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Abstract

We discuss the close relationship between structural theorems in
(generalized) stability theory, and graph regularity theorems.

1 Introduction and preliminaries

We point out analogies between domination theorems in model theory and
graph regularity theorems in various “tame” contexts, showing that these
are essentially the same theorems, modulo compactness and the pseudofinite
yoga, and if one is not so concerned with optimal bounds.

The motivation comes partly from our joint works with Conant and Terry
[4], [5], where “tame” regularity theorems in a group environment are ob-
tained from structural theorems (sometimes new) concerning stable and NIP
groups.

We will give later precise statements of all theorems (as well as references
to other works). But for now we give a heuristic introduction to the notions
in this paper.

First on the graph-theoretic side we recall the regularity theorems which
specialize the well known Szemerédi regularity theorem. We will focus on
bi-partite graphs. Szemerédi regularity concerns all finite graphs (V,W,E).
It says that one can partition the vertex sets V,W into a small number
of sets V1, .., Vn, W1, ..,Wm such that outside a small exceptional set of pairs
(i, j), the induced subgraphs (Vi,Wj, E|(Vi×Wj)) are almost regular, namely
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sufficiently large induced subgraphs have approximately the same density.
These are approximate or asymptotic statements in the sense that for every
ǫ > 0 there is Nǫ such that for every finite graph etc.

Tame versions of Szemerédi regularity place restrictions on the class of
finite graphs (V,W,E) considered, and try to get stronger conclusions. The
kind of restrictions are: omitting a certain induced subgraph, being uniformly
definable in some nice structure, or being the collection of finite induced sub-
graphs of some given graph definable in a nice structure. The improvements
in the conclusions typically replace almost regularity by almost homogeneity
(and sometimes outright homogeneity so giving a Ramsey-type theorem) and
sometimes remove the need for the exceptional set.

On the model theory side, we work with theories T , or formulas φ(x, y) in
a given theory, which are well-behaved in various senses, and we consider a
Keisler measure µ on the x-sort over a saturated model M̄ , possibly restricted
to definable sets in the Boolean algebra generated by instances of φ(x, y). The
domination statements have the form: there is a small model M0, suitable
space S of types over M0, such that if µ0 is the measure on S induced
by µ then we have (generic) domination of the x sort X say by S via the
tautological map π : X → S taking a ∈ X to its type over M0: for any
suitable formula ψ(x) over M̄ , outside a closed subset Eψ of S of µ0-measure
0, each fibre of π cannot meet both ψ(x) and ¬ψ(x) in a “µ-wide” set.

This is actually closely related to a stationarity statement: µ is the unique
nonforking extension of its restriction toM0. And we also see an exceptional
set E appearing, as in the graph regularity statement.

The work with Conant and Terry mentioned earlier is concerned with
regularity (and structure) theorems in the context of finite groupsG equipped
with a distinguished subset A. These give rise to bipartitite graphs of the
form (G,G,E) where (a, b) ∈ E iff ab ∈ A. Under assumptions (k-stable,
k-NIP ) on the relation E, we obtained strong theorems on the structure of
the set A and its translates, where local stable and NIP group theory played
a major role. We refer the reader to the preprints [4], [5] and we will not
explicitly discuss these group results any further in the current paper.

We will go through three model-theoretic situations where there is a dom-
ination statement; smooth measures, generically stable measures in NIP the-
ories, and φ-measures where φ(x, y) is stable. In each environment we will
conclude more or less directly, via compactness, the relevant graph-regularity
statement for suitable classes of finite graphs. These statements are already
in the literature in various forms and we will give full references.
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This paper is based partly on seminar talks the author gave at the In-
stitut Henri Poincaré in spring 2018 during the trimester on Model theory,
Combinatorics and Valued Fields. Thanks to the IHP for its hospitality and
to the organizers of the trimester and the seminars. Thanks to Gabriel Co-
nant and Caroline Terry for many discussions. And for the record I would
also like to thank Udi Hrushovski who already in 2012 pointed out to me
(and our co-athor) connections between the Lovasz-Szegedy paper [11] and
our paper [9] (in particular generic compact domination).

No additional background is needed on the combinatorial side, as all the
relevant statements (rather than proofs) are transparent.

On the model theory side we will make use of Keisler measures in a NIP
and (formula-by-formula) stable environment. But we will make precise a
few things which are not made explicit in the literature although should be
considered folklore,

Our model theory notation is standard. T denotes a complete theory in
a language L and we will work in a very saturated or monster model M̄ of
T .

The book [15] is a useful reference for material on the NIP side, but we
will usually refer to the original sources [7], [8] for Keisler measures, and [9]
for generically stable and smooth measures. Insofar as stability is concerned
[14] is a reference, although we take our definition of forking to be Shelah’s.

For φ(x, y) an L-formula, by a φ-measure µ over M we mean a finitely
additive probability measure on the Boolean algebra of φ-formulas over M ,
where by a φ-formula over M we mean a (finite) Boolean combination of
instances φ(x, b) of φ(x, y) with b ∈ M . “Global” means over the monster
model.

As usual a φ-measure overM can be identified with a regular Borel prob-
ability measure on the space Sφ(M) of complete φ-types over M .

A φ-measure over M is said to be smooth if it has a unique extension to
a φ-measure over any larger model.

A characteristic property of φ-measures when φ(x, y) is stable is the fol-
lowing (see also Lemma 1.7 of [10]):

Fact 1.1. Let φ(x, y) be stable (for T ). Then any φ-measure, µx, over a
model M is of the form

∑
i=1,2,... αipi where pi is a complete φ-type over M ,

the αi are positive real numbers, and
∑

i αi = 1.

Proof. We give a proof, for completeness, as this has not been made so
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explicit in earlier papers. We use Shelah’s φ-rank Rφ(−) from Section 3,
Chapter 1, of [14] where its basic properties are given (and where really
we mean ∆-rank where ∆ = {φ(x, y), x = z}). Let p1, .., pk be the finitely
many complete φ-types of maximal φ-rank n say. Without loss of generality
p1, .., pr have positive µ-measures, (say α1, .., αr, respectively) and pr+1, .., pk
have µ-measure 0.

Working in the space Sφ(M) let U be the complement of {p1, .., pr}, an
open set whose µx-measure is β = 1− (α1+ ..+αr), which we can assume to
be positive (otherwise already µ = α1p1+ ...+αrpr). Now we can find clopen
U1 ⊂ U2... ⊂ Ui ⊂ .... ⊂ U , and positive reals β1 < β2 < .... < βi < .... such
that µ(Ui) = βi for all i and limi→∞βi = β.

Now U1 and each Ui+1 \ Ui are φ-definable sets of positive measure and
with φ-rank < n. So we can apply induction, to write each of µ|U1, ...,
µ|(Ui+1 \ Ui),.... as a suitable

∑
j γjqj . Putting these together with α1p1 +

...+ αrpr gives the required expression of µ.

The following is not required, but included for completeness.

Corollary 1.2. If φ(x, y) is stable and µx is a φ-measure over M . Then µ
is smooth if and only if µ is a weighted sum of realized φ-types, i.e. of the
form

∑
i αitpφ(ai/M) with ai ∈M .

Finally we discuss pseudofiniteness.

Definition 1.3. LetM be an L-structure and A an arbitrary (not necessarily
definable) subset of a sort X in M . We say that A is pseudofinite in M if for
any sentence σ in the language L together with an additional preciate symbol
P on sort X, if (M,A) |= σ then there is an L-structure M ′ and finite subset
A′ of X(M ′) such that (M ′, A′) |= σ.

If M is 1-sorted and A is M itself then we say that M is pseudofinite.

From the definition, finite implies pseudofinite.

Remark 1.4. Suppose that A happens to be definable by a formula φ(x, b) in
the structure M . Then pseudofiniteness of A in M is equivalent to; for every
L-formula ψ(y) ∈ tpM(b) there is an L-structure M ′ and b′ ∈ M ′ satisfying
ψ(y) such that φ(x, b′)(M ′) is finite.

The following is routine.
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Lemma 1.5. For M an L-structure and A a subset of a sort X in M , the
following are equivalent:
(i) A is pseudofinite in M ,
(ii) Let Σ be the set of L(P )-sentences which are true of every (M ′, A′) where
M ′ is an L-structure, and A′ is a finite subset of the interpretation of the
sort Xin M ′. Then (M,A) |= Σ.
(iii) (M,A) is elementarily equivalent to some ultraproduct of L(P )-structures
(M ′, A′) where A′ is finite.

We will now talk about the standard model V of set theory and saturated
elementary extensions V∗ of V. It doesn’t really make so much sense, but
really we work with some small fragment of set theory including the natural
numbers, the reals and all arithmetic operations on them together with car-
dinality maps for finite sets. The reader can work out for himself or herself
the appropriate rigorous statements.

Proposition 1.6. Suppose (M,A) is pseudofinite. Then there is a (saturated
if you wish) elementary extension V∗ of V and some (M∗, A∗) in V∗ such that
(i) (M∗, A∗) is elementarily equivalent to (M,A),
(ii) A∗ is finite in the sense of V∗, and
(iii) Whenever ψ is a formula of set theory which is true in V∗ of (M∗, A∗)
then there is (M,A) (in the standard model), such that ψ is true of (M,A)
and A is finite.
Moreover suppose that (M,A) is a model of the common theory of (Mn, An)
for n < ω where An is finite and of increasing size, and A is infinite, then
(M∗, A∗) can be chosen to satisfy also
(iii)’ Whenever ψ is a formula of set theory true of (M∗, A∗) in V∗ then ψ
is true of infinitely many (Mn, An) in V.

Proof. This is a compactness argument. Consider the complete diagram of
V together with set of formulas ψ(y, z) true of every (M,A) in V where M
is an L-structure and A a finite subset of the appropriate sort, as well as the
formulas expressing that (y, z) is elementarily equivalent (in L(P )) to (M,A).
It is finitely satisfiable (in V), so has a (saturated if you wish) model. The
moreover statement is also clear.

Remark 1.7. Typically we take V∗ to be saturated so (M∗, A∗) will be appro-
priately saturated, so isomorphic to (M,A) assuming the latter was already
saturated (assuming some set theory and appropriate choices of degree of
saturation).
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Given V∗ and (M∗, A∗) as in Proposition 1.6, as A∗ is finite in the sense
of V∗, every internal subset Z of A∗ has a finite cardinality in the sense of V∗

(i.e. |Z| ∈ N∗) and we obtain the nonstandard normalized counting measure
µ∗ on the Boolean algebra of internal subsets of A∗ which takes Z to |Z|/|A∗|,
a number in [0, 1]∗. For Z a definable (in M∗) subset of the ambient sort X
in which A∗ lives, define µ∗(Z) = µ∗(Z ∩ A∗). So µ∗ gives a “nonstandard”
Keisler measure on the sort X inM∗, in the sense that the values of µ∗ are in
the nonstandard unit interval (as well as finite additivity etc). We define µ to
be the standard part of µ∗ (restricted to definable sets) and we see that that
µ is Keisler measure on the sort X is the L-structure M∗, which we call the
pseudofinite Keisler measure on X given by A∗ (and the ambient structure
V∗).

The following is important (and well-known). It can be proved by an
adaptation of the material in section 2.2 of [3]. In any case we follow the
notation and context of Proposition 1.6 and the above construction.

Proposition 1.8. Assuming Th(M∗) is NIP , then the psedofinite Keisler
measure on the sort X is generically stable, nanely definable over and finitely
satisfiable in some small model M0.

2 The distal case

The distal regularity theorem [1] is an attractive generalization of a result of
Fox et al [6] on a strong regularity theorem for semialgebraic graphs.

Our treatment here is related to that of Simon [16], but we make more
explicit the connection with compact domination.

The relevant structural theorem concerns arbitrary smooth Keisler mea-
sures. Recall that a Keisler measure µx over M is smooth if it has a unique
extenson over any N containing M . And a global Keisler measure µx is said
to be smooth over a small submodel M0 if µ is the unique extension over M̄
of µ|M0.

Here is the domination theorem for smooth measures. It is more or less
tautological.

Proposition 2.1. Fix T , sort X, saturated model M̄ and Keisler measure
µ on X over M̄ . Let M0 be a small elementary submodel of M̄ and π :
X → SX(M0) the tautological map. Suppose µ is smooth over M0. Then for
every definable (with parameters from M̄) subset Y of X there is a closed
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subset E of SX(M0) of µ0-measure 0 such that for every p ∈ SX(M0) either
π−1(p) ⊂ Y or π−1(p) ∩ Y = ∅.

Proof. Otherwise the (closed) set E of p ∈ SX(M0) such that p(x) is con-
sistent with each of x ∈ Y and x /∈ Y , has µ0-measure = α > 0. Let
(µ0)E be the localization of µ0 to E. Then (µ0)E has two different extensions
to a measure over M̄ , one giving Y measure 1 and one giving it measure
0. It follows that µ0 itself has two different extensions to M̄ , contradicting
smoothness.

The following strong regularity (or Ramsey-type) statement is a simple
compactness argument applied to Proposition 2.1.

Corollary 2.2. Let (V,W,R) be a bipartite graph definable in a structure M .
Let µ be a smooth Keisler measure on V over M , and ν an arbitrary Keisler
measure on W over M . Let ǫ > 0. Then there are partitions V = V1∪ ..∪Vn
and W = W1 ∪ ...∪Wm of V , W respectively into definable sets, and a set Σ
of pairs (i, j) of indices such that
(i) (µ× ν)(∪(i,j)∈Σ(Vi × Vj)) < ǫ and
(ii) for (i, j) /∈ Σ, Vi ×Wj is homogeneous for R, namely Vi ×Wj is either
contained in R or disjoint from R.

Proof. We may assume M to be a saturated. Let M0 be a small elementary
submodel of M such that µ is smooth over M0 and R(x, y) is definable over
M0. We make use of Proposition 2.1 with X = V .

Fix ǫ > 0. For any b, Let Eb the closed µ0-measure 0 subset of SV (M0)
outside of which each fibre of π is either contained in or disjoint from R(x, b).
Clearly Eb depends only on tp(b/M0) and so we write as Eq. Let Zq be an
M0-definable set containing Eq and with µ0-measure < ǫ. By compactness we
can partition V \Zq into M0-definable sets Vq,1, ..., Vq,nq

such that for each i,
π−1(Vq,i) is either contained in R(x, b) (for some/all b realizing q) or disjoint
from R(x.b) (for some/all b realizing q). We can now, by compactness, replace
q by a formula (or M0-definable set) Wq in q, so that for each i ≤ nq either
Vq,i is contained in R(x, b) for all b ∈ Wq, or Vq,i is disjoint from R(x, b) for
all b ∈ Wq.

Doing this for each q and applying compactness gives us a partition
Wq1, ...Wqm of W into M0-definable sets, and for each j = 1, .., m a parti-
tion V = Vqj ,1 ∪ Vqj ,2 ∪ ... ∪ Vqj ,nqj

∪ Zqj , such that µ0(Zqj) = 0 for all j, and
for all j, i,
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(*) π−1(Vqj ,i) is either contained in R(x, b) for all b ∈ Wqj or is disjoint from
R(x, b) for all b ∈ Wqj .

Let V1, ..., Vt be a common refinement of this finite collection of partitions of
V . And we claim that this partition, together with the partition Wq1 , ..,Wqm

of W is as required. We have to identify the exceptional set E of pairs.
So let E = {(i, qj) : Vi ⊆ Zqj}. For each qj , ∪{Vi × Wqj : Vi ⊆ Zqj} =
Zqj ×Wqj which has µ × ν measure < ǫν(Wqj ). So summing over the qj we
get (µ× ν)(∪(i,qj)∈E(Vi×Wqj)) < ǫ. And for (i, qj) /∈ E, Vi will be contained
in Vqj ,i for some i, so by (*) Vi ×Wqj is either contained in or disjoint from
R.

The notion of a distal first order theory T was introduced by Pierre Simon
in his thesis (see [15]). One of the characterizations of distality is that T has
NIP and every generically stable measure is smooth. Among distal theories
are o-minimal theories (such as RCF ), the theory of Qp, and Th(Z,+, <).

So here is the distal regularity theorem, stated for suitable families of
finite graphs.

Proposition 2.3. Let G = (Gi : i ∈ I) be a family of finite (bipartiite)
graphs G = (V,W,R) such that one of the following happens:
(i) The graphs are uniformly definable in some model M of a distal theory
T ,
(ii) For some model M of some distal theory T , there is a graph (V,W,R)
definable in M such that G is the family of finite (induced) subgraphs of
(V,W,E), or
(iii) Every model (V,W,R) of the common theory of the Gi’s is interpretable
in a model of some distal theory.
THEN, for any ǫ there is Nǫ, such that for every (V,W,R) ∈ G, there are
partitions V = V1 ∪ .. ∪ Vn, and W = W1 ∪ .. ∪Wm, with n,m < Nǫ such
that for some some “exceptional” set E of pairs (i, j) (with 1 ≤ i ≤ n and
1 ≤ j ≤ m),
the cardinality of ∪(i,j)∈E(Vi×Wj) is < ǫ|V ||W |, and for all (i, j) /∈ E, Vi×Wj

is either contained in R or disjoint from R.

Proof. Context (ii) is the one dealt with in [1] and which generalizes [6].
Note that Context (i) would be vacuous when T is o-minimal as we have
finite bounds on the cardinalities of uniformly definable finite sets, but for
the p-adics and/or Presburger, it is nonvacuous.
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The proof of the proposition uses Propositions 1.6 and 1.8 (with a pos-
sible variant in Context (iii)). We focus here on Context (i). Suppose the
conclusion fails. So for some fixed ǫ, no finite N works. So we can find
N1 < N2 < ...., and counterexamples GN1

for N1, GN2
for N2 , etc. in G

with the cardinalities of the vertex sets increasing. Proposition 1.6 gives us
a (saturated) model M∗ of T in some V∗ and definable G∗ = (V ∗,W ∗, R∗) in
M∗ such that V ∗, W ∗ are finite in the sense on V∗ and the moreover clause
(iii)’ holds. Let µ∗, ν∗ be the nonstandard normalized counting measures on
V ∗ and W ∗, given by the construction following Remark 1.7, and let µ and ν
be the corresponding pseudofinite Keisler measures. By 1.8 µ is generically
stable, so smooth as Th(M∗) is distal. Apply Corollary 2.2 to (V ∗,W ∗, R∗)
with say ǫ/2, to get (definable) partitions V ∗

1 , .., V
∗

n of V and W ∗

1 , ..,W
∗

m of
W , and an exceptional set E of pairs (i, j) satisfying the conclusions of 2.2.
Choose ǫ/2 < δ < ǫ, and we can express the existence of the partitions and
that (µ∗ × ν∗)(∪(i.j)∈E(V

∗

i ×W ∗

j )) < δ and that for ((i, j) /∈ E, V ∗

i ×W ∗

j is
homogeneous for R∗ by the truth of formula ψ of set theory for M∗, G∗ in
V∗. The moreover clause of Proposition 1.6 tells that ψ is true for infinitely
many of the (M,GNk

) in V, and for Nk > n,m we get a contradiction.

3 The NIP case

The regularity lemma for finite graphs (V,W,R) where the relation R is
“k −NIP” (or V C-dimension bounded by approximately k) has a nice and
elementary direct proof in [2] (in the greater generality of hypergraphs).
However we want to again deduce it just from a domination statement, so we
work in the context where such statements are currently available, namely
inside a NIP theory.

We first recall the notion “µ-wide”. If µx is a (say global) Keisler measure
and Σ(x) is a partial type over a small set, we say that Σ(x) is µ-wide if every
finite conjunction of formulas in Σ has µ measure > 0.

Again we start with the (generic) domination theorem for generically
stable measures.

Proposition 3.1. Suppose T is NIP . Let µ be a global generically stable
measure on the definable set (or sort) X and assume µ does not fork over
M0 (so is definable over M0). Let π : X → SX(M0) be the tautological map,
and let µ0 be the induced measure on SX(M0). Then for every definable (with
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parameters from M̄) subset Y of X there is a closed set E ⊆ SX(M0) of µ0

measure 0 such that for each p ∈ SX(M0) \ E, not both p ∪ “x ∈ Y ” and
p ∪ “x /∈ Y are µ-wide.

Proof. We deduce this formally from the basic results in [9]. First by Proposi-
tion 3.3 of [9], µ is the the unique global nonforking extension of its restriction
to M0. Let P the space of global complete types p(x) which do not fork over
M0, and let π′ be the restriction map from P to SX(M0). Then by Theo-
rem 5.4, of [9], P is dominated by ((SX(M0), π

′, µ) in the sense that for any
formula φ(x) over M̄ the set E of p ∈ SX(M0) such that π′−1(p) intersects
both (the clopen determined by) φ(x) and (the clopen determined by ¬φ(x),
has µ0 measure 0. Note that E is closed. Recall that we π : X → SX(M0)
takes a ∈ X(M̄) to tp(a/M0). Now suppose that p(x) ∈ SX(M0) \ E. If
p(x)∪ {φ(x)} is µ-wide, then as µ does not fork over M0, p(x)∪{φ(x)} does
not fork over M0 so extends to some p′ ∈ P. Likewise if p(x) ∪ {¬φ(x)} is
µ-wide, it extends to some p′′ ∈ P. So as p /∈ E, not both can happen.

A simple compactness argument applied to Proposition 3.1 again gives a
strong regularity theorem.

Corollary 3.2. Suppose T is NIP and (V,W,R) is a graph definable in a
model M of T . Let µ be a generically stable measure on V over M and ν
any Keisler measure on W over M . Fix ǫ > 0. Then there are partitions
V = V1 ∪ ....∪ Vn and W = W1 ∪ ..∪Wm of V,W into definable sets, and an
exceptional set E of pairs (i, j) of indices such that
(i) The µ× ν measure of ∪(i,j)∈EVi ×Wj is < ǫ, and
(ii) For any (i, j) /∈ E, either (µ ⊗ ν)((Vi × Wj) ∩ R) < ǫµ(Vi)(ν(Wj) or
(µ⊗ ν)((Vi ×Wj) \R) < ǫµ(Vi)(ν(Wj)

Proof. We follow the proof of Corollary 2.2, but with ǫ-homogeneous in place
of homogeneous (using definability over M0 of µ), and paying slightly more
attention to the exceptional set.

Again assume M to be saturated, and suppose µ does not fork over M0.
Fix ǫ > 0. We use Proposition 3.1 with X = V . For each q ∈ SW (M0) we find
closed Eq ⊆ SV (M0) of µ0-measure 0, such that for each p ∈ SV (M0)\Eq and
some (any) b realizing q at most one of p(x)∪ {R(x, b)}, p(x)∪{¬R(x, b)} is
µ-wide. Let Zq be an M0-definable set containg Eq and of µ0-measure < ǫ/2.
By compactness we can partition V \ Eq into M0-definable sets Vq1, .., Vq,nq

such that for each i, either µ(Vq,i ∩ R(x, b)) = 0 (for some/all b realizing
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q), or µ(Vqi \ R(x, b)) = 0 for some/all b realizing q). We may assume that
µ(Vq,i)) > 0 for each i (otherwise just add it to Zq).

Now we use definability of µ over M0 to find an M0-definable set Wq

containing q such that for each i = 1, ..., nq exactly one of the following
holds:

(i)q forall b ∈ Wq, µ(Vq,i ∩ R(x, b)) < (ǫ2/2)µ(Vq,i).
(ii)q for all b ∈ Wq, µ(Vq,i \R(x, b)) < (ǫ2/2)µ(Vq,i).

By compactness we can find q1, .., qm such that Wq1, ...,Wqm partition W .
Again we find a common refinement V1, .., Vr of the finitely many partitions
Vqj ,1, ..., Vqj,nj

, Zqj of V .
Then V = V1 ∪ ... ∪ Vr and W = Wq1 ∪ .. ∪ Wqm will be the desired

partitions. We have to check that it works.
We have to identify the exceptional set of pairs of indices.
To that avail let us fix some qi and call it q, and we focus on the subgraph

(V,Wq, R|(V ×Wq)). Let I = {i : 1 ≤ i ≤ nq : and (i)q above holds}. Let J
be the rest of the indices i between 1 and nq, namely where (ii)q holds.

Let B ⊆ V ×Wq be ∪i∈I((Vq,i ×Wq) ∩ R) ∪ ∪i∈J((Vq,i ×Wq) \ R). it is
then clear that
Claim 1. (µ⊗ ν)(B) < (ǫ2/2)ν(Wq).

Let Σq,1 be the set of indices i = 1, .., r such that Vi ⊆ Zq, and Σq,2 the
set of indices i such that (µ ⊗ ν)((Vi ×Wq) ∩ B) ≥ ǫµ(Vi)ν(Wq). Let Σq be
the (disjoint) union of Σq,1 and Σq,2.

Then
Claim 2.

∑
i∈Σq

(µ⊗ ν)(Vi ×Wq) < ǫν(Wq).

Proof of Claim 2. Note that
∑

i∈Σq,1
(µ⊗ ν)(Vi ×Wq) ≤ (µ⊗ ν)(Zq ×Wq) <

(ǫ/2)ν(Wq). So it suffices to prove that
∑

i∈Σq,2
(µ⊗ν)(Vi×Wq) < (ǫ/2)ν(Wq).

If not then by the definition of Σq,2, (µ⊗ν)(B) ≥
∑

i∈Σq,2
(µ⊗ν)((Vi×Wq)∩

B) ≥
∑

i∈Σq,2
ǫµ(Vi)ν(Wq) = ǫ

∑
i∈Σq,2

(µ⊗ν)(Vi×Wq) ≥ (ǫ2/2)ν(Wq), which
contradicts Claim 1.

Now suppose t /∈ Σq.
Case (i). Vt ⊆ Vq,i for some i ∈ I.
So (Vt ×Wq) ∩B = (Vt ∩Wq) ∩ R and has µ⊗ ν measure < ǫµ(Vt)ν(Wq).

Case (ii). Vt ⊆ Vq,i for some i ∈ J .
Likewise we have that (µ⊗ ν)((Vt ×Wq) \R) < ǫµ(Vt)ν(Wq).

Now let the global exceptional set E = {(i, qj) : i ∈ Σqj : i = 1, .., r, j =
1, .., m}, and we see from Claim 2 (as well as the Case (i), Case (ii) discussion
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above) that that the conclusions (i) and (ii) or Corollary 3.2 are satisfied.

The application to families of finite graphs is almost identical to Propo-
sition 2.3, with a similar proof, but we state it anyway.

Proposition 3.3. Let G = (Gi : i ∈ I) be a family of finite (bipartiite)
graphs G = (V,W,R) such that one of the following happens:
(i) The graphs are uniformly definable in some model M of an NIP theory
T . ,
(ii) For some model M of some NIP theory T , there is a graph (V,W,R)
definable in M such that G is the family of finite (induced) subgraphs of
(V,W,E), or
(iii) Every model (V,W,R) of the common theory of the Gi’s is interpretable
in a model of some NIP theory.
THEN, for any ǫ there is Nǫ, such that for every (V,W,R) ∈ G, there are
partitions V = V1 ∪ .. ∪ Vn, and W = W1 ∪ .. ∪Wm, with n,m < Nǫ such
that for some some “exceptional” set E of pairs (i, j) (with 1 ≤ i ≤ n and
1 ≤ j ≤ m),
(a) cardinality of ∪(i,j)∈EVi ×Wj is < ǫ|V ||W |, and
(b) for all (i, j) /∈ E, either |(Vi ×Wj) ∩R| < ǫ|Vi||Wj| or |(Vi ×Wj) \R| <
ǫ|Vi||Wj|

Remark 3.4. (i) Note that Corollary 3.2 depends only on the Keisler mea-
sure µ satisfying the generic domination statement over M0 in Proposition
3.1, as well as being definable over M0. (i.e. full generic stability of µ and
NIP -ness of T are not needed).
(ii) Likewise, if R(x, y) is φ(x, y), assuming the domination statement and
definability for a φ-measure µ, Corollary 3.2 will hold.

4 The stable case

The stable regularity theorem concerns finite graphs (V,W,R) where the edge
relation R(x, y) is k-stable, and gives a partition into almost homogeneous
subgraphs but without any exceptional set. The original statement and proof
are in [13] and involve finite combinatorics in the presence of the Shelah
2-rank and give optimal bounds. A pseudofinite proof making use of local
stability theory was given in [12]. The proof we present here is a simplification
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of the latter. There is no explicit use of any local ranks, other than ingredients
in the proof of Fact 1.1.

We first discuss the methods and relationship with the previous proofs.
Fix a complete theory T and a stable formula φ(x, y), where x is of sort X .
Let µ be a φ- measure on X over a saturated model say M̄ . Let M0 be a
small model such that µ does not fork over M0 (i.e. every φ formula over M0

with positive measure does not fork over M0). Now every complete φ-type
p over M0 has a unique nonforking extension over M̄ (i.e. to a complete
φ-type over M̄). It follows that for each p ∈ Sφ(M0) and any b ∈ M̄ at
most one of p ∪ {φ(x, b)}, p ∪ {¬φ(x, b)} is µ-wide. So we have domination
of X by Sφ(M0) (but with no exceptional sets). So we can run the proof of
Corollary 3.2, but note that it nevertheless gives a possibly nonempty set of
exceptional pairs (i, j) in the regularity statement. So more is needed, and
this is precisely Fact 1.1.

Remember that a bipartite graph (V,W,R) (or rather the edge relation
R on this graph) is k-stable if there do not exist a1, , .., ak ∈ V , b1, .., bk ∈ W
such that R(ai, bj) iff i ≤ j. Given an L-structure M and L-formula φ(x, y)
we get a corresponding bipartite graph (X, Y,R) (where X is the x-sort in
M , Y the y-sort in M and R the interpretation of φ(x, y) in M). And the
formula φ(x, y) is stable for Th(M) iff (X, Y,R) is k-stable for some finite
k. φ∗ is the same formula as φ except the roles of variable variable and
parameter variable are interchanged.

We first give the strong regularity theorem (analogues of Corollaries 2.2
and 3.2) for arbitrary graphs where the edge relation is stable.

Proposition 4.1. Let (V,W,R) be a graph definable in some structure M
where the relation R(x, y) is stable. Identify R with the L-formula defining
it. Let µx be a Keisler measure on V over M , Then for each ǫ > 0 there are
partitions V = V1 ∪ ... ∪ Vn of V and W = W1 ∪ .. ∪Wm of W into definable
sets such for each i, j, either for all b ∈ Wj, µ(Vi \ R(x, b)) ≤ ǫµ(Vi), or for
all b ∈ Wj, µ(Vi ∩ R(x, b)) ≤ ǫµ(Vi). Moreover each Vi can defined by an
R-formula, and each Wj by a R∗-formula.

Proof. There is no harm in assuming the language to be countable, and
M = M̄ to be saturated. By Fact 1.1, µ|R =

∑
i∈I αip

′

i, for some countable
I, complete global R-types p′i, and αi with 0 < αi ≤ 1 such that

∑
i αi = 1.

So note that µ(p′i) = αi > 0 for i ∈ I.
Let M0 be a countable model such that µ does not fork over M0, equiva-

lently each p′i, for i ∈ I does not fork over M0. Let pi be the restriction of p′i
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to M0. So p
′

i is the unique global nonforking extension of pi, and µ|R is the
unique nonforking extension of the R-measure over M0,

∑
i∈I αipi. Write µ0

for µ|M0. Notice µ0(pi) = αi.
By stability, SR(M0) is countable. Let B be the countable (so Borel) set

SR(M0 \ {pi : i ∈ I}. Then µ0(B) = 0.
Now fix ǫ > 0. Let U be a R-definable over M0 set which contains B,

and has µ0-measure < ǫ. For each i ∈ I such that pi /∈ U , let Vi be a formula
(or definable set) in pi such that µ(Vi) < αi/(1− ǫ). By compactness finitely
many Vi, say V1, .., Vk cover U c (complement of U in SR(M0)), and we may
assume that the Vi are disjoint. Let δ = (α1/(1− ǫ))− µ(V1). And let U1 be
a R-definable set over M0 set such that B ⊆ U1 ⊂ U , and µ(U1) < δ.

As before find Vk+1, ..., Vn partitioning U \ U1 (assuming the latter is
nonempty), with Vj ∈ pj (j ∈ I) and µ(Vj) ≤ αj/(1 − ǫ) (where again
αj = µ0(pj) > 0). Replace V1 by V1 ∪ U1 and we have for the new V1,
µ(V1) ≤ α1(1− ǫ).

So to summarise, we have so far:
Claim. V1, ..., Vn are R-definable overM0 sets which partition V , and for each
i = 1, .., n there is pi ∈ SR(M0) with µ(pi) > 0, Vi ∈ pi and µ(Vi\pi) ≤ ǫµ(Vi).

Now we partition W using the R-definitions of p1, .., pn: For each i = 1, .., n
the R-definition of pi (or equivalently p

′

i) is a R
∗-formula ψi(y) overM0 (with

the property that for all b ∈ M̄ , φ(x, b) ∈ p′i iff |= ψi(b)). For each subset I
of {1, .., n}, let WI be the set defined by ∧i∈Iψi(y) ∧ ∧i/∈I¬ψi(y). So the WI

partition W into R∗-definable sets. V = V1 ∪ ... ∪ Vn and W = ∪IWI will be
the desired partitions of V,W .

We have to check that the conclusions hold. Note that for for each i ∈
{1, .., n} and I ⊆ {1, .., n}, we have either
(a) for all b ∈ WI , φ(x, b) ∈ p′i, or
(b) for all b ∈ WI , ¬φ(x, b) ∈ p′i.

In case (a), as p′i is the unique nonforking extension of pi, for each b ∈ WI ,
pi∪{¬φ(x, b)} forks overM0 so has µ-measure 0. Hence as µ(Vi\pi) ≤ ǫµ(Vi)
it follows that µ(Vi \R(x, b)) ≤ ǫµ(Vi) for all b ∈ Wq.

Likewise in case (b), µ(Vi ∩ R(x, b)) ≤ ǫµ(Vi) for all b ∈ WI .
This completes the proof.

The stable regularity lemma (or a suitable version) for families of finite
graphs now follows as earlier:
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Corollary 4.2. Fix k and let G be the family of finite graphs (V,W,R) where
the relation R is k-stable. Then for any ǫ > 0, there is N such that for each
(V,W,R) ∈ G there are partitions V = V1∪..∪Vn andW =W1∪...∪Wm with
n,m < N such that for each i and j, either |(Vi ×Wj) ∩ R| ≤ ǫ|Vi||Wj (so
the induced graph on Vi,Wj is almost empty) or |(Vi ×Wj) \ R| ≤ ǫ|Vi||Wj|
(so the induced graph on Vi,Wj is almost complete).
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446.

[12] M. Malliaris and A. Pillay, The stable regularity lemma, revisited, Pro-
ceedings AMS, 244 (2016), 1761-1765.

[13] M. Malliaris and S. Shelah, Regularity lemmas for stable graphs, Trans-
actions AMS, 366 (2014), 1551-1585.

[14] A. Pillay, Geometric Stability Theory, Oxford University Press, 1996.

[15] P. Simon, A guide to NIP theories, Lecture Notes in Logic, vol. 44,
ASL-CUP, 2015.

[16] P. Simon, A note on “Regularity theorem for distal structures”, Pro-
ceedings AMS, 144 (2016), 3573-3578.

16


	1 Introduction and preliminaries
	2 The distal case
	3 The NIP case
	4 The stable case

