (proof-theoretic) Reflection schema:

RT. {PrT. (pφq) → φ | φ ∈ L}.

(The dot under T is sometimes omitted, when it is clear from the context.)
We recursively define, for recursive ordinals13 α, the theories Conα(S) and Rα(S), of α-iterated

Consistency over S and α-iterated Reflection schema over S, respectively:

Con0(S) =df S

Conα+1(S) =df Con
α(S) + ConConα(S)

Conα(S) =df

⋃

ξ<α

Conξ(S), for α a limit ordinal;

R0(S) =df S

Rα+1(S) =df R
α(S) + RRα(S)

Rα(S) =df

⋃

ξ<α

Rξ(S), for α a limit ordinal.

We use the notations Conα and Rα for Conα(ZF) and Rα(ZF), respectively.

Recall System 2.8, where GRα is defined, using the axiom GRT of Global Reflection over a
set theory T extending CT↾ (in some language LSat with a satisfaction predicate):

∀φ ∈ L. Sat (PrT. (φ) → Tr(φ))

Comparing RT with GRT , note that RT is a schema, with a separate axiom for each formula
of the form φ in the meta-language, while GRT quantifies internally over all formulas in the
object-language; the latter is made possible by the satisfaction/truth-predicate.

13An ordinal α is recursive if there is a Σ0
1
-formula defining a well-ordering of a subset of N of order-type α.

These are precisely the ordinals below ωCK
1

.
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Remark. Let us pause to measure the consistency strengths of GRω, Rω and Conω: The consis-
tency strength of GRω is bounded by that of MK + GC (Morse-Kelley class theory with Global
Choice),14 which, in turn, is far less than that of ZFC+“there exists an inaccessible cardinal”.15

The consistency strength of Rω is bounded by that of GR1.16 The consistency strength of Conω

is bounded by that of R1.17 Moreover, it is easily observed that for each n ∈ N: GRn+1, Rn+1

and Conn+1 proves the consistency of GRn, Rn and Conn, respectively.

Theorem 5.4. Conω locally interprets CM+ NEC+ Non-Triviality.

Proof. We can choose revision parameters T,Uni,Mod0, such that for each n ∈ N:

Tn = Conn

Unin+1 = {U | U |= Tn}

Clearly, these are revision parameters provably satisfying Soundness∗, and thereby admitting
NEC∗. Moreover, we have for each k ∈ N:

Tk+1 ⊢ Unik+1 6= ∅ Definition of Tk+1,Unik+1

Tk+1 ⊢ IUni,Mod0

k+1 (Non-Triviality) Definition of IUni,Mod0

k+1

So the result follows from Corollary 5.2, by setting S = {Non-Triviality}.

Remark. Under the mild meta-theoretic assumption that each Conn is closed under the Re-

flection rule, it follows from Lemma 3.3 that the revision parameters in the above proof admit
CONEC∗, yielding that Conω locally interprets CM + NEC+ Non-Triviality. This meta-theoretic
assumption follows from the assumption that Conω is ω-consistent, which in turn follows from
the existence of an ω-standard model of ZF.

Remark. Using the fine-grained result obtained at the end of the proof of the Main Lemma, we
can show by an overspill-argument that Conω+{n < c | n ∈ N} (for a fresh constant c) interprets
CM+ NEC+ Non-Triviality (not just locally). This raises:

Question. Is CM+ NEC+ Non-Triviality ω-inconsistent?

Theorem 5.5. Rω locally interprets MS+Multiverse Reflection.

Proof. We can choose revision parameters T,Uni,Mod0, such that for each n ∈ N:

Tn = Rn

Unin+1 = {U | U |= Tn}

14The following argument indicates that the consistency strength of GRω is far less than that of MK + GC.
We rely on Fujimoto (2012): Fujimoto shows in his Theorem 70 that the consistency strength of his theory of
truth, FS, is equal that of NBGω , which is a subtheory of NBG<E0

introduced in Jäger & Krähenbühl (2010). By
Theorem 15 in (ibid.), and by Fujimoto’s Proposition 4, NBG<E0

is a subsystem of MK+GC. (All of the relevant
definitions are found in Fujimoto’s §3.1.) Moreover, the proof of Fujimoto’s Proposition 21 provides the base step,
and NEC provides the induction step, to show that his FS proves the version of GRω for truth (even with the
Replacement schema extended to the language with the truth predicate). Since that version of GRω interprets
our GRω , the consistency strength of our GRω is bounded by the consistency strength of NBGω (and since our
GRω does not have the Replacement schema extended to the language with the satisfaction relation, this bound
is probably not tight), which in turn is bounded by the consistency strength of MK+ GC.

15If κ is an inaccessible cardinal, then Vκ+1 provides a natural model of MK+ GC.
16This is shown by a routine argument, using Global Reflection to prove each iteration of the Reflection schema.
17This is shown by a routine argument, using the Reflection schema to prove each iteration of Consistency.
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It is easily seen that these are revision parameters provably satisfying Soundness∗, and thereby
admitting NEC∗. Similarly, it is easily seen that they admit the Reflection rule∗ and satisfy
Completeness∗, so that they admit CONEC∗. Moreover, we have for each k ∈ N and each φ ∈ L:

Tk+1 ⊢
(

∀U ∈ Unik+1 Modk+1(U , pφq)
)

→ φ The completeness theorem and

the definition of Tk+1,Unik+1

Tk+1 ⊢ IUni,Mod0

k+1 (Tr2(pφq) → φ) Definition of IUni,Mod0

k+1

So the result follows from Corollary 5.2, by setting S = Multiverse Reflection.

Remark. The technique for obtaining full (not just local) interpretability, mentioned in the
second remark following Theorem 5.4, does not work for the above theorem, because Multiverse
Reflection is not finitely axiomatizable (as far as the authors can see). The overspill-argument
must be carried out on a single formula, not a schema.

Theorem 5.6. The following conservativity results hold:

(a) CompCM ≡L ZF

(b) CM+ NEC+ Non-Triviality ≡L Conω

(c) MS+Multiverse Reflection ≡L CM+ NEC+Multiverse Reflection ≡L Rω

Proof. (a) This is immediate from Theorem 4.8(c) and that the interpretation used in its proof
restricts to the identity on L.

(b) The right-to-left direction follows from Theorem 5.4, observing that the interpretation is the
identity on L.

For the left-to-right direction, suppose as induction hypothesis that we have proved Conn in
CM + NEC + Non-Triviality. By NEC, we have Tr2(Conn. ). So by Non-Triviality and Lemma
4.4, we can prove Conn +Con(Con.

n), which is Conn+1, as desired.

(c) That Rω proves every L-theorem of MS + Multiverse Reflection follows from Theorem 5.5,
observing that the interpretation is the identity on L.

That MS+Multiverse Reflection ⊢ CM+ NEC+Multiverse Reflection is trivial.

For CM+NEC+Multiverse Reflection ⊢ Rω, we shall show that for each n ∈ N, CM+NEC+
Multiverse Reflection ⊢ Tr2(R.

n). Then the result follows from Multiverse Reflection. We
proceed by induction. By MultiverseZF, we have the base case: MS+Multiverse Reflection ⊢
Tr2(R.

0). So suppose as induction hypothesis that

MS+Multiverse Reflection ⊢ Tr2(R.
k).

Let σ ∈ Sent(L). By NEC we have

MS+Multiverse Reflection ⊢ Tr2(pTr2(R.
k)q) (1)

MS+Multiverse Reflection ⊢ Tr2(CM. ) (2)

MS+Multiverse Reflection ⊢ Tr2(pTr2(pσq) → σq), (3)

since (by MultiverseZF) NEC only needs to be applied to finitely many axioms of CM. We work
in MS + Multiverse Reflection. Let U ∈ Uni. Assume Mod(U , pPrR. k(pσq)q). We shall show

Mod(U , pσq). By (2), we can apply the Soundness Lemma in U to obtainMod(U , pTr2(pσq)q)
from (1) and Mod(U , pPrR. k(pσq)q). Now by CM→ and (3), we obtain Mod(U , pσq), as
desired.
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Theorem 5.7. GRω interprets CM(Lι,self) + NEC+ Self-Perception.

Proof. Set LT = LSat,ι,self and set LRev to Lι,self . We can choose revision parameters T,Uni,Mod0,
such that for each n ∈ N:

Tn = SPn

Unin+1 = {U | U |= Tn ∧ U ∈ crsm}

Clearly these are revision parameters satisfying Soundness∗, thus admitting NEC∗. Moreover,
note that for each k < ω, Tk ⊢ Unik(self). So for each k < ω,

Tk ⊢ IUni,Mod0

k (Self-Perception).

Thus, it follows from Corollary 5.2 that F = {Ik | k < ω} is a local interpretation of CM(Lι,self)+
NEC+ Self-Perception in SPω.

Recall from Lemma 2.19 that there is an interpretation J of SPω in GRω. For each n < ω,
let Kn = J ◦ In. Then G = {Kk | k < ω} is a local interpretation of CM(Lι,self) + NEC +
Self-Perception in GRω. There is a technical hurdle later on in this proof caused by the fact that
the image of each Kn is not included in L, but includes the instance of Tr needed to define the
set Tr = {σ ∈ Sent(LSat) | Tr(σ)} for the construction of J in the proof of Lemma 2.19. To
overcome this, we construct the functions K′

n(φ), for each n < ω, replacing each occurrence of
the form “Tr(t)” in the values of Kn by “t ∈ y”, where y is assumed to be fresh. Then we have
for each φ that

GRω ⊢ K(φ) ↔ (K′(φ))[Tr/y].

Let f be a function enumerating the theorems of CM(Lι,self) + NEC + Self-Perception, such
that the length of the theorems is non-decreasing. Then, for each i < ω there is σ, such that
GRω ⊢ f. (i) = pσq. Let θ(x, z) be the formula expressing

x < ω ∧ ∃j < ω ∀i ≤ x Sat
(

K.
′
j(f(i)), pyq 7→ z

)

.

Since the values of the K′
n are in L, we have by Proposition 2.6 that for each j < ω and each

φ ∈ LRev
Uni,Mod:

GRω ⊢ Sat(K.
′
j(pφq), pyq 7→ z) ↔ K′

j(φ)[z/y].

So since G is a local interpretation, we have for each n < ω that

GRω ⊢ θ(n,Tr).

Since GRω is ω-inconsistent, there is a formula Z(x) such that GRω ⊢ ∃x < ω Z(x), but for each
n ∈ N, GRω ⊢ ¬Z(n). Working in GRω, employing Proposition 2.7, we obtain a maximal number
d < ω such that θ(d,Tr) ∧ ¬Z(d). Now there is a minimal number e < ω such that

∀i ≤ d Sat
(

K.
′
e(f(i)), pyq 7→ Tr

)

.

So GRω defines e by a formula ψ. It follows from Proposition 2.6 that Kψ is an interpretation of
CM(Lι,self) + NEC+ Self-Perception in GRω.

Remark. Under the meta-theoretic assumption that the revision parameters used in the above
proof admit the Reflection-rule*, GRω interprets MS(Lι,self) + Self-Perception. Another potential
approach to validating CONEC would be to employ revision parameters based on a hierarchy of
theories converging to FS↾ +Sep(LSat), rather than to GRω (but the authors are not certain that
this approach would work).
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Axioms of Arithmetic Absoluteness

ΣPA
1 -Absoluteness ∀σ ∈ Sent(ΣPA

1 ) : ∀U ∈ Uni
(

Mod(U , pσNq) ↔ σN
)

Arithmetic Absoluteness ∀σ ∈ Sent(LPA) : ∀U ∈ Uni
(

Mod(U , pσNq) ↔ σN
)

Arithmetic Compositionality ∀U ∈ Uni ∀φ ∈ LUni,Mod

(

Mod(U , p∀x ∈ Nqφ) ↔
∀n ∈ NMod(U , φ, pxq 7→ nU)

)

Figure 6.1: Axioms of Arithmetic Absoluteness

Question. Does FS↾ + Sep(LSat) interpret MS(Lι,self) + Self-Perception?

Remark. There is another proof of the above theorem that utilizes the fine-grained result at
the end of the proof of the Main Lemma. That technique only works when the theory S of the
Main Lemma is finitely axiomatized (as here where S = {Self-Perception}). But the technique
used in the above proof works also for non-finitely axiomatized S.

Remark. Note the contrast that CM includes ZF + Sep(LUni,Mod) + Rep(LUni,Mod) while GRω

only includes ZF + Sep(LSat). The essential reason why GRω interprets Rep(LUni,Mod) is that
the interpretations In in the above proof map Mod and Uni to the L-formulas Modn and Unin,
respectively.

In light of Theorems 5.6 and 5.7, the authors ask:

Question. Is it the case that GRω ≡L CM(Lι,self) + NEC + Self-Perception? If not, what is the
precise consistency strength of CM(Lι,self) + NEC+ Self-Perception?

The fact that the extended schema Sep(LSat) in GRω was only used to obtain the set of true
sentences, suggests a negative answer; GRω may have strictly higher consistency strength than
CM(Lι,self) + NEC+ Self-Perception.

6 Case studies

This section examines how the framework introduced above can be applied to two rather different
conceptions of the set-theoretic multiverse.

6.1 Multiverse conceptions of arithmetical absoluteness

One may feel confident in adopting a universe view on arithmetic, appealing to the general
acceptance of an intended model consisting of the finite ordinals, while having a multiverse
view of set theory, where agreement on an intended model is lacking. This subsection therefore
explores how the techniques of this paper may be applied to a conception of the multiverse where
arithmetic is more or less fixed throughout the universes.

Let LPA be the language of arithmetic, and let ΣPA
n be the usual complexity hierarchy of

arithmetic formulas over PA. Given φ ∈ LPA, φN denotes the corresponding L-formula obtained
by restricting the quantifiers to N. Figure 6.1 exhibits axioms, of increasing strength, expressing
the absoluteness of arithmetic. The strongest of these is Arithmetic Absoluteness, which expresses
that the bounded quantifier “∀x ∈ N” commutes with the Mod-relation, for the untyped language
LUni,Mod.

Proposition 6.1. CM− + Arithmetic Compositionality ⊢ Arithmetic Absoluteness
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Proof. Let σ ∈ Sent(LPA), such that σN holds. Let U ∈ Uni. We show by induction on the
syntactic structure thatMod(U , pσNq) ↔ σN. For atomic sentences it follows from that arithmetic
equations are decidable. For the propositional connectives, the induction step follows from the
axioms of the form CM−; let us look at σN ≡ ¬φ for example:

Mod(U , p¬φq) ⇐⇒ ¬Mod(U , pφq) ⇐⇒ ¬φ

The first equivalence holds by CM¬ and the second by the induction hypothesis. For the quantifier
case, suppose that σN ≡ ∀x ∈ N φ(x). We calculate:

Mod(U , p∀x ∈ N φ(x)q) ⇐⇒ ∀n ∈ NMod(U , pφ(n)q) ⇐⇒ ∀n ∈ N φ(n) ⇐⇒ σN

The first equivalence holds by Arithmetic Compositionality, the second by the induction hypoth-
esis, and the third by the fact that for all n ∈ N, N |= n = n.

The following proposition shows the reflective power of Arithmetic Absoluteness, and exhibits
a scenario where CONEC is useful.

Proposition 6.2. CM+ΣPA
1 -Absoluteness+ CONEC ⊢ Rω

CK

1

Proof. By CONEC it suffices to prove Tr2(R.
ωCK

1 ). Naturally, we do so by transfinite induction.
The base case follows from MultiverseZF, an axiom of CM. For the successor case, assume that
Tr2(R.

α) for some α < ωCK
1 . Suppose U ∈ Uni, let σ ∈ L and assume that Mod(U , pPrR.α(σ)q).

Since α is recursive, PrR.α is Σ0
1, so by ΣPA

1 -Absoluteness, we have PrR.α(σ). It now follows from

Tr2(R.
α) and the Soundness Lemma that Mod(U , pσq). So by CM→, we have Mod(U ,R.

α+1), as
desired. The limit case is immediate from the definition of Rα.

Remark. Note that the above proof argues model-theoretically on an arbitrary universe. But
even though CM + ΣPA

1 -Absoluteness+ CONEC proves a fair amount of reflection, it is not clear
to the authors whether it proves that there is a universe (Non-Triviality).

This section raises questions about the consistency (strength) of combinations of Copernican
multiverse theories and axioms of arithmetic absoluteness, in particular:

Question. Is CM+ΣPA
1 -Absoluteness+ CONEC consistent relative to Rω

CK

1 ?

Question. Is CM−(Lι,self) + NEC+ Self-Perception+ Arithmetic Compositionality consistent?

The following Proposition may be viewed as a partial answer to the second question, but the
authors do not consider it to suggest an ultimately negative answer:

Proposition 6.3. The system CM− + NEC + Arithmetic Compositionality+ Non-Triviality is ω-
inconsistent.

Proof. This is a corollary of McGee’s paradox, see McGee (1985).

6.2 The Hamkins multiverse

Hamkins (2012) introduced a conception of the set-theoretic multiverse, which informally is based
on four over-arching principles:

1. The multiverse is a non-empty collection of models of ZFC.

2. The multiverse is closed under the usual techniques for constructing models of set theory
from other models of set theory, such as forcing extensions and inner models.
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3. Every universe is countable and ω-non-standard from the perspective of another universe.

4. The multiverse is closed under iterating large cardinal embeddings backward.

Definition 1.1 in (Gitman & Hamkins, 2010, pp. 475–6) gives succinct formulations of axioms
encapsulating this conception. The third (and possibly the fourth) principle is more controversial
than the first two. For example, the Well-foundedness Mirage axiom states that for every universe
U there is a universe V which thinks U is ω-non-standard.

Philsophical argmuents in support for the axioms are provided in (Hamkins, 2012, §9); and a
model of them is constructed by Gitman & Hamkins (2010), essentially taking the multiverse to
consist of the countable recursively saturated models of ZFC. We call this the Gitman-Hamkins
model of the multiverse.

Gitman & Hamkins (2010) consider a weak and strong form of Well-foundedness Mirage. In
the terminology of this paper, these are formally stated as follows:

WMweak ∀U ∈ Uni ∃V ∈ Uni ∃u ∈ V
(

uV = U ∧
∧ V |= “u is ω-non-standard”

)

WMstrong ∀U ∈ Uni ∃V ∈ Uni ∃u ∈ V
(

uV = U ∧
∧ V |= “u is an ω-non-standard model of ZFC”

)

The distinction between the axioms is discussed in (Gitman & Hamkins, 2010, pp. 479-480),
where a reflection assumption is introduced to ensure that the stronger axiom gets validated
in the model. Their multiverse conception is flat in the sense that it does not consider the
universes as themselves being models of the multiverse axioms. However, the move from WMweak

to WMstrong may naturally be viewed as a step in that direction. Accordingly, we may reformulate
Well-founded Mirage in LUni,Mod as:

WM ∀U ∈ Uni ∃V ∈ Uni ∃u ∈ V
(

uV = U ∧
∧Mod(V , “u is an ω-non-standard model in Uni”)

)

Informally speaking this says not only “for every universe U there is a universe V that thinks
that U is ω-non-standard”, but also “V thinks that U is a universe”. Note that over CM +
Choice+NEC,18 we get WMstrong from WM, and also iterated forms of WM, starting with ∀W ∈
Uni Mod(W ,WM). The authors take this to be a natural way for Well-founded Mirage to manifest
in the multiverse of sets. The analogous modification can also be made to the Countability axiom
in Definition 1.1 of Gitman & Hamkins (2010).

We write HM (the Hamkins Multiverse) for the LUni,Mod-theory obtained by extending CM

with the axioms of Definition 1.1 in Gitman & Hamkins (2010) reformulated so that |= is replaced
by Mod and the Well-founded Mirage and Countability axioms are modified as above. In general,
it is natural to add the closure condition NEC to this system, since that gives us a Copernican
conception which ensures that the backgound universe does not have a privileged point of outlook
over the multiverse. In particular, this yields a natural strengthening of Well-founded Mirage
(and Countability), as explained in the previous paragraph. Moreover, the techniques used
to validate Self-Perception in this paper are closely related to the validation of Well-founded
Mirage by Gitman & Hamkins (2010). Therefore, the authors champion CM(Lι,self) + HM +
Self-Perception as a theory of the multiverse.

Note that the choice of Unin in the proof of Theorem 5.7 is the collection of countable
recursively saturated models, just as in the Gitman-Hamkins model of the multiverse. A plausible

18Choice is added here because Hamkins’s conception of the multiverse is formulated for ZFC.
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approach to proving the consistency of the above theory is therefore to use the construction from
the proof of Theorem 5.7, setting up the revision parameters T,Uni,Mod0 so that for each n ∈ N:

Tn = SPn(ZFC)

Unin+1 = {U | U |= Tn ∧ U↾L∈ crsm}

Conjecture. GRω(ZFC) interprets CM(Lι,self) + NEC+ HM+ Self-Perception.

Addressing this conjecture falls outside the scope of this paper. What needs to be done is
essentially to verify that the proof of the Main Theorem by Gitman & Hamkins (2010) generalizes
from models of ZFC to models of SPn(ZFC).

7 Conclusion

We have developed a framework of satisfaction for the multiverse of set theory, with two sides:
A revision-semantic construction of an increasingly adequate definition of truth-in-a-universe,
and a family of axiomatic theories validated by the revision construction. We have shown how
the construction can be adjusted, by tuning the revision parameters, in order to validate various
multiverse axioms.

The basic theory of satisfaction for the multiverse is CM, which extends ZF with axioms
expressing that truth-in-a-universe is compositional with respect to the logical connectives and
quantifiers. Adding the deductive rule NEC yields a system with the closure condition that
whatever is provable in the multiverse theory also provably holds in each universe. So such
a system respects the Copernican Principle that the background universe should not have a
privileged point of outlook over the multiverse. Adding also the dual principle of CONEC, yields
the system MS. MS is in a sense analogous to the Friedman–Sheard theory of truth (FS),
but in Theorem 4.8 we saw that, unlike FS, it is conservative over the base theory, under the
meta-theoretic assumption that ZF is closed under the Reflection rule (which follows if ZF is
ω-consistent, and in particular if there is an ω-standard model of ZF).

The choice of ZF as base theory for our framework is important for the axiom of Self-Perception.
The proof of theorem 5.7 yields a model of CM(LSat)+NEC+Self-Perception satisfying that each
universe is a countable recursively saturated model of ZF (under Mod). As far as the authors can
see, both the full Separation and Replacement schemas of ZF, as well as its Foundation axiom,
are needed both for the background theory and for the internal theory of each universe, due to
the application of Theorem 2.4 in the proofs of Lemma 2.14 and Lemma 2.18. In contrast, for the
weaker extensions of CM introduced in this paper, the authors do not see any need for full ZF.
For example, the authors believe that most of the results of this paper hold (with minor modifi-
cations) also when taking Mac Lane set theory19, or Kripke–Platek set theory with Infinity20, as
base theory and as theory for the internal universes. Due to the close connection between Mac
Lane set theory and topoi, this suggests that the framework can be adapted to give an analogous
multiverse framework for topos theory.

We explored adding axioms of a reflective character, asserting that the universe of the back-
ground multiverse theory is reflected in the multiverse. Whereas Non-Triviality merely states the
existence of a universe in the multiverse, Multiverse Reflection can be viewed as expressing that
for every formula in the base language that holds in the background universe, it holds in some
universe. Self-Perception goes as far as expressing that the background universe is isomorphic

19This set theory is ZF minus Foundation and Replacement, and with Separation only for ∆0-formulas.
20This set theory is ZF minus Powerset, and with Separation and Collection (instead of Replacement) only for

∆0-formulas.

33



to a universe in the multiverse. These axioms were interpreted in systems of various types of
iterated reflection over ZF, all of which are very mild in terms of consistency strength; indeed
their consistency strengths are all bounded by Morse-Kelley class theory with Global Choice
(and the remark following System 5.3 indicates that they are far weaker), which in turn is far
weaker than ZFC+ “there exists an inaccessible cardinal”.

Having this framework available, the multiverse theorist can proceed to make use of its
untyped relation of truth-in-a-universe. Apart from the light it sheds on the axioms above, a
concrete value added, compared to the usual |=-relation, is that it makes it possible to express
multiverse principles that reach arbitrarily deep into the structure of universes, universes within
universes, universes within universes within universes, etc. We give the final word to Tomas
Tranströmer, through his poem “Romanska b̊agar” (translation by Robert Bly):

Inne i dig öppnar sig valv bakom valv oändligt.
Du blir aldrig färdig, och det är som det skall.

Inside you one vault after another opens endlessly.
You’ll never be complete, and that’s as it should be.
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