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Subatomic Inferences: an Inferentialist Semantics for Atomics,
Predicates, and Names

KAI TANTER

Abstract. Inferentialism is a theory in the philosophy of language which claims that
the meanings of expressions are constituted by inferential roles or relations. Instead of a
traditional model-theoretic semantics, it naturally lends itself to a proof-theoretic seman-
tics, where meaning is understood in terms of inference rules with a proof system. Most
work in proof-theoretic semantics has focused on logical constants, with comparatively
little work on the semantics of non-logical vocabulary. Drawing on Robert Brandom’s
notion of material inference and Greg Restall’s bilateralist interpretation of the multiple
conclusion sequent calculus, I present a proof-theoretic semantics for atomic sentences
and their constituent names and predicates. The resulting system has several interesting
features: (1) the rules are harmonious and stable; (2) the rules create a structure analogous
to familiar model-theoretic semantics; and (3) the semantics is compositional, in that
the rules for atomic sentences are determined by those for their constituent names and
predicates.

§1. Introduction Inferentialism is a theory in the philosophy of language
which claims that the meanings of expressions are constituted by inferential roles
or relations, rather than truth and reference (Brandom, 1994, 2000; Steinberger &
Murzi, 2017). It naturally lends itself to a proof-theoretic semantics, where meaning
is understood in terms of inference rules applied within a proof system, instead of
more traditional model-theoretic semantics. Most work in proof-theoretic semantics
has been focused on logical constants, with relatively little work on the semantics
of non-logical vocabulary.

This paper contributes to extending proof-theoretic semantics to encompass non-
logical vocabulary. Drawing on Robert Brandom’s idea of material inference (1994;
2000) and Greg Restall’s bilateralist interpretation of the multiple conclusion se-
quent calculus (2005; 2009), I present a proof-theoretic semantics for atomic sen-
tences and their constituent names and predicates that is analogous to standard
model-theoretic semantics. Material inferences are those which are valid in virtue
of their non-logical vocabulary. For example, from ‘Paula is a platypus’ to ‘Paula
is a monotreme’. Brandom’s claim is that names and predicates are governed by
structurally different material inference rules, with the former but not the latter’s
material inferential relations always being symmetric. For example, from ‘Clark
Kent flies’ to ‘Superman flies’ and vice versa. These material inferential relations
between atomic sentences are represented in a bilateralist atomic system by general
rule forms. Applied to subatomic systems, the symmetry and asymmetry Brandom
uses to differentiate names and predicates easily fall out of simple restrictions on
the general rule forms.
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The resulting system has several interesting features: (1) the rules are harmonious
and stable; (2) the rules are analogous to familiar model-theoretic semantics; (3) the
semantics is compositional, in that the rules for atomic sentences are determined
by those for their constituent names and predicates.

I first survey existing work on inferentialist and proof-theoretic semantics for
non-logical vocabulary. Second, I sketch Greg Restall’s bilateralist interpretation of
the classical multiple conclusion sequent calculus, which will be expanded on in this
paper, first to atomics and then to their constituents. Third, I introduce Brandom’s
notion of material inference and show how it can be formalised in an atomic system
— a proof system for atomic sentences. I show that it is “well-behaved’ in the sense
of being both harmonious and stable. Fourth, I use Brandom’s distinction between
names and predicates in terms of their inferential roles to extend the previous
proof system to accommodate subsententials.! This subatomic system allows for a
compositional proof-theoretic semantics analogous to the standard model-theoretic
one, which is a central aim of the paper. Lastly, I finish with some brief concluding
remarks on the paper and possible future research.

§2. Current Work In this section I survey some of the existing literature on
the topic, oriented towards the ways in which this paper’s work draws on but also
differ from previous work in the field. I will begin with the philosophical background
to proof-theoretic semantics (PTS) and then summarise existing applications of
PTS to non-logical vocabulary.?

Philosophically, much work in PTS takes inspiration from Gerhard Gentzen’s
claim that the introduction rules of his natural deduction systems represent the
definitions of the logical constants and the elimination rules the consequences of
these definitions (1969, p.80). Gentzen’s claim naturally lends itself to a theory in
which the meaning of a sentence is understood in terms of a direct verification of
the sentence, expressed by the introduction rules, e.g. Dummett (1991) and Prawitz
(2006). The use of a sentence in assertion is tied up with its method of verification.
Assertions are warranted if the speaker possesses a verification of the sentence, and
so proofs can be thought of as preserving warrant for assertion from premises to
conclusion. This general picture is the norm within PTS (Schroeder-Heister, 2015,
p.160). The background philosophical commitment to understanding meaning in
terms of verification and the formalisation of this within single-conclusion natural
deduction systems, means that the majority of PTS leans towards intuitionistic
and related logics (Schroeder-Heister, 2018, §1.2). An alternative formulation of
the relation between meaning and proofs within the PTS tradition is to treat
the elimination rules of a natural deduction system (or left-rules of a sequent
calculus) as basic and the introduction (or right) rules as derived. This fits with
an understanding of meaning, on which, instead of verification, falsification or

1 Throughout the paper, ‘subsentential’ and ‘subatomic’ are used more or less
interchangeably. Strictly speaking, ‘subsentential’ refers to the constituents of
sentences, whereas ‘subatomic’ refers to the constituents of atomic sentences.

% See Schroeder-Heister (2018) and Francez (2015) for overviews of PTS.
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refutation is treated as fundamental and hence leans towards dual-intuitionistic
logics (Prawitz, 1971, Appendix 2, 1992; Schroeder-Heister, 1991, 2015).3

Despite their differences, the above verificationist and falsificationist forms of
PTS share three features: (i) one speech act, whether assertion or denial, is treated
as basic; (ii) one kind of rule (corresponding to the basic speech act), whether
introduction (right-hand) or elimination (left-hand), is treated as primary and the
other derivative; and (iii) the proof systems involved are multiple-premise\single-
conclusion systems. The current paper’s theory will differ in: (i) treating both
assertion and denial as basic; (ii) treating both kinds of rules as equiprimordial;
(iii) the proof system being a symmetrical multiple-premise\multiple-conclusion
system.

The majority of work in PTS has been focused on the meanings of logical
constants, with the extension of PTS beyond logical constants being identified by
Schroeder-Heister as one of the ‘Open problems in proof-theoretic semantics’ (2016).
There are, however, a number of proof-theoretic approaches to the semantics of non-
logical vocabulary that generalise the dominant verificationist approach.*

Much work in the PTS of non-logical vocabulary draws on Prawitz’s work on
atomic systems (1970; 1971; 1973).° Prawitz defines an atomic system S as a pair
(L,R) of a language £ made up of atomic sentences, and a set of inference rules
R, the premises and conclusions of which are atomic sentences of L. The inference
rules of an atomic system can be seen as meaning conferring, analogous to those of
a logical system. Per Martin-Lof’s early work on inductive definitions (1971), and
Peter Schroeder-Heister and Lars Hallnds’ work on definitional reflection (1990;
1991) can be seen as characterising classes of atomic systems by placing certain
restrictions on the forms of the rules in R.

Schroeder-Heister and Hallnés’ theory of definitional reflection will be summarised
as it is most relevant to the discussion in the rest of the paper. We begin with
defining clauses of the form A < B. A collection of clauses D4, headed by an
atomic sentence A, is the definition of A.

[B1] [By]
A<= B :
Dy B, B, A C C
A A C
A<« B
n Fig. 2. Natural Deduction Fig. 3. Natural Deduction
Fig. 1. Definition Definitional Closure Definitional Reflection

3 Rather than taking falsification as basic, treating elimination rules as meaning confering
is sometimes discussed in terms of prioritising the consequences of assertions, rather
than their verification. See, e.g., Dummett (1991, Chapter 13) and Prawitz (1992).
Understanding the ‘elimination rules first’ approach in terms of falsification, however,
is a better fit with the discussion that follows.

Though see Schroeder-Heister (2015, p.5) for an application of the falsificationist
paradigm to non-logical expressions.

In his (1973), Prawitz refers to these as ‘atomic bases’. I have adopted the term ‘atomic
system’ from Wieckowski (2011, p.220), who provides a critical explanation of Prawitz’s
work and a very different take on the meanings of atomics and their constituents than
the one taken here.
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In a natural deduction setting, the definition D, gives rise to introduction rules
which directly resemble the definitional clauses. These are the definitional closure of
A. Definitional closure is accompanied by the elimination rule, or rule of definitional
reflection. In a single succeedent sequent calculus setting, the definitional closure
and definitional reflection are represented in the following form of rules:

'+ B; '+ B, r,.+-C ... I''B,-C
—DC — DC DR
'A .. T'HA IArC
Fig. 4. Sequent Definitional Closure Fig. 5. Sequent Definitional Reflection

Strictly speaking, the definition is what is primary and the two principles of
definitional closure and definitional reflection give the definition its inferential role
(Schroeder-Heister, 2016, p.273). However, it is difficult not to read the definitional
clauses within D, as introduction (or right-hand) rules. This is partly syntactic,
in that the clauses “look” like the introduction rules in the definition closure of
a sentence. More than this, however, it reflects what Schroeder-Heister calls ‘the
primacy of assertion over other speech acts such as assuming or denying,... implicit
in most approaches to proof-theoretic semantics’ (2015, p.160). This is due to the
directnedness of definitional clauses, which lead from the defining body to the
defined head (Schroeder-Heister, 2015, p.160, 172), i.e. from license to assert the
sentences in the body to that in the head. The elimination rules in the definitional
reflection of a sentence then come off as secondary. This would be contrasted with a
view that takes rejection or denial as basic and dualises the assertion based approach
to definitional reflection (Schroeder-Heister, 2015, §4, 5).

One aspect of definitional reflection that should be noted for the following dis-
cussion is that in contrast to basic logic and similar approaches,® the rule of Cut is
not used in the sequent calculus setting to justify harmony between different rules.

I'FAA T,AFA
TFA

Cut

Rather a uniform approach is taken in both the natural deduction and sequent
calculus systems. However, a relation to Cut may be thought of as implicit in
the approach, as definitional reflection and definitional closure ensure “balance”
between right and left rules as in the principal steps of a Cut elimination proof.
For example, suppose we have the following derivation which first uses definitional
closure and definitional reflection, and then an application of the Cut rule on A.
We may eliminate this Cut on A, pushing the Cut upwards to a Cut on the formula
B; used to derive A in the application of definitional closure:

Tk B IB,FC T,B,FC
DC DR
THA T,AFC T'+B; I,B;FC
Cut Cut
r-cC = I'+C

5 See Sambin et al. (2000) for an outline of basic logic and Schroeder-Heister (2013) for
a comparison with definitional reflection. The approach taken in the latter is closer to
that in this paper.
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My approach to be outlined later in this paper will share these features with that
of definitional reflection. However, it will do so without taking either introduction
(right-hand) or elimination (left-hand) rules as basic.

Sara Negri and Jan von Plato’s work on converting axioms to rules is also
another instance of applying proof theory to non-logical vocabulary, namely that
of mathematical theories (Negri & von Plato, 2008, 2011). Rather than formulating
mathematical theories axiomatically, they show, for a large class of theories, how
axioms may be converted into inference rules for the non-logical vocabulary em-
ployed in the theory. The resulting rules are analogous to those in pure logic in the
sense that the proof systems involving them are normalisable and have properties
analogous to the subformula property. The focus in the current paper is more general
in the sense that it focuses on arbitrary vocabulary rather than mathematically
vocabulary, but is more specific in that it is confined to atomic sentences and their
constituents.

PTS takes the inference rules of a proof system to be meaning conferring. One
way to interpret this is to say that there is nothing more to meaning than the
inference rules, or perhaps that there are strictly speaking no “reified meanings”
at all.” A second approach, is to think of inference rules as meaning determining
in the sense that the proof system can be used to derive standard model-theoretic
denotations.® A third approach, taken by Nissim Francez and his collaborators
(Francez & Dyckhoff, 2010; Francez et al., 2010; Francez, 2015, 2016) is to think of
the inference rules as determining a proof-theoretic semantic value or denotation
rather than a model-theoretic one. For sentential meaning, Francez defines the
semantic value of a sentence S to be a function from contexts I' to the set of
canonical derivations of S from I'. Of importance for the rest of the paper, Francez
has extended this form of PTS to subsentential meanings. Sentential semantic values
are taken as given, and then functional abstraction is applied to extract those of
the subsentential constituents. The semantic value of a subsentential expression is
its contribution to that of sentences, i.e. either a pure argument or a particular
function.

Like Francez’s work, the current paper’s theory will assign proof-theoretic mean-
ings to atomic and subsentential expressions, however, with two major differences.
The first is that the semantic types for different syntactic expressions will be
differentiated in terms of the structure of their inference rules rather than their
functional contribution to that of sentences. The second is that rather than taking
the meanings of atomics as given, as with Prawitz, Martin-Lo6f, and Hallnés and
Schroeder-Heister, the meanings of atomic sentences will be given within the proof
system itself.

Bartosz Wieckowski (2011; 2016) has developed a very different approach to PTS
for atomic and subsentential vocabulary from those inspired by Prawitz, including
that of this paper.? Rather than treating the meanings of atomic sentences as being
given by inference rules linking atomic sentences, Wieckowski treats their meaning

" Hjortland gives this interpretation of Prawitz, Dummett, and Tennant, though in the
course of criticising their position (Hjortland, 2010, p.182, 2014, p.446).

8 See, for example, Garson (2001); Hjortland (2010, 2014); Restall (2009).

9 The current paper’s title is, however, a riff on Wieckowski’s ‘Rules for Subatomic
Derivation’ (2011).
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as being given by the way in which atomic sentences are derived from the defeasible
information associated with their constituent terms. In Wieckowski’s subatomic
systems, terms, both nominal and predicates, are assigned sets of atomic sentences
in which they feature. These are their term assumptions, that can be interpreted
as the defeasible information associated with the terms. An atomic sentence can be
derived (via an introduction rule) from the term assumptions of its constituents if
it is contained in their intersection. Atomic sentences can be eliminated to derive
term assumptions for each constituent that are singletons containing the eliminated
atomic sentence.

Wieckowski understands the meaning of atomic sentences as determined by the
introduction rules (the derivations from term assumptions of the sentence) and
the meaning of terms (whether nominal or predicate) to be determined by the term
assumptions associated with it in normal form subatomic derivations. Wieckowski’s
is a very different take on PTS for atomics and subsententials than that of Prawitz,
Martin-Lof, Hallnds and Schroeder-Heister. In what follows the theory I will be
presenting is more similar to the latter than Wieckowski’s, in as much as it takes
both the meanings of atomics and their constituents to be determined by inference
rules rather than treating the two as different.

The theory outlined in this paper draws heavily on Robert Brandom’s work
(1994; 2000; 2008). Although Brandom provides philosophical views about the
meanings of non-logical expressions there is little work formalising them. Bran-
domian approaches have tended to focus on formalising the notion of logical vo-
cabulary “making explicit” underlying material inferential relations. E.g. Negation
as explicating incoherence and the conditional as explicating material entailment
(Lance & Kremer, 1994, 1996; Lance, 2001; Piwek, 2011; Brandom & Aker, 2008).
Recent work by Ulf Hlobil (2016) and Shuhei Shimamura (2017) have both begun
with a non-monotonic consequence relation for an atomic base and extended this
with logical vocabulary within a sequent calculus, where the entailments within
the atomic base are used as axioms in the logical sequent calculus. The theory
that follows will differ from this work in two respects. First, like Brandom &
Aker (2008), it will present a monotonic system, similar to the incompatibility
entailments discussed in (Brandom, 2008). Second, it will present a sequent calculus
for the atomic base itself rather than treating this as given. Recent work by Preston
Stovall (2019) has provided an inferentialist expressivist theory of characterising
generics and shown how existing theories of generics can be formalised proof-
theoretically. However, unlike the theory presented in the this paper, Stovall focuses
on a particular kind of non-logical vocabulary rather than the general case.

§3. Bilateralism In this section I briefly sketch a bilateralist interpretation of
the classical multiple conclusion sequent calculus, drawing on the work of Greg
Restall (2005; 2009; 2013). In the following sections, it is extended to atomic
sentences and their constituents, predicates and names.

Bilateralism is a kind of semantic pragmatism — the claim that meaning (seman-
tics) depend on use (pragmatics), where the point of attributing meanings is to
explain (or prescribe) aspects of use. Expounding this position Brandom says:

[I]t is pointless to attribute semantic structure or content that does
no pragmatic explanatory work. It is only insofar as it is appealed
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to in explaining the circumstances under which judgments and
inferences are properly made and the proper consequences of doing
so that something associated by the theorist with interpreted states
or expressions qualifies as a semantic interpretant, or deserves to
be called a theoretical concept of content (1994, p.144).

Importantly, this is a normative rather than dispositional pragmatism (e.g. Hor-
wich (1998)) — meaning is determined by norms of correct use not patterns of
actual use. This leaves open the question: which norms of use? Bilateralism and
unilateralism are two different answers to this. Unilateralists are those, such as
Brandom (1994) and Dummett (1991), who answer that the single speech act of
assertion determines meaning. There are many kinds of bilateralism (Price, 1990;
Rumfitt, 2000; Restall, 2005; Francez, 2014). However, what is shared between
them is the view that norms of both assertion and denial determine meaning,
where denials of A are not simply assertions of —=A. Here I adopt Restall’s take
on bilateralism as an interpretation of the classical multiple conclusion sequent
calculus. He gives three main motivations for bilateralism:

1. Many speakers appear to (developmentally) be able to deny propositions,
before being able to assert negations;

2. Assertion and denial provide a framework for both classical and some non-
classical logics. Classical logicians treat the assertion [denial] of a proposition
together with its negation as incoherent, whereas many non-classical logicians
will treat either the assertion or denial of both propositions together as co-
herent; and

3. It shows how consequence relations place cognitive constraints on us. Assert-
ing A does not require one to assert all of its logical consequences nor actively
form beliefs about them. Rather, asserting A rules out denying A’s conse-
quences. Similarly, denying A rules out asserting A’s antecedents (Restall,
2005).

To simplify talk about interactions between assertions and denials we introduce

the notion of a position
r:A

made up of the possibly empty finite multisets of sentences asserted I' and denied
A. These positions are bound by norms of coherence and incoherence. I' - A
will be written to mean that the position I' : A is incoherent. This provides a
natural reading of the classical multiple conclusion sequent calculus. Below are
some standard rules for the logical connectives:'°

IAFA T,BFA THAA 't B,A
VL VR1 ————————— VRas
T,AVBFA TFAVB,A TFAVB,A
T,AFA T,BFA I'FAA TFBA
I ———— N T ALg VR
T,AANBF A T,AANBF A TFAAB,A

19 We write T', A for the multiset T + [A]. The multiset T+ [A4] is the sum of the elements
of I" and of [A]. See Singh et al. (2008) for an overview of multiset theory.
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THAA T AF A
-L -
T.-AFA Th-AA

Read the turnstile as recording that it is incoherent to assert all to the left of the
turnstile together with denying all to the right. The left rules [L] govern assertions
and the right rules [R] govern denials. Top-to-bottom, each rule says that if the
positions above the line are incoherent, then so is the position below the line. If we
contrapose this reading, then reading the rules bottom-to-top, they say that if the
position below the line is coherent, then so is at least one of those above the line.
E.g., =L says that if is incoherent to deny A, in the context of asserting all of T’
and denying all of A, then it is also incoherent to assert —=A in the same context.
Read the other way, it says that if is coherent to assert —A in some context, then
it is coherent to deny A also. The two negation rules have the effect of making
the assertion [denial] of a negation and the denial [assertion] of its negand have
equivalent force. A logic with truth “gaps” or “gluts” will modify these to remove
one or both of these equivalences.!!

The structural rules also have natural readings as governing assertions and denials
in general:

Fig. 6. Structural Rules

IFAA T,AFA

Id Cut

pkEp I'A

T'FA T'FA
—— KL — KR
I''AFA I'EAA
I'N'AAFA I'HAAA
—— WL —— WR

I'NAFA 'FAA

Id records the basic incoherence of asserting and denying the same thing.'? In
contrast, Cut read bottom-to-top tells us that assertion and denial are exhaustive
in the sense that if a position I' : A is coherent, then extending that position with
one of either asserting or denying A results in a coherent position. Top-to-bottom,
it tells us that if neither the extension of a position I' : A with the denial nor the
assertion of A is coherent, then the incoherency is within the position I' : A itself,
i.e. ' F A. Weakening K and contraction W follow naturally, as, for the former,
once a position is incoherent adding in more assertions or denials won’t remove
this, and for the latter, the number of times an assertion or denial is made does not

' The logics K3 (Kleene, 1952) and LP (Priest, 1979) are examples of “gappy” and
“glutty” logics respectively.

12 This version of Id strictly speaking only applies to atomic sentences p. In most systems,
the rules are set up to allow for derivations of A - A for any sentence A of arbitrary
logical complexity.
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matter for the position’s coherence or incoherence.'® The structural rules in Figure
6, except Cut, will be assumed for the atomic and subatomic systems discussed in
the rest of the paper. However, the systems under discussion will have the feature
that Cut is an admissible rule.

8§4. Material Inference and Atomic Systems Restall’s bilateralism pro-
vides an inferentialist semantics for logical vocabulary, where the meanings of
logical constants are their inferential roles, represented by rules in a proof system.
What though, about non-logical expressions and logically atomic sentences? This
section shows how a notion of material rather than formal logical inference can
accommodate these cases and be appropriately represented in a proof system. First,
the notion of material inference is introduced. Second, proof systems for material
inferences are defined, and third given general rule forms. These are then shown to
be well behaved.

4.1. Material Inference An inferentialist semantics that goes beyond logical
vocabulary requires a notion of valid inference other than just that of being logically
valid. To see this, suppose that ‘valid inference’ were assimilated to ‘logically valid
inference’. The following is an example of a logically valid inference

If it’s tasty then I'll eat it. It’s tasty.
T’ll eat it.

This has the logical form A — B, A + B. That the conclusion follows from the
premises need have nothing to do with the meanings of A and B. The problem
for an inferentialist who restricts their inferences to only those that are logically
valid, is that logically valid inferences cannot, in general, tell us about the meaning
of the non-logical vocabulary involved. Rather than just those inferences that are
valid in virtue of their logical form, inferentialists need to also attend to those that
Brandom calls material inferences (Brandom, 2000, Chapter 1, §5, 1994, Chapter
2, IV.2.). These are inferences that are valid in virtue of their conceptual contents
or non-logical vocabulary. E.g.

Paula is a platypus

Paula is a monotreme

This inference isn’t logically valid as it is an argument of the (logical) form p F q.
Rather, it is valid in virtue of the contents of ‘platypus’ and ‘monotreme’. It is these
conceptual contents constituted by material inferential relations which can be made
explicit by logical vocabulary.!* Logically valid inferences can be understood as

13 Sequent systems also sometimes include a rule of permutation (exchange) which allows
one to change the order of premises or conclusions. We are, however, working with
multisets which make order irrelevant.

Brandom also makes the point that many materially valid inferences are non-monotonic.
For example, that from ‘It is raining’ to ‘I should bring my umbrella’ (Brandom, 2000,
p.87). This will not play a major role in the following discussion. The inferential
relations considered here are closer to his incompatibility entailments focused on in
(Brandom, 2008). See Hlobil (2016) and Shimamura (2017) for work on Brandomian
non-monotonic systems.

14
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those materially good inferences which remain good when holding logical vocabulary
fixed and substituting arbitrary non-logical vocabulary. They are good in virtue of
the contents of logical expressions (Brandom, 1994, p.104, 2000, p.55).

4.2. Atomic Systems, Local Soundness and Completeness Using Bran-
dom’s notion of material inference as a philosophical basis, I now formalise this idea
by modifying Dag Prawitz’s notion of an atomic system, discussed in §2. This notion
of an atomic system includes an assignment function in addition to a language and
a set of rules.

Atomic System: an atomic system is a triple (£, R,v) of a language L, a set of
inference rules R, and an assignment function v.

By stipulation, £ is made up only of atomic constants (this will be lifted in §5.3.). R
is made up of inference rules linking atomic formulas. v is function from subsets of R
to expressions in £. Rather than restricting the rules in R to behave appropriately,
restrictions on v are introduced throughout the rest of the paper.

As it stands, there are no constraints on the rules assigned by v. In PTS inference
rules are often restricted so that they stand in the right kind of relation to one
another. A common restriction on the inference rules assigned to logical expressions
is that they be harmonious. In a natural deduction setting, harmony is often
understood in terms of not being able to infer anything more from the elimination
of an expression than from the grounds for its introduction. A further requirement,
sometimes called stability, is that we can infer no less from the elimination of a
logically complex sentence than from the grounds for its introduction.

A AtonkB
———————tonkl ———— tonkE
AtonkB B

Connectives like T'onk (Prior, 1960) appear to violate these requirements. It violates
harmony because the conclusion of the elimination rule is not contained in the
premise of the introduction rule (it gains information). Tonk also violates stability
because the main premise of the introduction rule is not included in the conclusion
of the elimination rule (it loses information).

The take on these requirements adopted here is due to Frank Pfenning and
Rowan Davies, which they call local soundness and completeness (LSC) (Pfenning
& Davies, 2001), with soundness corresponding to harmony and completeness to
stability.'® In a natural deduction system, the elimination rules for a connective
are sound relative to the introduction rules, when every derivation involving the
application of the introduction and then the elimination rules can be reduced to

15 Dummett (1991) provides a more philosophical discussion of the motivations for
harmony and stability. The notions of harmony and stability are notoriously difficult
to pin down across different logics. See Standefer & Hjortland (2018) for a recent
discussion of the literature. What follows is not the account of harmony and stability,
but rather one which fits naturally with the form of bilateralism adopted.
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one involving neither. E.g. conjunction

AN B 'm AN B Lo
A — A B — B

The elimination rules are complete relative to the introduction rules when every
derivation of a complex sentence can be expanded into one where first the elimina-
tion and then the introduction rules are applied. Conjunction again:

.71‘1 .7|'1

ANB AADB
. NEq NEo

E ™1 A B
ANB — ANB

NI

As can be seen, requiring LSC rules out Tonk, because it violates both local
soundness (harmony) and local completeness (stability). LSC as an approach to
harmony and stability has two advantages which should be emphasised. First, it
fits well with bilateralism because it need not prioritise one kind of rule over the
other. Although I gave priority to the introduction rules above, the elimination rules
could just as easily have been taken as basic. Second, it fits well with inference rules
for atomics and subsententials because, as will be seen in the next section, each of
these rules is just as much an introduction as an elimination rule. This contrasts
with some other theories (e.g. (Francez & Dyckhoff, 2010; Hallnés & Schroeder-
Heister, 1991; Schroeder-Heister, 1992)), which prioritise one of the introduction
(right-hand) or elimination (left-hand) rules and assign a particular form to the
other.

In (Pfenning & Davies, 2001), LSC relates to natural deduction rather than
sequent calculus. In the sequent calculus rules for logical connectives, vocabulary
is only ever introduced rather than eliminated. However, as will be seen in the
next section, with sequent calculus rules for material relations between atomic
sentences the situation is like natural deduction where one expression is eliminated
and another introduced. Thus LSC is apt for the sequent calculus as well. In the
next section LSC is applied to general rules for material inference.

4.83. Concept Clusters and General Rule Forms A general framework for
material inference rules in the classical multiple conclusion sequent calculus is now
introduced, showing rules that are instances of this general form to be locally sound
and complete. First, several examples of material inference rules are introduced.
Then the material inference rules are represented diagrammatically along with the
general form of the rules within the sequent calculus. Lastly, these general rules are
shown to be locally sound and complete. Atomic systems restricted in such a way
that the assignment function v only assigns rules of this form to expressions are as
a result guaranteed to be locally sound and complete also.
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4.3.1. Ezamples Before moving on to material inference rules in general, I briefly
describe three examples. First, the example of “conjunctive” relations between the
atomics B, S, F, and Y'¢ as represented below:

Fig. 7. Bachelorette Example

B Carmel is a bache-

B
lorette
S Carmel is single
F Carmel is female '-SSA THEFA THFY A
Y Carmel is young S F Y T B,A HR

Above we have an R-rule for B and diagrammatic representation to its left.!”
These diagrams will become useful in the next section to represent larger languages
with many inferential relations. Second, below are “disjunctive” and “negation”-like
relations between the atomics O, E, and N:

Fig. 8. Number Example

O F
O 2isodd T'-0,A I'-E,A
E 2 is even N —— NR;y ————— NR»
N 2 is a number I'ENA I'ENA
T'HEA '-0,A

———————OL ————— FEL
T,0F A ,EFA

In the first two examples, although strictly speaking involving inferences between
atomic sentences, in their English translations it is the predicates which appear to
be doing the work. Below is an example where in the English it is the names doing
So:

Fig. 9. Super Example

S
S Superman flies

C Clark Kent flies rec.A I,CFA

C SR SL
TFS A T.SFA

As can be seen, in each of these examples inference rules both introduce and
eliminate expressions at the same time. This is a good reason to opt for an approach
to harmony like LSC which does not prioritise one kind of rule over the other.

16 Readers may wish to replace ‘young’ with ‘of marriageable age’.

17 The rules in these examples are for illustrative purposes. In actual systems, vocabulary
will have many more rules ensuring that each expression has left and right rules. See
figures 13, 14 and 15 for full systems of rules for these examples.
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4.8.2. Concept Clusters As will be seen in §4.3.3., even a small collection of
expressions will require a relatively large number of rules to characterise their
inferential relations. To make these inferential relations easier to visualise we can
represent them diagrammatically (though the inference rules should still be seen as
conceptually prior).

Fig. 10. Concept Clusters

Incompatibility
< ;
P P, P, P
Sufficiency ] Necessity
C c, Cy C, C

Compatibility

These diagrams represent what we will call a “concept cluster”.

Concept Cluster: A concept cluster is a pair (P, C) of parents P and children C,
where for some m,n > 1, P = {Py,..., P} and P = {C4,...,C,}, and at most
one of m,n = 1.

When m = 1 we call the cluster a single-parent cluster and will sometimes write P;
simply as P; when n = 1 we call the cluster a single-child cluster, and sometimes
write Cy as C. In reference to the visualisation of concept clusters in the above
diagrams, when m > 1 or n > 1 we say that the cluster is branching, upwards or
downwards respectively. When just one of m,n = 1 we call P;,C; the root of the
cluster. Each member of PUC is an atomic sentence (in §5. clusters made up of either
predicates or names will be considered). Intuitively, a concept cluster represents an
expression along with those that it is immediately semantically linked with, so as
to form exhaustive and non-overlapping partitions, such as those in figures 7, 8 and
9. The rules for a cluster are represented by the lines in the diagrams: vertical lines
represent inferential relations between parents and children, whereas the horizontal
dotted lines represent (incompatibility) inferential relations between parents. The
examples seen so far have been concept clusters unconnected to each other, but in
more complex languages, one expression may be part of many clusters, and so for
their rules also (see Figure 11 below).

In the earlier examples there were rules representing three kinds of relations, those
of sufficiency, necessity, and incompatibility. Within a concept cluster different roles
can be identified according to these relations. Each parent is (by itself) a sufficient
condition for each of its children. Conversely, each child is (by itself) a necessary
condition for each of its parents. Necessity goes up, while sufficiency goes down the
diagrams. Parents are incompatible with each other, whereas children are compat-
ible, in the sense that the rules for children do not entail their incompatibility.
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Fig. 11. Example Collection of Concept Clusters
F G H I

Figure 11 above is a collection of several concept clusters linked together. Each
cluster whose root is a child is marked by different coloured branches. Note that
because D is a parent of both A and B, it also the root of the cluster ({D}, {A, B}).
4.8.3. Rules Although the above diagrams make inferential relations easier to
visualise, strictly speaking what’s conceptually prior are the inference rules. The
diagrams represent collections of rules that have a particular, and desirable, shape.
What’s needed is a general form of rules that correspond to these. A restriction
can then be placed on atomic systems requiring all rules to conform to this general
form. The general form of rules being considered is given below in Figure 12:

Fig. 12. General rule forms

TP, A T,Cy,...,Co - A
——————CR PL;
T'HCj, A T,P A
TP FA .. T,PpFA TP, A
CL Pi#P; ——_ PL2
T,Cy,..,Co - A I, P+ A

TFC,A .. TFC,,A T,P,FA .. T,P,FA
R
T'HP,A

- {i,....k}={1,... mN\{j}

Each parent and child have rules introducing [eliminating] it on the left and on the
right.

e CR represents parents’ sufficiency for their children. The incoherence of a
position that denies a parent is transferred to one denying a child.

e P11, represents the other side of the same relation as in CR, namely, children’s
necessity for their parents. The incoherence of a position asserting all the
children is preserved to one that asserts a parent. Note that with weakening,
incoherence of asserting all children together follows from that of asserting
one.

e (L represents the way in which at least one parent is required for any children.
Incoherence of asserting each parent is transferred to that of asserting the
children.

e Pl represents incompatibility between parents.

e PR is the reverse of the previous two. If some parent is required for any child,
then commitment to each of the children, and rejection of all but one of the
parents requires commitment to the remaining parent.



SUBATOMIC INFERENCES 15

The rules have been phrased in a way which is neutral regarding the number of
parents and children. In any actual cluster there will either be single-parent (m = 1)
or single-child (n =1).

The rules can be illuminated better by applying them to the examples from
§4.3.1. The following figures 13, 14, and 15 are the resulting instances of “plugging
in” the number of parents m and children n from each concept cluster in §4.3.1. to
the general rules in Figure 12. As can be seen below, the general rules will produce
particular rules of different shapes given particular numbers of parents and children:

Fig. 13. Number, Odd, Even ({O, E},{N}) Rules

T'-O0,A T E,A I,NFA I,NFA
—_———— NR4 ——_——— NRs OL4 E
THN,A THN,A T,0FA ILEF A
IOFA T,EFA T'-O,A I'FEA
NL I — ) DD ————OL»
I,NFA T,EFA T,0FA
T'-N,A I,EFA T-N,A I,OFA
OR ER
T'kO,A T-E,A

The ({0, E},{N}) concept cluster from the example in Figure 8 is a cluster with
two parents (m = 2) and one child (n = 1). In the above Figure 13 for the cluster’s
rules, the general rules have been instantiated as follows: C'R has become the two
NR rules. PL; has become OL; and EL;. CL has become NL. The general form
of the rule allows for multiple children to be introduced on the left. However, for
those like ({O, E}, {N}) which are single-child clusters, the instance of this rule will
only introduce one child on the left. PLy has become OLs and ELs. Lastly, PR has
become OR and ER. As there are only two parents and one child, the premises for
these instances of the rule are much simpler than the general rule itself.
Below are the instances of the general rules for the ({B},{S, F,Y}) cluster:

Fig. 14. Bachelorette, Single, Female, Young ({ B}, {S, F,Y}) Rules

TFB,A TFB,A TFB,A
——— SR - o L FR TLv A YR
THS,A THFA THY, A
I,S,F,YFA I,BFA T'FS,A TFEA TFY,A
BL S,FYL BR
I,B+A IS, F,YFA T+ B,A

This is a single-parent cluster (m = 1) with three children (n = 3). The rules in
the cluster are similar to those for ({O, E},{N}) but with some differences due it
being a single-parent, multi-child cluster (rather than multi-parent, single-child).
The instance of CL, the rule S, F, YL, therefore only has one premise sequent and
introduces multiple formulas in the conclusion sequent. BR, the instance of PR,
also differs in requiring derivations on the right of many children but none on the

Ly
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left of other parents. Lastly, those for the earlier non-branching ‘Superman/Clark
Kent’ cluster ({S},{C}):

Fig. 15. Superman, Clark Kent ({S}, {C}) Rules

kS, A TS+ A T-C,A I,CFA
CR CL SR S
T-C,A I,CFA TFS,A T,SFA

L

This is both a single-parent (m = 1) and single-child cluster (n = 1). There is no rule
corresponding to PLs because there is only one parent. As will be important when
discussing subsententials, clusters with branching result in asymmetric inference
rules whereas the rules for those without branching are symmetric.

4.8.4. General Local Soundness and Completeness 1 now show that the above
general rule forms are locally sound and complete (LSC). LSC is shown for each
cluster rather than each expression. The general rule forms are divided into two
groups. The first group are right-hand rules for children and left-hand rules for
parents. The second group are the converse of the first, being left-hand rules for
children and right-hand rules for parents. The second group will now be shown to
be locally sound and complete relative to the first.

Fig. 16. First Rules

TP, A T,Ch,...,Co - A TP, A
CR PL, P#P;—————7P
T'HCjA TP+ A I, P+A

Lo

In terms of the visualisation of the rules in diagrams, think of the first rules as
those showing movement from parents down to children or across to other parents.
Parents are sufficient conditions for children (‘odd’ to ‘number’) and incompatible
with one another (‘odd’ and ‘even’).

Fig. 17. Second Rules

IPiFA .. T,P,FA
T,Ch,...,C - A

CL

IFC,L,A .. TFC,LA T,PFA .. T,P A
R
T'HP;,A

- {iyeok}={1,.... m}\{5}

Think of the second rules as those showing, in the diagrams, movement from
children up to parents (from ‘single’, ‘female’ and ‘young’ to ‘bachelorette’).

Local Soundness: The second rules are sound relative to the first as one can apply
the second rules to the outputs of the first rules, resulting only in the inputs for
the first rules. No information is gained through the application of the second rules
which is not already “contained” in the application of the first. Derivations which
apply the first and then the second rules of the one cluster can be reduced to ones
that do not.
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Fig. 18. Soundness of PR relative to CR and PLs2

™ ™ ™ ™

kP, A TP, A kP, A TP, A
——— 1R CuR PjLa ————— P
TFCh,A .. TFC.,A W TP kA
TF P A fR
— TFP,A

Fig. 19. Soundness of CL relative to PL1

F,Cl, ,Cn}_A F,Cl, ,CTL'_A
P11y PpLy
LPEA I,P,+A

.o

— T.C1,..Chk A

Local Completeness: The second rules are complete relative to the first as one can
apply the first rules to the outputs of the second rules, resulting in the inputs for
the second rules. No information “contained” in the application of the first rules is
lost through the application of the second. Derivations of children on the right and
parents on the left can be expanded into ones which eliminate, using the second
rules, and then introduce, using the first rules, the same expressions on the right
and left respectively.

Fig. 20. Completeness of PR relative to CR and PL;

Lom . - N
I'FCLA .. TFCWLA T,PFA .. T,PFA
T+ P,y R
TFCLA it
- T
— T,CiLA
THCLA .. TFCW,A T,BFA .. T,PFA
T+ P, A b
T.PFA Fite

s
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Fig. 21. Completeness of C'L relative to PL;

D om Do
[P FA I,P,FA
T,Ch,...,Co A

I,PFA

C1,...,CnL

Pi1Ly

™1

— T.PFA

Note that on these definitions it is irrelevant which rules are chosen as “first” and
“second”. The first rules could have been shown to be locally sound and complete
relative to the second. This feature fits well with material rules because each both
introduces and eliminates vocabulary.

What the above shows is that the general form of rules is locally sound and
complete. This leads to the first restriction on the assignment function v of the
atomic systems being considered. We restrict v so as to only assign rules of the
general form given in Figure 12, therefore guaranteeing that any such system will
be LSC as well.

One might be concerned that the two sets of rules are gerrymandered into those
that give LSC rather than a principled division.'® LSC is normally used in a natural
deduction setting where rules are divided into introduction and elimination rules,
which are then shown to be harmonious and stable relative to each other. In a
standard sequent calculus, all rules are introduction rules, which either introduce vo-
cabulary on one of the left or the right of the sequent. In these systems, elimination
of principal cut formulas and derivation of identity sequents for arbitrary formulas
often corresponding to harmony and stability.!? Neither of these exact divisions are
available in the case of material inferences. The natural deduction style division of
the rules into introduction and elimination rules doesn’t work because each rule
simultaneously introduces and eliminates vocabulary. The standard sequent style
division into left and right introduction rules isn’t exactly fitting either for the
same reason - each rules is one of a left or right introduction rule, but it’s also a
left or right elimination rule. The division into first and second rules does however
have a natural structure similar to the standard divisions. The first rules are left-
hand rules for parents and right-hand rules for children, which would correspond to
natural deduction rules eliminating parents and introducing children. The second
rules are right rules for parents and left rules for children, which would correspond
to natural deduction rules introducing parents and eliminating children. This sort
of division fits naturally with “impure” rules that simultenously eliminate and
introduce expressions.

What has been shown so far is that the system of rules for each of the concept
clusters is locally sound and complete. What hasn’t been shown is that a whole

18 T would like to thank Peter Schroeder-Heister and an anonymous reviewer for raising
this point.

19" See, for example Dosen (1989); Sambin et al. (2000); Schroeder-Heister (2013); Restall
(2019).
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language built up from many clusters is globally so. The global correlate of local
soundness is the admissibility of the structural rule of Cut in a system without
it. Demonstrating that Cut is admissible requires showing that for any derivation
using the Cut rule, there is one of the same end-sequent which does not use Cut.

TFAA T,AFA
TFA

Cut

Cut’s inadmissibility would have two undesirable features. Read top-to-bottom, it
would allow for expressions which “gain information” in the sense of allowing more
information to be extracted than is put in. E.g. A may be sufficient conditions
for B, B sufficient conditions for C, but A not sufficient conditions for C. Read
bottom-to-top, it would allow for situations where a position I : A is coherent, but
for some sentence A, neither the extension of I' : A with the assertion of A nor with
the denial of A is coherent. Luckily, Cut is admissible in the above atomic system,
meaning that it is globally sound (see (Tanter, 2017, Appendix B) for the proof).

The global equivalent of completeness is an identity proof for arbitrary sequents
of the form A F A. Id reads as saying for any atomic sentence, it is incoherent to
both assert and deny it at the same time:

1d
pkp

Normally the identity axiom applies only to atomic sentences, and identity sequents
for expressions of arbitrary logical complexity are shown to follow from Id and
the connectives rules. A failure of general identity proofs allows for expressions
which lose information, in contrast to failures of Cut gaining information.2° More
worryingly, in terms of assertion and denial, it allows for the coherent assertion
and denial of the same sentence. The languages under discussion are atomic. What
corresponds to general identity proofs in these language are ones showing that given
the identity axiom for the parents of a cluster, we can derive it for children and
vice versa (see (Tanter, 2017, Appendix A) for the proof).

Three objections might be raised to this take on LSC. The first questions why
LSC should hold for clusters rather than individual expressions; the second, why
LSC should hold at all; and the third, why LSC rather than another method
is used. The first objection says that given LSC holds for individual logical ex-
pressions then it should hold for individual non-logical expressions. This misses
an important difference between material inferential relations and those involving
traditional logical constants. The rules for logical constants are given in terms of
arbitrary expressions of a particular type, and the rules do only one of introducing
or eliminating an expression. Because of this the inference rules for constants aren’t
dependent on those for any other particular expression. In contrast, material rules
relate particular expressions to one another, introducing one and eliminating the
other. They are inherently relational, and so LSC cannot be characterised as a
property of a single expression but rather a concept cluster.

The second objection says that LSC is required for logical expressions but not
material, non-logical ones. Brandom, for example, claims that inasmuch as there
is a notion of harmony for non-logical expressions, it differs from that of logical

20 See §4.2. for information loss and gain.
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expressions. One might think that this undermines the case for applying LSC to
material concepts. The distinction, however, that Brandom makes between logical
and material expressions is that the addition of the former but not the latter must
yield conservative extensions of the language, in order for logic to play an explica-
tive role (Brandom, 2000, p.68). Brandom claims that the addition of material
concepts may be non-conservative and this ‘non-conservativeness just shows that
it has substantive content’ (2000, p.71). However, nothing said so far requires the
extension of a language with a new material expression to always be conservative.
It may sometimes be the case but is not required. This fits with Brandom’s claim
that ‘[g]rooming our concepts and material inferential commitments... is a messy,
retail, business’ (2000, p.75).

The third objection claims that LSC is unnatural in a sequent calculus setting.
The objection goes that LSC is fitting for natural deduction systems, but in sequent
calculus the natural route is to demonstrate harmony by deriving one set of rules
from the other using Cut (e.g. (Dogen, 1989; Sambin et al., 2000; Schroeder-Heister,
2013; Restall, 2019)).2! However, LSC rather than Cut is appropriate in this context
for two reasons. First, the reason that Cut rather than LSC is normally used for
sequent calculus is because in a standard sequent calculus, Cut is the only rule that
eliminates vocabulary.?? In the atomic systems under discussion, however, all rules
both eliminate and introduce vocabulary, meaning that LSC is applicable. Second,
instead of assuming Cut as basic, the aim is to use the local property of LSC to
show that when this holds that Cut is admissible globally. Assuming Cut from
the start would get things the wrong way round. In fact, a consequence of the rules
being locally sound and complete is that as long as the structural rules of weakening
and contraction are present, cuts on principle constituents can be eliminated (see
(Tanter, 2017, Appendix B)), in a way similar to the relation between Cut and
Schroeder-Heister and Hallnés’ definitional reflection.

§5. Subsententials

5.1. Introduction Moving beyond logical vocabulary and sentential semantics
to that of subsententials presents an apparent challenge for inferentialism. It may
not be obvious how to extend the inferentialist philosophical thesis about meaning
to subsentential expressions such as names and predicates. Unlike sentences, these
expressions do not stand in directly inferential relations. So they must, in some way,
contribute to the inferential role of sentences (Brandom, 1994, p.363-4), analogous
to a truth-conditional semantics, where the constituents’ semantic contributions
determine the whole sentence’s truth-conditions without themselves necessarily
having truth-conditions. First, I use the previous inference rules for atomics and
apply them to names and predicates, showing that they can accommodate Bran-
dom’s inferentialist distinction between the two in terms of their inferential roles.
Brandom’s thesis is that names and predicates are distinguished by the former
only standing in symmetric inferential relations (Brandom, 1994, Chapter 6, 2000,

21 T would like to thank Peter Schroeder-Heister for raising this concern.
22 Contraction of course eliminates an instance of an expression.
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Chapter 4).22 T then show show that the general rules can accommodate these
relations in a compositional semantics.

5.2. Model Theory 1 now set up an analogy with more standard extensional
model-theoretic semantics and then show how the analogous structure can be
represented proof-theoretically in subatomic systems.

Model-theoretic semantics has a standard story about predicates and names. The
latter are assigned single objects and the former n-tuples of objects, interpreted as
them referring to individuals and properties respectively. Inferentialists need to
draw this distinction in terms of inferential relations rather than kinds of reference,
with Brandom arguing that names are distinguished from predicates by only stand-
ing in symmetric inferential relations. Before showing how our inference rules can
accommodate this, we show that it agrees with model-theoretic semantics on the
underlying structure.

To set up the analogy with model theory, take a simple language £ with only the
syntactic categories of names ¢, n-place predicates P,, and sentences S of the form
Ppty, ..., t,. A model M is a triple of £, a domain D, and an assignment function
v which assigns objects from D to expressions in £. v assigns to sentences one
and only one of the truth values true or false, to names individual objects, and to
n-place predicates sets of n-tuples of objects from the domain. The assignments to
expressions are their semantic values. v is restricted such that the value of a sentence
P,tq,...,t, is the true iff the n-tuple of the values of the names within the sentence,
t1,...,tn, is a member of the value of the predicate P,. Put less formally, names pick
out individual objects, predicates sets of (n-tuples of) objects which satisfy them,
and sentences are true iff the object(s) picked out by the names in the sentence
satisfy the predicate in the sentence. This semantics is compositional in that the
meanings (values) of sentences are a function of the meanings of their constituents.
Importantly, although truth plays a central role, subsentential expressions don’t
have truth values; rather, they contribute to the truth-values of sentences.

Define model-theoretic consequence such that a sentence A of L is a consequence
of some (possibly empty) set of sentences I' of £ iff there is no model in which all
of T' are true and A is false. Truth is preserved from premises to conclusion. Using
this, define “substitution-consequence” relations for subsententials like so: a name
[predicate| a [F] is a substitution-consequence of another, b [G], iff for each sentence
S containing a [F], the substitutional variant S/% [S/%] obtained by replacing
some number of a [F] by b [G] entails S.2* A subsentential entails another of the
same category so long as truth is preserved under substitution. These substitution-
consequence relations between names will always be symmetric because the values of
names are single objects — the value of one is a member of that of some predicate iff
the other is as well. The relations between predicates, however, can be asymmetric
because their values are sets of (n-tuples of) objects. The value of one might be a
proper subset of another in all valuations, allowing truth-preservation one way but

23 Brandom is officially telling a story about singular terms in general rather than just
names. However, only names are treated here because they usually have no internal
structure, whereas that of others such as definite descriptions brings with it other
complications.

24 Semanticists often refer to this sort of relationship simply as ‘entailment’ and speak of
entailments between predicates. See, e.g., Sharvit (2017).
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not the other.?> This structure of symmetry for names and asymmetry for predicates
is shared by both model-theoretic representationalist semantics and Brandom’s
inferentialism. They can agree on the general structure while still disagreeing about
the relative priority of representation and inference.

5.3. Inference Rules Here I show how the general inference rules from the
previous section apply to subsententials and that asymmetry and symmetry corre-
sponds to branching and non-branching concept clusters.

Inference rules for subsententials are formulated as in 1 and 2 below:

'k ®(a),A 1 IGay...a, A 5
TFob),A  T,Foj.onk A

In rules such as 1 for names, the names, here ¢ and b, stand in an arbitrary
predicate context, represented by ®. In those for predicates, such as 2, the n-
place predicates, G and F, stand with an n-tuple of arbitrary names «;...cv,,. ® and
a1 ...a, respectively play an analogous role to the arbitrary As and Bs in rules for
connectives.

Brandom’s thesis that names and predicates are distinguished by standing in
symmetric only and asymmetric inferential relations respectively can be captured
by subatomic systems. Before showing this, I show that our rules in general can
accomodate symmetric and asymmetric relations, corresponding to non-branching
and branching concept clusters.

Fig. 22. General rule forms

TP, A I,Cy,..,Ch - A
——————CR PL,
NN TP A
IPFA .. T,PpFA TP, A
CL Pi#P; —— PL»
T,Cy,..,Co - A I, P+ A

TFC,A .. TFC,,A T,P,FA .. T,P,FA
R
T'HP,A

- {i,....k}={1,...mN\{j}

Instances of these general rules will be symmetric or asymmetric depending on
whether their concept cluster branches, i.e. when m > 1 or n > 1. If a cluster
branches, the inferential relations between parents and children will be asymmetric.
With upwards or downwards branching, CR and PL; can both be used to derive
P; = C; — they are different perspectives on the same inferential relation. However
Cj ¥ Pi, because either only Cy,...,C, = P; with downwards branching, or only
C, F Pi,..., P, with upwards branching due to CL and PR.? Branching clus-
ters capture asymmetric inferential relations. With non-branching clusters, each
of CR, PL;, CL, and PR is a single-premise single-conclusion rule, allowing for

25 This way of doing things will only work if we restrict ourselves to extensional contexts.
26 Keep in mind that downward branching clusters only have one parent and upwards
branching clusters only have one child.
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P; = C; from the first two and C; + F; from the next. So the general rules
can also capture the structure of symmetric inferential relations when applied to
concept clusters without branching, i.e. that are both single-parent (m = 1) and
single-child (n = 1). The rules go beyond Brandom’s theory by also representing
relations of incompatibility. This is in part a result of bilateralism and stands in
contrast to Brandom’s unilateralism. Bilateralists get incompatibility on the cheap
by taking both assertion and denial, and incompatibilities between them as basic.
In contrast, Brandom needs to define incompatibilities between sentences in terms
of the commitment to one sentence disentitling any speaker to the other (Brandom,
1994, p. 160, 2000, p.43).

The story about symmetry and asymmetry so far has nothing to say about
examples of names which do not stand in any substitution relations (i.e. are not
intersubstitutable with any other names). Arguably they still play an inferential
role, just as names which are not co-referential with any others still play a role in
model-theoretic semantics. To capture this, take the identity axiom to apply not to
atomic sentences but instead to names in arbitrary predicate contexts:

D) F (a)

Substitute a name in the language, a, for « to get an instance of the rule for a, and
then substitute a predicate F' for ® to get an instance of the rule for the atomic
sentences Fla. The identity axiom captures the simple sense of asserting and denying
the same thing being incoherent. In propositional logic there is no simpler sense of
“the same thing” than an atomic sentence, and in predicate logic the particular
names and predicates are normally irrelevant. However, because subatomic systems
are concerned with particular names, and particular predicates, they treat the
propositional sense of asserting and denying “the same thing” as derived from that
of asserting and denying the same predicate of the same name. This matches the
model-theoretic notion of the value of a name never being both in and not in the
extension of the same predicate.

Extending the earlier notion of an atomic system, we define a subatomic system
as so.

Subatomic System: A subatomnic system is a triple (£, R,v) of a language L
made up of names, n-place predicates, and sentences of the form P,tq,...,t,,
a set of inference rules R, and an assignment function v from subsets of R to
expressions in £.27

The following restrictions are set on v:

LSC The rules for each concept cluster are instances of the general rule forms;

Symmetry For names, each concept cluster has only one parent and one child;

Identity Each name in the language is assigned an instance of the identity axiom
Idg; and

27 Tt should be said that this differs from the notion of subatomic system as employed
in the work of Wieckowski (2011; 2016). Wieckowski’s work features proof systems in
which subatomic vocabulary such as predicates or names are themselves the objects
involved in derivations. In contrast, the system presented in this paper sentences are
the objects involved in derivations but where inference rules apply to their subatomic
constituents.
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Compositionality For sentences, rules are assigned by substituting the predicate
of the sentence into the rules for its names and names into the rules for its parents.

The first restriction simply carries over from the previous atomic systems, ensuring
that our sub-atomic systems are locally sound and complete. Symmetry ensure
that inferential relations for names are symmetric and allows those for predicates
to be asymmetric. Identity, as discussed above, gives a subsentential notion of
asserting and denying the same thing being incoherent. Compositionality ensures
that the rules assigned to sentences are a function of those of their constituents and
the way they combine. For example, suppose you have the sentence Fa and the
following rules for F' and a.

A, D) - A Tk ob, A A,Gat A
a)L aR F
Ad@rEA " Ard@),A " A Fara

L

By substituting F' for the metalinguistic variable ® in the a rules and a for the
metalinguistic variable « in the F' rule you get the following rules for Fa.

A, FbE A AF Fb A T,GaF A
Fal.y Fa T —
A FaF A ArFan ™ A FarA

FaLg

Concept cluster for languages with subsentential structure can also be represented
diagrammatically. These diagrams for sentences with subsentential structure can
also be composed in a similar fashion. Suppose there are the predicate concept
cluster ({D, E'},{C}) and the name concept cluster ({b}, {a}) below.

Fig. 23. Name ({b}, {a}) and Predicate ({D, E},{C}) Cluster Trees
®(b) Do Ea

®(a) Ca

Each of these clusters represents by itself the inferential relations between a cluster
of names and predicates respectively. These clusters can be combined to represent
the inferential relations between atomics as determined by those for their con-
stituent names and predicates. This is done by making two copies of the predicate
cluster diagram (one for each name) and three copies of the name cluster diagram
(one for each predicate). Then fuse each of the b nodes from the name cluster
diagrams to one (and only one) of each of the predicates on one copy of the
predicate cluster diagram. Lastly, then fuse each of the a nodes to the corresponding
predicate on the other copy of the predicate cluster diagram. The resulting diagram
below represents the inferential relations between six atomics as determined by their
constituent names and predicates:
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Fig. 24. Predicate & Name Cluster Diagram

FEa

In this way, concept clusters and larger collections of concept clusters for atomics
can be built out of those for names and predicates. These diagrammatic representa-
tions are compositional in the same sense that they are a function of the diagrams
for their constituents and the form of combination stepped out above.

§6. Concluding Remarks This paper has drawn on Greg Restall’s bilateralist
interpretation of the classical multiple conclusion sequent calculus and Robert
Brandom’s notion of material inference to provide a proof-theoretic semantics for
atomic sentences and their component names and predicates. The central notion
is of a subatomic system which assigns (material) inference rules to to atomic and
subatomic expressions. Various restrictions on the assignment of rules to expressions
ensure that the resulting systems behave as desired. These restrictions were: (i) LSC
that all rules are instances of the general rule forms. This ensures that subatomic
systems are locally sound and complete; (ii) Symmetry concept clusters for names
are non-branching; (iii) Identity that names are assigned instance of a subatomic
identity axiom. These two, along with the first r estriction, p rovide a analogous
structure within the proof-theory to more familiar model-theoretic semantics; and
(iv) Compositionality the assignment of inferences rules to atomic sentences is a
function of the rules assigned to the sentence’s constituents and how they combine.
This ensures that the semantics is compositional, despite having holistic features.
Future research may expand on this semantics in several ways. Some possibilities
include considering: non-classical, particularly substructural systems; further kinds
of non-logical vocabulary, particularly those within natural languages; and further
generalisation of the rule schemas.
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