
Model Theory and Machine Learning

by

Hunter Sato Chase
B.S., The University of Chicago, 2014

M.S., University of Illinois at Chicago, 2016

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:
James Freitag, Chair and Advisor
David Marker
Lev Reyzin
György Turán
Michael Chris Laskowski, University of Maryland, College Park

Copyright by

Hunter Sato Chase

2020

For my parents.

iii

ACKNOWLEDGMENTS

Throughout the course of any significant undertaking, one naturally accumulates a large

number of those particular debts that cannot properly be repaid, and instead can only be

acknowledged. I have received an incredible amount of support from many people, and my

success would not have otherwise been possible.

I must first thank Jim Freitag, my advisor. His support and encouragement have been

indispensable. Moreover, Jim and I worked together on the projects which comprise this thesis,

and the results are his as much as they are mine.

My work has been shaped for the better by many useful ideas, comments, and suggestions

from a great number of people. These include Siddharth Bhaskar, Artem Chernikov, Gabe

Conant, Dimitrios Diochnos, Kyle Gannon, Vincent Guingona, Cameron Hill, Alex Kruckman,

Chris Laskowski, Maryanthe Malliaris, Dave Marker, Dhruv Mubayi, Lev Reyzin, Caroline

Terry, György Turán, and the anonymous referee of [12]. In particular, I would like to recognize

Chris Laskowski, Dave Marker, Lev Reyzin, and György Turán for serving on my committee

and reviewing my thesis.

I am deeply indebted to the many fantastic math teachers I have had, both formal and

informal, from elementary school through graduate school. They instilled and cultivated an

excitement and passion for mathematics, without which I could not have undertaken such

an endeavor. Of special mention is Maryanthe Malliaris, whose undergraduate logic course

iv

ACKNOWLEDGMENTS (Continued)

inspired me (and many others) to study logic. Also of note is Stephanie Scheffler, who was

both an exquisite teacher and, more recently, a useful source of life advice.

I have received a lot of support from my fellow graduate students, past and present. Having

some compatriots with whom to commiserate on what is a long and brutal slog makes it a little

easier to weather. Chief among them are Will Adkisson, Tom Dean, Matt DeVilbiss, Nathan

Lopez, Keaton Quinn, Sam Shideler, and Jonathan Wolf, but there are far too many others to

enumerate in full.

Mathematics is its own strange little world, which one enters at their peril. I am deeply

grateful to my friends outside of mathematics who have kept me grounded, given me perspective,

and helped me breathe when I needed air. In particular, I must thank Quinn Colter, Kristy

Hwang, Rachel Kulikoff, Hannah Mark, Jason McCreery, Kevin Rose, Vidur Sood, and Mallory

VanMeeter, although again, there are too many to name. In much the same vein, I would like

to thank Nikki Falk for helping me work through a lot of the issues that pop up when the

atmosphere of mathematics clouds one’s thinking.

Finally, I thank Michael Chase and Patricia Sato, my parents. They have been steadfast

and unwavering in their love and support. I love them deeply and owe them everything.

HSC

v

CONTRIBUTIONS OF AUTHORS

Chapter 2 represents section 4 of [14], co-authored with James Freitag.

Chapter 3 represents sections 2–4 and a portion of section 1 of the preprint [13], co-authored

with James Freitag.

Chapter 4 represents section 5 and a portion of section 1 of the preprint [13], co-authored

with James Freitag.

Chapter 5 represents the preprint [12], co-authored with James Freitag.

Except as noted, all content in these chapters, including introduction, definitions, theorems,

and writing of the various manuscripts was done jointly with James Freitag.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.0.1 Organization . 5

2 STABILITY AND ONLINE LEARNING 6
2.0.1 The realizable case . 8
2.0.2 Learning from experts . 10
2.0.3 Bounded stochastic noise . 12

3 QUERY LEARNING . 14
3.1 Introduction . 14
3.2 A combinatorial characterization of EQ-learnability 17
3.2.1 EQ-learnability from Littlestone and consistency dimension . 18
3.2.2 Obtaining finite consistency dimension 24
3.2.3 From consistency to strong consistency 28
3.2.4 Adding membership queries and efficient learning of finite classes 35
3.2.5 The negation of the finite cover property 39
3.3 Efficient learnability of regular languages 43
3.3.1 Learning ω-languages . 45
3.4 Random counterexamples and EQ-learning 49
3.4.1 The thicket max-min algorithm 54

4 COMPRESSION SCHEMES AND STABILITY 57

5 BANNED SEQUENCE PROBLEMS AND THE SAUER-SHELAH
LEMMA . 63
5.1 Introduction . 63
5.1.1 Organization . 66
5.2 Preliminaries . 66
5.3 The combinatorics of banned sequences 70
5.3.1 Banned binary sequences and Sauer-Shelah lemmas 70
5.3.2 An application to type trees . 79
5.4 Generalized banned sequence problems and applications . . . 83
5.4.1 Banned j-ary sequence problems 83
5.4.2 On the op-rank shatter function 87

CITED LITERATURE . 99

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

APPENDIX . 103

VITA . 104

viii

LIST OF FIGURES

FIGURE PAGE
1 A binary element tree of height three. 7
2 A 22-ary element tree of height 2. 87
3 An alternative 22-ary element tree of height 2. 88

ix

SUMMARY

We study a connection between model theory and machine learning by way of common

combinatorial properties. In various settings of machine learning, combinatorial properties of

the concept class being learned dictate whether the class is learnable, and if so, how long or how

much data is required. In model theory, combinatorial properties can give rise to dividing lines,

which create classes of theories in which a structure theory can be developed to varying degrees.

Model theory and machine learning share several common combinatorial properties. The first

known connection was between PAC learning and NIP theories by way of VC dimension, which

led to subsequent interaction between the two fields.

In this thesis, we describe a broad connection between stability and several forms of exact

learning. The key combinatorial property is Littlestone dimension. This property has been

known to both model theory and machine learning for decades (although by a different name

in model theory), although it had not been previously pointed out that the connection existed.

Finite Littlestone dimension classifies online learning, in which a learner classifies sequentially

presented data. Finite Littlestone dimension also classifies stable theories, a model-theoretic

class in which a rich structure theory has been developed. We extend this connection to query

learning, in which the learner attempts to identify the target concept by guessing it exactly and

receiving feedback to its guesses. We also consider compression schemes, where sets must be

encoded by a bounded number of its elements and reconstructed by one of several reconstruction

functions.

x

SUMMARY (Continued)

The boundary between finite and infinite Littlestone dimension that corresponds to learn-

ability and non-learnability has many similarities to the boundary between finite and infinite

VC dimension. In both settings, one can define a counting function called the shatter function,

and the relevant dimension controls the growth rate of this function. In particular, the appro-

priate Sauer-Shelah Lemma gives a polynomial bound if the relevant dimension is finite, while

the function is exponential if the relevant dimension is infinite. We develop a framework for

proving bounds in a uniform way and apply it in similar settings.

xi

CHAPTER 1

INTRODUCTION

Model theory uses logical systems (usually first-order logic) to study mathematical struc-

tures. Given a structure, one can consider the theory of that structure in an appropriate lan-

guage; that is, the collection of sentences in that language which are true of that structure. For

example, taking the first-order theory of the complex numbers in the language L = {0, 1,+,−, ·}

yields ACF0, the first-order theory of algebraically closed fields of characteristic 0. Model the-

ory studies the relationship between first-order theories and the structures (models) that satisfy

those theories.1 Model theory also considers the structure of definable sets. Given a structure

M and a formula φ(x) with free variable x, φ defines the set

φ(M) := {a ∈M | M |= φ(a)}

by picking out those elements of M which satisfy the formula. For formulas with parameters,

one can further consider the family of definable sets uniformly generated by that formula. A

structure M and a formula φ(x, y) give rise to the uniform family of φ-definable sets

Fφ := {φ(M ; b) | b ∈M}.

1For a reference in model theory, see, e.g. [31], [41].

1

2

One could further consider the family of externally φ-definable sets by allowing the parameters

b to range over an M-saturated elementary extension N , rather than M.

A major program in model theory is to develop a structure theory for definable sets. This

is not possible in general, but there are several dividing lines that establish broad classes of

theories with common properties, where structure theory can be developed to varying degrees.

Typically, a dividing line will have a tame side, where one can obtain general structural results

about definable sets, and a wild side, where one can obtain results about the lack of structure.

Many dividing lines can be characterized in several ways. For example, stable theories can

be classified by counting types, by the collapse of indiscernible sequences to indiscernible sets,

by the absence of a formula with the order property, or by the absence of a formula with infinite

Littlestone dimension (and this is not a complete list). The latter two characterizations are

local combinatorial properties, which examine a single formula at a time. The presence or

absence of a certain combinatorial property in a family of definable sets is a common way of

characterizing dividing lines.

Machine learning is the study of algorithms that use sample data to learn or make predic-

tions. In the general setup, a learner is given a concept class C consisting of subsets of a base

set X. The learner is asked to learn a target concept A ∈ C based on sample data. There are

many versions of machine learning. A particular type of learning will specify what it means to

learn A, how the data is received, and any other requirements or restrictions. For example, the

learner may be asked to identify A exactly, or approximate it up to a small error with respect to

some measure. The sample data may be randomly drawn or may be obtained by queries. For

3

any given type of learning, we say that C is learnable if every A ∈ C can be learned. We wish

to characterize those classes C which are learnable in a given setting. Remarkably, in several

variants of machine learning, learnability is characterized by a combinatorial property that also

characterizes a dividing line in model theory.

Work on the interaction between model theory and machine learning began when Laskowski

observed that NIP theories were characterized by every formula having finite VC dimension,

another local combinatorial property [24]. Under reasonable measurability conditions, finite

VC dimension also characterizes those set systems which are probably approximately correct

(PAC) learnable, a kind of learning where sample data is drawn randomly, and the learner must

identify the target concept up to a small error with high probability. Moreover, model theory

provides a wealth of examples. A partitioned formula φ(x; y) has finite VC dimension precisely

when the uniform family of φ-definable sets in some model M has finite VC dimension.

The connection between NIP theories and PAC learning by way of finite VC dimension has

formed the basis of most of the interaction between model theory and machine learning. It has

led to work on topics such as compression schemes, uniformly definable types over finite sets,

and honest definitions of types. This has contributed to the development of the dividing line

between NIP and IP theories, which is the second-most prominent and developed dividing line

in model theory.

The present work concerns the most prominent dividing line, that between stable and un-

stable theories. Recall that stable theories are characterized by each formula having finite

Littlestone dimension. The importance of Littlestone dimension has been known to both ma-

4

chine learning and model theory (under the alias of Shelah 2-rank); however, in [14], we point

out that Littlestone dimension was common to both fields. In machine learning, a set system is

online-learnable if a learner, presented with a sequence of elements and tasked with determining

membership of those elements in the target concept, can make a uniformly bounded number

of mistakes. A set system is online-learnable if and only if it has finite Littlestone dimension.

In particular, stable formulas are precisely those formulas that generate set systems that are

online-learnable.

We also explore further connections between several kinds of query learning and model

theory. In query learning, a learner obtains data by submitting two kinds of queries. A learner

can submit an equivalence query, submitting a guess of the target concept and receiving a

counterexample, or a membership query, asking about the membership of a specific element.

The connection makes use of both Littlestone dimension and consistency dimension, the latter

of which roughly corresponds with formulas without the finite cover property. Stable nfcp

formulas can be used to generate concept classes along with corresponding hypothesis classes

necessary for learning to succeed.

A related notion is that of compression schemes. Given a concept class C, a compression

scheme is a method of encoding the traces of concepts in C on finite sets. Given some C ∈

C and a finite F ⊆ X, a d-compression returns d elements from F . Subsequently, one of

several reconstruction functions recovers the entire behavior of C on F from the behavior

of C on the d-element compression. In the case where C has finite Littlestone dimension,

5

we use Littlestone dimension to bound the size of the encoding together with the number of

reconstruction functions necessary.

A fundamental tool tying VC dimension to machine learning is the Sauer-Shelah Lemma,

which establishes a divide between polynomial and exponential growth rates of the shatter

function of a class C, depending on whether C has finite or infinite VC dimension. A nearly

identical result for Littlestone dimension was formulated by Bhaskar [11]. We develop a tool

that provides the flexibility to prove such results in a uniform way. In particular, we apply

the tool to the op-rank setting of Guingona and Hill [20], which seeks to generalize Littlestone

dimension and other notions of dimension arising in model theory. We use our tool to show

that the growth rate of the corresponding shatter function is controlled by the op-dimension of

the set system.

1.0.1 Organization

• In Chapter 2 we describe a connection between online learning and stable formulas.

• In Chapter 3 we study several types of query learning and make a connection with stable

formulas without the finite cover property.

• In Chapter 4 we study compression schemes.

• In Chapter 5 we describe a framework that can be used to prove several variants of the

Sauer-Shelah Lemma.

Within each chapter, we provide additional background to the material within that chapter.

CHAPTER 2

STABILITY AND ONLINE LEARNING

This chapter represents section 4 of [14], co-authored with James Freitag. Copyright 2019,

Association for Symbolic Logic. Published by Cambridge University Press. Reprinted with

permission. See the appendix for permissions information.

Minor edits have been made for consistency with the rest of the thesis.

The initial setting of online learning which we describe is due to Littlestone [25]; the par-

ticular setting received relatively little attention, perhaps due to the very strong assumptions

([25] is in fact famous for several other contributions). Littlestone’s work was generalized in

various ways in the ensuing years, with the assumptions being significantly weakened. We will

begin with the original setup of [25], and eventually describe two settings laid out in [10]. First,

we set up some of the combinatorial notions pertinent in each of the settings we consider.

The next several definitions follow the notation and terminology of Bhaskar [11], although

we prefer ”Littlestone dimension” instead of Bhaskar’s ”thicket dimension,” and use ”stable”

to describe the general setting.

Definition 2.0.1. A binary element tree of height h, denoted by Th, is a rooted complete binary

tree of height h whose non-leaf vertices are labeled by elements of the set X and whose leaves

are labeled by elements of C (see Figure 1).

For the following definitions, fix a binary element tree of height h.

6

7

Definition 2.0.2. A vertex v1 is below a vertex v2 if v2 lies on the (unique) path from v1 to

the root of the tree. We say that v1 is left-below v2 if v1 is below v2 and the first edge along the

path from v2 to v1 goes down and to the left. The notion of right-below is defined analogously.

When a vertex labeled by b is left-below a vertex labeled by a, we write a <L b. Similarly, when

a vertex labeled by b is right-below a vertex labeled by a, we write a <R b.

Definition 2.0.3. A leaf, labeled by A ∈ C is said to be well-labeled if for each vertex above

Y , say labeled by a,

a ∈ A if and only if a <R A.

a1

a5

a7

A8A7

a6

A6A5

a2

a4

A4A3

a3

A2A1

Figure 1: A binary element tree of height three. Here ai ∈ X and Ai ∈ C. The leaf labeled
with A4 is well-labeled if and only if a1 /∈ A4 and a2, a4 ∈ A4. For all other ai, there is no
requirement about membership in A4.

Definition 2.0.4. The stable shatter function ρF : Z≥0 → Z≥0 is defined by letting ρF (n) be

the maximum number of well-labeled leaves on a binary element tree of height n, Tn, whose

8

leaves are labeled with elements of F . The Littlestone dimension Ldim(F) is the maximum

integer n such that ρF (n) = 2n, or else Ldim(F) =∞.

Littlestone dimension has appeared in several other contexts under different names; in fact,

Bhaskar [11] was aware of the terminology and definitions of [38], which we reproduce next:

Definition 2.0.5. LetM be a monster model of a complete L-theory. Fix a consistent partial

type π(x) and a partitioned formula φ(x; y). Then the ordinal R(π, φ, 2), called the Shelah

2-rank, is defined as follows:

• R(π, φ, 2) ≥ 0.

• For any limit ordinal λ, R(π, φ, 2) ≥ λ if R(π, φ, 2) ≥ α for all α < λ.

• For any ordinal α, R(π, φ, 2) ≥ α+1 if there is some φ(x, a) such thatR(π∪{φ(x, a)}, φ, 2) ≥

α and R(π ∪ {¬φ(x, a)}, φ, 2) ≥ α.

In general, R(π,∆, 2) can also be defined for a finite collection of formulas ∆, but this case

can be shown to reduce to the case of a single formula. The formula φ(x, y) is stable if and only

if R({x = x}, φ, 2) is finite [38]; a theory is stable if every formula is stable. It is reasonably

clear that the R(π, φ, 2) is the Littlestone dimension of the set system on M|y| given by the

collection of sets {φ(b,M) | b ∈ π(M)}; for more details, see [11].

Littlestone dimension also appears for the first time in the context of learning theory in [25].

2.0.1 The realizable case

Fix a set system C on a set X. Assume that Y = Y ′ = {0, 1} and the loss function for a

prediction ŷ and concept (that is, a set) A on input x is given by |ŷ− 1A(x)|. Over all possible

9

algorithms, we seek to minimize our loss, that is, the number of mistakes we make over n

rounds of predictions. In the realizable case, we assume that A ∈ C, so that the true concept is

among the set of concepts C accessible to the learner. There are no assumptions on the choices

of the instances xt. The goal is to minimize the worst-case number of mistakes made by our

predictions over all possible samples of the instances and choice of the concept. So, we seek to

bound

M = max
A∈C

max
x̄=(x1,...,xn)

n∑
t=1

|ŷt − 1A(xt)|,

where ŷt is chosen by some deterministic algorithm.

For applications and purposes of discussing the bounds, one often views the entity selecting

the instances x̄ as antagonistic to the learner—and in our current simplified setting, bounding

the worst-case number of mistakes bounds the actual number of mistakes made when the

antagonistic sampling entity has perfect information about the prediction process.

Theorem 2.0.6. [25] The worst-case number of mistakes of any deterministic algorithm in the

online learning setting with concept class C is at least the Littlestone dimension of C, and there

is an algorithm that makes at most this many mistakes.

Remark 2.0.7. The algorithm which minimizes the number of worst-case mistakes in the above

setting is referred to as the Standard Optimal Algorithm, and we describe it briefly here. Begin

with V0 = C. At each stage, the learner inductively defines Vi. At stage t, the learner receives

xt, and sets, for r = 0, 1,

V
(r)
t := {A ∈ Vt−1 | 1A(xt) = r}.

10

The learner predicts ŷt = r which maximizes the Littlestone dimension of V
(r)
t (ties are predicted

in some fixed manner, say ŷt = 0 in the case of a tie). Then the learner gets the value of 1A(xt)

and realizes whether a mistake has been made. At this point, set Vt = V
1A(xt)
t .

The essential point here is that if a mistake is made, it must be the case that the Littlestone

dimension of Vt is strictly less than the Littlestone dimension of Vt−1 (proving this is an easy

exercise). Of course, this bounds the total number of mistakes which the algorithm can ever

make under any choice of x̄ by the Littlestone dimension.

Where C is generated by a stable formula φ(z, x), say C = {φ(b,M) | b ∈M}, the algorithm

equivalently functions as follows. Begin with the partial type π0(z) = {z = z}, and inductively

define πi(z). When the learner receives xt, the learner predicts ŷt = r, where r maximizes

R(πt−1 ∪ {φ(z, xt)
r}, φ, 2), where φ(z, x)1 = φ(z, x) and φ(z, x)0 = ¬φ(z, x). Upon receiving

1A(xt), set πt(z) = πt−1(z) ∪ {φ(z, xt)
1A(xt)}. Again, a mistake on xt will mean R(πt, φ, 2) <

R(πt−1, φ, 2).

2.0.2 Learning from experts

The case in which we assume that the learner has access to true concept A ∈ C is often

referred to as the realizable case of online learning. For various applications, this assumption is

too strong (as are other assumptions from the previous subsection which we will deal with in

later sections). In this section, we will explain a context of online learning which removes the

realizability assumption.

The goal again is to minimize mistakes, but here, the minimization will be relative to a

particular class of {0, 1}-valued functions, which we will call H. That is, we wish to minimize,

11

for any sampling of instances, x̄ = (x1, . . . , xT), the difference between the number of mistakes

made by the learner and the minimal number of mistakes made by any of the functions in H.

So, in this case, the loss function is taken to be

∑
|ŷt − yt| −min

h∈H

∑
|h(xt)− yt|.

Here one often thinks intuitively that the functions in H are experts making predictions, and

the learner’s job is to choose which expert’s prediction to believe.

Littlestone and Warmuth [27] consider this problem in the case that H is finite via a proba-

bilistic weighted majority algorithm. We will now describe their algorithm. At the outset, each

of the N many experts {fi}Ni=1 = H is assigned weight 1, and the weight of expert i at stage t

will be denoted by wti . We fix the learning rate η > 0, which dictates how much we discount

the weight of an expert for providing incorrect advice. At each stage, the learner receives the

expert advice, (f1(xt), . . . , fN (xt)), a tuple in {0, 1}N . The learner predicts 1 with probability

pt =
1∑N

i=1w
t−1
i

N∑
i=1

wt−1
i fi(xt).

Then once the actual value yt is revealed, the weights are updated via: wti = wt−1
i e−η·|fi(xt)−yt|.

That is, those experts who were wrong see their weight drop by a factor of e−η.

The expected value of the loss function of their algorithm with a sample of size T is

T∑
t=1

E(|ŷt − yt|)−min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√

1

2
ln(N)T .

12

Here, the assumption thatH is finite is often too strong for applications, however, [10] generalize

the setup to the case in which H is infinite, but of finite Littlestone dimension, proving:

Theorem 2.0.8. There is an algorithm such that for all h ∈ H and any sequence of instances

x̄ = (x1, . . . , xT),

T∑
t=1

E(|ŷt − yt|)−min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√

1

2
Ldim(H) · T ln(T).

In [10] it is also shown that no algorithm (even allowing randomization) can achieve an

expected bound better than
√

1
8 Ldim(H)T . Closing the gap between the lower and upper

bounds for the loss function (sometimes called regret in this context) is one of the main open

problems mentioned in [10], where the authors remark that there are few known interesting

examples of infinite classes with finite Littlestone dimension. Certainly, the model theory

provides a large array of mathematically interesting examples of such classes which may be

useful in providing examples which improve various bounds discussed above.

2.0.3 Bounded stochastic noise

Suppose that we work in the general setup from the previous section (again, not assuming

realizability), but with a difference in the way we generate labels and measure mistakes. Suppose

that there is a function h ∈ H such that the labels y1, . . . , yT are independent {0, 1}-valued

random variables with the property that for all t, Pr(h(xt) 6= yt) ≤ γ with γ ∈ (0, 1
2). This

value γ will be called the noise rate.

13

In this setting, one seeks to minimize the difference between the predictions and the output

of the noisy function on the samples:

E

(
T∑
t=1

|ŷt − yt|

)
.

Note here that there are two sources of randomness—the choices of the algorithm may be

randomized and the labels yt are random variables. The expectation is taken with respect to

both of these.

Theorem 2.0.9. For any concept class H, and any γ ∈ [0, 1
2), there is an algorithm (possibly

randomized) so that for any h ∈ H, and a sequence of examples (x1, y1), . . . , (xT , yT) with each

yt a random variable as described above,

E

(
T∑
t=1

|ŷt − h(xt)|

)
≤ Ldim(H) · ln(T)

1− 2
√
γ(1− γ)

.

That is, the expected number of mistakes grows only logarithmically in the sample size.

In [10], the authors give an example of a class H which shows that the left-hand side of the

inequality in the theorem is bounded below by Ω(Ldim(H) · ln(T)).

CHAPTER 3

QUERY LEARNING

This chapter represents sections 2–4 along with a portion of section 1 of the preprint [13],

co-authored with James Freitag.

3.1 Introduction

Fix a set X and denote by P(X) the collection of all subsets of X. A concept class1 C on

X is a subset of P(X). In the equivalence query (EQ) learning model, a learner attempts to

identify a target set A ∈ C by means of a series of data requests called equivalence queries.

The learner has full knowledge of C, as well as a hypothesis class H with C ⊆ H ⊆ P(X).

An equivalence query consists of the learner submitting a hypothesis B ∈ H to a teacher, who

either returns yes if A = B, or a counterexample x ∈ A4B. In the former case, the learner has

learned A, and in the latter case, the learner uses the new information to update and submit

a new hypothesis. In sections 3.2 and 3.3, the teacher may be assumed to be adversarial and

the worst-case number of queries required to learn any concept is analyzed. In section 3.4, we

consider the case in which the teacher selects counterexamples randomly according to a fixed

but arbitrary distribution.

We will also consider learning with equivalence and membership queries (EQ+MQ). In a

membership query, a learner submits a single element x from the base set X to the teacher, who

1We will also sometimes call C a set system on X.

14

15

returns the value A(x), where A is the target concept. In this setting, the learner may choose

to make either type of query at any stage, submitting any x ∈ X for a membership query or

submitting any B ∈ H for an equivalence query. The learner learns the target concept A when

they submit A as an equivalence query.

With Theorems 3.2.6 and 3.2.24, we give upper bounds for the number of queries required

for EQ and EQ+MQ learning a class C with hypotheses H in terms of the Littlestone dimension

of C, denoted Ldim(C), and the consistency dimension of C with respect to H, denoted C(C,H).

We also give lower bounds for the number of required queries in terms of these quantities. In

the EQ+MQ setting, the bounds are tight enough to completely characterize when a problem

is efficiently learnable. Littlestone dimension is well-known in learning theory [25] and model

theory.1

Consistency dimension and the related notion of strong consistency dimension are more

subtle, which we detail in section 3.2. When H is taken to be P(X), C(C,H) = 1; for various

examples of set systems with H = C, one has C(C,H) =∞. In 3.2.2, we define a new invariant,

the consistency threshold of C, and provide a construction (for arbitrary C) of a hypothesis

class H which is not much more complicated than C (of the same Littlestone dimension as C)

such that C(C,H) ≤ Ldim(C) + 1. In 3.2.3, we compare our bounds and invariants to those

previously appearing in the literature.

1In model theory, Littlestone dimension is called Shelah 2-rank, see [14] for additional details.

16

Theorems 3.2.6 and 3.2.24 can be used to establish efficient learnability in specific applied

settings if one can obtain appropriate bounds on Littlestone dimension and consistency dimen-

sion. Let (Cn,Hn) be a collection of concept and hypothesis classes which depends on some

parameter n. Typically, we are thinking of finite classes which grow with n. We prove that

whenever Cn can be learned by an algorithm using polynomially many membership queries and

equivalence queries from Hn, there must be polynomial bounds on Littlestone and consistency

dimension. Moreover, whenever such an algorithm exists, the algorithm given in Theorem 3.2.24

accomplishes this.

Finally, to close section 3.2, we explain the connection between strong consistency dimension

and a model theoretic property called the finite cover property (fcp), or rather its negation,

referred to henceforth as the nfcp. We show that if C is the set system given by uniform

instances of a fixed first order formula φ, and H is the collection of externally φ-definable sets,

then (C,H) has finite strong consistency dimension if and only if φ has the nfcp.

In section 3.3 we demonstrate the practicality of our approach by providing simple and

fast proofs of the efficient learnability of regular languages and certain ω-languages, reproving

results of [1; 5; 17; 16]. Besides the conceptual simplicity of the approach, the bounds in learning

complexity resulting from our algorithm have some novel aspects. For instance, our bounds

have no dependence on the length of the strings provided to the learner as counterexamples, in

contrast to existing algorithms.

In section 3.4 we turn to a randomized variant of EQ-learning in which the teacher is

required to choose counterexamples randomly from a known probability distribution on X. [4]

17

show that for a concept class of size n, there is an algorithm in which the expected number of

queries to learn any concept is at most log2(n). It is natural to wonder whether there is a notion

of dimension which can be used to bound the expected number of queries. In fact, Angluin and

Dohrn [4, Theorem 25] already consider this, and show that the VC dimension of the concept

class is a lower bound on the number of expected queries. However, [4, Theorem 26], using an

example of [25], shows that the VC dimension cannot provide an upper bound for the number

of queries. We show that the Littlestone dimension provides such an upper bound; we give an

algorithm which yields a bound which is linear in the Littlestone dimension for the expected

number of queries needed to learn any concept.

3.2 A combinatorial characterization of EQ-learnability

Often, one assumes that X is finite, and the emphasis is placed on finding bounds on the

number of queries it may take to learn any A ∈ C. We also consider the case where X is infinite,

for which we give the following definition.

Definition 3.2.1. Let C andH be set systems on a set X. C is learnable with equivalence queries

from H if there exists some n < ω and some algorithm to submit hypotheses from H such that

any concept A ∈ C is learnable in at most n equivalence queries, given any teacher returning

counterexamples. Let LCEQ(C,H) be the least such n if C is learnable with equivalence queries

from H, and LCEQ(C,H) =∞ otherwise.

LCEQ(C,H) is called the learning complexity, representing the optimal number of queries

needed in the worst-case scenario.

18

Similarly, C is learnable with equivalence queries from H and membership queries if there

exists some n < ω and some algorithm to submit membership queries from X or equivalence

queries from H such that any concept A ∈ C is learnable in at most n equivalence queries. The

learning complexity is defined similarly and is denoted by LCEQ+MQ(C,H).

3.2.1 EQ-learnability from Littlestone and consistency dimension

Proposition 3.2.2. [25, Theorems 5 and 6] If LCEQ(C,H) ≤ d + 1, then Ldim(C) ≤ d. If

H = P(X), then the converse holds.

Proof. Suppose Ldim(C) ≥ d + 1. We show that we can force the learner to use at least d + 2

equivalence queries. Construct a binary element tree of height d+ 1 with proper labels from C

witnessing Ldim(C) ≥ d+ 1. Given the first hypothesis H0 from the learner, return the element

on the 0th level on the tree as a counterexample. Continue this, returning the element on the

ith level along the path consistent with previous counterexamples as the counterexample to

hypothesis Hi. We will return d + 1 counterexamples, and the learner still requires one more

hypothesis to identify the concept. Since this will occur for one of the proper labels A of the

binary element tree, we have forced the learner to use at least d+2 equivalence queries for some

A ∈ C.

Suppose Ldim(C) = d <∞. Let C0 = C. Inductively define Ci, i = 1, . . . , d as follows. Given

Ci, for any x ∈ X and j ∈ {0, 1}, let

C(x,j)
i := {A ∈ Ci |χA(x) = j},

19

where χA is the characteristic function on A. Let

Bi := {x ∈ X | Ldim(C(x,1)
i) ≥ Ldim(C(x,0)

i)}.

Submit Bi as the hypothesis. If Bi is correct, we are done. Otherwise, we receive a counterex-

ample xi. Set

Ci+1 := {A ∈ Vi |χA(xi) 6= χBi(xi)}

to be the concepts which have the correct label for xi. Observe that at each stage, Ldim(Ci+1) <

Ldim(Ci). Therefore, if we make d queries without correctly identifying the target, then we must

have Ldim(Cd) = 0. Then Vd is a singleton, which must be the target concept.

Notice in particular that if Ldim(C) =∞, then C cannot be learned with equivalence queries,

even with H = P(X). The assumption that H = P(X) makes learning straightforward, but

this may be too strong for many settings. However, without some additional hypotheses on H,

learnability may already be hopeless, even for very simple set systems. For instance, let C be

the set of singletons. If H = C, then we may take as long as |X| to learn if X is finite, or never

learn at all if X is infinite. However, if the learner is allowed to guess ∅, this forces the teacher

to identify the target singleton.

The strategy of Proposition 3.2.2 permeates both learnability and non-learnability proofs;

identifying a specific set amounts to reducing the Littlestone dimension of the family of possible

concepts to 0; actually submitting the target concept before the Littlestone dimension reaches

0 can be thought of as a best-case scenario that we cannot rely on. Non-learnability then

20

amounts to an inability to reduce the Littlestone dimension of the family of possible concepts

to 0 through a series of finitely many equivalence queries. The main purpose of this section is

to give precise conditions on H and C which characterize learnability.

Definition 3.2.3. Given a set X, a partially specified subset A of X is a partial function

A : X → {0, 1}.

• Say x ∈ A if A(x) = 1, x /∈ A if A(X) = 0, and membership of x is unspecified otherwise.

The domain of A, dom(A), is A−1({0, 1}). Call A total if dom(A) = X. We identify

subsets A ⊆ X with total partially specified subsets. The size of A, |A|, is the cardinality

of dom(A).

• Given two partially specified subsets A and B, write A v B if A and B agree on dom(A);

call A a restriction of B and B an extension of A.

• Given a set Y ⊆ dom(A), the restriction A|Y of A to Y is the partial function where

A|Y (x) = A(x) for all x ∈ Y , and is unspecified otherwise.

• Given a set system C on X, A is n-consistent with C if every size n restriction of A has

an extension in C. Otherwise, say A is n-inconsistent. A is finitely consistent with C if

every restriction of A of finite size has an extension in C—that is, A is n-consistent with

C for all n < ω.

The following definition is a translation into set systems of a definition that first appeared

in [8].

21

Definition 3.2.4. The consistency dimension of C with respect to H, denoted C(C,H), is the

least integer n such that for every subset A ⊆ X (viewed as a total partially specified subset),

if A is n-consistent with C, then A ∈ H. If no such n exists, then say C(C,H) =∞.

Observe that C(C,H) = 1 iff H shatters1 the set of all elements x ∈ X such that there are

A0 and A1 in C such that x /∈ A0 but x ∈ A1. In this case, it is possible to learn any concept

in C in at most Ldim(C) + 1 equivalence queries, using the method of Proposition 3.2.2. So we

may assume that C(C,H) > 1.

Lemma 3.2.5. Suppose that for each i < n, Ci is a concept class on X and Hi is a hypothesis

class on X. Suppose that LCEQ(Ci,Hi) = mi. Then LCEQ(C,H) ≤
∑

i<nmi, where C :=

∪i<nCi and H := ∪i<nHi.

Proof. We give the proof for n = 2; then the result for n > 2 follows easily by induction.

To learn a target concept A ∈ C = C0 ∪ C1 with hypotheses from H = H0 ∪ H1, begin

by assuming that A ∈ C0. Attempt to learn A by making guesses from H0, according to the

procedure by which any concept in C0 is learnable in at most m0 many queries. If, after making

m0 many queries, we have failed to learn A, then we conclude that A /∈ C0, whence A ∈ C1. We

can then learn A in at most m1 many additional queries with guesses from H1.

We can now give an upper bound for the learning complexity in terms of Littlestone dimen-

sion and consistency dimension.

1Recall that a set system C shatters a set A if, for all B ⊆ A, there is C ∈ C such that C ∩A = B.

22

Theorem 3.2.6. Suppose Ldim(C) = d <∞ and 1 < C(C,H) = c <∞. Then LCEQ(C,H) ≤

cd.

Proof. We proceed by induction on d. The base case, d = 0, is trivial, as then C is a singleton.

Suppose there is some element x such that Ldim(C ∩ x) < d + 1 and Ldim(C \ x) < d + 1,

where C ∩ x := {A ∈ C |x ∈ A} and C \ x := {A ∈ C |x /∈ A}. Then by induction, any concept

in C ∩ x can be learned in at most cd queries with guesses from H, and the same is true for

C \x. Then by Lemma 3.2.5, any concept in C can be learned in at most 2cd ≤ cd+1 equivalence

queries.

If no such x exists, then for all x, either Ldim(C ∩ x) = d + 1 or Ldim(C \ x) = d + 1. Let

B be such that x ∈ B iff Ldim(C ∩ x) = d+ 1.

If B ∈ H, then we submit B as our query. If we are incorrect, then by choice of B, the class

C′ of concepts consistent with the counterexample x0 will have Littlestone dimension ≤ d. By

induction, any concept in C′ can be learned in at most cd many queries, and so we learn a in

at most cd + 1 ≤ cd+1 queries.

If B /∈ H, then, since C(C,H) = c, there are some x0, . . . , xc−1 such that there is no A ∈ C

such that B|{x0,...,xc−1} v A. Then, with notation as in the proof of Proposition 3.2.2,

C = (C(x0,1−B(x0))) ∪ . . . ∪ (C(xc−1,1−B(xc−1))),

23

and Ldim(C(xi,1−B(xi))) ≤ d for each i. Then, by induction, for each i, any concept in

C(xi,1−B(xi)) can be learned in at most cd many queries with guesses from H. By Lemma

3.2.5, any concept in C can be learned in at most cd+1 many queries with guesses from H.

On the other hand, Proposition 3.2.2 gives a lower bound of Ldim(C) + 1 ≤ LCEQ(C,H).

There is also a lower bound for learning complexity in terms of consistency dimension:

Proposition 3.2.7. [8, Theorem 2] Suppose there is some partially specified subset A which is

n-consistent with C but which does not have a total extension in H. Then n < LCEQ(C,H).

Proof. By hypothesis, given any equivalence query H, the teacher can find some x ∈ dom(A)

such that H(x) 6= A(x). Moreover, since A is n-consistent with C, the teacher is able to return

a counterexample of this form for the first n equivalence queries. Thus C cannot be learned

with fewer than n+ 1 equivalence queries from H.

In particular, if C(C,H) ≥ c, then there is some subset A which is (c− 1)-consistent with C

but which does not belong to H. Then c ≤ LCEQ(C,H). So C(C,H) ≤ LCEQ(C,H). In fact,

we will obtain a stronger bound using strong consistency dimension in section 3.2.3.

Furthermore, if C(C,H) = ∞, then C cannot be learned with equivalence queries from H.

Combining Theorem 3.2.6 and Propositions 3.2.2 and 3.2.7, we obtain the following:

Theorem 3.2.8. C is learnable with equivalence queries from H iff Ldim(C) <∞ and C(C,H) <

∞.

24

3.2.2 Obtaining finite consistency dimension

We have established that finite consistency dimension is essential for EQ-learning. The

central question we answer in this subsection is: given C, can one obtain a hypothesis class H

which is not much more complicated than C with the property that C(C,H) is finite?

Definition 3.2.9. Fix a set system C on a set X. C has consistency threshold n <∞ if, given

any hypothesis class H ⊃ C, we have that

C(C,H) <∞ iff C(C,H) ≤ n.

Lemma 3.2.10. Suppose A is a partially specified subset finitely consistent with C. Then there

is a total extension A′ w A finitely consistent with C.

Proof. Let X = {xα |α < |X|} be a well-ordering of X. Let A0 = A. We inductively define a

v-chain of partially specified subsets Aα, where each Aα is defined on dom(A) ∪ {xξ | ξ < α}

and is finitely consistent with C. For α a limit ordinal, set Aα = ∪ξ<αAξ. It is clear that Aα is

finitely consistent with C if all Aξ for ξ < α are.

At any successor stage α+ 1, if xα ∈ dom(Aα), set Aα+1 = Aα. Otherwise, we must extend

Aα to xα while remaining finitely consistent with C. Assume for contradiction that neither

B0 := Aα ∪ {xα 7→ 0} nor B1 := Aα ∪ {xα 7→ 1} are finitely consistent with C. Then there

are finite sets Y0, Y1 ⊆ dom(Aα) such that B0|Y0∪{aα} and B1|Y1∪{aα} have no extension in C.

But Aα|Y0∪Y1 has an extension B in C, and B must be an extension of either B0|Y0∪{aα} or

25

B1|Y1∪{aα}, a contradiction. So Aα has a finitely consistent extension to xα, and we set Aα+1

to be such an extension.

We then take A′ = ∪ξ<|X|Aξ.

Proposition 3.2.11. Let C,H be set systems and let A be a partially specified subset. The

following are equivalent:

(i) A is finitely consistent with C.

(ii) If C(C,H) <∞, then there is a total extension A′ w A in H.

Proof. (i) ⇒ (ii): Let A′ w A be a total extension finitely consistent with C. If C(C,H) < ∞,

then A′ ∈ H.

(ii) ⇒ (i): We show the contrapositive. Suppose that A is not finitely consistent with C,

witnessed by some size n restriction A0, which is a v-minimal such restriction. We find some

H such that C(C,H) <∞ but H contains no total extension of A. Let H be the collection of all

(total partially specified) subsets which are not extensions of A0. So A has no total extension

in H. We claim that C(C,H) ≤ n. Indeed, observe that given any (total partially specified)

subset B that is n-consistent with C, we have A0 6v B, and then B ∈ H.

In particular, if C(C,H) < ∞, then H contains all finitely consistent subsets. That is,

extensions of all finitely consistent partially specified subsets (equivalently, by Lemma 3.2.10,

all finitely consistent total partially specified subsets) are necessary to obtain C(C,H) < ∞.

Consistency threshold classifies when this is a sufficient condition.

26

Proposition 3.2.12. The following are equivalent:

(i) C has consistency threshold ≤ n <∞.

(ii) For all (total partially specified) subsets A, if A is n-consistent with C, then A is finitely

consistent with C.

(iii) If H contains all finitely consistent (total partially specified) subsets, then C(C,H) ≤ n.

Proof. (i)⇒ (ii): Assume for contradiction that there is some total A which is n-consistent but

not finitely consistent. Let m be minimal such that A is m-inconsistent. Then there is a size

m restriction A′ v A that has no extension in C. Then let H contain all subsets which do not

extend A′.

We claim that C(C,H) = m. Note that A witnesses that C(C,H) ≥ m. On the other hand,

observe that given any partially specified subset B that is m-consistent with C, we have A′ 6v B,

and then it is easy to see that B has a total extension in H.

(ii) ⇒ (iii): If H contains all finitely consistent subsets, and all n-consistent subsets are

finitely consistent, then C(C,H) ≤ n holds immediately.

(iii)⇒ (i): By Proposition 3.2.11, if C(C,H) <∞, then H already has all finitely consistent

subsets. Then C(C,H) ≤ n.

In particular, if C has finite consistency threshold, then C(C,H) < ∞ iff H contains all

finitely consistent subsets.

Corollary 3.2.13. Suppose C does not have finite consistency threshold. Then for arbitrarily

large n, there is some total subset An which is n-consistent but not (n+ 1)-consistent with C.

27

Finite consistency threshold is not strictly necessary to provide a positive answer to the

central question of this subsection; nevertheless, it does identify a clear qualitative dividing

line. When C has finite consistency threshold, H only needs to contain all finitely consistent

subsets; letting H∞ be the set of all finitely consistent subsets, we obtain a minimum hypothesis

class such that learning is possible.

Where C does not have finite consistency threshold, more is required; we must add some

hypotheses which are inconsistent with the concepts in C, and there is no minimal H such

that learning is possible. However, for each m, we can replace “finitely consistent” with “m-

consistent” to obtain a class Hm such that C(C,Hm) ≤ m—let Hm be the collection of all

subsets which are m-consistent with C. Note that Hm is clearly the minimum hypothesis class

such that C(C,H) ≤ m.

Note that for all m, H∞ ⊆ Hm. By Proposition 3.2.12, if C has consistency threshold n,

then for all m ≥ n, Hm = Hn = H∞. If C does not have finite consistency threshold, there is no

minimal H such that C(C,H) <∞; by Corollary 3.2.13, if C(C,H) = m, then there is m′ ≥ m

such that Hm′ (H.

By choosingm appropriately, given any C, we can find a hypothesis class such that C(C,H) <

∞ without increasing the Littlestone dimension; that is, Ldim(H) = Ldim(C).

Theorem 3.2.14. Suppose Ldim(C) = d < ∞. Then there is H such that C(C,H) < ∞ and

Ldim(H) = Ldim(C). Furthermore, we can find such an H such that C(C,H) ≤ Ldim(C) + 1.

Proof. Fix some m > d = Ldim(C). Let Hm be the collection of all subsets which are m-

consistent with C. It is immediate that C(C,Hm) ≤ m <∞.

28

Assume for contradiction that Ldim(Hm) > Ldim(C). Consider a binary element tree of

height d+ 1 that can be properly labeled with elements of Hm; in particular, there is some leaf

which cannot be labeled with an element of C. Consider such a leaf. The path through the

binary element tree to this leaf defines a partially specified subset A that is (d+ 1)-inconsistent

with C. In particular, any total extension is (d+ 1)-inconsistent, so m-inconsistent, and so does

not belong to Hm. This contradicts our ability to label the leaf with an element of Hm.

In particular, recall that when C has finite consistency threshold n, A is n-consistent with C

iff it is finitely consistent with C. So setting Hm as above with m at least the finite consistency

threshold amounts to setting Hm to be the collection of all finitely consistent partially specified

subsets. In this case, Ldim(Hm) = Ldim(C) even if m ≤ d, as increasing the Littlestone

dimension requires adding something inconsistent with C.

Regardless of whether C has finite consistency dimension, we can let m = d + 1. Then

C(C,Hm) ≤ m = d+ 1.

3.2.3 From consistency to strong consistency

From an algorithms perspective, the result of Theorem 3.2.6 is unsatisfactory, since it is

exponential in Ldim(C). We give an example to show that, without modification, we cannot

expect a significant improvement.

Example 3.2.15. Fix c > 2 and d. Let {aτ | τ ∈ [c]i, 1 ≤ i ≤ d} be distinct elements indexed

by finite nonempty sequences of length at most d from [c]. For σ ∈ [c]d, let Bσ = {aτ | τ ⊆ σ}.

Let C = {Bσ |σ ∈ [c]d}. Then Ldim(C) = d.

29

If we take C to also be our hypothesis class, then C(C, C) = c+1. Indeed, the (total partially

specified) subset A = {a0} is c-consistent but not (c + 1) consistent with C, witnessed by the

restriction of A to {a0, a0,0, . . . , a0,c−1}, so C(C, C) ≥ c+ 1. On the other hand, if A is a subset

(c+ 1)-consistent with C, then, by induction on the length of τ , for each 1 ≤ i ≤ d, A contains

exactly one aτ with τ = i, so A ∈ C.

However, it may take as long as cd many equivalence queries to learn; if the teacher returns

aσ as a counterexample to hypothesis Aσ, then the learner can only eliminate Aσ.

The most promising modification is the following variant of consistency dimension, which

also appeared in [8] in a slightly different form.

Definition 3.2.16. The strong consistency dimension of C with respect toH, denoted SC(C,H),

is the least integer n such that for every partially specified subset A, if A is n-consistent with

C, then A has an extension in H. If no such n exists, then say SC(C,H) =∞.

We therefore make the stronger requirement that all partially specified subsets that are n-

consistent be consistent, rather than just all totally partially specified subsets. It is immediate

from the definition that C(C,H) ≤ SC(C,H). At the smallest levels, consistency dimension and

strong consistency dimension are equal.

Proposition 3.2.17. If C(C,H) = 1, then SC(C,H) = 1. If C(C,H) = 2, then SC(C,H) = 2.

Proof. Observe that C(C,H) = 1 iff SC(C,H) = 1 iff H shatters the set of all elements x ∈ X

such that there are A0 and A1 in C such that x /∈ A0 but x ∈ A1.

30

Suppose that C(C,H) = 2. Let A be a partially specified subset that is 2-consistent with C.

We wish to find a total extension of A in H. It suffices to find a total extension B w A that is

2-consistent with C.

Let X = {xα |α < |X|} be a well-ordering of X. Let A0 = A. We inductively define a

v-chain of partially specified subsets Aα, where each Aα is defined on dom(A) ∪ {xξ | ξ < α}

and is 2-consistent with C. For α a limit ordinal, set Aα = ∪ξ<αAξ. It is clear that Aα is

2-consistent with C if all Aξ for ξ < α are.

At any successor stage α + 1, if xα ∈ dom(Aα), set Aα+1 = Aα. Otherwise, we must

extend Aα to xα while remaining 2-consistent with C. Assume for contradiction that neither

B0 := Aα ∪ {xα 7→ 0} nor B1 := Aα ∪ {xα 7→ 1} are 2-consistent with C. Then there are y0,

y1 ∈ dom(Aα) such that B0|{y0,xα} and B1|{y1,xα} have no extension in C. But Aα|{y0,y1} has an

extension B in C, and B must be an extension of either B0|{y0,xα} or B1|{y1,xα}, a contradiction.

So Aα has a 2-consistent extension to xα, and we set Aα+1 to be such an extension.

We then take ∪ξ<|X|Aξ to be our total extension.

As the following examples show, consistency dimension and strong consistency dimension

may differ when C(C,H) ≥ 3.

Example 3.2.18. Let X = {a, b, c, d, e}. Let

C = H = {{a, b, c}, {a, b, d}, {a, c, d, e}, {b, c, d, e}} .

31

One can verify that C(C,H) = 3, but the partially specified subset {a, b, c, d} with e unspecified

witnesses that SC(C,H) > 3.

Example 3.2.19. Continuing Example 3.2.15, observe that SC(C, C) = cd. In particular, the

partially specified subset A′ given by

A′(aτ) =


0 |τ | = d

undefined otherwise

witnesses that SC(C, C) > cd − 1. Then we learn in at most SC(C, C) many queries. Moreover,

this demonstrates that consistency dimension and strong consistency dimension can differ by

an arbitrarily large amount (allowing Ldim(C) to vary), and that strong consistency dimension

may even be exponentially larger than consistency dimension.

Strong consistency dimension, like consistency dimension, categorizes equivalence query

learning:

Theorem 3.2.20. C is learnable with equivalence queries from H iff Ldim(C) ≤ ∞ and

SC(C,H) <∞. In particular, SC(C,H) ≤ LCEQ(C,H).

Proof. For the reverse direction, use Theorem 3.2.6 and the observation that C(C,H) ≤ SC(C,H).

For the forward direction, use Propositions 3.2.2 and 3.2.7. In particular, if SC(C) ≥ c, then

there is a partially specified subset A that is (c − 1)-consistent with C but which has no total

extension in H. Then, by Proposition 3.2.7, c ≤ LCEQ(C,H).

Corollary 3.2.21. Suppose Ldim(C) <∞. Then C(C,H) <∞ iff SC(C,H) <∞.

32

The distinction between consistency dimension and strong consistency dimension is subtle,

and many previous results hold with little to no modification if one replaces consistency dimen-

sion with strong consistency dimension. On the other hand, our work in section 3.3 will reveal

the practical difficulties associated with strong consistency dimension in complicated concept

classes.

We have already seen in Theorem 3.2.20 that strong consistency dimension provides a better

lower bound for learning complexity. It is also known in the finite case that strong consistency

dimension also gives a stronger upper bound for learning complexity:

Theorem 3.2.22. [8, Theorem 2] Suppose C is finite. Then LCEQ(C,H) ≤ dSC(C,H) · ln |C|e.

Proof. As this was originally framed in the setting where concepts were represented by strings,

we give an abbreviated translation of the original proof into the language of set systems. This

proof demonstrates the utility of constructing a partial hypothesis and taking some complete

extension.

Let c = SC(C,H). At stage i, let Ci ⊆ C be the set of remaining possible target concepts.

Let Ai be the partially specified subset given by

A(x) =



1 x belongs to more than c−1
c |Ci| many C ∈ Ci

0 x belongs to less than 1
c |Ci| many C ∈ Ci

undefined otherwise.

33

Observe that A is c-consistent with C—given any Y := {x0, . . . , xc−1} ⊆ dom(A), for each j,

less than 1
c |Ci| many remaining concepts disagree with A on xj , so less than c1

c |Ci| = |Ci| many

concepts disagree with A on some xj . So some concept agrees with A on Y . So A is c-consistent.

So we can find some B ∈ H such that B w A, and we submit B as our hypothesis. By choice

of A, if we receive a counterexample, we will have |Ci+1| ≤ c−1
c |Ci|. Repeating this dc · ln |C|e

many times is enough to identify and submit the target concept.

In light of Example 3.2.19, one hopes that improved bounds on learning can be found in

terms of strong consistency dimension and Littlestone dimension when C is infinite. We are

unable to show this presently, but offer some evidence in this direction:

Proposition 3.2.23. Suppose Ldim(C) = d <∞ and SC(C,H) = 2 <∞. Then LCEQ(C,H) =

d+ 1.

Proof. We know by Proposition 3.2.2 that d + 1 is a lower bound. We show that it is also an

upper bound.

Let V0 = C. Inductively define Vi, i = 1, . . . , d as follows. Given Vi, for any x ∈ X and

j ∈ {0, 1}, let

V
(x,j)
i := {B ∈ Vi |χB(x) = j},

34

where χB is the characteristic function on B. Construct the partially specified subset Ai where

Ai(x) =



0 Ldim(V
(x,0)
i) = Ldim(Vi)

1 Ldim(V
(x,1)
i) = Ldim(Vi)

undefined otherwise.

(3.1)

We claim that Ai has an extension in H. By our assumption that SC(C,H) = 2, it suffices to

check that A is 2-consistent with Vi. Suppose for contradiction that there are a0, a1 ∈ dom(Ai)

such that, without loss of generality, Ai(a0) = Ai(a1) = 0, but there is no extension of Ai|{a0,a1}

in Vi. Then observe that V
(x0,0)
i ⊆ V (x1,1)

i , whence

Ldim(Vi) ≥ Ldim(V
(x1,1)
i) ≥ Ldim(V

(x0,0)
i) = Ldim(Vi),

so Ldim(V
(x1,1)
i) = Ldim(Vi). But we also have Ldim(V

(x1,0)
i) = Ldim(Vi), a contradiction, as

we could then construct a binary element tree with proper labels from Vi of height Ldim(Vi)+1

with x1 at the root.

Let Bi ∈ H be a total extension of Ai. Submit Bi as the hypothesis. If Bi is correct, we are

done. Otherwise, we receive a counterexample xi. Set

Vi+1 := {B ∈ Vi |χB(xi) 6= χBi(xi)}.

35

Observe that at each stage, Ldim(Vi+1) < Ldim(Vi). Therefore, if we make d queries without

correctly identifying the target, then we must have Ldim(Vd) = 0. Then Vd is a singleton, which

must be the target concept.

The proof of Proposition 3.2.23 uses strong consistency in a key way, as the hypothesis is

generated by extending a certain partially specified subset. Nevertheless, the conclusion holds

under the assumption that C(C,H) = 2, due to Proposition 3.2.17.

3.2.4 Adding membership queries and efficient learning of finite classes

Consistency dimension was originally derived from the notion of polynomial certificates,

which was used to characterize learning with equivalence and membership queries in the finite

case by [21]. The following is an improvement of the upper bound on EQ+MQ learning com-

plexity of dC(C,H) log2 |C|e implicit in the proof of Theorem 3.1.1 in [21] (stated explicitly in

[8]). Our bound replaces log2 |C| with Ldim(C).

Theorem 3.2.24. Suppose Ldim(C) = d <∞ and C(C,H) = c <∞. Then LCEQ+MQ(C,H) ≤

c′d+ 1, where c′ = max{1, c− 1}.

Proof. 1 We proceed by induction on d. The base case, d = 0, is trivial, as then C is a singleton.

Suppose there is some element x such that Ldim(C ∩x) < d+ 1 and Ldim(C \x) < d+ 1, where

C ∩ x := {A ∈ C |x ∈ A} and C \ x := {A ∈ C |x /∈ A}. Then by induction, any concept in C ∩ x

1The algorithm is similar to that of Theorem 3.2.6. However, the applications of Lemma 3.2.5 are
replaced with membership queries.

36

can be learned in at most c′d+ 1 queries with guesses from H, and the same is true for C \ x.

Submit x as a membership query. This tells us whether the target concept lies in C ∩x or C \x,

and then we require at most c′d + 1 many queries, for a total of c′d + 2 ≤ c′(d + 1) + 1 many

queries.

If no such x exists, then for all x, either Ldim(C ∩ x) = d + 1 or Ldim(C \ x) = d + 1. Let

B be such that x ∈ B iff Ldim(C ∩ x) = d+ 1.

If B ∈ H, then we submit B as our query. If we are incorrect, then by choice of B, the class

C′ of concepts consistent with the counterexample x0 will have Littlestone dimension ≤ d. By

induction, any concept in C′ can be learned in at most c′d + 1 many queries, and so we learn

the target in at most c′d+ 2 ≤ c′(d+ 1) + 1 queries.

If B /∈ H, then, since C(C,H) = c, there are some x0, . . . , xc−1 such that there is no A ∈ C

such that B|{x0,...,xc−1} v A. (Observe that this cannot happen when c = 1. In fact, Proposition

3.2.17 and the proof of Proposition 3.2.23 imply that this cannot even happen when c = 2. In

particular, c′ = c− 1.) Then, with notation as in the proof of Proposition 3.2.2,

C = (C(x0,1−B(x0))) ∪ . . . ∪ (C(xc−1,1−B(xc−1))),

and Ldim(C(xi,1−B(xi))) ≤ d for each i. By induction, any concept in each C(xi,1−B(xi)) can be

learned in at most c′d + 1 many queries. By submitting x0, . . . , xc−2 as membership queries,

we can determine some i such that the target belongs to C(xi,1−B(xi)) (if the result of each

37

membership query on xj is B(xj), then we know that i = c− 1). We therefore learn in at most

c′d+ 1 + (c− 1) = c′(d+ 1) + 1 many queries.

We have a lower bound on learning complexity in terms of consistency dimension in this

setting analogous to Proposition 3.2.7:

Proposition 3.2.25. Suppose there is some (total) subset A which is n-consistent with C

but which does not have a total extension in H. Then n < LCEQ+MQ(C,H). In particular,

C(C,H) ≤ LCEQ+MQ(C,H).

Proof. We first show that n < LCEQ+MQ(C,H). If the learner submits x as a membership

query, the teacher returns A(x) if possible, that is, if there is a concept B ∈ C which agrees

with the previous data and satisfies B(x) = A(x).

By hypothesis, given any equivalence query H, the teacher can find some x ∈ dom(A) such

that H(x) 6= A(x), and the teacher returns a counterexample of this form if possible, that is, if

there is a concept B ∈ C which agrees with the previous data and satisfies B(x) = A(x).

Moreover, since A is n-consistent with C, the teacher is able to return data of this form for

the first n queries. Thus C cannot be learned with fewer than n + 1 equivalence queries from

H.

From this, it follows that C(C,H) ≤ LCEQ+MQ(C,H).

Finally, putting together the various upper and lower bounds from this section we give a

characterization of those problems efficiently learnable by equivalence and membership queries:

38

Theorem 3.2.26. Let (Cn,Hn)n∈N be a family of concept classes and hypothesis classes, re-

spectively. Let cn = C(Cn,Hn). Let dn = Ldim(Cn). The following are equivalent:

(i) LCEQ+MQ(Cn,Hn) is bounded by a polynomial in n.

(ii) cn and dn are bounded by a polynomial in n.

(iii) The algorithm from Theorem 3.2.24 learns Cn in at most polynomially in n many mem-

bership queries and equivalence queries in Hn.

Proof. (ii)⇒ (iii) follows immediately from Theorem 3.2.24, and (iii)⇒ (i) follows by definition

of learning complexity.

(i) ⇒ (ii): In Proposition 3.2.25, we showed that LCEQ+MQ(C,H) ≥ C(C,H), so it follows

that if cn is not polynomially bounded then neither is LCEQ+MQ(Cn,Hn).

Now suppose that dn is not polynomially bounded. By [7, Theorem 2.1] 1 we have

LCEQ+MQ(C,H) ≥ LCEQ+MQ(C,P(X)) ≥ log

(
4

3

)
· LCEQ(C,P(X)).

By [25, Theorems 5 and 6], we can replace LCEQ(C,P(X)) with Ldim(C). Thus:

LCEQ+MQ(Cn,Hn) ≥ log

(
4

3

)
· dn,

from which it follows that LCEQ+MQ(Cn,Hn) is not polynomially bounded.

1The inequality of [7] gives a lower bound for LCEQ+MQ which improved on the lower bound of
LCEQ(C,P(X))

log(1+LCEQ(C,P(X)))
from [28, Theorem 3]. In fact, Theorem 3 of [28] actually suffices for our purposes.

39

Finally, the upper and lower bounds of this section also yield a characterization of which

infinite classes are learnable in finitely many equivalence and membership queries.

Corollary 3.2.27. LCEQ+MQ(C,H) <∞ iff Ldim(C) <∞ and C(C,H) <∞.

3.2.5 The negation of the finite cover property

One can compare set systems with finite strong consistency dimension, to the model-

theoretic classes of formulas and theories without the finite cover property, which we define

below. Informally, the negation of the finite cover property allows for a specific quantitative

bound for applications of compactness.

Definition 3.2.28. Fix a first order theory T . A formula φ(x; y) in the language of T does not

have the finite cover property (ncfp) if there is n = n(φ) such that for all M |= T , and every

p ⊆ {φ(x; a),¬φ(x; a) | a ∈ M}, the following holds: if every q ⊆ p of size n is consistent, then

p is consistent. We let n(φ) denote the minimal such n.

T does not have the finite cover property if all formulas φ(x; y) do not have the finite cover

property.1

Consider the setting where C is generated by a formula φ(x; y), that is, M |= T and

C = Cφ = {φ(M ; b) | b ∈M}.

1The definition of nfcp on the formula level given here is stronger than original formulation in [39],
but it gives an equivalent characterization on the level of theories.

40

That is, Cφ consists of the φ-definable sets. Suppose φopp(y;x) = φ(x; y) does not have the

finite cover property, witnessed by some n = n(φopp). Then, given any disjoint A0, A1 ⊆ X, if

every size n subset of

p(y) := {φopp(y; a) | a ∈ A1} ∪ {¬φopp(y; a) | a ∈ A0}

is consistent, then p(y) is consistent. We can identify this partial type with the partially

specified subset A where

A(x) =



0 x ∈ A0

1 x ∈ A1

unspecified otherwise.

By passing to an |M |+-saturated extension N � M to obtain a larger parameter set, we

can find b′ ∈ N satisfying p(y). Then φ(M, b′) is a total extension of A.

Supposing we have passed to an |M|+ saturated extension N , we can let

H = Hφ := {φ(M ; b′) | b′ ∈ N}.

That is, Hφ consists of all externally φ-definable subsets of M , as N contains realizations of all

consistent partial φopp-types over M . By the compactness theorem, this means that N contains

realizations of all finitely consistent partial φopp-types over M . Having identified partially

specified subsets of M with their corresponding φopp-type, this amounts to observing that

41

Hφ contains total extensions of all finitely consistent partially specified subsets, equivalently,

contains all finitely consistent total subsets.

This gives a model-theoretic motivation to the strategy suggested by Proposition 3.2.12.

Adding all finitely consistent subsets to H amounts to saturating N so as to realize all φopp-

types over M.

If φopp has nfcp with n(φ) = n, then the finitely consistent partial types are exactly the

n-consistent types. Then Hφ contains total extensions of all n-consistent partially specified

subsets, so SC(Cφ,Hφ) = n. Note that φopp-types witnessing that n is the minimal such n

at which φopp has nfcp give partially specified subsets witnessing that SC(Cφ,Hφ) 6< n. This

reflects a variant of Proposition 3.2.12 for strong consistency dimension.

In particular, formulas φ such that φopp has nfcp provide a rich family of examples where

Cφ has finite (strong) consistency threshold. That is, for such φ, it is necessary and sufficient

for H to contain all externally φ-definable subsets (that is, all total finitely consistent partially

specified subsets) to obtain SC(C,H) <∞. On the other hand, when φopp has the finite cover

property, the externally definable sets are no longer sufficient, and one must venture beyond

the sets φ is capable of cutting out to obtain SC(C,H) <∞ (that is, by adding some sets which

are inconsistent).

Furthermore, Littlestone dimension of φ(x; y) (that is, the Littlestone dimension of Cφ) is

expressible as a first-order property. So we will have Ldim(C) = Ldim(H). So when the context

is a set system C generated by a stable formula φ(x; y) with φopp(y;x) nfcp, we can obtain a set

system H such that SC(C,H) <∞, but H is not much more complicated than the original set

42

system - H has the same Littlestone dimension as C. This is essentially the content of Theorem

3.2.14 when C has finite consistency threshold.

We give an example from model theory where φopp has the fcp.

Example 3.2.29. LetM be a structure in the language {E}, where E is an equivalence relation

with one class of size n for each n ∈ N, possibly with some infinite classes. Let

φ(x; y) be E(x, y) ∧ x 6= y

and let C = Cφ.

Suppose a1, . . . , ad are the elements belonging to the equivalence class of size d. Then

the φopp-type {φ(ai, y) | i ≤ d} (d − 1)-consistent but d inconsistent. Since there are equiva-

lence classes of arbitrarily large size, these witness that φopp is not nfcp. One can check that

Ldim(Cφ) = 2.

In any |M |+-saturated elementary extension N of M, no additional elements are added to

the finite equivalence classes already present inM, though N adds new infinite classes and new

elements to any existing infinite classes.

An attempt to learn Cφ by equivalence queries following the strategy of Theorem 3.2.6 would

be as follows. We are attempting to identify some c ∈ M . Letting a0 be an element in a new

infinite equivalence class in N , we guess φ(M,a0) = ∅. Then any counterexample will identify

an element belonging to the equivalence class of c. If c belongs to an infinite class, then we

can find some a1 ∈ N which is a new element of this class. Then φ(M,a1) = {b ∈M |E(b, c)}.

43

Then c is the only available counterexample, and we submit the correct concept φ(M, c) at our

next turn. However, if c belongs to the finite class of size n, then N has no new elements in

this class. Then the relevant queries, which are of the form φ(M,a) for a in the class of c, are

already present in Cφ. Then we are essentially attempting to identify a singleton from a set of

size n, and it is clear that the process could take up to n additional guesses.

3.3 Efficient learnability of regular languages

In a seminal paper, [1] showed that regular languages are efficiently learnable with equiv-

alence queries plus membership queries, and in this subsection, we will use Theorem 3.2.24 to

give an alternate short proof of this fact.1 Let Ln,m be the class of binary regular languages

on strings of length at most m specified by a deterministic finite automaton on at most n

nodes. The L∗ algorithm of [1] specifically uses O(n) equivalence queries and O(mn2) mem-

bership queries. We let DFA2(n) denote the collection of (equivalence classes of) deterministic

finite automata accepting binary strings and having at most n nodes. The proof of the next

proposition is straightforward.

Proposition 3.3.1. The Littlestone dimension of DFA2(n) is at most O(n log n).

Proof. In [22, Proposition 1], it is shown that |DFA2(n)| ≤ n2n2nn
n! ≤ 2O(n logn). From this, it

follows that the Littlestone dimension of DFA2(n) is at most O(n log n).

1In the following sections, we only make use of proper equivalence queries, that is, H = C. We shall
therefore let C(C) := C(C, C), which we will call the consistency dimension of C (with analogous notation
for strong consistency dimension).

44

The proof of the following proposition reveals the connection between consistency and the

Myhill-Nerode theorem.

Proposition 3.3.2. C(DFA2(n)) ≤ 2
(
n+1

2

)
= n(n+ 1).

Proof. Fix a subset C of binary strings and x, y binary strings. We say that z is a (C-)

distinguishing extension of x and y if xz ∈ C but yz /∈ C or vice versa. If x and y have

no distinguishing extension, then we say x and y are C-equivalent, and write x ∼C y. The

Myhill-Nerode theorem [34] says that a subset of binary strings of length m is the accept set

of a finite automaton with at most n nodes if and only if the number of ∼C classes is at most

n. Thus, given any subset C of the binary strings of length m which is not a regular language

recognized by an automaton with at most n nodes, there are at least n + 1 ∼C-classes of

elements. Pick representatives x0, . . . , xn from n + 1 classes, and for each i < j, pick some zij

that is a distinguishing extension of xi and xj . Then restricting C to the partial assignment

on {xkzij | i < j, k = i, j}, a domain of size 2
(
n+1

2

)
= n(n + 1) that witnesses that xi 6∼C xj

for all i 6= j, we can see that this restriction is inconsistent with the class of regular languages

recognized by automata with at most n nodes. Therefore C(DFA2(n)) ≤ n(n+ 1). 1

Now, by Theorem 3.2.24 and the previous two results, it follows that:

Theorem 3.3.3. The class Ln,m is learnable in at most O(n log n) equivalence queries and at

most O (n log n) (n(n+ 1)) membership queries.

1Note that the same proof shows that the consistency dimension of DFAm(n) is also at most n(n+1).

45

It is interesting to note that contrary to L∗, when using the algorithm from Theorem 3.2.24,

there is no dependence on m, the length of the binary strings which the teacher is allowed to

provide as counterexamples1.

Theorem 3.2.6 now implies that Ln,m is learnable in at most (n(n+ 1))O(n logn) equivalence

queries. Theorem 3.2.22 shows that a finite class C is learnable in at most dSC(C) · ln |C|e equiv-

alence queries. Since [3] showed that Ln,m is not learnable in polynomially many equivalence

queries, it follows that SC(Ln,m) cannot be polynomial in n,m.

3.3.1 Learning ω-languages

In this section, we consider the natural extension to languages on infinite strings indexed

by ω, called ω-languages. For an alphabet Σ, we denote by Σω, the strings of symbols from Σ

of order type ω. Similar to the previous section, we consider an automaton, which consists of

the collection A = (Σ, Q, q0, δ), where Q is a finite collection of states, q0 is the initial state,

and δ : Q × Σ → 2Q is a transition rule. To form a language, an automaton is equipped with

an acceptance criterion.2 Fix a subset F ⊆ Q. A run of a Büchi automaton is accepting if and

only if it visits the set F infinitely often. An ω-language is ω-regular if it is recognized by a

non-deterministic Büchi automaton. A run of a co-Büchi automaton is accepting if and only

if it visits F only finitely often. Let ψ : Q → {1, . . . , k} be a function, which we think of as a

1We should also note that L∗ was improved by Schapire to give a better bound on membership queries
(still depending on m). [37].

2Numerous acceptance criteria have been extensively studied in the literature, and we refer the reader
to [5; 17; 16] for overviews.

46

coloring of the states of the automaton. Let c be the minimum color which is visited infinitely

often. A run of a parity automaton is accepting if and only if c is odd.

Two ω-regular languages are equivalent if they agree on the set of periodic words [32],

which allows for the possibility of recognizing the ω-language using finitary automata. This is

the approach of [5; 17], whose notation we follow closely. A family of DFAs (FDFA) F is a

pair (Q,P) where Q is a DFA with |Q| states and P is a collection of |Q| many DFAs, which

we refer to as progress DFAs - one DFA Pq for each state q of Q. Given a pair of finite words,

(u, v), a run of our family of DFAs consists of running Q on u, then running PQ(u) on v where

Q(u) is the ending state of Q on u. The pair (u, v) can be used to represent an infinite periodic

word uvω.

Let FDFA(n,m) be the class of families of deterministic finite automata where the leading

automaton has at most n nodes and the progress automata each have at most m nodes. It

is not quite true that once an ω-regular language has been reduced to an FDFA that one can

use L∗ directly to learn the various DFAs in the family [5, section 4]. It is also not completely

obvious what the bounds for Littlestone and consistency dimension are in terms of the DFAs

in the family, but the next two results give such bounds which imply the efficient learnability

of ω-regular languages.

Proposition 3.3.4. The class FDFA(n,m) has Littlestone dimension at most O(n log n +

nm logm).

47

Proof. The number of FDFAs of size (n,m) is clearly at most |DFA2(n)| · |DFA2(m)|n. That

is

|FDFA(n,m)| ≤ |DFA2(n)| · |DFA2(m)|n.

It follows that

Ldim(FDFA(n,m)) ≤ log(|DFA2(n)| · |DFA2(m)|n)

and using [22, Proposition 1], the desired bound follows.

Proposition 3.3.5. C(FDFA(n,m)) ≤ 2
(
n(m+1)

2

)
= O(n2m2).

Proof. A run of an FDFA on (u, v) can be simulated by the run of an appropriate automaton

in the class DFA3(n · (m + 1)). To see this, input word u$v where $ is a new symbol (recall

we are assuming u, v are binary) to a DFA which has the same diagram as the FDFA but

with an edge labeled with $ from each state of the leading automaton to the initial state of the

corresponding progress DFA. Now it follows by Proposition 3.3.2 that the consistency dimension

of FDFA(n,m) is at most 2
(
n(m+1)

2

)
.

Using the previous two results together with Theorem 3.2.24, one can deduce the efficient

learnability of FDFA(n,m):

Theorem 3.3.6. The class FDFA(n,m) is learnable in at most O(n log n+ nm logm) equiv-

alence queries and at most O((log n+m logm) · (n3m2)) membership queries.

We have formulated our bounds in terms of the number of states in the FDFA corresponding

to a given ω-language. In [5; 17] bounds on the number of states of FDFAs in terms of the

48

number of states of automata for ω-languages with various acceptors are given. Specifically,

the following bounds hold:

1. When A is a deterministic Büchi (DBA) or co-Büchi (DCA) automaton with n states,

there is an equivalent FDFA of size at most (n, 2n) [17, 5.3].

2. When A is a deterministic parity automaton (DPA) with n states and k colors, there is

an equivalent FDFA of size at most (n, kn) [17, 5.4].

3. When A is a nondeterministic Büchi automaton (NBA) with n states, there is an equiv-

alent FDFA of size at most (2O(n logn), 2O(n logn)).

Any NBA can be translated into a DPA, and so 2) yields the efficient learnability of ω-

regular languages in terms of the number of states in a DPA (this translation also yields 3).

However, the translation from NBA to DPA is known to require an exponential increase in the

number of states in general [36]. From an FDFA of size at most (n, k) there is a translation into

an NBA with at most O(n2k3) states [17, Theorem 5.8], and so it follows that the exponential

increase in states in moving from NBAs to FDFAs is necessary [17, Theorem 5.6].

Finally, we mention that [6] define restricted classes of ω-languages for which right-congruence

is fully informative, and isolate numerous classes (e.g. for each type of acceptor from the previ-

ous subsection) of ω-languages for which an infinitary invariant of the Myhill-Nerode theorem

holds. This variant of Myhill-Nerode is sufficient to bound the consistency dimension (and thus

establish the learnability) of the classes in terms of the number of right equivalence classes of

∼L similar to the proof of Proposition 3.3.2.

49

3.4 Random counterexamples and EQ-learning

In section 3.2 we characterized learnability by equivalence queries in terms of Littlestone

dimension and strong consistency dimension. The setting of equivalence query learning [2] as

described in section 3.2 deals with worst-case bounds for algorithmic identification of concepts

by a learner. In this section, we follow [4] and analyze a slightly different situation, in which

the teacher selects the counterexamples at random, and we seek to bound the expected number

of queries. [4] worked specifically with concept classes coming from boolean matrices, which

was convenient for their notation. Our formulation is equivalent, but we use slightly different

notation.

Throughout this section, let X be a finite set, let C be a set system on X, and let µ be a

probability measure on X. For A,B ∈ C, let ∆(A,B) = {x ∈ X |A(x) 6= B(x)} denote the

symmetric difference of A and B.

Definition 3.4.1. We denote, by Cx̄=ī for x̄ ∈ Xn and ī ∈ {0, 1}n, the set system {A ∈

C |A(xj) = ij , j = 1, . . . , n}. For A ∈ C and a ∈ X, we let

u(A, a) = Ldim(C)− Ldim(Ca=A(a)).

For any a ∈ X, either Ca=1 or Ca=0 has Littlestone dimension strictly less than that of C

and so:

Lemma 3.4.2. For A,B ∈ C and a ∈ X with A(a) 6= B(a),

50

u(A, a) + u(B, a) ≥ 1.

Next, we define a directed graph which is similar to the elimination graph of [4].

Definition 3.4.3. We define the thicket query graph GTQ(C, µ) to be the weighted directed

graph on vertex set C such that the directed edge from A to B has weight d(A,B) equal to the

expected value of Ldim(C)− Ldim(Cx=B(x)) over x ∈ ∆(A,B) with respect to the distribution

µ|∆(A,B).
1

Definition 3.4.4. The query rank of A ∈ C is defined as: infB∈C(d(A,B)).

Lemma 3.4.5. For any A 6= B ∈ C, d(A,B) + d(B,A) ≥ 1.

Proof. Noting that ∆(A,B) = ∆(B,A), and using Lemma 3.4.2:

d(A,B) + d(B,A) =
∑

a∈∆(A,B)

µ(a)

µ(∆(A,B))
(u(A, a) + u(B, a))

≥
∑

a∈∆(A,B)

µ(a)

µ(∆(A,B))
= 1.

Definition 3.4.6. [4, Definition 14] Let G be a weighted directed graph and l ∈ N, l > 1.

A deficient l-cycle in G is a sequence v0, . . . vl−1 of distinct vertices such that for all i ∈ [l],

d(vi, v(i+1) (mod l)) ≤ 1
2 with strict inequality for at least one i ∈ [l].

1Here one should think of the query by the learner as being A, and the actual hypothesis being B.
The teacher samples from ∆(A,B), and the learner now knows the value of the hypothesis on x.

51

The next result is similar to Theorems 16 (the case l = 3) and Theorem 17 (the case l > 3)

of [4], but our proof is rather different (note that the case l = 2 follows easily from Lemma

3.4.5).

Theorem 3.4.7. The thicket query graph GTQ(C, µ) has no degenerate l-cycles for l ≥ 2.

The analogue of Theorem 16 can be adapted in a very similar manner to the technique

employed by [4]. However, the analogue of the proof of Theorem 17 falls apart in our context;

the reason is that Lemma 3.4.2 is analogous to Lemma 6 of [4] (and Lemma 3.4.5 is analogous

to Lemma 13 of [4]), but our lemmas involve inequalities instead of equations. The inductive

technique of [4, Theorem 17] is to shorten degenerate cycles by considering the weights of a

particular edge in the elimination graph along with the weight of the edge in the opposite

direction. Since one of those weights being large forces the other to be small (by the equalities

of their lemmas), the induction naturally separates into two useful cases. In our thicket query

graph, things are much less tightly constrained - one weight of an edge being large does not

force the weight of the edge in the opposite direction to be small. However, the technique

employed in our proof seems to be flexible enough to adapt to prove Theorems 16 and 17 of [4].

Proof. Suppose the vertices in the degenerate l-cycle are A0, . . . , Al−1.

By the definition of degenerate cycles and d(−,−), we have, for each i ∈ Z/lZ, that

∑
a∈∆(Ai,Ai+1)

µ(a)

µ(∆(Ai, Ai+1))
u(Ai, a) ≤ 1

2
,

so, clearing the denominator, we have

52

∑
a∈∆(Ai,Ai+1)

µ(a)u(Ai, a) ≤ 1

2
µ(∆(Ai, Ai+1)). (3.2)

Note that throughout this argument, the coefficients are being calculated modulo l. Notice that

for at least one value of i, the inequality in Equation 3.2 must be strict.

Let G,H be a partition of

X = {A1, . . . , Al}.

Now define

D(G,H) := {a ∈ X | ∀A1, B1 ∈ G, ∀A2, B2 ∈ H, A1(a) = B1(a), A2(a) = B2(a), A1(a) 6= A2(a)} .

The following fact follows from the definition of ∆(A,B) and D(−,−).

Fact 3.4.8. The set ∆(Ai, Ai+1) is the disjoint union, over all partitions of X into two pieces

G,H such that Ai ∈ G and Ai+1 ∈ H of the sets D(G,H).

Now, take the sum of the inequalities Equation 3.2 as i ranges from 1 to l. On the left-hand

of the resulting sum, we obtain

l∑
i=1

 ∑
G,H a partition of X , Ai∈G,Ai+1∈H

 ∑
a∈D(G,H)

µ(a)u(Ai, a)

 .

53

On the right-hand side of the resulting sum we obtain

1

2

l∑
i=1

 ∑
G,H a partition of X , Ai∈G,Ai+1∈H

 ∑
a∈D(G,H)

µ(a)

 .

Given a partition G,H of {A1, . . . , Al} we note that the term D(G,H) = D(H,G) appears

exactly once as an element of the above sum for a fixed value of i exactly when Ai ∈ G and

Ai+1 ∈ H or Ai ∈ H and Ai+1 ∈ G.

Consider the partition G,H of X . Suppose that Aj , Aj+1, . . . , Ak is a block of elements each

contained in G, and that Aj−1, Ak+1 are in H. Now consider the terms i = j − 1 and i = k of

the above sums (each of which where D(G,H) appears).

On the left-hand side, we have
∑

a∈D(G,H) µ(a)u(Aj−1, a)) and
∑

a∈D(G,H) µ(a)u(Ak, a)).

Note that for a ∈ D(G,H), we have a ∈ ∆(Aj−1, Ak). So, by Lemma 3.4.2, we have

∑
a∈D(G,H)

µ(a)u(Aj−1, a)) +
∑

a∈D(G,H)

µ(a)u(Ak, a)) ≥
∑

a∈D(G,H)

µ(a).

On the right-hand side, we have

1

2
(
∑

a∈D(G,H)

µ(a) +
∑

a∈D(G,H)

µ(a)) =
∑

a∈D(G,H)

µ(a).

For each G,H a partition of X, the terms appearing in the above sum occur in pairs as above

by Fact 3.4.8, and so, we have the left-hand side is at least as large as the right-hand side of the

54

sum of inequalities Equation 3.2, which is impossible, since one of the inequalities must have

been strict by our degenerate cycle.

Theorem 3.4.9. There is at least one element A ∈ C with query rank at least 1
2 .

Proof. If not, then for every element A ∈ C, there is some element B ∈ C such that d(A,B) < 1
2 .

So, pick, for each A ∈ C, an element f(A) such that d(A, f(A)) < 1
2 . Now, fix A ∈ C and consider

the sequence of elements of C given by (f i(A)); since C is finite, at some point the sequence

repeats itself. So, take a list of elements B, f(B), . . . , fn(B) = B. By construction, this yields

a bad cycle, contradicting Theorem 3.4.7.

3.4.1 The thicket max-min algorithm

In this subsection we show how to use the lower bound on query rank proved in Theorem

3.4.9 to give an algorithm which yields the correct concept in linearly (in the Littlestone di-

mension) many queries from C. The approach is fairly straightforward—essentially the learner

repeatedly queries the highest query rank concept. The approach is similar to that taken in [4,

Section 5] but with query rank in place of their notion of informative.

Now we informally describe the thicket max-min-algorithm. At stage i, the learner is given

information of a concept class Ci. The learner picks the query

A = arg maxA∈Ci (minB∈Ci dCi(A,B)) .

55

The algorithm halts if the learner has picked the actual concept C. If not, the teacher returns

a random element ai ∈ ∆(A,C) at which point the learner knows the value of C(ai). Then

Ci+1 = (Ci)ai=C(ai).

Let T (C) be the expected number of queries before the learner correctly identifies the target

concept.

Theorem 3.4.10. The expected number of queries to learn a concept in a class C is less than

or equal to 2 Ldim(C).

Proof. The expected drop in the Littlestone dimension of the concept class induced by any

query before the algorithm terminates is at least 1
2 by Theorem 3.4.9; so the probability that

the drop in the Littlestone dimension is positive is at least 1
2 for any given query. So, from 2n

queries, one expects at least n drops in Littlestone dimension.

We give a rough bound on the probability that the algorithm has not terminated after a

certain number of queries. Since a query can reduce the Littlestone dimension of the induced

concept class by at most Ldim(C) and the expected drop is at least 1
2 , the probability that

a query reduces the Littlestone dimension is at least 1
2 Ldim(C) . Then the probability that the

Littlestone dimension of the induced concept class after n queries is positive is at most the

probability of fewer than Ldim(C) many successes in the binomial distribution with probability

56

1
2 Ldim(C) and n trials. It follows by Hoeffding’s inequality that the probability that the algorithm

has not terminated after n steps is at most

e−2

(
n

2 Ldim(C)−Ldim(C)
)2

n .

CHAPTER 4

COMPRESSION SCHEMES AND STABILITY

This chapter represents section 5 along with a portion of section 1 of the preprint [13],

co-authored with James Freitag.

In this chapter, we introduce compression schemes for concept classes. Specifically, the

notion we work with is equivalent to d-compression with b extra bits (of Floyd and Warmuth

[18]). In [23], Laskowski and Johnson proved that the concept class corresponding to a stable

formula has an extended d-compression for some d. Later, a result of Laskowski appearing as

[19, Theorem 4.1.3] in fact showed that one could take d equal to the Shelah 2-rank (Littlestone

dimension) and uses 2d many reconstruction functions. We show that d+1 many reconstruction

functions suffice.

In this chapter, we follow the notation and definitions given in [19] on compression schemes,

a notion due to Littlestone and Warmuth [26]. Roughly speaking, C admits a d-dimensional

compression scheme if, given any finite subset F of X and some f ∈ C, there is a way of

encoding the set F with only d-many elements of F in such a way that F can be recovered. We

will give a formal definition, but we note that numerous variants of this idea appear throughout

the literature. For instance:

• Size d-array compression [9].

• Extended compression schemes with b extra bits [18].

57

58

The next definition, which is the notion of compression we will work with in this section is

equivalent to the notion of a d-compression with b extra bits (of Floyd and Warmuth) [23, see

Proposition 2.1].

Definition 4.0.1. We say that a concept class C has a d-compression if there is a compression

function κ : Cfin → Xd and a finite set R of reconstruction functions ρ : Xd → 2X such that

for any f ∈ Cfin

1. κ(f) ⊆ dom(f)

2. f = ρ(κ(f))|dom(f) for at least one ρ ∈ R.

We work with the above notion mainly because it is the notion used in [19], and our goal

is to improve a result of Laskowski appearing there [19, Theorem 4.1.3]. In [23], Laskowski

and Johnson prove that the concept class corresponding to a stable formula has an extended

d-compression for some d. The precise value of d is not determined, but was conjectured to be

the Littlestone dimension. A later unpublished result of Laskowski appearing as [19, Theorem

4.1.3] in fact showed that one could take d equal to the Shelah 2-rank (Littlestone dimension)

and uses 2d many reconstruction functions. In Theorem 4.0.4, we will show that d + 1 many

reconstruction functions suffice.

The question of Johnson and Laskowski is the analogue (for Littlestone dimension) of a

well-known open question from VC theory [18]: is there a bound A(d) linear in d such that

every class of VC dimension d has a compression scheme of size at most A(d)? In general, there

is known to be bound which is at most exponential in d [33].

59

Definition 4.0.2. Suppose Ldim(C) = d. Given a partial function f , say that f is exceptional

for C if for all a ∈ dom(f),

C(a,f(a)) := {g ∈ C | g(a) = f(a)}

has Littlestone dimension d.

Definition 4.0.3. Suppose Ldim(C) = d. Let fC be the partial function given by

fC(x) =



0 Ldim(C(x,0)) = d

1 Ldim(C(x,1)) = d

undefined otherwise.

It is clear that fC extends any partial function exceptional for C.

Theorem 4.0.4. Any concept class C of Littlestone dimension d has an extended d-compression

with (d+ 1)-many reconstruction functions.

Proof. If d = 0, then C is a singleton, and one reconstruction function suffices. So we may

assume d ≥ 1.

Fix some f ∈ Cfin with domain F . We will run an algorithm to construct a tuple of length

at most d from F by adding one element at each step of the algorithm. During each step of the

algorithm, we also have a concept class Ci, with C0 = C initially.

If f is exceptional in Ci−1, then the algorithm halts. Otherwise, pick either:

60

• ai ∈ F such that f(ai) = 1 and

(Ci−1)(ai,1) := {g | g ∈ Ci−1, g(ai) = 1}

has Littlestone dimension less than Ldim(Ci−1). In this case, set Ci := (Ci−1)(ai,1) =

{g | g ∈ Ci−1, g(ai) = 1}.

• di ∈ F such that f(di) = 0 and

(Ci−1)(di,0) := {g | g ∈ Ci−1, g(di) = 0}

has Littlestone dimension less than Ldim(Ci−1). In this case, set Ci := (Ci−1)(di,0).

We allow the algorithm to run for at most d steps. There are two distinct cases. If our

algorithm has run for d steps, let κ(f) be the tuple (ā, d̄) of all of the elements ai as above

followed by all of the elements di as above for i = 1, . . . , d. By choice of ai and di, this tuple

consists of d distinct elements. By construction the set

C(ā,d̄) := {g ∈ C| g(ai) = 1, g(di) = 0}

has Littlestone dimension 0, that is, there is a unique concept in this class. So, given (c1, c2, . . . , cn) ∈

Xd consisting of distinct elements, for i = 0, . . . , d, we let ρi(c1, . . . , cn) be some g belonging to

{g ∈ C | g(cj) = 1 for j ≤ i, g(cj) = 0 for j > i},

61

if such a g exists. By construction, for some i, the Littlestone dimension of the concept class

{g ∈ C ∩ F | g(cj) = 1 for j ≤ i, g(cj) = 0 for j > i} is zero, and so g is uniquely specified and

will extend f .

We handle cases where the algorithm halts early by augmenting two of the reconstruction

functions ρ0 and ρ1 defined above. Because ρ0 and ρ1 have so far only been defined for tuples

consisting of d distinct elements, we can extend these to handle exceptional cases by generating

tuples with duplicate elements.

If the algorithm stops at some step i > 1, then it has generated a tuple of length i − 1

consisting of some elements aj and some elements dk. Let ā consist of the elements aj chosen

during the algorithm, and let d̄ consist of the elements dk chosen during the running of the

algorithm. Observe that f is exceptional for C(ā,d̄).

If ā is not empty, with initial element a′, then let κ(f) = (ā, a′, d̄, a′, . . . , a′) ∈ F d. From

this tuple, one can recover (ā, d̄) (assuming ā is nonempty), so we let ρ1(ā, a′, d̄, a′, . . . , a′) be

some total function extending fC(ā,d̄) , which itself extends f . So ρ1(ā, d̄) extends f whenever

the algorithm halts before step d is completed and some ai was chosen at some point. If ā

is empty, then let κ(f) = (d̄, d′, . . . , d′) ∈ F d, where d′ is the initial element of d̄. From this

tuple, one can recover (∅, d̄) (assuming ā is empty), so we let ρ0(d̄, d′, . . . , d′) be total function

extending fC(∅,d̄) , which itself extends f . Finally, if the algorithm terminates during step 1,

then it has generated the empty tuple. In this case, let κ(f) = (c, . . . , c) for some c ∈ F . Then

Ldim(C) = Ldim(C(c,l)) for some l ∈ {0, 1}. In particular, if we have defined κ(f ′) = (c, . . . , c)

above for some f ′ where the algorithm only returns c (rather than the empty tuple), then

62

1 − l = f ′(c) 6= f(c), and so any such f ′ is handled by ρ1−l. So we may overwrite ρl to set

ρ(c, . . . , c) to be a total function extending fC , which itself extends f . For any tuple output

by our algorithm, one of the reconstruction functions produces an extension of the original

concept.

CHAPTER 5

BANNED SEQUENCE PROBLEMS AND THE SAUER-SHELAH

LEMMA

This chapter represents the preprint [12], co-authored with James Freitag.

5.1 Introduction

A single combinatorial notion called VC dimension determines important dividing lines in

both machine learning (PAC learnability of a class) and model theory (the independence/non-

independence dichotomy, IP/NIP) [24], and the finiteness of this quantity plays an essential role

in the development of various structural results in theories without the independence property

and in machine learning. Often at the root of these developments is the Sauer-Shelah Lemma,

which for a formula φ(x; y) without the independence property, gives a polynomial bound on the

shatter function associated with φ—that is, the number of consistent φ-types over finite sets.

Without NIP, however, the number of φ-types can grow exponentially in the size of the finite

parameter set. In a recent paper, Bhaskar [11] noticed that when the formula φ is actually stable,

that is, φ has finite Shelah 2-rank (also called Littlestone dimension or thicket dimension in the

context of set systems), one can relax the way in which the φ-types are constructed, allowing

for trees of parameters (explained below) while still proving polynomial bounds on the resulting

collection of consistent φ-types. Again, in the absence of stability the number of types formed

in this manner can grow exponentially in the height of the tree. Following Bhaskar, we refer

63

64

to this growth dichotomy theorem as the Stable Sauer-Shelah Lemma. In [14], we notice that

stability also determines an important dividing line in machine learning; stability determines

learnability in various settings of online learning. In these settings of learning, various results

at their core rely on the polynomial growth of the stable shatter function.

In both settings described above, the growth of the number of types being polynomially

bounded or exponential is completely determined by whether a simple combinatorial notion

of dimension is finite, and the upper bound (which is tight in general) on the number of such

types (in terms of the appropriate notion of dimension) is identical in both cases. In light of

this, Bhaskar naturally asks if there is a single combinatorial principle which explains both the

Sauer-Shelah Lemma and the stable variant. The main purpose of this chapter is to set up a

general context in which one can prove Sauer-Shelah type results into which both of the above

contexts fit, answering Bhaskar’s question as well as proving new results. Our solution to the

problem is quite general and deals with what we call banned sequence problems.

Our general setup of banned sequence problems is an interesting combinatorial setting in its

own right, and we will roughly describe the simplest context here. Suppose that you consider

the collection of all binary sequences of length n, and for each subset of the indices of size k,

there is at least one “banned subsequence” of length k. How many binary sequences of length

n are there which avoid each of the banned sequences on all subsets of the indices of size k?

Subject to some very mild assumptions on how the banned sequences are chosen, we show that

there are at most
k−1∑
i=0

(
n

i

)

65

such sequences. This bound is the bound of the Sauer-Shelah Lemma. Without the mild

assumptions, we show that this bound can be violated. The generality of our setup covers both

the settings mentioned above as well as yielding some new results.

We give a slight improvement of a result of Malliaris and Terry [30] regarding sizes of cliques

and independent sets in stable graphs. Essentially, their result uses the finiteness of a certain

combinatorial dimension, tree rank, in order to establish polynomial bounds strong enough to

get a version of the Erdős-Hajnal conjecture, among other results (Malliaris and Terry also

develop further structural properties of graphs which we will not touch on in this thesis). We

examine tree rank in the general context of banned sequence problems, and as a result, give a

slight improvement to their bounds.

In the last part of the chapter, we turn to the setting of op-ranks. For each s ∈ N, Guingona

and Hill [20] define a rank of partial types, ops-rank. For instance, when s = 1, op1-rank is

equal to the Shelah 2-rank. Working with set systems of finite ops-rank, we establish a new

variant of the Sauer-Shelah Lemma using our banned sequence setup.

We note that not every known variant of the Sauer-Shelah Lemma seems to fit into the

context of banned sequence problems; the main results of [15] establish a variant of Sauer-

Shelah for n-dependent theories which does not seem to easily fit into our context of banned

sequence problems. Is there a general setup which also covers the known Sauer-Shelah style

results for n-dependent theories? This seems reasonable to ask because n-dependent theories

generalize NIP theories in a way similar to how theories with finite ops-rank generalize stable

theories.

66

5.1.1 Organization

In section 5.2, we give the necessary preliminary notation for our results. In section 5.3, we

lay out the basic theory of banned sequence problems along with some applications. In section

5.4, we generalize our banned sequence problems. In section 5.4.2, we apply generalized banned

problems to the op-rank setting.

5.2 Preliminaries

Our primary combinatorial tool applies to theorems surrounding VC dimension and Little-

stone dimension (also known as Shelah’s 2-rank in model theory or thicket dimension in [11]),

and we recall those definitions and relevant theorems. The next several definitions can be found

in various sources, e.g. [40].

Throughout, any indexing starts at 0, and [n] := {0, 1, . . . , n − 1}. By
([n]
k

)
we mean the

collection of all subsets of [n] of size k.

Recall that a set system (X,F) (often referred to as F when X is understood) consists of

a set X and a collection F ⊆ P(X) of subsets of X. For Y ⊆ X, the projection of F onto Y is

the set system with base set Y and collection of subsets

FY := {F ∩ Y |F ∈ F}.

VC dimension measures the ability of a set system to pick out subsets of a set of a given

size.

67

Definition 5.2.1. A set system (X,F) shatters a set Y if FY = P(Y). The VC dimension

of F is the largest k < ω such that F shatters some set of size k, or is infinite if F shatters

arbitrarily large sets. The shatter function

πF (n) := sup
Y⊆X,|Y |=n

|FY |

is given by the supremum of the size of the projection onto subsets of a given size.

If a set system has finite VC dimension, then we obtain a polynomial bound on the shatter

function.

Theorem 5.2.2 (Sauer-Shelah Lemma). Let F be a set system of VC dimension k. Then the

maximum size of a projection from F onto a set A = {a0, . . . , an−1} of size n is
∑k

i=0

(
n
i

)
. In

particular,

πF (n) ≤
k∑
i=0

(
n

i

)
.

Several proofs of the Sauer-Shelah Lemma can be found in various sources, e.g. [40; 35].

Littlestone dimension is a variant of VC dimension; our development follows [11]. (Bhaskar

calls Littlestone dimension “thicket dimension”—we prefer to use Littlestone dimension, or use

“stable” to describe the general setting.) Given a set from the set system, elements are presented

sequentially, with the element presented depending on membership of previous elements.

68

Definition 5.2.3. A binary element tree of height n with labels from X is a function T : 2<n →

X. A node is a binary sequence σ ∈ 2<n along with its label, aσ := T (σ). A leaf is a binary

sequence of length n, τ : [n]→ {0, 1}. A leaf τ is properly labeled by a set A if for all m < n,

aτ |[m]
∈ A iff τ(m) = 1.

Definition 5.2.4. The Littlestone dimension of a set system (X,F) is the largest k < ω such

that there is a binary element tree of height k with labels from X such that every leaf can

be properly labeled by elements of F , or is infinite if there are such trees of arbitrary height.

The stable shatter function (what Bhaskar calls the “thicket shatter function”) ρF (n) is the

maximum number of leaves properly labeled by elements of F in a binary element tree of

height n.

Theorem 5.2.5 (Stable (Thicket) Sauer-Shelah Lemma [11]). Let F be a set system of Little-

stone dimension k. Then the maximum number of properly labeled leaves in a binary element

tree of height n is
∑k

i=0

(
n
i

)
. In particular,

ρF (n) ≤
k∑
i=0

(
n

i

)
.

VC dimension and the (VC) shatter function can be viewed in the context of binary element

trees where every node of the same height is labeled with the same element, i.e. aσ = aσ′

whenever |σ| = |σ′|.

69

There are dual notions of both VC dimension and Littlestone dimension, and their corre-

sponding shatter functions, where the roles of elements and sets are reversed.

Definition 5.2.6. Given a set system (X,F), the dual set system (X,F)∗, or just F∗, is the

set system with base set F where the subsets are given by

{F |F ∈ F , x ∈ F}

for each x ∈ X. The dual VC (resp., Littlestone) dimension of F is the VC (resp., Littlestone)

dimension of F∗.

Dual Littlestone dimension can be calculated by examining binary decision trees, where

nodes are labeled by sets in the set system, and leaves are labeled by elements. Dual VC

dimension can be calculated similarly.

In model theory, given a model M, the VC (resp., Littlestone) dimension of a partitioned

formula φ(x; y) is the VC (resp., Littlestone) dimension of the set system

(M |x|, {φ(M |x|, b) | b ∈M |y|}).

These combinatorial notions encode model-theoretic dividing lines. A formula is NIP iff it has

finite VC dimension, and is stable iff it has finite Littlestone dimension.

70

5.3 The combinatorics of banned sequences

The binary element tree structure used to define Littlestone dimension allows us to identify

a leaf of the tree with the binary sequence corresponding to the path through the tree to that

leaf. Then counting properly-labeled leaves amounts to counting the corresponding binary

sequences. We establish a framework for counting binary sequences under certain conditions

reflecting the tree structure, from which we will obtain a unified proof of the Sauer-Shelah

lemmas.

5.3.1 Banned binary sequences and Sauer-Shelah lemmas

Our framework for counting binary sequences will reflect the height of the tree as well as

the dimension (either Littlestone or VC) of the set system. We find it easier to count banned

sequences. Having Littlestone dimension k − 1 says that in a tree of height k, there are some

leaves which cannot be properly labeled, and those leaves correspond to sequences that we ban.

Definition 5.3.1. A k-fold banned binary sequence problem (BBSP) of length n, for 0 ≤ k ≤ n

is a function

f :

(
[n]

k

)
× 2n−k → P(2k) \ {2k}.

Informally, for each k-subset of [n] and each binary sequence of length n − k, the binary

sequences of length k not selected by f are banned, and we ban at least one such sequence.

Sometimes we will refer to the sequences omitted by the function f as banned subsequences.

Remark 5.3.2. It will be convenient to view binary sequences as functions, where the domain

is the appropriate set of indices. Given S ∈
([n]
k

)
, let S̄ := [n] \ S. When we consider f(S, Y)

71

for some fixed S, we view Y ∈ 2n−k as a function Y : S̄ → {0, 1}, and elements of f(S, Y) as

functions Z : S → {0, 1}, identifying 2n−k with 2S̄ and 2k with 2S .

Given X : [n] → {0, 1} and S ⊆ [n], let XS denote the restriction X|S of X to S, that is,

the subsequence obtained by restricting to the indices in S.

We shall denote the union of two binary sequences Y and Z with disjoint domains as Y tZ.

For example, if Y has domain {0, 2}, with Y (0) = Y (2) = 0, and Z has domain {1} with

Z(1) = 1, then Y t Z is the binary sequence 010. When we wish to extend a sequence by

appending some j ∈ {0, 1}, we will merely write Y t j, with the index of j usually understood

from the context.

For a fixed S ∈
([n]
k

)
, we denote the elements of S by {s0, . . . , sk−1}, where s0 < s1 < . . . <

sk−1.

Definition 5.3.3. A solution to a k-fold banned binary sequence problem f of length n is a

binary sequence X ∈ 2n such that for any S ∈
([n]
k

)
,

XS ∈ f(S,XS̄).

A sequence which is not a solution is banned.

Intuitively, a solution to a banned binary sequence problem is a sequence which avoids

every banned subsequence. In applications to binary element trees, properly labeled leaves will

correspond to solutions of a certain banned binary sequence problem.

72

Without further assumptions, the number of solutions of a BBSP can grow exponentially

in n for a fixed k.

Proposition 5.3.4. A k-fold BBSP f of length n has at most (2k − 1)2n−k solutions.

Proof. Fix S ∈
(
n
k

)
. For Y : S̄ → {0, 1} and Z : S → {0, 1}, Y t Z can only be a solution if

Z ∈ f(S, Y), and for each of 2n−k many such Y ’s, there are at most 2k − 1 many Z’s.

We observe that to obtain this bound, and so have only 2n−k banned sequences, we must

be able to find a collection B of 2n−k sequences X : [n]→ {0, 1} such that for all S ∈
([n]
k

)
and

all Y : S̄ → {0, 1}, there is some X ∈ B such that Y ⊆ X. Then we can set f(S, Y) := {XS},

and then every X ∈ 2n \ B is a solution. In general this is not possible. It is possible for k = n,

where we simply pick a sequence of length n to ban, k = n − 1, where B can consist of, say,

the two constant sequences, k = 1, given below, and k = 0, which is trivial. But this condition

already cannot be met for k = 2 and n = 4. In this case, one can verify that the minimum size

of B to satisfy the above condition is 5, and so a 2-fold BBSP of length 4 can have at most 11

solutions.

Example 5.3.5. Let f be the 1-fold BBSP of length n given by

f({s}, Y) =


1 Y has an even number of 1s

0 Y otherwise.

Then f has 2n−1 solutions, given by those binary sequences which have an even number of 1s.

73

We therefore need stronger hypotheses in order to bound the number of solutions by the

Sauer-Shelah bound.

Definition 5.3.6. A k-fold banned binary sequence problem f of length n is not hereditary if

there is S ∈
([n]
k

)
and a function g : 2S → 2S̄ such that

• for all Z : S → {0, 1}, we have Z ∈ f(S, g(Z)), and

• for all Zα 6= Zβ, the first index at which g(Zα) t Zα and g(Zβ) t Zβ differ is in S.

Otherwise, say f is hereditary.

One can think of the second condition as stating that g is continuous in the sense that for

any t ∈ S̄, g(Zα)(t) = g(Zβ)(t) whenever (Zα)S∩[t] = (Zβ)S∩[t], that is, g(Z)(t) depends only

on ZS∩[t].

We will usually suppress the function g, and instead use indices to indicate the mapping—

given Zα : S → {0, 1}, we let Yα := g(Zα). Then being not hereditary amounts to finding

S ∈
([n]
k

)
such that for all Zα : S → {0, 1}, we can associate a Yα : S̄ → {0, 1} such that

Zα ∈ f(S, Yα), and for any Zα 6= Zβ, the first index at which YαtZα and Yβ ∧Zβ differ is in S.

For our purposes, being hereditary is the desirable property; hereditary BBSPs allow us to

obtain the Sauer-Shelah bound on the number of solutions. We can also study binary element

trees using hereditary BBSPs, and thus derive the corresponding Sauer-Shelah lemmas. We

choose to call these BBSPs hereditary because proving the Sauer-Shelah bound on the number

of solutions uses derivative BBSPs in the inductive step, and being hereditary is preserved in

these derivative problems.

74

Theorem 5.3.7. Any hereditary k-fold banned binary sequence problem of length n has at most∑k−1
i=0

(
n
i

)
solutions.

The proof is by induction. We will make use of the recursive property of binomial coefficients,

(
n

i

)
=

(
n− 1

i− 1

)
+

(
n− 1

i

)
,

from which it follows that

k−1∑
i=0

(
n

i

)
=

k−2∑
i=0

(
n− 1

i

)
+

k−1∑
i=0

(
n− 1

i

)
.

In particular, we use the inductive strategy suggested by these equalities. The base cases will

be k = 0 and k = n. In the inductive step, given a hereditary k-fold banned binary sequence

problem f of length n, we seek two derivative problems: a (k− 1)-fold banned binary sequence

problem of length n− 1, and a k-fold banned binary sequence problem of length n− 1, both of

which are hereditary. We will use banned sequences of these derivative problems to construct

banned sequences of the original problem.

Definition 5.3.8. Let f be a k-fold banned binary sequence problem of length n, for 1 ≤ k ≤

n− 1.

• Let f̂ be the (k−1)-fold banned binary sequence problem of length n−1 given as follows:

for all T ∈
([n−1]
k−1

)
, all Y ∈ 2n−k, and all Z ∈ 2k−1, let

Z /∈ f̂(T, Y) iff ∃j ∈ {0, 1} Z t j /∈ f(T t {n− 1}, Y).

75

• Let f ′ be the k-fold banned binary sequence problem of length n− 1 given as follows: for

all S ∈
([n−1]

k

)
, all Y ∈ 2n−k−1, and all Z ∈ 2k, let

Z /∈ f ′(S, Y) iff ∀j ∈ {0, 1} Z /∈ f(S, Y t j)

That is, the banned subsequences in f̂(T, Y) are those subsequences which can be extended

by a particular j to a banned subsequence in f(T ∪ {n − 1}, Y). In particular, any banned

sequence of f̂ has some extension which is a banned sequence of f .

The banned subsequences in f ′(S, Y) are those subsequences which are banned subsequences

in f(S, Y t j) for any extension of Y by j. In particular, any extension of any banned sequence

of f ′ is a banned sequence of f .

Lemma 5.3.9. Suppose f is a hereditary k-fold banned binary sequence problem of length n,

for 1 ≤ k ≤ n− 1. Then both f̂ and f ′ are also hereditary.

Proof. Suppose for contradiction that f̂ is not hereditary. Then there exists T ∈
([n−1]
k−1

)
such

that for each Zα : T → {0, 1}, there is Yα : T̄ → {0, 1} such that Zα ∈ f̂(T, Yα), and for any

Zα 6= Zβ, the first index at which Yα tZα and Yβ tZβ differ belongs to T . Note that for some

Zα and some j ∈ {0, 1}, we have that

Zα t j /∈ f(T ∪ {n− 1}, Yα),

76

or else associating each Zα t j with Yα would witness that f itself is not hereditary. Then, by

definition of f̂ , Zα /∈ f̂(T, Yα), a contradiction. So f̂ is hereditary.

Suppose for contradiction that f ′ is not hereditary. Then there exists S ∈
([n−1]

k

)
such that

for all Zα : S → {0, 1}, there is Yα : S̄ → {0, 1} such that Zα ∈ f ′(S, Yα), and for any Zα 6= Zβ,

the first index at which Yα t Zα and Yβ t Zβ differ belongs to S. By definition of f ′, for each

Zα, there is jα ∈ {0, 1} such that

Zα ∈ f(S, Yα t jα).

Let Y ′α be Yα t jα. Then associating Zα with Y ′α witnesses that f is not hereditary, a contra-

diction. So f ′ is hereditary.

Proof of Theorem 5.3.7. We prove the result by induction on n and k. Let f be a hereditary

k-fold banned binary sequence problem of length n. Let B(f) denote the number of sequences

banned by f . It suffices to prove that

B(f) ≥ 2n −
k−1∑
i=0

(
n

i

)
.

The base cases are k = n and k = 0. When k = n, we have 2n −
∑k−1

i=0

(
n
i

)
= 1, and any

BBSP has at least one banned sequence. When k = 0, for all Y ∈ 2n, we have f(∅, Y) = ∅.

Then for all X ∈ 2n, we have X∅ = ∅ /∈ f(∅, X[n]). So all X ∈ 2n are banned, and f has no

solutions.

77

Otherwise, we proceed by induction. We show

B(f) ≥ B(f̂) +B(f ′).

For each sequence X̂ that is banned by f̂ , there is at least one extension X which is banned by

f , and we pick one such extension. For each sequence X ′ banned by f ′, at most one extension

of X ′ was already obtained by extending a sequence X̂ banned by f̂ . So there is at least one

extension X of X ′ which is banned by f (by definition of f ′) but was not obtained by extending

banned sequences for f̂ . Therefore these banned sequences of f constructed from f ′ and f̂ have

no common members, and so we have

B(f) ≥ B(f̂) +B(f ′),

as desired. By induction, we have that

B(f) ≥

(
2n−1 −

k−2∑
i=0

(
n− 1

i

))
+

(
2n−1 −

k−1∑
i=0

(
n− 1

i

))

≥ 2n −
k−1∑
i=0

(
n

i

)
.

Thus f has at most
∑k−1

i=0

(
n
i

)
solutions.

It shall be useful to identify a stronger banned binary sequence problem, namely those in

which f(S, Y) depends only on S.

78

Definition 5.3.10. A banned binary sequence problem f is independent if f(S, Y) = f(S, Y ′)

for any Y, Y ′ : S̄ → 0, 1. When f is independent, we write f(S).

Corollary 5.3.11. Any independent k-fold banned binary sequence problem f of length n has

at most
∑k−1

i=0

(
n
i

)
solutions.

Proof. We check that f is hereditary. If not, then there is S ∈
([n]
k

)
such that for all Zα :

S → {0, 1}, there is Yα : S̄ → {0, 1} with Zα ∈ f(S, Yα) = f(S). But then f(S) = 2k, a

contradiction. The result follows from Theorem 5.3.7.

Banned binary sequence problems provide a common framework to prove Sauer-Shelah type

bounds.

Proof of Theorem 5.2.2. We obtain a k + 1-fold independent BBSP f of length n as follows.

Given S = {as0 , . . . ask} ∈
(
A
k+1

)
, let f(S) be the set of binary sequences Z of length k+ 1 such

that there is some F ∈ F such that asi ∈ F iff Z(i) = 1. We have that f(S) 6= 2k+1 since the

VC dimension of F is k, and f is clearly independent. Then a subset B of A is in the projection

from F onto A iff the characteristic sequence of B (i.e. the sequence where the jth entry is 1

iff aj ∈ B) is a solution to f . The result follows from Corollary 5.3.11.

Proof of Theorem 5.2.5. Let T be a binary element tree of height n, with nodes aσ for σ ∈ 2<n.

We obtain a k + 1-fold hereditary BBSP of length n, f , as follows. Given S = {s0, . . . , sk} ∈([n]
k+1

)
where s0 < s1 < · · · < sk and Y : S̄ → {0, 1}, we obtain a binary element tree of height

k+ 1 by taking all paths τ ∈ 2n through T such that Y ⊆ τ . Any two such paths first differ at

some node aσ where |σ| ∈ S, so removing all other nodes gives us the binary element tree TS,Y

79

of height k + 1. Since F has Littlestone dimension k, not all leaves of TS,Y can be properly

labeled, so let f(S, Y) be the set of all sequences whose corresponding leaves in TS,Y can be

properly labeled. Then a leaf in T can only be properly labeled if the corresponding sequence

is a solution to f .

We now show that f as constructed above is hereditary. Fix S = {s0, . . . , sk}, and suppose

for contradiction that this choice of S witnesses that f is not hereditary. Then, for each

Zα : S → {0, 1}, there is Yα : S̄ → {0, 1} such that Zα ∈ f(S, Yα). We obtain a complete binary

tree of height k+ 1 specified by each path Yα tZα constructed in this manner, restricted to S.

In particular, any two paths constructed in this manner first differ at some index in S, as the

first index at which Yα tZα and Yβ tZβ differ is in S. Since each Zα is not banned, we have a

complete binary tree of height k+1 in which every leaf can be properly labeled, a contradiction.

The result then follows from Theorem 5.3.7.

5.3.2 An application to type trees

Banned binary sequence problems can be applied to other problems with a tree structure.

We use this to improve a result of Malliaris and Terry [30].

Definition 5.3.12. Given a graph G = (V,E) on n vertices and A ⊆ 2<n, closed under initial

segments, we say that a labeling V = {aη | η ∈ A} is a type tree if for each η ∈ A :

1. If η t 0 ∈ A, then aηt0 is nonadjacent to aη. If η t 1 ∈ A, then aηt1 is adjacent to aη.

2. If η (η′ (η′′, then aη is adjacent to aη′ if and only if aη is adjacent to aη′′ .

A type tree has height h if A ⊆ 2<h but A * 2<h−1.

80

More generally, given a model M, a finite set B ⊆ M , a finite collection ∆ of partitioned

formulas closed under cycling of the variables, and A ⊆ ω<ω closed under initial segments, a

type tree is a labeling B = {bη | η ∈ A} such that, for any η, η′ ∈ A, bη and bη′ have the same

∆-type over their common predecessors {bζ | ζ (η, β (η′} iff η ⊆ η′ or η′ ⊆ η. Type trees are

used in more generality in [29], but we restrict our attention to type trees of graphs.

Definition 5.3.13. The tree rank of a graph G = (V,E) is the largest integer t such that there

is a subset V ′ ⊂ V and some indexing V ′ = {aη | η ∈ 2<t} which is a type tree for the induced

graph on V ′, i.e. the type tree of V ′ is a full binary tree of height t.

The main interest in type trees for graphs lies in the fact that if we have a branch of

length h for a graph (V,E) with tree rank t, there is a clique or independent set of size at

least max{h2 , t} [30, Lemma 4.4]. More generally, branches through a type tree can be used

to extract indiscernible sequences [29, Theorem 3.5]. In both cases, stability establishes the

length of long branches through the type tree. For graphs, this is by way of tree rank—observe

that the edge relation having Littlestone dimension k implies that the tree rank is at most

k + 1. We use banned binary sequence problems to improve the bounds from [30, Theorem

4.6]. The improvement is modest, but it demonstrates how banned binary sequence problems

accommodate the combinatorics of type trees, at least in the case of the graph edge relation.

Theorem 5.3.14. Let G = (V,E) be a graph with |V | = n and tree rank t ≥ 2. Suppose

A ⊆ 2<n and V = {aη | η ∈ A} is a type tree with height h, where h ≥ 2t. Then

h ≥ (n · (t− 2)!)
1
t + 1.

81

The assumptions on t and h are not restrictive if our aim is to obtain cliques or independent

sets. If t = 1, then there is no branching, and we obtain a clique or independent set of size n
2 .

If h < 2t, then the largest clique or independent set guaranteed by [30, Lemma 4.4] is just the

tree rank t.

Proof. We will associate a hereditary t-fold banned binary sequence problem of length h − 1

with the type tree. Fix any subset S = {s0, . . . , st−1} in
(

[h−1]
t

)
and any Y : S̄ → {0, 1}. Let

f(S, Y) consist of all Z : S → {0, 1} such that (Y t Z)[st−1+1] is an element of 2<h which is in

the index set A of the type tree.

Suppose for contradiction that f(S, Y) = 2t. For each η ∈ 2<t+1, we identify η with a

partial function Zη : S ⇀ {0, 1}, where η(i) = Zη(si). For each i < t and each η : [i] → {0, 1}

in 2<t+1 \ 2t, let bη = a(Y tZη)[si]
. For each η : [t] → {0, 1} in 2t, let bη = a(Y tZη)[st−1+1]

. Note

that each bη is well-defined—in particular, for η ∈ 2t, if bη = a(Y tZη)[st−1+1]
was not an element

of the type tree, then we would have Zη /∈ f(S, Y). The rest of the elements are well-defined

since the index set of a type tree is closed under initial segments. Then the bη define a full

binary type tree of height t+ 1, contradicting our assumption that the tree rank of G is t. So

f is a t-fold BBSP of length h− 1.

We check that f is hereditary. Suppose for contradiction that f is not hereditary, witnessed

by some S ∈
(

[h−1]
t

)
. So for each Zα : S → {0, 1}, there is Yα : S̄ → {0, 1} such that

Zα ∈ f(S, Yα), and for α 6= β, the first index at which Yα t Zα and Yβ t Zβ differ is in S.

Identify each η ∈ 2<t+1 with Zη as above. For each i < t and each η : [i] → {0, 1}, let

bη = a(YαtZα)[si]
for any α such that Zη ⊆ Zα. For each η : [t]→ {0, 1}, let bη = a(YηtZη)[st−1+1]

.

82

These bη are defined since Zη /∈ f(S, Yη) by hypothesis. All other bη, for η : [i] → {0, 1},

i < t, are defined since type trees are closed under initial segments, and well-defined since if

Zη ⊆ Zα, Zβ, then the first index at which Yα tZα and Yβ tZβ differ is in S and is at least si.

Then the bη form a type tree of height t+ 1, a contradiction.

Thus a type tree of height h gives a hereditary t-fold banned binary sequence problem of

length h− 1. Now, by Theorem 5.3.7, the number of nodes at level h0, h0 = 0, . . . , h− 1, is at

most
t−1∑
i=0

(
h0

i

)
.

Thus, the total number of nodes of a type tree of height h and tree rank t is at most

h−1∑
h0=0

t−1∑
i=0

(
h0

i

)
= 1 +

h−1∑
h0=1

t−1∑
i=0

(
h0

i

)

= 1 +

h−1∑
h0=1

(
1 +

t−1∑
i=1

(
h0

i

))

≤
h−1∑
h0=1

t−1∑
i=1

(
h− 1

i

)
(5.1)

≤
h−1∑
h0=1

t−1∑
i=1

(h− 1)t−1

(t− 1)!
(5.2)

≤
h−1∑
h0=1

(h− 1)t−1

(t− 2)!

≤ (h− 1)t

(t− 2)!
,

83

where estimates in (Equation 5.1) and (Equation 5.2) follow from hypotheses on t and h. Then

(h− 1)t

(t− 2)!
≥ n,

so

h ≥ (n · (t− 2)!)
1
t + 1.

Under the hypotheses of Theorem 5.3.14, applying [30, Lemma 4.4] gives us a clique or

independent set of size at least

(n · (t− 2)!)
1
t + 1

2
.

This is an improvement of the lower bound given by Malliaris and Terry [30, Corollary 4.7].

5.4 Generalized banned sequence problems and applications

In this section we generalize Theorem 5.3.7 to the setting of j-ary sequences and apply the

resulting combinatorics to prove Sauer-Shelah type lemmas in the op-rank context [20].

5.4.1 Banned j-ary sequence problems

Definition 5.4.1. A k-fold banned j-ary sequence problem of length n, for 0 ≤ k ≤ n, is a

function

f :

(
[n]

k

)
× jn−k → P(jk) \ {jk}.

84

A solution to g is a j-ary sequence X ∈ jn such that for any S ∈
([n]
k

)
,

XS ∈ f(S,XS̄).

As before, for a fixed S ∈
([n]
k

)
,, we denote the elements of S by {s0, . . . , sk−1}, where

s0 < s1 < . . . < sk−1. When we consider f(S, Y), we view Y ∈ jn−k as a function Y : S̄ →

[j] = {0, 1, . . . , j − 1}, and elements of f(S, Y) as functions Z : S → [j], identifying jn−k with

jS̄ and jk with jS .

Definition 5.4.2. A k-fold banned j-ary sequence problem (j-ary BSP) f of length n is not

hereditary if there is S ∈
([n]
k

)
and a function g : jS → jS̄ such that

• for all Z : S → [j], we have Z ∈ f(S, g(Z)), and

• for all Zα 6= Zβ, the first index at which g(Zα) t Zα and g(Zβ) t Zβ differ is in S.

Otherwise, say f is hereditary.

As before, we suppress g and use indices to indicate the mapping, letting Yα denote Zα.

Theorem 5.4.3. Any hereditary k-fold banned j-ary sequence problem of length n has at most∑k−1
i=0 (j − 1)n−i

(
n
i

)
solutions.

The proof is similar to the proof of Theorem 5.3.7. We use the generalized versions of the

derivative problems for the induction.

Definition 5.4.4. Let f be a k-fold banned j-ary sequence problem of length n, for 1 ≤ k ≤

n− 1.

85

• Let f̂ be the (k− 1)-fold banned j-ary sequence problem of length n− 1 given as follows:

for all T ∈
([n−1]
k−1

)
, all Y ∈ jn−k, and all Z ∈ jk−1, let

Z /∈ f̂(T, Y) iff ∃l ∈ [j] Z t l /∈ f(T t {n− 1}, Y).

• Let f ′ be the k-fold banned j-ary sequence problem of length n− 1 given as follows: for

all S ∈
([n−1]

k

)
, all Y ∈ jn−k−1, and all Z ∈ jk, let

Z /∈ f ′(S, Y) iff ∀l ∈ [j] Z /∈ f(S, Y t l)

Lemma 5.4.5. Suppose f is a hereditary k-fold banned j-ary sequence problem of length n, for

1 ≤ k ≤ n− 1. Then both f̂ and f ′ are also hereditary.

The proof is a straightforward generalization of Lemma 5.3.9.

Proof of Theorem 5.4.3. The proof is by induction on n and k. Let f be a hereditary k-fold

banned j-ary sequence problem of length n.

Let B(f) denote the number of sequences banned by f . It suffices to prove that

B(f) ≥ jn −
k−1∑
i=0

(j − 1)n−i
(
n

i

)
.

86

The base cases are k = n and k = 0. When k = n, jn −
∑k−1

i=0 (j − 1)n−i
(
n
i

)
= 1, and

any j-ary BSP has at least one banned sequence. When k = 0, for all X ∈ jn, we have

X∅ = ∅ /∈ f(∅, X[n]) = ∅. So all X ∈ jn are banned.

Otherwise, we proceed by induction. We show

B(f) ≥ B(f̂) +B(f ′) · (j − 1).

For each sequence X̂ that is banned by f̂ , there is at least one extension X which is banned

by f , and we pick one such extension. For each sequence X ′ banned by f ′, there are at least

j − 1 extensions X of X ′ which are banned by f but were not obtained by extending banned

sequences for f̂ . Therefore these banned sequences constructed from f ′ and f̂ have no common

members, and so we have

B(f) ≥ B(f̂) +B(f ′) · (j − 1),

as desired. By induction, we have that

B(f) ≥ jn−1 −
k−2∑
i=0

(j − 1)n−1−i
(
n− 1

i

)

+ (j − 1)

(
jn−1 −

k−1∑
i=0

(j − 1)n−1−i
(
n− 1

i

))

= jn −
k−1∑
i=0

(j − 1)n−i
(
n

i

)
.

Thus, f has at most
∑k−1

i=0 (j − 1)n−i
(
n
i

)
solutions.

87

5.4.2 On the op-rank shatter function

The context of banned j-ary sequences allows us to work in the op-rank context of [20],

which we reframe in terms of set systems. Whereas VC dimension and Littlestone dimension

make use of binary trees, ops-rank makes use of 2s-ary trees.

Definition 5.4.6. A 2s-ary element tree T of height n with labels from X is a labeling of each

node ν ∈ (2s)<n by s-tuples xν = (xν,0, . . . , xν,s−1) from X. A leaf of T is an element of (2s)n.

A leaf ξ is properly labeled by a set A if, for all j < n and for all i < s, xξ|[j],i ∈ A iff ξ(j)(i) = 1.

x0, x1

x8, x9

A15A14A13A12

00

01 10

11

x6, x7

A11A10A9A8

00

01 10

11

x4, x5

A7A6A5A4

00

01 10

11

x2, x3

A3A2A1A0

00

01 10

11

00

01 10

11

Figure 2: A 22-ary element tree of height 2. A9 properly labels its leaf if it contains x0 and x7,
but does not contain x1 and x6, with no requirements on membership of the other elements.

While this will be the definition that we use in practice, it is often useful think of such trees

as binary trees with certain requirements on uniformity of labels within levels.

88

Definition 5.4.7. An alternative 2s-ary element tree T of height n with labels from X is a

labeling of 2<ns by elements of X such that given any two nodes σ and σ′ with labels xσ and

xσ′ , if |σ| = |σ′| = l and σ|s[b l
s
c] = σ′|s[b l

s
c], then xσ = xσ′ . A leaf of T is an element of 2ns,

i.e. a binary sequence of length ns. A leaf τ is properly labeled by a set A if, for all j < ns,

xτ |[j] ∈ A iff τ(j) = 1.

x0

x1

x8

x9

A15A14

x9

A13A12

x6

x7

A11A10

x7

A9A8

0 1
x1

x4

x5

A7A6

x5

A5A4

x2

x3

A3A2

x3

A1A0

0 1

0 1

Figure 3: An alternative 22-ary element tree of height 2. Observe that the labels on the first
two levels are uniform. Then, on the fourth level (and, trivially, the third level), labels are
uniform across all nodes with the same initial segment of length 2. We identify 1 with the right
branch. As before, A9 properly labels its leaf if it contains x0 and x7, but does not contain x1

and x6, with no requirements on membership of the other elements.

Definition 5.4.8. The ops-rank of a set system (X,F), written opRs(X,F) or opRs(F), is

the largest k < ω such that there is a 2s-ary element tree of height k with labels from X such

that every leaf can be properly labeled by elements of F , or is infinite if there are such trees of

arbitrary height. As a convention, we set opRs(F) = −∞ if F = ∅. The ops shatter function

89

ψsF (n) is the maximum number of leaves properly labeled by elements of F in a 2s-ary element

tree of height n.

It is easy to verify that the ops-rank and ops shatter function do not depend on which

definition of 2s-ary element tree we take.

The ops context is therefore intermediate between the stable context and VC context. In-

stead of picking labels node by node (as in the stable context) or uniformly for a single level (as

in the VC context), we pick labels s at a time. We observe that Littlestone dimension is just

the op1-rank, and VC dimension is the greatest integer s such that the ops-rank is at least 1.

Likewise, the ops shatter function is a natural generalization of both the VC and stable

shatter functions—observe that the VC shatter function πF (n) is exactly ψnF (1), and the stable

shatter function ρF (n) is exactly ψ1
F (n). Although the op-ranks as developed in [20] were indeed

intended as a generalization of Littlestone dimension (there referred to as Shelah’s 2-rank) and

have natural connections with VC dimension, they more strongly considered the geometric

properties as they pertained to model theory, and did not study the combinatorics surrounding

the shatter function. We study the shatter function here, in particular examining connections

between finite op-ranks and growth rates of op-shatter functions.

As before, the dual ops-rank and dual ops shatter function of a set system are the ops-rank

and ops shatter function of the dual set system.

Corollary 5.4.9. Let F be a set system with opRs(F) = k. Then

ψsF (n) ≤
k∑
i=0

(2s − 1)n−i
(
n

i

)
.

90

The proof follows our proof of Theorem 5.2.5, using j-ary banned sequence problems.

Proof. Let T be an 2s-ary element tree of height n. Identifying the 2s binary sequences of

length s with [2s], we obtain a hereditary (k + 1)-fold banned 2s-ary sequence problem f of

length n as follows. Given S = {s0, . . . , sk} ∈
([n]
k+1

)
, where s0 < s1 < · · · < sk and Y : S̄ → 2s,

we obtain a 2s-ary element tree of height k + 1 by taking all paths ξ ∈ (2s)n through T such

that Y ⊂ τ . Decisions will only be made at nodes ν, where |ν| ∈ S, so removing all other

nodes gives us a 2s-ary element tree TS,Y of height k + 1. Since opRs(F) = k, not all leaves

of TS,Y can be properly labeled, so let f(S, Y) be the set of all sequences whose corresponding

leaves in TS,Y can be properly labeled. Then a leaf in T can only be properly labeled if the

corresponding sequence is a solution to f .

It remains to show that f is hereditary. Fix S = {s0, . . . , sk}, and suppose for contradiction

that this choice of S witnesses that f is not hereditary. Then, for any Zα : S → [2s], there

is Yα : S̄ → [2s] such that Zα ∈ f(S, Yα). We obtain a complete 2s-ary tree of height k + 1

specified by each path Yα t Zα constructed in this manner, restricted to S. Since each Zα is

not banned, we have a 2s-ary tree of height k + 1 in which every leaf can be properly labeled,

a contradiction.

The result then follows from Theorem 5.4.3.

The bound of Corollary 5.4.9 can be improved by using more information—in particular,

when bounding the ops shatter function, we can consider opr-ranks for r ≤ s. We can already

give a better bound for the case where a set system has opr-rank 0 for some r.

91

Proposition 5.4.10. Let F be a set system with opRr(F) = 0. Then

ψsF (n) ≤

(
r−1∑
i=0

(
s

i

))n

Proof. Call a node live if it is the initial segment of a leaf that can be properly labeled. At each

node of the tree, we consider s elements. Observing that opRr(F) = 0 says precisely that the

VC dimension of F is strictly less than r, Theorem 5.2.2 tells us that we can find sets which

properly label at most
∑r−1

i=0

(
s
i

)
of the possible boolean combinations of the s elements. That

is, each live node has at most
∑r−1

i=0

(
s
i

)
live successors in the next level. Therefore, there are

at most
(∑r−1

i=0

(
s
i

))m
live nodes at the level of height m (counting from 0). Since leaves in a

tree of height n appear at the nth level, the result follows.

The set system of half-spaces in Rr achieves the bound of Proposition 5.4.10 for the dual

ops shatter function. (This is the famous cake-cutting problem.)

Proposition 5.4.11. Let F be the dual set system to the set system of Rr consisting of half-

spaces. Then

ψsF (n) =

(
r∑
i=0

(
s

i

))n
.

In particular, opRr+1(F) = 0.

Proof. It suffices to verify that taking s hyperplanes in general position (i.e. so that any m

hyperplanes intersect in a (r − m)-dimensional subspace) partitions Rr into
∑r

i=0

(
s
i

)
pieces,

each of which contains an open set (in the Euclidean topology). Such a partition corresponds

92

to one level in the 2s-ary tree. Each piece may then be partitioned further in the same manner

for each successive level of the tree.

We proceed by induction. The s = 1 case is obvious, for all r. The r = 1 case is obvious,

for all s.

Consider the s+1 and r+1 case. Removing one of the s+1 hyperplanes, we have
∑r+1

i=0

(
s
i

)
pieces by induction. Restore the hyperplane that we removed. Viewing that hyperplane as

a copy of Rr, it is partitioned into
∑r

i=0

(
s
i

)
pieces by the other hyperplanes, by induction.

Each such piece corresponds to a piece in Rr+1 which is cut into two pieces by the restored

hyperplane. We therefore find that the total number of pieces is

r+1∑
i=0

(
s

i

)
+

r∑
i=0

(
s

i

)
=

r+1∑
i=0

(
s+ 1

i

)
.

as desired.

We can further refine our methods. Fix a base set X. We identify any set system (X,F)

on X with F .

Proposition 5.4.12. 1. Let F1 ⊆ F2. Then, for any s, opRs(F1) ≤ opRs(F2).

2. Let s1 < s2. Then opRs1(F) ≥ b s2s1 c opRs2(F).

Proof. (1) is trivial. For (2), suppose that we have a 2s2-ary element tree T of height n2 :=

opRs2(F), with labels xν = (xν,0, . . . , xν,s2−1) for each ν ∈ (2s2)<n2 , in which every leaf can be

properly labeled. Then we can obtain a 2s1-ary element tree T ′ of height n1 := b s2s1 cn2 in which

93

every leaf can be properly labeled. Let t = b s2s1 c. Intuitively, we split each level of the 2s2-ary

tree into t levels of the 2s1-ary tree, with any label xν = (xν,0, . . . , xν,s2−1) splitting into t labels

(xν,0, . . . , xν,s1−1), (xν,s1 , xν,2s1−1), . . . , (xν,(t−1)s1 , . . . , xν,ts1−1).

More formally, suppose ξ ∈ (2s1)i, for i < n1. Suppose i = jt+ k, for 0 ≤ k < t. Then label ξ

with

xξ = (xνξ,ks1 , . . . xνξ,(k+1)s1−1),

where νξ ∈ (2s2)j is as follows. Let σl = ξ(l) ∈ 2s1 . Then let τm ∈ 2s2 be the concatenation of

σmt, . . . , σ(m+1)t−1, appending as many 0s as needed to obtain a sequence of length s2. Then

let

νξ := (τ0, . . . , τj−1).

Then the labeling of T ′ by the xξ gives a 2s1-ary tree of height n1 in which every leaf can be

properly labeled (in particular, by one of the labels of the leaves of the 2s2-ary tree).

(2) shows how different finite ops ranks can interact; in particular, a finite ops rank es-

tablishes upper bounds on ops′ ranks, for s < s′. (2) above is somewhat easier to see using

the alternative definition—we simply view the tree as a 2s1-ary tree instead of a 2s2-ary tree,

possibly after removing some levels. Figure 3 is the 21-ary tree obtained from Figure 2 by this

process.

94

Given F , x0, . . . , xs−1 ∈ X, and σ : [s]→ 2, let

Fσ := {Y ∈ F | for all i < n, xi ∈ Y iff σ(i) = 1}.

Call each Fσ a child of F . Then, in an ops-tree with root (x0, . . . , xs−1), Fσ consists of all sets

in F which properly label a leaf whose path begins with σ. Observe that if for all σ : [s]→ 2,

opRs(Fσ) ≥ a, then opRs(F) ≥ a + 1; we can obtain a 2s-ary tree of height a + 1 by labeling

the root with (x0, . . . , xs−1), and appending 2s-ary trees of height a witnessing opRs(Fσ) ≥ a

at the appropriate successor nodes.

The following lemma generalizes the observation that, given F with Littlestone dimension

a < ∞ and any x ∈ X, at most one of {F ∈ F |x ∈ F} and {F ∈ F |x /∈ F} has Littlestone

dimension a; if both had Littlestone dimension a, joining the two binary element trees witnessing

this with root x would witness that F has Littlestone dimension a+ 1.

Lemma 5.4.13. Suppose opRr(F) = a < ∞. Then, given any x0, . . . , xs−1 ∈ X, we have

opRr(Xσ) ≤ a− 1 for at least 2s−
∑r−1

i=0

(
s
i

)
children Fσ. More generally, we have opRr(Xσ) ≤

a− l for at least 2s −
∑lr−1

i=0

(
s
i

)
children Fσ.

Proof. We obtain an independent r-fold banned binary sequence problem f of length s as

follows. For each S ∈
(

[s]
r

)
, let f(S) be those functions η : S → 2 such that opRr(Fη) ≤ a− 1,

where

Fη := {Y ∈ F | for all i ∈ S, xi ∈ Y iff η(i) = 1}.

95

Each f(S) is nonempty, or else those Fη witness that that opRr(F) ≥ a + 1, a contradiction.

Then σ : [s]→ 2 is banned by f if there is some S ∈
(

[s]
r

)
such that opRr(FσS) ≤ a− 1, whence

opRr(Fσ) ≤ a − 1. So sequences banned by f have the corresponding child drop in opr-rank,

of which there are at least 2s −
∑r−1

i=0

(
s
i

)
many.

For the more general case, we instead obtain an independent lr-fold banned binary sequence

problem. For each S ∈
([s]
lr

)
, let f(S) be those η : S → 2 such that opRr(Fη) ≤ a− l. Each f(S)

is nonempty, or else those Fη witness that opRr(F) ≥ a+ 1. Then sequences banned by f have

the corresponding child drop in opr-rank by at least l, of which there are at least 2s−
∑lr−1

i=0

(
s
i

)
many.

The boundary between finite and infinite op-ranks serves as an important parameter in

obtaining better bounds. It is also of model-theoretic interest, coinciding with other known

properties.

Definition 5.4.14. The op-dimension of a set system F is

sup{r | opRr(F) =∞}.

Expressed in model-theoretic terms, the op-dimension of a (type-)definable set X in some

model is the supremum of the op-dimension of set systems on X generated finite sets of formulas.

In this context, op-dimension coincides with o-minimal dimension in o-minimal theories and

dp-rank in distal theories [20].

96

We use Lemma 5.4.13 to obtain better bounds on the ops shatter function by using op-

dimension.

Definition 5.4.15. Let ψsr,b(n) be the greatest possible number of properly labeled leaves in a

2s-ary tree of height n by any set system F with opRr(F) ≤ b < ω.

Theorem 5.4.16. Let a0 :=
∑r−1

i=0

(
s
i

)
and a1 = 2s − a0. Then

ψsr,b(n) ≤
b∑
i=0

(
n

i

)
an−i0 ai1.

Proof. The case n = 0 is trivial for all b. We proceed by induction on b. The case b = 0 is

Proposition 5.4.10.

For the case b + 1, we observe that, by monotonicity of ψsr,b(n) in b, we maximize the

possible number of properly labeled leaves by having as many children as possible not decrease

in opr-rank. We now proceed by induction on n. By Lemma 5.4.13, we can have at most a0

97

such children, and the remaining a1 children must drop in opr-rank by at least 1. We therefore

obtain the recurrence

ψsr,b+1(n) ≤ a0ψ
s
r,b+1(n− 1) + a1ψ

s
r,b(n− 1)

≤ a0

b+1∑
i=0

(
n− 1

i

)
an−i−1

0 ai1 + a1

b∑
i=0

(
n− 1

i

)
an−i−1

0 ai1 by induction

≤
b+1∑
i=0

(
n− 1

i

)
an−i0 ai1 +

b∑
i=0

(
n− 1

i

)
an−i−1

0 ai+1
1

≤
(
n− 1

0

)
an0 +

b+1∑
i=1

(
n− 1

i

)
an−i0 ai1 +

b+1∑
i=1

(
n− 1

i− 1

)
an−i0 ai1

≤
(
n

0

)
an0 +

b+1∑
i=1

(
n

i

)
an−i0 ai1

≤
b+1∑
i=0

(
n

i

)
an−i0 ai1

as desired.

In particular, for a set system with op-dimension d, we take r = d+ 1. Then the op shatter

function is bounded by an exponential function with the base a0 determined by d. Furthermore,

coefficients for lower order terms can be improved when r ≤ s
2 , as then the more general case of

Lemma 5.4.13 dictates that some children must drop in opr-rank by more than 1. This creates

a more complicated recurrence, but the result remains exponential in a0.

98

Finally, we observe that we can recover both the VC and stable Sauer-Shelah bounds from

Theorem 5.4.16. If F has VC dimension r, then opRr+1(F) = 0. Then

πF (s) = ψsF (1) ≤ ψsr+1,0(1) ≤
r∑
i=0

(
s

i

)
.

Similarly, if F has Littlestone dimension b, this says that opR1(F) = b. Then

ρF (n) = ψ1
F (n) ≤ ψ1

1,b(n) ≤
b∑
i=0

(
n

i

)
.

CITED LITERATURE

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87–106, 1987.

[2] Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

[3] Dana Angluin. Negative results for equivalence queries. Machine Learning, 5(2):121–150,
1990.

[4] Dana Angluin and Tyler Dohrn. The power of random counterexamples. In International
Conference on Algorithmic Learning Theory, pages 452–465, 2017.

[5] Dana Angluin and Dana Fisman. Learning regular omega languages. Theoretical Computer
Science, 650:57–72, 2016.

[6] Dana Angluin and Dana Fisman. Regular omega-languages with an informative right con-
gruence. arXiv preprint arXiv:1809.03108, 2018.

[7] Peter Auer and Philip M Long. Simulating access to hidden information while learning.
In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages
263–272. ACM, 1994.

[8] José L. Balcázar, Jorge Castro, David Guijarro, and Hans Ulrich Simon. The consistency
dimension and distribution-dependent learning from queries. Theoretical Computer Science,
288(2):197–215, 2002.

[9] Shai Ben-David and Ami Litman. Combinatorial variability of Vapnik-Chervonenkis classes
with applications to sample compression schemes. Discrete Applied Mathematics, 86(1):3–
25, 1998.

[10] Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In Pro-
ceedings of the 22nd Annual Conference on Learning Theory (COLT), 2009.

[11] Siddharth Bhaskar. Thicket density. arXiv preprint arXiv:1702.03956, 2017.

99

100

[12] Hunter Chase and James Freitag. Model theory and combinatorics of banned sequences.
arXiv preprint arXiv:1801.07640, to appear, Journal of Symbolic Logic, 2018.

[13] Hunter Chase and James Freitag. Bounds in query learning. arXiv preprint
arXiv:1904.10122, 2019.

[14] Hunter Chase and James Freitag. Model theory and machine learning. Bulletin of Symbolic
Logic, 25(3):319–332, 2019.

[15] Artem Chernikov, Daniel Palacin, and Kota Takeuchi. On n-dependence. arXiv preprint
arXiv:1411.0120, 2014.

[16] Dana Fisman. Inferring regular languages and ω-languages. Journal of Logical and Alge-
braic Methods in Programming, 98:27–49, 2018.

[17] Dana Fisman, Udi Boker, and Dana Angluin. Families of DFAs as acceptors of ω-regular
languages. Logical Methods in Computer Science, 14, 2018.

[18] Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the Vapnik-
Chervonenkis dimension. Machine learning, 21(3):269–304, 1995.

[19] Vincent Guingona. NIP theories and computational learning theory. https: // tigerweb.
towson. edu/ vguingona/ NIPTCLT. pdf .

[20] Vincent Guingona and Cameron Donnay Hill. On a common generalization of Shelah’s
2-rank, dp-rank, and o-minimal dimension. Annals of Pure and Applied Logic, 166(4):502–
525, 2015.

[21] Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and Dawn Wilkins. How
many queries are needed to learn? Journal of the ACM, 43(5):840–862, 1996.

[22] Yoshiyasu Ishigami and Sei’ichi Tani. VC-dimensions of finite automata and commutative
finite automata with k letters and n states. Discrete Applied Mathematics, 74(2):123–134,
1997.

[23] Hunter R Johnson and Michael C Laskowski. Compression schemes, stable definable fam-
ilies, and o-minimal structures. Discrete & Computational Geometry, 43(4):914–926, 2010.

[24] Michael C Laskowski. Vapnik-Chervonenkis classes of definable sets. Journal of the London
Mathematical Society, 2(2):377–384, 1992.

https://tigerweb.towson.edu/vguingona/NIPTCLT.pdf
https://tigerweb.towson.edu/vguingona/NIPTCLT.pdf

101

[25] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4):285–318, 1988.

[26] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Tech-
nical report, University of California, Santa Cruz, 1986.

[27] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information
and computation, 108(2):212–261, 1994.

[28] Wolfgang Maass and György Turán. On the complexity of learning from counterexamples
and membership queries. In Foundations of Computer Science, 1990. Proceedings., 31st
Annual Symposium on, pages 203–210. IEEE, 1990.

[29] Maryanthe Malliaris and Saharon Shelah. Regularity lemmas for stable graphs. Transac-
tions of the American Mathematical Society, 366:1551–1585, 2014.

[30] Maryanthe Malliaris and Caroline Terry. On unavoidable induced subgraphs in large prime
graphs. Journal of Graph Theory, accepted, 2017.

[31] David Marker. Model Theory: an Introduction. Springer, Graduate Texts in Mathematics,
217, Second Edition, 2002.

[32] Robert McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9(5):521–530, 1966.

[33] Shay Moran and Amir Yehudayoff. Sample compression schemes for VC classes. Journal
of the ACM (JACM), 63(3):21, 2016.

[34] Anil Nerode. Linear automaton transformations. Proceedings of the American Mathemat-
ical Society, 9(4):541–544, 1958.

[35] Hung Q. Ngo. Three proofs of Sauer-Shelah lemma. Course notes, https: // www. cse.
buffalo. edu/ ~ hungngo/ classes/ 2010/ 711/ lectures/ sauer. pdf , 2010.

[36] Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. In Logic in Computer Science, 2006 21st Annual IEEE Symposium on, pages
255–264. IEEE, 2006.

[37] Robert E Schapire. The design and analysis of efficient learning algorithms. Technical
report, Massachusetts Institute of Technology Lab for Computer Science, 1991.

https://www.cse.buffalo.edu/~hungngo/classes/2010/711/lectures/sauer.pdf
https://www.cse.buffalo.edu/~hungngo/classes/2010/711/lectures/sauer.pdf

102

[38] Saharon Shelah. Classification theory and the number of non-isomorphic models. Studies in
Logic and the Foundations of Mathematics. Volume 92, North-Holland Publishing Company,
New York, 1978.

[39] Saharon Shelah. Classification theory: and the number of non-isomorphic models, vol-
ume 92. Elsevier, 1990.

[40] Pierre Simon. A guide to NIP theories. Cambridge University Press, 2015.

[41] K. Tent and M. Ziegler. A Course in Model Theory. Lecture Notes in Logic. Cambridge
University Press, 2012.

103

APPENDIX

The following statement appears on https://www.cambridge.org/about-us/rights-permissions/

faqs and governs re-use of material appearing in Chapter 2:

In certain circumstances, permissions requests are not required from authors

who wish to re-use original material they have written for a Cambridge publication,

provided that the subsequent use includes a full acknowledgement of the original

publication, together with the copyright notice and the phrase ‘Reprinted with per-

mission’.

Permissions requests are waived if:

• The author of the work wishes to reproduce a single chapter (not exceeding

20 per cent of their work), journal article or shorter extract in a subsequent

work (i.e. with a later publication date) of which he or she is to be the author,

co-author or editor.

https://www.cambridge.org/about-us/rights-permissions/faqs
https://www.cambridge.org/about-us/rights-permissions/faqs

VITA

NAME Hunter Sato Chase

EDUCATION Ph.D, Mathematics, University of Illinois at Chicago, Chicago, IL,
2020.

M.S., Mathematics, University of Illinois at Chicago, Chicago, IL,
2016.

B.S., Mathematics, The University of Chicago, Chicago, IL, 2014.

TEACHING Teaching Assistant, University of Illinois at Chicago. 2015–2019.

AWARDS Research and Training Grant Pre-doctoral Fellow, University of Illinois
at Chicago. 2014–2015, 2018–2020.

PUBLICATIONS Hunter Chase and James Freitag. Model theory and machine learning.
Bulletin of Symbolic Logic, 25(3): 319–332, 2019. DOI: 10.1017/bsl.2018.71

PREPRINTS Hunter Chase and James Freitag. Bounds in query learning. arXiv
preprint arXiv:1904.10122, 2019.

Hunter Chase and James Freitag. Model theory and combinatorics of
banned sequences. arXiv preprint arXiv:1801.07640, 2018. Accepted,
Journal of Symbolic Logic.

104

	to1 Introduction
	 Organization

	to2 Stability and online learning
	 The realizable case
	 Learning from experts
	 Bounded stochastic noise

	to3 Query learning
	 Introduction
	 A combinatorial characterization of EQ-learnability
	 EQ-learnability from Littlestone and consistency dimension
	 Obtaining finite consistency dimension
	 From consistency to strong consistency
	 Adding membership queries and efficient learning of finite classes
	 The negation of the finite cover property

	 Efficient learnability of regular languages
	 Learning -languages

	 Random counterexamples and EQ-learning
	 The thicket max-min algorithm

	to4 Compression schemes and stability
	to5 Banned sequence problems and the Sauer-Shelah lemma
	 Introduction
	 Organization

	 Preliminaries
	 The combinatorics of banned sequences
	 Banned binary sequences and Sauer-Shelah lemmas
	 An application to type trees

	 Generalized banned sequence problems and applications
	 Banned j-ary sequence problems
	 On the op-rank shatter function

	to CITED LITERATURE
	to APPENDIX
	to VITA

