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CURRENT RESEARCH ON GÖDEL’S INCOMPLETENESS

THEOREMS

YONG CHENG

Abstract. We give a survey of current research on Gödel’s incom-
pleteness theorems from the following three aspects: classifications of
different proofs of Gödel’s incompleteness theorems, the limit of the ap-
plicability of Gödel’s first incompleteness theorem, and the limit of the
applicability of Gödel’s second incompleteness theorem.

1. Introduction

Gödel’s first and second incompleteness theorem are some of the most
important and profound results in the foundations of mathematics and have
had wide influence on the development of logic, philosophy, mathematics,
computer science as well as other fields. Intuitively speaking, Gödel’s in-
completeness theorems express that any rich enough logical system cannot
prove its own consistency, i.e. that no contradiction like 0 = 1 can be derived
within this system.

Gödel [46] proves his first incompleteness theorem (G1) for a certain for-
mal system P related to Russell-Whitehead’s Principia Mathematica based
on the simple theory of types over the natural number series and the Dedekind-
Peano axioms (see [8], p.3). Gödel announces the second incompleteness the-
orem (G2) in an abstract published in October 1930: no consistency proof
of systems such as Principia, Zermelo-Fraenkel set theory, or the systems
investigated by Ackermann and von Neumann is possible by methods which
can be formulated in these systems (see [153], p.431).

Gödel comments in a footnote of [46] that G2 is corollary of G1 (and in
fact a formalized version of G1): if T is consistent, then the consistency
of T is not provable in T where the consistency of T is formulated as the
arithmetic formula which says that there exists an unprovable sentence in
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CURRENT RESEARCH ON GÖDEL’S INCOMPLETENESS THEOREMS 3

T . Gödel [46] sketches a proof of G2 and promises to provide full details in
a subsequent publication. This promise is not fulfilled, and a detailed proof
of G2 for first-order arithmetic only appears in a monograph by Hilbert and
Bernays [62]. Abstract logic-free formulations of Gödel’s incompleteness
theorems have been given by Kleene [80] (“symmetric form”), Smullyan
[124] (“representation systems”), and others. The following is a modern
reformulation of Gödel’s incompleteness theorems.

Theorem 1.1 (Gödel, [46]). Let T be a recursively axiomatized extension
of PA.

G1 If T is ω-consistent, then T is incomplete.
G2 If T is consistent, then the consistency of T is not provable in T .

Gödel’s incompleteness theorems G1 and G2 are of a rather different na-
ture and scope. In this paper, we will discuss different versions of G1 and
G2, from incompleteness for extensions of PA to incompleteness for systems
weaker than PA w.r.t. interpretation. We will freely use G1 and G2 to refer
to both Gödel’s first and second incompleteness theorems, and their differ-
ent versions. The meaning of G1 and G2 will be clear from the context in
which we refer to them.

Gödel’s incompleteness theorems exhibit certain weaknesses and limita-
tions of a given formal system. For Gödel, his incompleteness theorems in-
dicate the creative power of human reason. In Emil Post’s celebrated words:
mathematical proof is an essentially creative activity (see [102], p.339). The
impact of Gödel’s incompleteness theorems is not confined to the community
of mathematicians and logicians; popular accounts are well-known within
the general scientific community and beyond. Gödel’s incompleteness theo-
rems raise a number of philosophical questions concerning the nature of logic
and mathematics as well as mind and machine. For the impact of Gödel’s
incompleteness theorems, Feferman said:

their relevance to mathematical logic (and its offspring in the
theory of computation) is paramount; further, their philo-
sophical relevance is significant, but in just what way is far
from settled; and finally, their mathematical relevance out-
side of logic is very much unsubstantiated but is the object
of ongoing, tantalizing efforts (see [35], p.434).

From the literature, there are some good textbooks and survey papers on
Gödel’s incompleteness theorems. For textbooks, we refer to [30, 102, 95,
38, 121, 15, 123, 124, 55, 41]. For survey papers, we refer to [122, 8, 83, 17,
138, 13, 24]. In the last twenty years, there have been a lot of advances in
the study of incompleteness. We felt that a comprehensive survey paper for
the current state-of-art of this research field is missing from the literature.
The motivation of this paper is four-fold:

• Give the reader an overview of the current state-of-art of research
on incompleteness.

• Classify these new advances on incompleteness under some impor-
tant themes.

• Propose some new questions not covered in the literature.
• Set the direction for the future research of incompleteness.
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Due to space limitations and our personal taste, it is impossible to cover all
research results from the literature related to incompleteness in this survey.
Therefore, we will focus on three aspects of new advances in research on
incompleteness:

• classifications of different proofs of Gödel’s incompleteness theorems;
• the limit of the applicability of G1;
• the limit of the applicability of G2.

We think these are the most important three aspects of research on incom-
pleteness and reflect the depth and breadth of the research on incomplete-
ness after Gödel. In this survey, we will focus on logical and mathematical
aspects of research on incompleteness.

An important and interesting topic concerning incompleteness is missing
in this paper: philosophy of Gödel’s incompleteness theorems. For us, the
widely discussed and most important philosophical questions about Gödel’s
incompleteness theorems are: the relationship between G1 and the mecha-
nism thesis, the status of Gödel’s disjunctive thesis, and the intensionality
problem of G2. We leave a survey of philosophical discussions of Gödel’s
incompleteness theorems for a future philosophy paper.

This paper is structured as follows. In Section 1, we introduce the moti-
vation, the main content and the structure of this paper. In Section 2, we
list the preliminary notions and definitions used in this paper. In Section 3,
we examine different proofs of Gödel’s incompleteness theorems and classify
these proofs based on nine criteria. In Section 4, we examine the limit of
the applicability of G1 both for extensions of PA, and for theories weaker
than PA w.r.t. interpretation. In Section 5, we examine the limit of the
applicability of G2, and discuss sources of indeterminacy in the formulation
of the consistency statement.

2. Preliminaries

2.1. Definitions and notations. We list the definitions and notations re-
quired below. These are standard and used throughout the literature.

Definition 2.1 (Basic notions).

• A language consists of an arbitrary number of relation and function
symbols of arbitrary finite arity.1 For a given theory T , we use L(T )
to denote the language of T , and often equate L(T ) with the list of
non-logical symbols of the language.

• For a formula φ in L(T ), ‘T ⊢ φ’ denotes that φ is provable in T : i.e.,
there is a finite sequence of formulas 〈φ0, · · · , φn〉 such that φn = φ,
and for any 0 ≤ i ≤ n, either φi is an axiom of T , or φi follows from
some φj (j < i) by using one inference rule.

• A theory T is consistent if no contradiction is provable in T .
• We say a sentence φ is independent of T if T 0 φ and T 0 ¬φ.
• A theory T is incomplete if there is a sentence φ in L(T ) which is
independent of T ; otherwise, T is complete (i.e., for any sentence φ
in L(T ), either T ⊢ φ or T ⊢ ¬φ).

1We may view nullary functions as constants, and nullary relations as propositional
variables.
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In this paper, we focus on first-order theories based on a countable lan-
guage, and always assume the arithmetization of the base theory with a
recursive set of non-logical symbols. For the technical details of arithme-
tization, we refer to [102, 19]. Arithmetization means that any formula or
finite sequence of formulas can be coded by a natural number, called the
Gödel number. This representation of syntax was pioneered by Gödel.

Definition 2.2 (Basic notions following arithmetization).

• We say a set of sentences Σ is recursive if the set of Gödel numbers
of sentences in Σ is recursive.

• A theory T is decidable if the set of sentences provable in T is recur-
sive; otherwise it is undecidable.

• A theory T is recursively axiomatizable if it has a recursive set of
axioms (i.e. the set of Gödel numbers of axioms of T is recursive).

• A theory T is finitely axiomatizable if it has a finite set of axioms.
• A theory T is locally finitely satisfiable if every finitely axiomatized
subtheory of T has a finite model.

• A theory T is recursively enumerable (r.e.) if it has a recursively
enumerable set of axioms.

• A theory T is essentially undecidable if any recursively axiomatizable
consistent extension of T in the same language is undecidable.

• A theory T is essentially incomplete if any recursively axiomatizable
consistent extension of T in the same language is incomplete.2

• A theory T is minimal essentially undecidable if T is essentially
undecidable, and if deleting any axiom of T , the remaining theory is
no longer essentially undecidable.

Definition 2.3 (Basic notations).

• We denote by n the numeral representing n ∈ ω in L(PA).
• We denote by pφq the numeral representing the Gödel number of φ.
• We denote by pφ(ẋ)q the numeral representing the Gödel number of
the sentence obtained by replacing x with the value of x.3

Definition 2.4 (Representations, translations, and interpretations).

• A n-ary relation R(x1, · · · , xn) on ω
n is representable in T if there is a

formula φ(x1, · · · , xn) such that T ⊢ φ(m1, · · · ,mn) whenR(m1, · · · ,mn)
holds, and T ⊢ ¬φ(m1, · · · ,mn) when R(m1, · · · ,mn) does not hold.

• We say that a total function f(x1, · · · , xn) on ω
n is representable in T

if there is a formula ϕ(x1, · · · , xn, y) such that T ⊢ ∀y(ϕ(a1, · · · , an, y) ↔
y = m) whenever a1, · · · , an,m ∈ ω are such that f(a1, · · · , an) = m.

• Let T be a theory in a language L(T ), and S a theory in a language
L(S). In its simplest form, a translation I of language L(T ) into
language L(S) is specified by the following:

– an L(S)-formula δI(x) denoting the domain of I;
– for each relation symbol R of L(T ), as well as the equality re-

lation =, an L(S)-formula RI of the same arity;

2The theory of completeness/incompleteness is closely related to the theory of decid-
ability/undecidability (see [129]).

3Note that the variable x is free in the formula pφ(ẋ)q but not in pφ(x)q.
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– for each function symbol F of L(T ) of arity k, an L(S)-formula
FI of arity k + 1.

• If φ is an L(T )-formula, its I-translation φI is an L(S)-formula con-
structed as follows: we rewrite the formula in an equivalent way so
that function symbols only occur in atomic subformulas of the form
F (x) = y, where xi, y are variables; then we replace each such atomic
formula with FI(x, y), we replace each atomic formula of the form
R(x) with RI(x), and we restrict all quantifiers and free variables
to objects satisfying δI . We take care to rename bound variables to
avoid variable capture during the process.

• A translation I of L(T ) into L(S) is an interpretation of T in S if S
proves the following:

– for each function symbol F of L(T ) of arity k, the formula
expressing that FI is total on δI :

∀x0, · · · ∀xk−1(δI(x0) ∧ · · · ∧ δI(xk−1) → ∃y(δI(y) ∧ FI(x0, · · · , xk−1, y)));

– the I-translations of all axioms of T , and axioms of equality.

The simplified picture of translations and interpretations above actually
describes only one-dimensional, parameter-free, and one-piece translations.
For precise definitions of a multi-dimensional interpretation, an interpreta-
tion with parameters, and a piece-wise interpretation, we refer to [137] [135]
[136] for more details.

The notion of interpretation provides us with a method for comparing
different theories in different languages, as follows.

Definition 2.5 (Interpretations II).

• A theory T is interpretable in a theory S if there exists an interpreta-
tion of T in S. If T is interpretable in S, then all sentences provable
(refutable) in T are mapped, by the interpretation function, to sen-
tences provable (refutable) in S.

• We say that a theory U weakly interprets a theory V (or V is weakly
interpretable in U) if V is interpretable in some consistent extension
of U in the same language (or equivalently, for some interpretation
τ , the theory U + V τ is consistent).

• Given theories S and T , let ‘S✂T ’ denote that S is interpretable in
T (or T interprets S); let ‘S ✁ T ’ denote that T interprets S but S
does not interpret T ; we say S and T are mutually interpretable if
S ✂ T and T ✂ S.

Interpretability provides us with one measure of comparing strength of
different theories. If theories S and T are mutually interpretable, then T
and S are equally strong w.r.t. interpretation. In this paper, whenever we
say that theory S is weaker than theory T w.r.t. interpretation, this means
that S ✁ T .

A general method for establishing the undecidability of theories is de-
veloped in [129]. The following theorem provides us with two methods for
proving the essentially undecidability of a theory respectively via interpre-
tation and representability.

Theorem 2.6 (Theorem 7, Corollary 2, [129]).
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• Let T1 and T2 be two consistent theories such that T2 is interpretable
in T1. If T2 is essentially undecidable, then T1 is essentially unde-
cidable.

• If all recursive functions are representable in a consistent theory T ,
then T is essentially undecidable.

We shall also need some basic notions from recursion theory, as follows.

Definition 2.7 (Basic recursion theory).

• Let φ0, φ1, · · · be a list of all unary computable (partial recursive)
functions such that φi(j), if it exists, can be computed from i and j.

• A recursively enumerable set (r.e. for short) is the domain of φi for
some i ∈ ω, which is denoted by Wi.

• The notation φi(j) ↑ means that the function φi is not defined at j,
or j /∈Wi; and φi(j) ↓ means that φi is defined at j, or j ∈Wi.

Provability logic provides us with an important tool to study the meta-
mathematics of arithmetic and incompleteness. A good reference on the
basics of provability logic is [15].

Definition 2.8 (Modal logic).

• The modal system K consisting of the following axiom schemes:
– All tautologies;
– ✷(A→ B) → (✷A→ ✷B);

as well as two inference rules:
– if ⊢ A and ⊢ A→ B, then ⊢ B;
– if ⊢ A, then ⊢ ✷A.

• We denote by GL the modal system consisting of all axioms of K, all
instances of the scheme ✷(✷A→ A) → ✷A, and the same inference
rules with K.

• We denote by GLS the modal system consisting of all theorems of
GL, and all instances of the scheme ✷A → A. However, GLS has
only one inference rule: Modus Ponens.

2.2. Logical systems. In this section, we introduce some well-known the-
ories weaker than PA w.r.t. interpretation from the literature. In Section
4, we will show that these theories are essentially incomplete.

Robinson Arithmetic Q is introduced in [129] by Tarski, Mostowski and
Robinson as a base axiomatic theory for investigating incompleteness, and
undecidability.

Definition 2.9 (Robinson Arithmetic Q). Robinson Arithmetic Q is de-
fined in the language {0,S,+,×} with the following axioms:

Q1: ∀x∀y(Sx = Sy → x = y);
Q2: ∀x(Sx 6= 0);
Q3: ∀x(x 6= 0 → ∃y(x = Sy));
Q4: ∀x∀y(x+ 0 = x);
Q5: ∀x∀y(x+ Sy = S(x+ y));
Q6: ∀x(x× 0 = 0);
Q7: ∀x∀y(x× Sy = x× y + x).

Robinson Arithmetic Q is very weak: it cannot even prove that addition
is associative.
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Definition 2.10 (Peano Arithmetic PA). The theory PA consists of the
axioms Q1-Q2, Q4-Q7 in Definition 2.9 and the following axiom scheme of
induction:

(Induction) (φ(0) ∧ ∀x(φ(x) → φ(Sx))) → ∀xφ(x),

where φ is a formula with at least one free variable x. Let N = 〈N,+,×〉
denote the standard model of arithmetic.

We now introduce a well-known hierarchy of L(PA)-formulas called the
arithmetical hierarchy (see [102, 55]).

Definition 2.11 (Arithmetical hierarchy).

• Bounded formulas (Σ0
0, or Π

0
0, or ∆

0
0 formula) are built from atomic

formulas using only propositional connectives and bounded quanti-
fiers (in the form ∀x ≤ y or ∃x ≤ y).

• A formula is Σ0
n+1 if it has the form ∃xφ where φ is Π0

n.

• A formula is Π0
n+1 if it has the form ∀xφ where φ is Σ0

n. Thus,

a Σ0
n-formula has a block of n alternating quantifiers, the first one

being existential, and this block is followed by a bounded formula.
Similarly for Π0

n-formulas.
• A formula is ∆0

n if it is equivalent to both a Σ0
n formula and a Π0

n

formula.

We can now formally introduce the notion of consistency in its various
guises, as well as the various fragments of Peano arithmetic PA.

Definition 2.12 (Formal consistency and systems).

• A theory T is said to be ω-consistent if there is no formula ϕ(x) such
that T ⊢ ∃xϕ(x), and for any n ∈ ω, T ⊢ ¬ϕ(n̄).

• A theory T is 1-consistent if there is no such ∆0
1 formula ϕ(x).

• We say a theory T is Σ0
1-sound if for any Σ0

1 sentences φ, if T ⊢ φ,
then N |= φ.

• The collection axiom for Σ0
n+1 formulas is the following principle:

(∀x < u)(∃y)ϕ(x, y) → (∃v)(∀x < u)(∃y < v)ϕ(x, y) where ϕ(x, y)
is a Σ0

n+1 formula possibly containing parameters distinct from u, v.

• The theory IΣn is Q plus induction for Σ0
n formulas, and BΣn+1 is

IΣ0 plus collection for Σ0
n+1 formulas.

• The theory I∆0 is Q plus induction for ∆0
0 formulas.

• The theory PA is the union of all IΣn.

It is well-known that the following form a strictly increasing hierarchy:

IΣ0, BΣ1, IΣ1, BΣ2, · · · , IΣn, BΣn+1, · · · ,PA.

Moreover, there are weak fragments of PA that play an important role
in computer science, namely in complexity theory ([18, 19]). These systems
are based on the following concept.

By [36, Proposition 2, p.299], there is a bounded formula Exp(x, y, z) such
that IΣ0 proves that Exp(x, 0, z) ↔ z = 1, and Exp(x,Sy, z) ↔ ∃t(Exp(x, y, t)∧
z = t · x). However, IΣ0 cannot prove the totality of Exp(x, y, z).

Definition 2.13 (Sub-exponential functions).
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• Let exp denote the statement postulating the totality of the expo-
nential function ∀x∀y∃zExp(x, y, z).

• Elementary Arithmetic (EA) is I∆0 + exp.
• Define ω1(x) = x|x|, and ωn+1(x) = 2ωn(|x|) where |x| is the length
of the binary expression of x.

• Let Ωn ≡ (∀x)(∃y)(ωn(x) = y) express that ωn(x) is total.

Theorem 2.14 ([53, 36]).

• The theory IΣ0 + Ωn is interpretable in Q for any n ≥ 1 (see [36,
Theorem 3, p.304]).

• The theory IΣ0 + exp is not interpretable in Q.4

• The theory IΣ1 is not interpretable in IΣ0 + exp (see [53, Theorem
1.1], p.186).

• The theory IΣn+1 is not interpretable in BΣn+1 (see [53, Theorem
1.2], p.186).

• The theory BΣ1+exp is interpretable in IΣ0+exp (see [53, Theorem
2.4], p.188).

• The theory BΣ1 + Ωn is interpretable in IΣ0 + Ωn for each n ≥ 1
(see [53, Theorem 2.5], p.189).

• The theory BΣn+1 is interpretable in IΣn for each n ≥ 0 (see [53,
Theorem 2.6], p.189).

The theory PA− is the theory of commutative, discretely ordered semi-
rings with a minimal element plus the subtraction axiom. The theory PA−

has the following axioms, where the language L(PA−) is L(PA) ∪ {≤}:

Definition 2.15 (The system PA−).

• x+ 0 = x;
• x+ y = y + x;
• (x+ y) + z = x+ (y + z);
• x× 1 = x;
• x× y = y × x;
• (x× y)× z = x× (y × z);
• x× (y + z) = x× y + x× z;

• x ≤ y ∨ y ≤ x;
• (x ≤ y ∧ y ≤ z) → x ≤ z;
• x+ 1 � x;
• x ≤ y → (x = y ∨ x+ 1 ≤ y);
• x ≤ y → x+ z ≤ y + z;
• x ≤ y → x× z ≤ y × z;
• x ≤ y → ∃z(x+ z = y).

The theory Q+ is the extension ofQ in the language L(Q+) = L(Q)∪{≤}
with the following extra axioms:

Definition 2.16 (The system Q+). The system Q+ is Q plus

Q8: (x+ y) + z = x+ (y + z);
Q9: x× (y + z) = x× y + x× z;
Q10: (x× y)× z = x× (y × z);
Q11: x+ y = y + x;
Q12: x× y = y × x;
Q13: x ≤ y ↔ ∃z(x+ z = y).

Andrzej Grzegorczyk considers a theory Q− in which addition and multi-
plication satisfy natural reformulations of the axioms of Q but are possibly

4See [36, Theorem 6, p.313]. Solovay proves that IΣ0 +¬exp is interpretable in Q (see
[36, Theorem 7, p.314]).
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non-total functions. More exactly, the language of Q− is {0,S, A,M} where
A and M are ternary relations.

Definition 2.17 (The system Q−). The axioms of Q− are the axioms Q1-
Q3 of Q plus the following six axioms about A and M :

A: ∀x∀y∀z1∀z2(A(x, y, z1) ∧A(x, y, z2) → z1 = z2);
M: ∀x∀y∀z1∀z2(M(x, y, z1) ∧M(x, y, z2) → z1 = z2);
G4: ∀xA(x, 0, x);
G5: ∀x∀y∀z(∃u(A(x, y, u) ∧ z = S(u)) → A(x, S(y), z));
G6: ∀xM(x, 0, 0);
G7: ∀x∀y∀z(∃u(M(x, y, u) ∧A(u, x, z)) →M(x, S(y), z)).

Samuel R. Buss [18] introduces S1
2, a finitely axiomatizable theory, to

study polynomial time computability. The theory S1
2 provides what is

needed for formalizing the proof of G2 in a natural and effortless way: this
process is actually easier in Buss’ theory than in full PA, since the restric-
tions present in S1

2 prevent one from making wrong turns and inefficient
choices (see [137]).

Next, we introduce adjunctive set theory AS which has a language with
only one binary relation symbol ‘∈’.

Definition 2.18 (Adjunctive set theory AS, [103]). The axioms of AS

consist of the following:

AS1: ∃x∀y(y /∈ x).
AS2: ∀x∀y∃z∀u(u ∈ z ↔ (u = x ∨ u = y)).

We now consider the theory R introduced by A. Tarski, A. Mostowski
and R. Robinson in [129], and some variants of it.

Definition 2.19 (The theoryR). LetR be the theory consisting of schemes
Ax1-Ax5 with L(R) = {0, · · · , n, · · · ,+,×,≤} where m,n ∈ ω.

Ax1: m+ n = m+ n;
Ax2: m× n = m× n;
Ax3: m 6= n if m 6= n;
Ax4: ∀x(x ≤ n→ x = 0 ∨ · · · ∨ x = n);
Ax5: ∀x(x ≤ n ∨ n ≤ x).

As it happens, the system R contains all key properties of arithmetic for
the proof of G1. Unlike Q, the theory R is not finitely axiomatizable.

Definition 2.20 (Variations of R).

• Let R0 be R without Ax5.
• Let R1 be the system consisting of schemes Ax1,Ax2,Ax3 and
Ax4′ where the latter is as follows
Ax4′: ∀x(x ≤ n↔ x = 0 ∨ · · · ∨ x = n).

• Let R2 be the system consisting of schemes Ax2,Ax3 and Ax4′.

The ‘concatination’ theory TC has the language {⌢,α, β} with a binary
function symbol and two constants.

Definition 2.21 (The system TC).

TC1: ∀x∀y∀z(x ⌢ (y ⌢ z) = (x ⌢ y)⌢ z);
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TC2: ∀x∀y∀u∀v(x ⌢ y = u ⌢ v → ((x = u ∧ y = v) ∨ ∃w((u = x ⌢
w ∧ w ⌢ v = y) ∨ (x = u ⌢ w ∧w ⌢ y = v))));

TC3: ∀x∀y(α 6= x ⌢ y);
TC4: ∀x∀y(β 6= x ⌢ y);
TC5: α 6= β.

Primitive recursive arithmetic (PRA) is a quantifier-free formalization
of the natural numbers, and the language of PRA can express arithmetic
statements involving natural numbers and any primitive recursive function.
Weak Konig’s Lemma (WKL0) states that every infinite binary tree has an
infinite branch. We refer to [55, 120] for the definitions of PRA andWKL0.
In a nutshell, the former system allows us to perform ‘iteration of functions
f : N → N’, while the latter expresses a basic compactness argument for
Cantor space.

Theorem 2.22 (Friedman’s conservation theorem, Theorem 2.1, [75]). If
WKL0 ⊢ φ, then PRA ⊢ φ for any Π0

2 sentence φ in L(PA).

Finally, diagnolisation, in one form or other, forms the basis for the proof
of G2. The following lemma is crucial in this regard.

Lemma 2.23 (The Diagnolisation Lemma). Let T be a consistent r.e. ex-
tension of Q. For any formula φ(x) with exactly one free variable, there
exists a sentence θ such that T ⊢ θ ↔ φ(pθq).

Lemma 2.23 is the simplest and most often used version of the Diagnoli-
sation Lemma. For a generalized version of the Diagnolisation Lemma, we
refer to [15]. In this paper, we use the term “Diagnolisation Lemma” to
refer to Lemma 2.23 and some variants of the generalized version.

3. Proofs of Gödel’s incompleteness theorems

3.1. Introduction. In this section, we discuss different proofs of Gödel’s
incompleteness theorems from the literature, and propose nine criteria for
classifying them.

First of all, there are no requirements on the independent sentence in G1.
In particular, such a sentence need not have any mathematical meaning.
This is often the case when meta-mathematical (proof-theoretic or recursion-
theoretic or model-theoretic) methods are used to construct the independent
sentence. In Section 3.2-3.4, we will discuss proofs of Gödel’s incompleteness
theorems via pure logic. In Section 3.5, we will give an overview of the
“concrete incompleteness” research program which seeks to identify natural
independent sentences with real mathematical meaning.

Secondly, we say that a proof of G1 is constructive if it explicitly constructs
the independent sentence from the base theory by algorithmic means. A non-
constructive proof of G1 only proves the mere existence of the independent
sentence and does not show its existence algorithmically. We say that a proof
of G1 for theory T has the Rosser property if the proof only assumes that
T is consistent instead of assuming that T is ω-consistent or 1-consistent or
Σ0
1-sound; all these notions are introduced in Section 2.2.

After Gödel, many different proofs of Gödel’s incompleteness theorems
have been found. These proofs can be classified using the following criteria:
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• proof-theoretic proof;
• recursion-theoretic proof;
• model-theoretic proof;
• proof via arithmetization;
• proof via the Diagnolisation Lemma;
• proof based on “logical paradox”;
• constructive proof;
• proof having the Rosser property;
• the independent sentence has natural and real mathematical con-
tent.5

However, these aspects are not exclusive: a proof of G1 or G2 may satisfy
several of the above criteria.

Thirdly, there are two kinds of proofs of Gödel’s incompleteness theorems
via pure logic: one based on logical paradox and one not based on logical
paradox. In Section 3.2, we first provide an overview of the modern refor-
mulation of proofs of Gödel’s incompleteness theorems. We discuss proofs
of Gödel’s incompleteness theorems not based on logical paradox in Sec-
tion 3.3. We discuss proofs of Gödel’s incompleteness theorems based on
logical paradox in Section 3.4.

3.2. Overview and modern formulation. In a nutshell, the three main
ideas in the (modern/standard) proofs of G1 and G2 are arithmetization,
representability, and self-reference, as discussed in detail in Section 3.2.1.
Interesting properties of G1 and G2 are discussed in Sections 3.2.2 and 3.2.4,
while the formalized notions of ‘proof’ and ‘truth’ are discussed in Sec-
tion 3.2.3. Finally, we formulate a blanket caveat for the rest of this section:

Unless stated otherwise, we will always assume that T is a recursively
axiomatizable consistent extension of Q.

Other sections shall contain similar caveats and we sometimes stress these.

3.2.1. Three steps towards G1 and G2. Intuitively speaking, Gödel’s incom-
pleteness theorems can be proved based on the following key ingredients.

• Arithmetization: since G1 and G2 are theorems about properties
of the syntax of logic, we need to somehow represent the latter, which
is done via a coding scheme called arithmetization.

• Representations: the notion of ‘proof’ and related concepts in G1

and G2 are then expressed (‘represented’) via arithmetization.
• Self-reference: given a representation of ‘proof’ and related con-
cepts, one can write down formal statements that intuitively express
‘self-referential’ things like ‘this sentence does not have a proof’.

As we will see, the intuitively speaking ‘self-referential’ statements are the
key to proving G1 and G2. We now discuss these three notions in detail.

5I.e. Gödel’s sentence is a pure logical construction (via the arithmetization of syntax
and provability predicate) and has no relevance with classic mathematics (without any
combinatorial or number-theoretic content). On the contrary, Paris-Harrington Princi-
ple is an independent arithmetic sentence from classic mathematics with combinatorial
content.
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First of all, arithmetization has the following intuitive content: it estab-
lishes a one-to-one correspondence between expressions of L(T ) and natural
numbers. Thus, we can translate metamathematical statements about the
formal theory T into statements about natural numbers. Furthermore, fun-
damental metamathematical relations can be translated in this way into
certain recursive relations, hence into relations representable in T . Conse-
quently, one can speak about a formal system of arithmetic, and about its
properties as a theory in the system itself! This is the essence of Gödel’s
idea of arithmetization, which was revolutionary at a time when computer
hardware and software did not exist yet.

Secondly, in light of the previous, we can define certain relations on natu-
ral numbers that express or represent crucial metamathematical concepts
related to the formal system T , like ‘proof’ and ‘consistency’. For example,
modulo plenty of technical details, we can readily define a binary relation
on ω2 expressing what it means to prove a formula in T , namely as follows:

ProofT (m,n) if and only if n is the Gödel number of a proof in T of the
formula with Gödel number m.

Moreover, we can show that the relation ProofT (m,n) is recursive. In
addition, Gödel proves that every recursive relation is representable in PA.

Next, let ProofT (x, y) be the formula which represents ProofT (m,n) in
PA.6 From the formula ProofT (x, y), we can define the ‘provability’ pred-
icate ProvT (x) as ∃yProofT (x, y). The provability predicate ProvT (x)
satisfies the following conditions which show that formal and intuitive prov-
ability have the same properties.

(1) If T ⊢ ϕ, then T ⊢ ProvT (pϕq);
(2) T ⊢ ProvT (pϕ→ ψq) → (ProvT (pϕq) → ProvT (pψq));
(3) T ⊢ ProvT (pϕq) → ProvT (pProvT (pϕq)q).

For the proof of G1, Gödel defines the Gödel sentence G which asserts its
own unprovability in T via a self-reference construction. Gödel shows that
if T is consistent, then T 0 G, and if T is ω-consistent, then T 0 ¬G. One
way of obtaining such a Gödel sentence is the Diagnolisation Lemma which
intuitively speaking implies that the predicate ¬ProvT (x) has a fixed point,
i.e. there is a sentence θ in L(T ) such that

T ⊢ θ ↔ ¬ProvT (pθq).

Clearly, T 0 θ while θ intuitively expresses its own unprovability, i.e. the
aforementioned self-referential nature.

For the proof of G2, we first define the arithmetic sentence Con(T ) in
L(T ) as ¬ProvT (p0 6= 0q) which says that for all x, x is not a code of a
proof of a contradiction in T . Gödel’s second incompleteness theorem (G2)
states that if T is consistent, then the arithmetical formula Con(T ), which
expresses the consistency of T , is not provable in T . In Section 5.3, we will
discuss some other ways of expressing the consistency of T .

6Via arithmetization and representability, one can speak about the property of T in
PA itself!
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Finally, from the above conditions (1)-(3), one can show that T ⊢ Con(T ) ↔
G. Thus, G2 holds: if T is consistent, then T 0 Con(T ). For more details
on these proofs of G1 and G2, we refer to Chapter 2 in [102].

3.2.2. Properties of G1. In this section, we discuss some (sometimes subtle)
comments on G1.

First of all, Gödel’s proof of G1 is constructive as follows: given a consis-
tent r.e. extension T of PA, the proof constructs, in an algorithmic way, a
true arithmetic sentence which is unprovable in T . In fact, one can effectively
find a true Π0

1 sentence GT of arithmetic such that GT is independent of T .
Gödel calls this the “incompletability or inexhaustability of mathematics”.

Secondly, for Gödel’s proof of G1, only assuming that T is consistent
does not suffice to show that Gödel sentence is independent of T . In fact,
the optimal condition to show that Gödel sentence is independent of T is:
T +Con(T ) is consistent (see Theorems 35-36 in [64]).7

Thirdly, in summary, Gödel’s proof of G1 has the following properties:

• uses proof-theoretic method with arithmetization;
• does not directly use the Diagnolisation Lemma;
• the proof formalizes the liar paradox;
• the proof is constructive;
• the proof does not have the Rosser property;
• Gödel’s sentence has no real mathematical content.

All these characteristics of Gödel’s proof of G1 are not necessary conditions
for proving G1. For example, G1 can be proved using recursion-theoretic
or model-theoretic method, using the Diagnolisation Lemma, using other
logical paradoxes, using non-constructive methods, only assuming that T
is consistent (i.e. having the Rosser property), and can be proved without
arithmetization.

Fourth, G1 does not tell us that any consistent theory is incomplete.
In fact, there are many consistent complete first-order theories. For ex-
ample, the following first-order theories are complete: the theory of dense
linear orderings without endpoints (DLO), the theory of ordered divisible
groups (ODG), the theory of algebraically closed fields of given character-
istic (ACFp), and the theory of real closed fields (RCF). We refer to [32]
for details of these theories. In fact, G1 only tells us that any consistent
first-order theory containing a large enough fragment of PA (such as Q) is
incomplete: there is then a true Π0

1 sentence which is independent of the
initial theory. Turing’s work in [131] shows that any true Π0

1-sentence of
arithmetic is provable in some transfinite iteration of PA. Feferman’s work
in [34] extends Turing’s work and shows that any true sentence of arithmetic
is provable in some transfinite iteration of PA.

Fifth, whether a theory of arithmetic is complete depends on the language
of the theory. There are respectively recursively axiomatized complete arith-
metic theories in the language of L(0,S), L(0,S, <) and L(0,S, <,+) (see

7This optimal condition is much weaker than ω-consistency.
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Section 3.1-3.2 in [30]). Containing enough information of arithmetic is es-
sential for a consistent arithmetic theory to be incomplete. For example, Eu-
clidean geometry is not about arithmetic but only about points, circles and
lines in general; but Euclidean geometry is complete as Tarski has proved
(see [130]). If the theory contains only information about the arithmetic
of addition without multiplication, then it can be complete. For example,
Presburger arithmetic is a complete theory of the arithmetic of addition in
the language of L(0,S,+) (see Theorem 3.2.2 in [102], p.222). Finally, con-
taining the arithmetic of multiplication is not sufficient for a theory to be
incomplete. For example, there exists a complete recursively axiomatized
theory in the language of L(0,×) (see [102], p.230).

Finally, it is well-known that Th(N,+,×) is interpretable in Th(Z,+,×)
and Th(Q,+,×).8 Since Th(N,+,×) is undecidable and has a finitely ax-
iomatizable incomplete sub-theory Q, by Theorem 2.6, Th(Z,+,×) and
Th(Q,+,×) are undecidable, and hence not recursively axiomatizable, but
they respectively have a finitely axiomatizable incomplete sub-theory of inte-
gers and rational numbers. But Th(R,+,×) is decidable and recursively ax-
iomatizable (even if not finitely axiomatizable). In fact, Th(R,+,×) = RCF

(the theory of real closed field) (see [32], p.320-321). Note that this fact does
not contradict G1 since none of N,Z and Q is definable in (R,+,×).

3.2.3. Between truth and provability. In this paper, unless stated otherwise,
we equate a set of sentences with the set of Gödel’s numbers of these sen-
tences. We discuss the formalized notions of ‘truth’ and ‘proof’, and how
they relate to incompleteness.

Definition 3.1. We define Truth = {φ ∈ L(PA) : N |= φ} and Prov =
{φ ∈ L(PA) : PA ⊢ φ}, i.e. the formalized notions of ‘proof’ and ‘truth’.

First of all, truth and provability are the same for purely existential state-
ments. Put another way, incompleteness does not arise at the level of Σ0

1

sentences. Indeed, we have Σ0
1-completeness for T : for any Σ0

1 sentences φ,
T ⊢ φ if and only if N |= φ. Thus, Gödel’s sentence is a true Π0

1 sentence in
the form ∀xφ(x) such that T 0 ∀xφ(x) but ‘T ⊢ φ(n̄)’ holds for any n ∈ ω.

Secondly, the properties of Truth are essentially different from that of
Prov. Before Gödel’s work, it was thought that Truth = Prov. Thus,
Gödel’s first incompleteness theorem (G1) reveals the difference between the
notion of provability in PA and the notion of truth in the standard model
of arithmetic N. There are some differences between Truth and Prov:

• Prov ( Truth, i.e. there is a true arithmetic sentence which is
unprovable in PA;

• Tarski proves that: Truth is not definable inN butProv is definable
in N;

• Truth is not arithmetic but Prov is recursive enumerable.

However, both Truth and Prov are not recursive and not representable in
PA. For more details on Truth and Prov, we refer to [102, 129].

Thirdly, the differences between Truth and Prov can also be expressed
in terms of arithmetical interpretations, defined as follows.

8The key point is: N is definable in (Z,+,×) and (Q,+,×). See chapter XVI in [32].
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Definition 3.2 (Arithmetical interpretations). A mapping from the set of
all modal propositional variables to the set of L(PA)-sentences is called an
arithmetical interpretation.

Every arithmetical interpretation f is uniquely extended to the mapping
f∗ from the set of all modal formulas to the set of L(T )-sentences so that
f∗ satisfies the following conditions:

• f∗(p) = f(p) for each propositional variable p;
• f∗ commutes with every propositional connective;
• f∗(✷A) is ProvT (pf∗(A)q) for every modal formula A.

In the following, we equate arithmetical interpretations f with their unique
extensions f∗ defined on the set of all modal formulas. In this way, Solovay’s
Arithmetical Completeness Theorems for GL and GLS characterize the
difference between Prov and Truth via provability logic.

Theorem 3.3 (Solovay, [127]).

Arithmetical Completeness Theorem for GL: Let T be a Σ0
1-sound

r.e. extension of Q. For any modal formula φ in L(GL), GL ⊢ φ if
and only if T ⊢ f(φ) for every arithmetic interpretation f .

Arithmetical Completeness Theorem for GLS: For any modal for-
mula φ,GLS ⊢ φ if and only if N |= f(φ) for every arithmetic in-
terpretation f .

Finally, one can study the notion of ‘proof predicate’ as given byProofT (x, y)
in an abstract setting, namely as follows. Recall that T is a recursively
axiomatizable consistent extension of Q. We introduce general notions of
proof predicate and provability predicate which generalize the proof predi-
cate ProofT (x, y) and the provability predicate ProvT (x) defined above in
Gödel’s proof of G1.

Definition 3.4 (Proof predicate). We say a formula PrfT (x, y) is a proof
predicate of T if it satisfies the following conditions:9

• PrfT (x, y) is ∆
0
1(PA);10

• PA ⊢ ∀x(ProvT (x) ↔ ∃yPrfT (x, y));
• for any n ∈ ω and formula φ,N |= ProofT (pφq, n) ↔ PrfT (pφq, n);
• PA ⊢ ∀x∀x′∀y(PrfT (x, y) ∧PrfT (x

′, y) → x = x′).

Definition 3.5 (Provability and consistency). We define the provability
predicate PrT (x) from a proof predicate PrfT (x, y) by ∃yPrfT (x, y), and
the consistency statement Con(T ) from a provability predicate PrT (x) by
¬PrT (p0 6= 0q).

The items D1-D3 below are called the Hilbert-Bernays-Löb derivability
conditions. Note that D1 holds for any provability predicate PrT (x).

Definition 3.6 (Standard proof predicate). We say that provability predi-
cate PrT (x) is standard if it satisfies D2 and D3 as follows.

9We can say that each proof predicate represents the relation “y is the code of a proof
in T of a formula with Gödel number x”.

10We say a formula φ is ∆0
1(PA) if there exists a Σ0

1 formula α such that PA ⊢ φ ↔ α,
and there exists a Π0

1 formula β such that PA ⊢ φ ↔ β.
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D1: If T ⊢ φ, then T ⊢ PrT (pφq);
D2: If T ⊢ PrT (pφ → ϕq) → (PrT (pφq) → PrT (pϕq));
D3: T ⊢ PrT (pφq) → PrT (pPrT (pφq)q).

We say that PrfT (x, y) is a standard proof predicate if the induced provabil-
ity predicate from it is standard.

The previous definition leads to another blanket caveat:

Unless stated otherwise, we always assume that PrT (x) is a standard
provability predicate, and Con(T ) is the canonical consistency statement
defined as ¬PrT (p0 6= 0q) via the standard provability predicate PrT (x).

3.2.4. Properties of G2. In this section, we discuss some (sometimes subtle)
comments on G2.

First of all, we examine a somewhat delicate mistake in the argument
which claims that, by an easy application of the compactness theorem, we
can show that for any recursive axiomatization of a consistent theory T , T
can not prove its own consistency. Visser presents this argument in [140] as
an interesting dialogue between Alcibiades and Socrates:

Suppose a consistent theory T can prove its own consistency
under some axiomatization. By compactness theorem, there
must be a finitely axiomatized sub-theory S of T such that
S already proves the consistency of T . Since S proves the
consistency of T , it must also prove the consistency of S. So,
we have a finitely axiomatized theory which proves its own
consistency. But G2 applies to the finite axiomatization and
we have a contradiction. It follows that T can not prove its
own consistency.

The mistake in this argument is: from the fact that S can prove the consis-
tency of T we cannot infer that S can prove the consistency of S. Some may
argue that since S is a sub-theory of T and S can prove the consistency of
T , then of course S can prove the consistency of S.

However, as Visser correctly points out in [140], we should carefully dis-
tinguish three perspectives of the theory T : our external perspective, the
internal perspective of S, and the internal perspective of T . From each per-
spective, the consistency of the whole theory implies the consistency of its
sub-theory. From T ’s perspective, S is a sub-theory of T . But from S’s
perspective, S may not be a sub-theory of T . From the fact that T knows
that S is a sub-theory of T , we cannot infer that S also knows that S is a
sub-theory of T since S is a finite sub-theory of T and may not know any
information that T knows, leading to the following (dramatic) conclusion:

the sub-theory relation between theories is not absolute.

Similarly, the notion of consistency is not absolute. For example, let S =
PA + ¬Con(PA). From G2, S is consistent from the external perspective.
But since S ⊢ ¬Con(S), the theory S is not consistent from the internal
perspective of S. Note that PA ⊢ PrPA(0 6= 0) → PrPA(PrPA(0 6= 0) →
0 6= 0). Thus, a theory may be consistent from the external perspective but
inconsistent from the internal perspective.
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From Gödel’s proof of G2, we cannot infer that if T is a consistent r.e. ex-
tension of Q, then Con(T ) is independent of T . The key point is: it is
not enough to show that T 0 ¬Con(T ) only assuming that T is consistent.
However, we can show that Con(T ) is independent of T assuming that T
is 1-consistent.11 In fact, the formalized version of “if T is consistent, then
Con(T ) is independent of T” is not provable in T .12

Definition 3.7 (Reflexivity).

• A first-order theory T containing PA is said to be reflexive if T ⊢
Con(S) for each finite sub-theory S of T where Con(S) is similarly
defined as Con(PA).

• We say the theory T is essentially reflexive if any consistent extension
of T in L(T ) is reflexive.

• Let Con(T )↾ x denote the finite consistency statement “there are
no proofs of contradiction in T with ≤ x symbols”.

Mostowski proves that PA is essentially reflexive (see [102, Theorem
2.6.12]). In fact one can show that for every n ∈ N, IΣ0

n+1 ⊢ Con(IΣ0
n).

13

For a large class of natural theories U , Pudlák [114] shows that the lengths of
the shortest proofs ofCon(U)↾ n for n ∈ ω in the theory U itself are bounded
by a polynomial in n. Pudlák conjectures [114] that U does not have poly-
nomial proofs of the finite consistency statements Con(U + Con(U)) ↾ n
for n ∈ ω.

Finally, a big open question about G2 is: can we find a genuinely self-
reference free proof of G2? As far as we know, at present there is no convinc-
ing essentially self-reference-free proofs of either G2 or of Tarski’s Theorem
of the Undefinability of Truth. In [141], Visser gives a self-reference-free
proof of G2 from Tarski’s Theorem of the Undefinability of Truth, which is
a step in a program to find self-reference-free proofs of both G2 and Tarski’s
Theorem (see [141]). Visser’s argument in [141] is model-theoretic and the
main tool is the Interpretation Existence Lemma.14 Visser’s proof in [141] is
not constructive. An interesting question is then whether Visser’s argument
can be made constructive.

3.3. Proofs of G1 and G2 from mathematical logic. In this section, we
discuss various different proofs of G1 and G2. We mention Jech’s [65] short
proof of G2 for ZF: if ZF is consistent, then it is unprovable in ZF that
there exists a model of ZF. Jech’s proof uses the Completeness Theorem,
and also yields G2 for PA (see [65]). Other (lengthier) proofs are discussed
in Sections 3.3.1-3.3.5.

3.3.1. Rosser’s proof. Rosser [116] proves a “stronger” version of G1, called
Rosser’s first incompleteness theorem, which only assumes the consistency
of T : if T is a consistent r.e. extension of Q, then T is incomplete. Gödel’s

11It is an easy fact that if T is 1-consistent and S is not a theorem of T , then PrT (pSq)
is not a theorem of T .

12See [15, Theorem 4, p.97] for a modal proof in GL of this fact using the Arithmetic
Completeness Theorem for GL.

13For a proof of this result, we refer to Hájek and Pudlák [55].
14We refer to [139] for more details about the Interpretation Existence Lemma.
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proof of G1 assumes that T is ω-consistent. Note that ω-consistency implies
consistency. But the converse does not hold and the notion of ω-consistency
is stronger than consistency since we can find examples of theories that
are consistent but not ω-consistent.15 Rosser’s proof is constructive and
algorithmically constructs the Rosser sentence that is independent of T .
Gödel’s proof of G1 uses a standard provability predicate but Rosser’s proof
of G1 uses a Rosser provability predicate which is a kind of non-standard
provability predicate, giving rise to the following.

Definition 3.8. Let T be a recursively axiomatizable consistent extension of
Q, and PrfT (x, y) be any proof predicate of T . Define the Rosser provability
predicate PrRT (x) to be the formula ∃y(PrfT (x, y) ∧ ∀z ≤ y¬PrfT (¬̇x, z))
where ¬̇ is a function symbol expressing a primitive recursive function cal-
culating the code of ¬φ from the code of φ. The fixed point of the predicate
¬PrRT (x) is called the Rosser sentence of PrRT (x), i.e. a sentence θ satisfying
PA ⊢ θ ↔ ¬PrRT (pθq).

In general, one can show that each Rosser sentence based on any Rosser
provability predicate of T is independent of T . In particular, this indepen-
dence does not rely on the choice of the proof predicate.

3.3.2. Recursion-theoretic proofs. Gödel’s first incompleteness theorem (G1)
is well-known in the context of recursion theory. Recall that We = {n ∈ ω :
φe(n)↓}. Let 〈We : e ∈ ω〉 be the list of recursive enumerable subsets of N.
The following is an example of an ‘effective’ version of G1:

there exists a recursive function f such that for any e ∈ ω, if We ⊆ Truth,
then f(e) is defined and f(e) ∈ Truth \We ([31]).

Similarly, Avigad [2] proves G1 and G2 in terms of the undecidability of the
halting problem (see Theorem 3.1, Theorem 3.2 in [2]). Another related
result due to Kleene is as follows.

Theorem 3.9 (Kleene’s theorem, Theorem 2.2, [119]). For any consistent
r.e. theory T that contains Q, there exists some t ∈ ω such that ϕt(t)↑ holds
but T 0 “ϕt(t)↑ ”.

Kleene’s proof of his theorem uses recursion theory, and is not construc-
tive. Salehi and Seraji [119] show that there is a constructive proof of
Kleene’s theorem, but this constructive proof does not have the Rosser
property. Salehi and Seraji [119] comment that there could be a ‘Rosse-
rian’ version of this constructive proof of Kleene’s theorem.

3.3.3. Proofs based on Arithmetic Completeness. Hilbert and Bernays [61]
present the Arithmetic Completeness Theorem expressing that any recur-
sively axiomatizable consistent theory has an arithmetically definable model.
Later, Kreisel [84] and Wang [143] adapt the Arithmetic Completeness The-
orem and use paradoxes to obtain undecidability results.

Now, the Arithmetic Completeness Theorem is an important tool in
model-theoretic proofs of the incompleteness theorems. For more details,
we refer to [95, 71, 83]. Walter Dean [29] gives a detailed discussion on

15For example, assuming PA is consistent, then PA + ¬Con(PA) is consistent, but
not ω-consistent.
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how the Arithmetized Completeness Theorem provides a tool for obtaining
formal incompleteness results from some certain paradoxes.

Theorem 3.10 (Arithmetic Completeness, Theorem 3.1, [72]). Let T be a
recursively axiomatized consistent extension of Q. There exists a formula
TrT (x) in L(PA) that defines a model of T in PA+Con(T ).

Lemma 3.11 is a corollary of the Arithmetized Completeness Theorem,
and is essential for model-theoretic proofs of the incompleteness theorems.

Lemma 3.11 ([75, 72]). Let T be a recursively axiomatized consistent ex-
tension of Q, and TrT (x) is the formula as asserted in Theorem 3.10. For
any model M0 of PA+Con(T ), there exists a model M1 of T such that for
any sentence φ, M0 |= TrT (pφq) if and only if M1 |= φ.

Kreisel first applies the Arithmetized Completeness Theorem to establish
model-theoretic proofs of G2 (cf. Kreisel [86], Smoryński [122] and Kikuchi
[72]). Kikuchi-Tanaka [75], Kikuchi [72, 73] and Kotlarski [81] use the Arith-
metized Completeness Theorem to give model-theoretic proofs of G2. For
example, Kikuchi [72] proves G2 model-theoretically via the Arithmetized
Completeness Theorem (Lemma 3.11): if PA is consistent, then Con(PA)
is not provable in PA (see Theorem 3.4, [72]).16

Proofs of G2 by Kreisel [86] and Kikuchi [72] do not directly yield the
formalized version of G2. Kikuchi’s proof of G2 in [73] is not formalizable
in PRA. Kikuchi and Tanaka [75] prove in WKL0 that Con(PA) im-
plies ¬PrPA(pCon(PA)q), since the Completeness Theorem is provable in
WKL0, and the key Lemma 3.11 used in Kikuchi’s proof [72] is provable in
RCA0.

17 Using Theorem 2.22, Tanaka [75] proves the formalized version of
G2: PRA ⊢ Con(PA) → Con(PA + ¬Con(PA)).

One can give a simple proof of G1 via the Diagnolisation Lemma (see
[102]). Kotlarski [81] proves the formalized version of G1 and G2 via model-
theoretic arguments (e.g. using the Arithmetized Completeness Theorem
and some quickly growing functions). Kotlarski [81] proves the following
version of G1 assuming that PA is ω-consistent, and shows that the following
sentence is provable in PA:

if ∀ϕ, x{[ϕ ∈ ∆0 ∧ ∀yPrPA(¬ϕ(Sx0, Sy0))] → ¬PrPA(∃yϕ(Sx0, y))}, then
∃ϕ ∈ ∆0∃x[¬PrPA(∃yϕ(Sx0, y)) ∧ ¬PrPA(¬∃yϕ(Sx0, y))].

However, it is unknown whether the method in [81] can also give a
new proof of Rosser’s first incompleteness theorem. Kotlarski [81] proves
the following formalized version of G2: PA ⊢ Con(PA) → Con(PA +
¬Con(PA)). Later, Kotlarski [82] transforms the proof of the formalized
version of G2 in [81] to a proof-theoretic version without the use of the
Arithmetized Completeness Theorem.

16The idea of the proof is: assuming that PA is consistent and PA ⊢ Con(PA),
then we get a contradiction from the fact that there is a model M of PA such that
M |= Con(PA).

17The theory RCA0 (Recursive Comprehension) is a subsystem of Second Order Arith-
metic. For the definition of RCA0, we refer to [120].
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3.3.4. Proofs based on Kolmogorov complexity. Intuitively, Kolmogorov com-
plexity is a measure of the quantity of information in finite objects. Roughly
speaking, the Kolmogorov complexity of a number n, denoted by K(n), is
the size of a program which generates n.

Definition 3.12 (Kolmogorov-Chaitin Complexity, [119]). For any natural
number n ∈ ω, the Kolmogorov complexity for n, denoted byK(n), is defined
as min{i ∈ ω | ϕi(0)↓= n}.

If n ≤ K(n), then n is called random. Kolmogorov shows in 1960’s that
the set of non-random numbers is recursively enumerable but not recursive
(c.f. Odifreddi [105]). Relations between G1 and Kolmogorov complexity
have been intensively discussed in the literature (c.f. Li and Vitányi [94]).
Chaitin [20] gives an information-theoretic formulation of G1, and proves
the following weaker version of G1 in terms of Kolmogorov complexity.

Theorem 3.13 (Chaitin [20, 119]). For any consistent r.e. extension T of
Q, there exists a constant cT ∈ N such that for any e ≥ cT and any w ∈ N
we have T 0 “K(w) > e”.

Salehi and Seraji [119] show that we can algorithmically construct the
Chaitin constant cT in Theorem 3.13. I.e. for a given consistent r.e. extension
T of Q, one can algorithmically construct a constant cT ∈ N such that for
all e ≥ cT and all w ∈ N, we have T 0 “K(w) > e” (see Theorem 3.4 in
[119]). From Theorem 3.13, it is not clear whether “K(w) > e” holds (or
whether “K(w) > e” is independent of T ). Salehi and Seraji [119] show that
Chaitin’s proof of G1 is non-constructive: there is no algorithm such that
given any consistent r.e. extension T of Q we can compute some wT such
that K(wT ) > cT holds where cT is the Chaitin constant we can compute as
in Theorem 3.13 (see Theorem 3.5, [119]). If such an algorithm exists, then
for any consistent r.e. extension T of Q, we can compute some cT and wT

such that K(wT ) > cT is true but unprovable in T .

Salehi and Seraji [119] also strengthen Chaitin’s Theorem 3.13 assuming
T is Σ0

1-sound: if T is a Σ0
1-sound r.e. theory extending Q, then there exists

some cT (which is computable from T ) such that for any e ≥ cT there are
cofinitely many w’s such that “K(w) > e” is independent of T (see Corollary
3.7, [119]). Using a version of the Pigeonhole Principle in Q, Salehi and
Seraji [119] also prove the Rosserian form of Chaitin’s Theorem: for any
consistent r.e. extension T of Q, there is a constant cT (which is computable
from T ) such that for any e ≥ cT there are cofinitely many w’s such that
“K(w) > e” is independent of T (see Theorem 3.9, [119]).

Kikuchi [73] proves the following formalized version of G1 via Kolmogorov
complexity for any consistent r.e. extension T of PA: there exists e ∈ ω with

• T ⊢ Con(T ) → ∀x(¬PrT (pK(x) > eq));
• T ⊢ ω-Con(T ) → ∀x(e < K(x) → ¬PrT (pK(x) ≤ eq)).

However, this proof is not constructive. Moreover, Kikuchi [73] proves G2

via Kolmogorov complexity and the Arithmetic Completeness Theorem: if
T is a consistent r.e. extension of PA, then T 0 Con(T ). Kikuchi’s proof
of G2 in [73] cannot be formalized in PRA but can be carried out within
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WKL0. Thus we can also obtain a formalized version of G2 in WKL0 by
Theorem 2.22.

3.3.5. Model-theoretic proofs. Adamowicz and Bigorajska [5] prove G2 via
model-theoretic method using the notion of 1-closed models and existentially
closed models.

Definition 3.14.

• A model M of a theory T is called 1-closed (w.r.t. T ) if for any
a1, · · · , an in M , any Σ1 formula φ and any M ′ such that M ≺0

M ′ and M ′ |= T , we have: if M ′ |= φ(a1, · · · , an), then M |=
φ(a1, · · · , an). In other words, we can say that M is 1-closed if
for any M ′ such that M ≺0 M

′, we have M ≺1 M
′.

• Let K be a class of structures in the same language. A modelM ∈ K
is existentially closed in K if for every model N ⊇ M such that
N ∈ K, we haveM �1 N : every existential formula with parameters
from M which is satisfied in N is already satisfied in M .

Adamowicz and Bigorajska [5] first prove G2 without the use of the
Arithmetized Completeness Theorem: every 1-closed model of any subthe-
ory T of PA extending I∆0 + exp satisfies ¬Con(PA). Then Adamow-
icz and Bigorajska [5] prove the formalized version of G2 via the idea of
existentially closed models and the Arithmetized Completeness Theorem:
PA ⊢ Con(PA) → Con(PA + ¬Con(PA)) (see Theorem 2.1, [5]). This
is proved by showing that an arbitrary model of PA + Con(PA) satisfies
Con(PA+ ¬Con(PA)).

3.4. Proofs of G1 and G2 based on logical paradox. We provide a
survey of proofs of incompleteness theorems based on ‘logical paradox’.

3.4.1. Introduction. As noted in Section 3.2.1, Gödel’s incompleteness the-
orems are closely related to paradox and self-reference. In fact, Gödel com-
ments in his famous paper [45] that “any epistemological antinomy could be
used for a similar proof of the existence of undecidable propositions”.

Now, the Liar Paradox is an old and most famous paradox in modern
science. In Gödel’s proof of G1, we can view Gödel’s sentence as the for-
malization of the Liar Paradox. Gödel’s sentence concerns the notion of
provability but the liar sentence in the Liar Paradox concerns the notion of
truth in the standard model of arithmetic. There is a big difference between
the notion of provability and truth. Gödel’s sentence does not lead to a
contradiction as the Liar sentence does.

Besides the Liar Paradox, many other paradoxes have been used to give
new proofs of incompleteness theorems: for example, Berry’s Paradox in
[14, 20, 72, 77, 75, 142], Grelling-Nelson’s Paradox in [26], the Unexpected
Examination Paradox in [37, 87], and Yablo’s Paradox in [27, 76, 89, 111].
We now discuss some of these paradoxes in detail.

3.4.2. Berry’s paradox. Berry’s Paradox introduced by Russell [117] is the
paradox that “the least integer not nameable in fewer than nineteen syl-
lables” is itself a name consisting of eighteen syllables. Informally, we say
that an expression names a natural number n if n is the unique natural
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number satisfying the expression. Berry’s Paradox can be formalized in for-
mal systems by interpreting the concept of “name” suitably. The following
is Boolos’s formulation of the concept of “name” in [14].

Definition 3.15 (Boolos [14]). Let n ∈ ω and ϕ(x) be a formula with only
one free variable x. We say that ϕ(x) names n if N |= ϕ(n)∧∀v0∀v1(ϕ(v0)∧
ϕ(v1) → v0 = v1).

Proofs of the incompleteness theorems based on Berry’s Paradox have
been given by Vopěnka [142], Chaitin [20], Boolos [14], Kikuchi-Kurahashi-
Sakai [77], Kikuchi [72], and Kikuchi-Tanaka [75]. In fact, Robinson first
uses Berry’s Paradox in [115] to prove Tarski’s theorem on the undefinabil-
ity of truth, which anticipates the later use of Berry’s Paradox to obtain
incompleteness results by Vopěnka [142], Boolos [14] and Kikuchi [73].

Boolos [14] proves a weak form of G1 in the 1980’s by formalizing Berry’s
Paradox in arithmetic via considering the length of formulas that name
natural numbers in the standard model of arithmetic. Using this formulation
of the concept of “name”, Boolos [14] first shows that Berry’s Paradox leads
to a proof of G1 in the following form: there is no algorithm whose output
contains all true statements of arithmetic and no false ones (i.e. the theory
of true arithmetic is not recursively axiomatizable). Barwise [6] praises
Boolos’s proof as “very lovely and the most straightforward proof of Gödel’s
incompleteness theorem that I have ever seen”. The optimal sufficient and
necessary condition for the independence of a Boolos sentence from PA is
that PA+Con(PA) is consistent (see [119]).

Boolos’s theorem is different from Gödel’s theorem in the following way:

• Boolos’s theorem refers to the concept of truth but Gödel’s theorem
does not;

• Boolos’s proof is not constructive, and we can prove that there is no
algorithm for computing the true but unprovable sentence;

• Boolos’s theorem is weaker than Gödel’s first incompleteness theo-
rem, and hence we cannot obtain the second incompleteness theorem
from Boolos’s theorem in the standard way (see [77]).

Boolos’s proof is modified by Kikuchi and Tanaka in [75, 72]. The difference
between Kikuchi’s proof and Boolos’s proof lies in the interpretation of the
word “name”. Kikuchi [72] modifies Boolos’s formulation of the concept of
“name” by replacing “truth” with “provability” in the definition.

Definition 3.16 (Definition 3.1, Kikuchi [72]). Let n ∈ ω and ϕ(x) be
a formula with only one free variable x. We say that ϕ(x) names n if
PA ⊢ ϕ(n) ∧ ∀v0∀v1(ϕ(v0) ∧ ϕ(v1) → v0 = v1).

Using this formulation of the concept of “name”, Kikuchi [72] gives a
proof-theoretic proof of G1 by formalizing Berry’s paradox without the use
of the Diagnolisation Lemma. Kikuchi [72] constructs a sentence θ and shows
that ifPA is consistent, then ¬θ is not provable in PA; if PA is ω-consistent,
then θ is not provable in PA (see Theorem 2.2, [72]). Note that Kikuchi’s
proof of G1 in [72] is constructive. Kikuchi and Tanaka [75] reformulate
Kikuchi’s proof of G1 in [72], and show in WKL0 that if PA +Con(PA)
is consistent, then θ is independent of PA. By Theorem 2.22, Kikuchi
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and Tanaka [75] prove the formalized version of G1: PRA ⊢ Con(PA +
Con(PA)) → ¬PrPA(pθq) ∧ ¬PrPA(p¬θq). An interesting question not
covered in [72, 75] is whether we can improve Kikuchi’s proof of G1 by only
assuming that PA is consistent.

Vopěnka [142] proves G2 for ZF by formalizing Berry’s Paradox, via
adopting Kikuchi’s definition of the concept of “name” in [72] over mod-
els of ZF18: Con(ZF) is not provable in ZF. Vopěnka’s proof uses the
Completeness Theorem but does not use the Arithmetic Completeness The-
orem. Kikuchi, Kurahashi and Sakai [77] show that Vopěnka’s method can
be adapted to prove G2 for PA based on Kikuchi’s formalization of Berry’s
Paradox in [72] with an application of the Arithmetic Completeness Theo-
rem.

Proofs of G1 and G2 based on Berry’s Paradox by Vopěnka [142], Chaitin
[20], Boolos [14] and Kikuchi [72] do not use the Diagnolisation Lemma. We
can also prove G1 based on Berry’s Paradox using the Diagnolisation Lemma.
For example, Kikuchi, Kurahashi and Sakai [77] adopt Kikuchi’s definition of
the concept of “name” in [72], and show that the independent statement in
Kikuchi’s proof in [72] can be obtained by using the Diagnolisation Lemma.

In summary, the distinctions between using and not using the Diagnolisa-
tion Lemma, and between using and not using the Arithmetic Completeness
Theorem are not essential for proofs of G1 and G2 based on Berry’s Para-
dox. From the above discussions, we can characterize different proofs of
G1 and G2 based on Berry’s Paradox by the method of interpreting the
word “name”: Boolos [14] uses the standard model of arithmetic; Kikuchi
[72] uses provability in arithmetic; Chaitin [20] and Kikuchi [73] use Kol-
mogorov complexity; Kikuchi and Tanaka [75] use nonstandard models of
arithmetic; and Vopěnka [142] uses models of ZF (see [77]).

3.4.3. Unexpected Examination and Grelling-Nelson’s Paradox. First of all,
Kritchman and Raz [87] give a new proof of G2 based on Chaitin’s incom-
pleteness theorem and an argument that resembles the Unexpected Exam-
ination Paradox19 (for more details, we refer to [87]): for any consistent
r.e. extension T of PA, if T is consistent, then T 0 Con(T ).

Secondly, we say a one-place predicate is “heterological” if it does not
apply to itself (e.g. “long” is heterological, since it’s not a long expression).
Consider the question: is the predicate “heterological” we have just defined
heterological? If “heterological” is heterological, then it isn’t heterologi-
cal; and if “heterological” isn’t heterological, then it is heterological. This
contradiction is called Grelling-Nelson’s Paradox.

Cieśliński [26] presents semantic proofs of G2 for ZF and PA based on
Grelling-Nelson’s Paradox. For a theory T containing ZF, Cieśliński defines

18I.e. we say that ϕ(x) names n in ZF if ZF ⊢ ϕ(n)∧∀v0∀v1(ϕ(v0)∧ϕ(v1) → v0 = v1)
where ϕ(x) is a formula with only one free variable x (see [142]).

19The Unexpected Examination Paradox is formulated as follows in [87]. The teacher
announces in class: “next week you are going to have an exam, but you will not be able
to know on which day of the week the exam is held until that day”. The exam cannot be
held on Friday, because otherwise, the night before the students will know that the exam
is going to be held the next day. Hence, in the same way, the exam cannot be held on
Thursday. In the same way, the exam cannot be held on any of the days of the week.
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the sentence HETT which says intuitively that the predicate “heterological”
is itself heterological, and then shows that T 0 HETT and T ⊢ HETT ↔
Con(T ). Finally, Cieśliński shows how to adapt the proof of G2 for ZF to
a proof of G2 for PA. In fact, Cieśliński [26] proves the semantic version of
G2: if T has a model, then T + ¬Con(T ) has a model (i.e. T 2 Con(T )).

3.4.4. Yablo’s paradox. We discuss proofs of G1 and G2 based on Yablo’s
Paradox in the literature. Yablo’s Paradox is an infinite version of the
Liar Paradox proposed in [152]: consider an infinite sequence Y1, Y2, · · · of
propositions such that each Yi asserts that Yj are false for all j > i. Different
proofs of G1 and G2 based on Yablo’s Paradox have been given by some
authors (e.g. Priest [111], Cieśliński-Urbaniak [27] and Kikuchi-Kurahashi
[76]).

Recall that we assume by default that T is a consistent r.e. extension of
Q. Priest [111] first points out that G1 can be proved by formalizing Yablo’s
Paradox. Priest defines a formula Y (x) as follows which says that for any
y > x, Y (y) is not provable in T .

Definition 3.17 ([27, 89]). A formula Y (x) is called a Yablo formula of T
if T ⊢ ∀x(Y (x) ↔ ∀y > x¬PrT (pY (ẏ)q)).

Cieśliński and Urbaniak originally prove the following version of G1, and
show that each instance Y (n) of the Yablo formula is independent of T if T
is Σ0

1-sound (or 1-consistent).

Theorem 3.18 (Theorem 19, [27]; see also Theorem 4, [89]). Let Y (x) be
a Yablo formula.

• If T is consistent, then T 0 Y (n).
• If T is Σ0

1-sound, then T 0 ¬Y (n).

Cieśliński and Urbaniak originally prove that T ⊢ ∀x(Y (x) ↔ Con(T ))
(see [27, Theorem 21-22]). As a corollary, we have T ⊢ ∀x∀y(Y (x) ↔ Y (y)),
and G2 holds: if T is consistent, then T 0 Con(T ).

Definition 3.19 ([89, 27]). A formula Y R(x) is called a Rosser-type Yablo
formula of PrfT (x, y) if PA ⊢ ∀x(Y R(x) ↔ ∀y > x¬PrRT (x)(pY

R(ẏ)q)).

Theorem 3.20 shows that the Rosser-type Yablo formula is independent
of any Σ0

1-sound theory T .

Theorem 3.20 (Theorem 10, [89]). Let PrfT (x, y) be any standard proof
predicate of T , and Y R(x) be any Rosser-type Yablo formula of PrfT (x, y).
Given n ∈ ω, if T is consistent, then T 0 Y R(n); if T is Σ0

1-sound, then
T 0 ¬Y R(n).

The independence of Y R(n) for T which is not Σ0
1-sound is discussed in

[89]. For a consistent but not Σ0
1-sound theory, the situation of Rosser-type

Yablo formulas is quite different from that of Rosser sentences. Kurahashi
[89] shows that for any consistent but not Σ0

1-sound theory, the independence
of each instance of a Rosser-type Yablo formula depends on the choice of
standard proof predicates (see Theorem 12 and Theorem 25 in [89]). Kura-
hashi [89] shows that for any consistent but not Σ0

1-sound theory T , there
is a standard proof predicate of T such that each instance Y R(n) of the
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Rosser-type Yablo formula Y R(x) based on this proof predicate is provable
in T for any n ∈ ω. Moreover, Kurahashi [89] constructs a standard proof
predicate of T and a Rosser-type Yablo formula Y R(x) based on this proof
predicate such that each instance of Y R(x) is independent of T . Proofs of
these results use the technique of Guaspari and Solovay in [52].

Cieśliński and Urbaniak [27] conjecture that any two distinct instances
Y R(m) and Y R(n) of a Rosser-type Yablo formula Y R(x) based on a stan-
dard proof predicate are not provably equivalent. Leach-Krouse [88] and Ku-
rahashi [89] construct a standard proof predicate, and a Rosser-type Yablo
formula Y R(x) based on this proof predicate such that T ⊢ ∀x∀y(Y R(x) ↔
Y R(y)) (see [88, Theorem 9] and [89, Corollary 21]).

Kurahashi [89] constructs a partial counterexample to Cieśliński and Ur-
baniak’s conjecture: a standard proof predicate, and a Rosser-type Yablo
formula Y R(x) based on this proof predicate such that ∀x∀y(Y R(x) ↔
Y R(y)) is not provable in T (Corollary 20, [89]). Thus the provability of
the sentence ∀x∀y(Y R(x) ↔ Y R(y)) also depends on the choice of standard
proof predicates (see Corollary 20-21, [89]). Proofs of these results by Leach-
Krouse and Kurahashi also use the technique of Guaspari and Solovay in
[52]. An interesting open question is: whether there is a standard proof
predicate such that Y R(n) and Y R(n + 1) are not provably equivalent for
some n ∈ ω (see [89]).

3.4.5. Beyond arithmetization. All the proofs of G1 we have discussed use
arithmetization. Andrzej Grzegorczyk proposes the theory TC in [49] as a
possible alternative theory for studying incompleteness and undecidability,
and shows that TC is essentially incomplete and mutually interpretable with
Q without arithmetization.

Now, in PA we have numbers that can be added or multiplied; while in
TC, one has strings (or texts) that can be concatenated. In Gödel’s proof,
the only use of numbers is coding of syntactical objects. The motivations for
accepting strings rather than numbers as the basic notion are as follows: on
metamathematical level, the notion of computability can be defined without
reference to numbers; for Grzegorczyk, dealing with texts is philosophically
better justified since intellectual activities like reasoning, communicating
or even computing involve working with texts not with numbers (see [49]).
Thus, it is natural to define notions like undecidability directly in terms of
texts instead of natural numbers. Grzegorczyk only proves the incomplete-
ness of TC in [49]. Later, Grzegorczyk and Zdanowski [50] prove that TC

is essentially incomplete.

3.5. Concrete incompleteness.

3.5.1. Introduction. All proofs of Gödel’s incompleteness theorems we have
discussed above make use of meta-mathematical or logical methods, and the
independent sentence constructed has a clear meta-mathematical or logical
flavour which is devoid of real mathematical content. To be blunt, from
a purely mathematical point of view, Gödel’s sentence is artificial and not
mathematically interesting. Gödel’s sentence is constructed not by reflecting
about arithmetical properties of natural numbers, but by reflecting about
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an axiomatic system in which those properties are formalized (see [63]). A
natural question is then: can we find true sentences not provable in PA with
real mathematical content? The research program concrete incompleteness
is the search for natural independent sentences with real mathematical con-
tent.

This program has received a lot of attention because despite Gödel’s in-
completeness theorems, one can still cherish the hope that all natural and
mathematically interesting sentences about natural numbers are provable or
refutable in PA, and that elementary arithmetic is complete w.r.t. natural
and mathematically interesting sentences. However, after Gödel, many nat-
ural independent sentences with real mathematical content have been found.
These independent sentences have a clear mathematical flavor, and do not
refer to the arithmetization of syntax and provability.

In this section, we provide an overview of the research on concrete incom-
pleteness. The survey paper [16] provides a good overview on the state-of-
the-art up to Autumn 2006. For more detailed discussions about concrete
incompleteness, we refer to Cheng [22], Bovykin [16] and Friedman [41].

3.5.2. Paris-Harrington and beyond. Paris and Harrington [108] propose
the first mathematically natural statement independent of PA: the Paris-
Harrington Principle PHwhich generalizes the finite Ramsey theorem. Gödel’s
sentence is a pure logical construction (via the arithmetization of syntax
and provability predicate) and has no relevance with classic mathematics
(without any combinatorial or number-theoretic content). On the contrary,
Paris-Harrington Principle is an independent arithmetic sentence from clas-
sic mathematics with combinatorial content as we will show. We refer to [63]
for more discussions about the distinction between mathematical arithmetic
sentences and meta-mathematical arithmetic sentences.

Definition 3.21 (Paris-Harrington Principle (PH), [108]).

• For set X and n ∈ ω, let [X]n be the set of all n-elements subset of
X. We identify n with {0, · · · , n− 1}.

• For all m,n, c ∈ ω, there is N ∈ ω such that for all f : [N ]m → c,
we have: (∃H ⊆ N)(|H| ≥ n ∧ H is homogeneous for f ∧ |H| >
min(H)).

Theorem 3.22 (Paris-Harrington, [108]). The principle PH is true but not
provable in PA.

Now, PH has a clear combinatorial flavor, and is of the form ∀x∃yψ(x, y)
where ψ is a ∆0

0 formula. It can be shown that for any given natural number
n, PA ⊢ ∃yψ(n, y), i.e. all particular instances of PH are provable in PA.

Following PH, many other mathematically natural statements indepen-
dent of PA with combinatorial or number-theoretic content have been for-
mulated: the Kanamori-McAloon principle [70], the Kirby-Paris sentence
[109], the Hercules-Hydra game [109], the Worm principle [9, 58], the flip-
ping principle [79], the arboreal statement [97], the kiralic and regal prin-
ciples [28], and the Pudlák’s principle [112, 54] (see [16], p.40). In fact, all
these principles are equivalent to PH (see [16], p.40).
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An interesting and amazing fact is: all the above mathematically nat-
ural principles are in fact provably equivalent in PA to a certain meta-
mathematical sentence. Consider the following reflection principle for Σ0

1

sentences: for any Σ0
1 sentence φ in L(PA), if φ is provable in PA, then

φ is true. Using the arithmetization of syntax, one can write this princi-
ple as a sentence of L(PA), and denote it by Rfn

Σ0

1

(PA) (see [102, p.301]).

McAloon has shown that PA ⊢ PH ↔ Rfn
Σ0

1

(PA) (see [102], p.301), and

similar equivalences can be established for the other independent princi-
ples mentioned above. Equivalently, all these principles are equivalent to
so-called 1-consistency of PA (see [8, p.36], [9, p.3] and [102, p.301]).

The above phenomenon indicates that the difference between mathemat-
ical and meta-mathematical statements is perhaps not as huge as we might
have expected. Moreover, the above principles are provable in fragments
of Second-Order Arithmetic and are more complex than Gödel’s sentence:
Gödel’s sentence is equivalent to Con(PA) in PA; but all these principles
are not only independent of PA but also independent of PA + Con(PA)
(see [8, p.36] and [102, p.301]).

3.5.3. Harvey Friedman’s contributions. Incompleteness would not be com-
plete without mentioning the work of Harvey Friedman who is a central
figure in research on the foundations of mathematics after Gödel. He has
made many important contributions to concrete mathematical incomplete-
ness. The following quote is telltale:

the long range impact and significance of ongoing investiga-
tions in the foundations of mathematics is going to depend
greatly on the extent to which the Incompleteness Phenom-
ena touches normal concrete mathematics (see [41], p.7).

In the following, we give a brief introduction to H. Friedman’s work on con-
crete mathematical incompleteness. In his early work, H. Friedman exam-
ines how one uses large cardinals in an essential and natural way in number
theory, as follows.

the quest for a simple meaningful finite mathematical the-
orem that can only be proved by going beyond the usual
axioms for mathematics has been a goal in the foundations
of mathematics since Gödel’s incompleteness theorems (see
[40], p.805).

H. Friedman shows in [39, 40] that there are many mathematically natural
combinatorial statements in L(PA) that are neither provable nor refutable
in ZFC or ZFC + large cardinals. H. Friedman’s more recent monograph
[41] is a comprehensive study of concrete mathematical incompleteness. H.
Friedman studies concrete mathematical incompleteness over different sys-
tems, ranging from weak subsystems of PA to higher-order arithmetic and
ZFC. H. Friedman lists many concrete mathematical statements in L(PA)
that are independent of subsystems of PA, or stronger theories like higher-
order arithmetic and set theory.

The theories RCA0 (Recursive Comprehension), WKL0 (Weak Konig’s
Lemma), ACA0 (Arithmetical Comprehension), ATR0 (Arithmetic Trans-
finite Recursion) and Π1

1-CA0 (Π1
1-Comprehension) are the most famous
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five subsystems of Second-Order Arithmetic (SOA), and are called the ‘Big
Five’. For the definition of SOA and the ‘Big Five’, we refer to [120].

To give the reader a better sense of H. Friedman’s work, we list some
sections dealing with concrete mathematical incompleteness in [41].

• Section 0.5 on Incompleteness in Exponential Function Arithmetic.
• Section 0.6 on Incompleteness in Primitive Recursive Arithmetic,
Single Quantifier Arithmetic, RCA0, and WKL0.

• Section 0.7 on Incompleteness in Nested Multiply Recursive Arith-
metic and Two Quantifier Arithmetic.

• Section 0.8 on Incompleteness in Peano Arithmetic and ACA0.
• Section 0.9 on Incompleteness in Predicative Analysis and ATR0.
• Section 0.10 on Incompleteness in Iterated Inductive Definitions and
Π1

1-CA0.
• Section 0.11 on Incompleteness in Second-Order Arithmetic and
ZFC−.20

• Section 0.12 on Incompleteness in Russell Type Theory and Zermelo
Set Theory.

• Section 0.13 on Incompleteness in ZFC using Borel Functions.
• Section 0.14 on Incompleteness in ZFC using Discrete Structures.

H. Friedman [41] provides us with examples of concrete mathematical
theorems not provable in subsystems of Second-Order Arithmetic stronger
than PA, and a number of concrete mathematical statements provable in
Third-Order Arithmetic but not provable in Second-Order Arithmetic.

Related to Friedman’s work, Cheng [22, 25] gives an example of concrete
mathematical theorems based on Harrington’s principle which is isolated
from the proof of the Harrington’s Theorem (the determinacy of Σ1

1 games
implies the existence of zero sharp), and shows that this concrete theorem
saying that Harrington’s principle implies the existence of zero sharp is ex-
pressible in Second-Order Arithmetic, not provable in Second-Order Arith-
metic or Third-Order Arithmetic, but provable in Fourth-Order Arithmetic
(i.e. the minimal system in higher-order arithmetic to prove this concrete
theorem is Fourth-Order Arithmetic).

Many other examples of concrete mathematical incompleteness, and the
discussion of this subject in 1970s-1980s can be found in the four volumes
[126, 125, 106, 11]. Weiermann’s work in [144]-[149] provides us with more
examples of naturally mathematical independent sentences. We refer to [41]
for new advances in Boolean Relation Theory and for more examples of
concrete mathematical incompleteness.

4. The limit of the applicability of G1

4.1. Introduction. In this section, we discuss the limit of the applicability
of G1 based on the following two questions.

• To what extent does G1 apply to extensions of PA?
• To what extent does G1 apply to theories weaker than PA w.r.t. in-
terpretation?

20ZFC− denotes ZFC with the Power Set Axiom deleted and Collection instead of
Replacement.
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Definition 4.1 (Conservativity).

• Let Γ denote either Σ0
n or Π0

n for some n ≥ 1, and Γd denote either
Π0

n or Σ0
n.

• We say a sentence ϕ is Γ-conservative over theory T if for any Γ
sentence ψ, T ⊢ ψ whenever T + ϕ ⊢ ψ.

We list some generalizations of G1 needed below.

Fact 4.2 (Guaspari [51]). Let T be a consistent r.e. extension of Q. Then
there is a Γd sentence φ such that φ is Γ-conservative over T and T 0 φ.

If T ⊢ ¬φ, then φ is not Γ-conservative over T because T is consistent.
Thus, we can view Fact 4.2 as an extension of Rosser’s first incompleteness
theorem. Solovay improves this fact and shows that there is a Γd sentence
φ such that φ is Γ-conservative over T , ¬φ is Γd-conservative over T , but φ
is independent of T .

Fact 4.3 (Mostowski [100]). Let {Tn : n ∈ ω} be an r.e. sequence of consis-
tent theories extending Q. Then there is a Π0

1 sentence φ such that for any
n ∈ ω, Tn 0 φ, and Tn 0 ¬φ.

4.2. Generalizations of G1 beyond PA. We study generalization of G1
for extensions of PA w.r.t. interpretation. We know that G1 applies to all
consistent r.e. extensions of PA. A natural question is then: whether G1

can be extended to non-r.e. arithmetically definable extensions of PA.

Kikuchi-Kurahashi [74] and Salehi-Seraji [118] make contributions to gen-
eralize Gödel-Rosser’s first incompleteness theorem to non-r.e. arithmetically
definable extensions of PA.

Definition 4.4 ([74]). Let T be a consistent extension of Q.

• T is Σ0
n-definable if there is a Σ0

n formula φ(x) such that n is the
Gödel number of some sentence of T if and only if N |= φ(n).21

• T is Σ0
n-sound if for all Σ0

n sentences φ, T ⊢ φ implies N |= φ; T is
sound if T is Σ0

n-sound for any n ∈ ω.
• T is Σ0

n-consistent if for all Σ0
n formulas φ with φ = ∃xθ(x) and

θ ∈ Π0
n−1, if T ⊢ ¬θ(n) for all n ∈ ω, then T 0 φ.

• T is Π0
n-decisive if for all Π0

n sentences φ, either T ⊢ φ or T ⊢ ¬φ
holds.

From G1, we have: if T is a Σ0
1-definable and Σ0

1-sound extension of Q,
then T is not Π0

1-decisive. Kikuchi and Kurahashi [74] generalize G1 to
arithmetically definable theories via the notion of “Σ0

n-sound”.

Theorem 4.5 (Theorem 4.8 [74], Theorem 2.5 [118]). If T is a Σ0
n+1-

definable and Σ0
n-sound extension of Q, then T is not Π0

n+1-decisive.

Salehi and Seraji [118] point out that Theorem 4.5 has a constructive
proof: given a Σ0

n+1-definable and Σ0
n-sound extension T of Q, one can

effectively construct a Π0
n+1 sentence which is independent of T . The opti-

mality of Theorem 4.5 is shown by Salehi and Seraji in [118]: there exists

21Recall that N is the standard model of arithmetic.
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a Σ0
n−1-sound and Σ0

n+1-definable complete extension of Q for any n ≥ 1
(Theorem 2.6, [118]).

Salehi and Seraji [118] generalize G1 to arithmetically definable theories
via the notion of “Σ0

n-consistent”.

Theorem 4.6 (Theorem 4.9 [74], Theorem 4.3 [118]). If T is a Σ0
n+1-

definable and Σ0
n-consistent extension of Q, then T is not Π0

n+1-decisive.

Theorem 4.6 is also optimal: the complete Σ0
n−1-sound and Σ0

n+1-definable

theory constructed in the proof of Theorem 2.6 in [118] is also Σ0
n−1-consistent

since if a theory is Σ0
n-sound, then it is Σ0

n-consistent. The proof of Theo-
rem 4.6 cannot be constructive as the following theorem shows.

Theorem 4.7 (Non-constructivity of Σ0
n-consistency incompleteness, The-

orem 4.4, [118]). For n ≥ 3, there is no (partial) recursive function f (even
with the oracle 0n) such that if m codes (the Gödel code) a Σ0

n+1-formula

which defines an Σ0
n-consistent extension T of Q, then f(m) halts and codes

a Π0
n+1 sentence which is independent of T .22

In summary, G1 can be generalized to the incompleteness of Σ0
n+1-definable

and Σ0
n-sound extensions of Q constructively; and to the incompleteness of

Σ0
n+1-definable and Σ0

n-consistent extensions of Q non-constructively (when
n > 2).

4.3. Generalizations of G1 below PA. We study generalizations of G1
for theories weaker than PA w.r.t. interpretation.

4.3.1. Generalizations of G1 via interpretability. We show that G1 can be
generalized to theories weaker than PA via interpretability. Indeed, there
exists a weak recursively axiomatizable consistent subtheory T of PA such
that each recursively axiomatizable theory S in which T is interpretable is
incomplete (see [129]). To generalize this fact further, we propose a new
notion “G1 holds for T”, as follows.

Definition 4.8. Let T be a consistent r.e. theory. We say G1 holds for T if
for any recursively axiomatizable consistent theory S, if T is interpretable
in S, then S is incomplete.

First of all, for a consistent r.e. theory T , it is not hard to show that the
followings are equivalent (see [23]):

• G1 holds for T .
• T is essentially incomplete.
• T is essentially undecidable.

It is well-known that G1 holds for many weaker theories than PA w.r.t. in-
terpretation (e.g. Robinson arithmetic Q).

Secondly, we mention theories weaker than PA w.r.t. interpretation for
which G1 holds. We first review some essentially undecidable theories weaker
than PA w.r.t. interpretation from the literature (i.e. G1 holds for these

22Salehi and Seraji [118] remark that there indeed exists some 0n+1-(total) recursive
function f such that if m codes a Σ0

n+1-formula defining an Σ0
n-consistent extension T of

Q, then f(m) halts and codes a Π0
n+1 sentence independent of T .



32 YONG CHENG

theories). For the definition of theory Q, IΣn, BΣn, PA
−, Q+, Q−, S1

2,
AS, EA, PRA, R, R0, R1 and R2, we refer to Section 2.

Robinson shows that any consistent r.e. theory that interprets Q is un-
decidable, and hence Q is essentially undecidable. The fact that Q is es-
sentially undecidable is very useful and can be used to prove the essentially
undecidability of other theories via Theorem 2.6. Since Q is finitely axioma-
tized, it follows that any theory that weakly interprets Q is also undecidable.

The Lindenbaum algebras of all r.e. theories that interpret Q are recur-
sively isomorphic (see Pour-El and Kripke [110]). In fact, Q is minimal
essentially undecidable in the sense that if deleting any axiom of Q, then
the remaining theory is not essentially undecidable and has a complete de-
cidable extension (see [129, Theorem 11, p.62]).

Thirdly, Nelson [103] embarks on a program of investigating how much
mathematics can be interpreted in Robinson’s Arithmetic Q: what can be
interpreted in Q, and what cannot be interpreted in Q. In fact, Q rep-
resents a rich degree of interpretability since a lot of stronger theories are
interpretable in it as we will show in the following passages. For example,
using Solovay’s method of shortening cuts (see [52]), one can show that Q

interprets fairly strong theories like I∆0 +Ω1 on a definable cut.

Fourth, we discuss some prominent fragments of PA extending Q from
the literature. As a corollary of Theorem 2.14, we have:

• The theoriesQ, IΣ0, IΣ0+Ω1, · · · , IΣ0+Ωn, · · · , BΣ1, BΣ1+Ω1, · · · ,
BΣ1 +Ωn, · · · are all mutually interpretable;

• IΣ0 + exp and BΣ1 + exp are mutually interpretable;
• For n ≥ 1, IΣn and BΣn+1 are mutually interpretable;
• Q✁ IΣ0 + exp✁ IΣ1 ✁ IΣ2 ✁ · · · ✁ IΣn ✁ · · ·✁PA.

Since any consistent r.e. theory which interpretsQ is essentially undecidable,
G1 holds for all these fragments of PA extending Q.

Fifth, we discuss some weak theories mutually interpretable with Q from
the literature. It is interesting to compare Q with its bigger brother PA−.
From [137], PA− is interpretable in Q, and hence Q is mutually inter-
pretable with PA−. The theory Q+ is interpretable in Q (see Theorem 1 in
[36], p.296), and thus mutually interpretable with Q. A. Grzegorczyk asks
whether Q− is essentially undecidable. Švejdar [128] provids a positive an-
swer to Grzegorczyk’s original question by showing that Q is interpretable
in Q− using the Solovay’s method of shortening cuts. Thus Q− is essentially
undecidable and mutually interpretable with Q.

Sixth, by [36], IΣ0 is interpretable in S1
2, and S1

2 is interpretable in Q.
Hence S1

2 is essentially undecidable and mutually interpretable with Q. The
theory AS interprets Robinson’s Arithmetic Q, and hence is essentially
undecidable. Nelson [103] shows that AS is interpretable in Q. Thus, AS

is mutually interpretable with Q.

Seventh, Grzegorczyk and Zdanowski [50] formulate but leave unanswered
an interesting problem: are TC and Q mutually interpretable? M. Ganea
[43] provs that Q is interpretable in TC using the detour via Q− (i.e. first
show that Q− is interpretable in TC; since Q is interpretable in Q−, then
we have Q is interpretable in TC). Sterken and Visser [134] give a proof of
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the interpretability of Q in TC not using Q−. Note that TC is easily inter-
pretable in the bounded arithmetic IΣ0. Thus, TC is mutually interpretable
with Q.

Note that R✁Q since Q is not interpretable in R (if Q is interpretable in
R, then Q is interpretable in some finite fragment of R; however R is locally
finitely satisfiable and any model of Q is infinite). Visser [136] provides us
with a unique characterization of R.

Theorem 4.9 (Visser, Theorem 6, [136]). For any consistent r.e. theory
T , T is interpretable in R if and only if T is locally finitely satisfiable.23

Since relational Σ2 sentences have the finite model property, by Theo-
rem 4.9, any consistent theory axiomatized by a recursive set of Σ2 sentences
in a finite relational language is interpretable in R. Since all recursive func-
tions are representable in R (see [129, theorem 6], p.56), as a corollary of
Theorem 2.6, R is essentially undecidable. Cobham shows that R has a
stronger property than essential undecidability. Vaught gives a proof of
Cobham’s Theorem 4.10 via existential interpretation in [132].

Theorem 4.10 (Cobham, [132]). Any consistent r.e. theory that weakly
interprets R is undecidable.

Eighth, we discuss some variants of R in the same language as L(R) =
{0, · · · , n, · · · ,+,×,≤}. The theory R0 is no longer essentially undecidable
in the same language as R.24 In fact, whether R0 is essentially undecidable
depends on the language of R0: if L(R0) = {0,S,+,×,≤} with ≤ defined in
terms of +, then R0 is essentially undecidable (Cobham first observed that
R is interpretable in R0 in the same language {0,S,+,×}, and hence R0

is essentially undecidable (see [132] and [68])). The theory R1 is essentially
undecidable since R is interpretable in R1 (see [68], p.62).

However R1 is not minimal essentially undecidable. From [68], R is in-
terpretable in R2, and hence R2 is essentially undecidable.25 The theory
R2 is minimal essentially undecidable in the sense that if we delete any
axiom scheme of R2, then the remaining system is not essentially undecid-
able.26 By essentially the same argument as in [137], we can show that any
consistent r.e. theory that weakly interprets R2 is undecidable.

Kojiro Higuchi and Yoshihiro Horihata introduce the theory of concate-
nation WTC−ǫ, which is a weak subtheory of Grzegorczyk’s theory TC,
and show that WTC−ǫ is minimal essentially undecidable and WTC−ǫ is
mutually interpretable with R (see [60]).

In summary, we have the following pictures:

23In fact, if T is locally finitely satisfiable, then T is interpretable in R via a one-piece
one-dimensional parameter-free interpretation.

24The theory R0 has a decidable complete extension given by the theory of reals with
≤ as the empty relation on reals.

25Another way to show that R2 is essentially undecidable is to prove that all recursive
functions are representable in R2.

26If we delete Ax2, then the theory of natural numbers with x × y defined as x + y is
a complete decidable extension; if we delete Ax3, then the theory of models with only one
element is a complete decidable extension; if we delete Ax4

′, then the theory of reals is a
complete decidable extension.
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• Theories PA−,Q+,Q−,TC,AS,S1
2 and Q are all mutually inter-

pretable, and hence G1 holds for them;
• Theories R,R1,R2 and WTC−ǫ are mutually interpretable, and
hence G1 holds for them;

• R✁Q✁EA✁PRA✁PA.

4.3.2. The limit of G1 w.r.t. interpretation and Turing reducibility. We first
discuss the limit of G1 for theories weaker than PA w.r.t. interpretation,
i.e. finding a theory with minimal degree of interpretation for which G1

holds.

First of all, a natural question is: is Q the weakest finitely axiomatized
essentially undecidable theory w.r.t. interpretation such that R ✁Q? The
following theorem tells us that the answer is no: for any finitely axioma-
tized subtheory A of Q that extends R, we can find a finitely axiomatized
subtheory B of A such that B extends R and B does not interpret A.

Theorem 4.11 (Visser, Theorem 2, [137]). Suppose A is a finitely axiom-
atized consistent theory and R ⊆ A. Then there is a finitely axiomatized
theory B such that R ⊆ B ⊆ A and B ✁A.

Define X = {S : R✂S✁Q and S is finitely axiomatized}. Theorem 4.11
shows that the structure 〈X,✁〉 is not well-founded.

Theorem 4.12 (Visser, Theorem 12, [137]). Suppose A and B are finitely
axiomatized theories that weakly interpret Q. Then there are finitely axiom-
atized theories A ⊇ A and B ⊇ B such that A and B are incomparable (i.e.
A 5 B and B 5 A).

Theorem 4.12 shows that there are incomparable theories extending Q

w.r.t. interpretation.

Up to now, we do not have an example of essentially undecidable the-
ory that is weaker than R w.r.t. interpretation. To this end, we introduce
Jeřábek’s theory RepPRF.

Definition 4.13 (The system RepPRF).

• Let PRF denote the sets of all partial recursive functions.
• The language L(RepPRF) consists of constant symbols n for each
n ∈ ω, and function symbols f of appropriate arity for each partial
recursive function f .

• The theory RepPRF has axioms:
– n 6= m for n 6= m ∈ ω;
– f(n0, · · · , nk−1) = m for each k-ary partial recursive function f

such that f(n0, · · · , nk−1) = m where n0, · · · , nk−1,m ∈ ω.

The theory RepPRF is essentially undecidable since all recursive functions
are representable in it. Since RepPRF is locally finitely satisfiable, by The-
orem 4.9, RepPRF ✂R. Jeřábek [67] proves that R is not interpretable in
RepPRF. Thus RepPRF ✁R.

Cheng [23] provides more examples of a theory S such that G1 holds for S
and S ✁R, and shows that we can find many theories T such that G1 holds
for T and T ✁R based on Jeřábek’s work [67] which uses model theory.
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Theorem 4.14 (Cheng, [23]). For any recursively inseparable pair 〈A,B〉,
there is a r.e. theory U〈A,B〉 such that G1 holds for U〈A,B〉, and U〈A,B〉 ✁R.

Define D = {S : S ✁ R and G1 holds for theory S}. Theorem 4.14
shows that we could find many witnesses for D. Naturally, we could ask the
following questions:

Question 4.15.

• Is 〈D,✁〉 well-founded?
• Are any two elements of 〈D,✁〉 comparable?
• Does there exist a minimal theory w.r.t. interpretation such that G1
holds for it?

We conjectured the following answers to these questions: 〈D,✁〉 is not
well founded, 〈D,✁〉 has incomparable elements, and there is no minimal
theory w.r.t. interpretation for which G1 holds.

Finally, we discuss the limit of applicability of G1 w.r.t. Turing reducibil-
ity. We have discussed the limit of applicability of G1 w.r.t. interpretation.
A natural question is: what is the limit of applicability of G1 w.r.t. Turing
reducibility.

Definition 4.16 (Turing reducibility, the structure D).

• Let R be the structure of the r.e. degrees with the ordering ≤T

induced by Turing reducibility with the least element 0 and the
greatest element 0′.

• Let D = {S : S <T R and G1 holds for theory S} where S <T R

stands for S ≤T R but R �T S.

Cheng [23] shows that for any Turing degree 0 < d < 0′, there is a theory
U such that G1 holds for U , U <T R, and U has Turing degree d. As
a corollary of this result and known results about the degree structure of
〈R, <T 〉 in recursion theory, we can answer above questions for the structure
〈D, <T 〉:

Theorem 4.17 (Cheng, [23]).

• 〈D, <T 〉 is not well-founded;
• 〈D, <T 〉 has incomparable elements;
• There is no minimal theory w.r.t. Turing reducibility such that G1

holds for it.

Moreover, Cheng [23] shows that for any Turing degree 0 < d < 0′, there
is a theory U such that G1 holds for U , U ✂ R, and U has Turing degree
d. Thus, examining the limit of applicability of G1 w.r.t. interpretation is
much harder than that w.r.t. Turing reducibility. The structure of 〈D,✁〉 is
a deep and interesting open question for future research.

5. The limit of the applicability of G2

5.1. Introduction. In our view, G2 is fundamentally different from G1.
In fact, both mathematically and philosophically, G2 is more problematic
than G1 for the following reason. On one hand, in the case of G1, we can
construct a natural independent sentence with real mathematical content
without referring to arithmetization and provability predicates. On the other
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hand, the meaning of G2 strongly depends on how we exactly formulate the
consistency statement.

Similar to [56], we call a result intensional if it depends on (the details
of) the representation used. Thus, G1 can be called extensional (that is,
non-intensional), while G2 is (highly) intensional. We refer to Section 5.3
for more discussion on the intensionality of G2. In this section, we discuss
the limit of applicability of G2: under what conditions G2 holds, and under
what conditions G2 fails. In Section 5.2, we discuss generalizations of G2.

5.2. Some generalizations of G2. After Gödel, generalizations of G2 are
the subject of extensive studies. We know that G2 holds for any consistent
r.e. extension of PA. However, it is not true that G2 holds for any extension
of PA. For example, Karl-Georg Niebergall [104] shows that the theory
(PA+RFN(PA))∩(PA + all true Π0

1 sentences) can prove its own canonical
consistency sentence.27

Similarly to G1, one can generalise G2 to arithmetically definable non-
r.e. extensions ofPA. Kikuchi and Kurahashi [74] reformulate G2 as: if S is a
Σ0
1-definable and consistent extension of PA, then for any Σ0

1 definition σ(u)
of S, S 0 Conσ(S) (see fact 5.1 [74]). Kikuchi and Kurahashi [74] generalize
G2 to arithmetically definable non-r.e. extensions of PA and prove that if
S is a Σ0

n+1-definable and Σ0
n-sound extension of PA, then there exists a

Σ0
n+1 definition σ(u) of some axiomatization of Th(S) such that Conσ(S) is

independent of S. This corollary shows that the witness for the generalized
version of G1 can be provided by the appropriate consistency statement.

Chao-Seraji [21] and Kikuchi-Kurahashi [74] give another generalization
of G2 to arithmetically definable non-r.e. extensions of PA: for each n ∈ ω,
any Σ0

n+1-definable and Σ0
n-sound extension of PA cannot prove its own

Σ0
n-soundness (see [21, Theorem 2] and [74, Theorem 5.6]). The optimality

of this generalization is shown in [21]: there is a Σ0
n+1-definable and Σ0

n−1-

sound extension of PA that proves its own Σ0
n−1-soundness for n > 0 (see

[21, Theorem 3]).

Let T be a consistent r.e. extension ofQ. Kreisel [85] shows that ¬Con(T )
is Π0

1-conservative over T which is a generalization of G2. We can also
generalize G2 via the notion of standard provability predicate.

Theorem 5.1. Let T be any consistent r.e. extension of Q. If PrT (x) is a
standard provability predicate, then T 0 Con(T ).

Lev Beklemishev and Daniyar Shamkanov [10] prove that in an abstract
setting that presupposes the presence of Gödel’s fixed point (instead of di-
rectly constructing it, as in the case of formal arithmetic), the Hilbert-
Bernays-Löb conditions implies G2 even with fairly minimal conditions on
the underlying logic. The following two theorems, due to Feferman and
Visser, generalize G2 in terms of the notion of interpretation.

Theorem 5.2 (Feferman’s theorem on the interpretability of inconsistency,
[33]). If T is a consistent r.e. extension of Q, then T + ¬Con(T ) is inter-
pretable in T .

27For the definition of RFN(PA), we refer to [95]: RFN(PA) = {∀x((Γ(x) ∧
PrPA(x)) → TrΓ(x)) : Γ arbitrary}.
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Theorem 5.3 (Pudlák, [113, 55]). There is no consistent r.e. theory S
such that (Q+Con(S))✂ S. 28

As a corollary of Theorem 5.3, for any consistent r.e. theory S that in-
terprets Q, G2 holds for S: S 0 Con(S). The Arithmetic Completeness
Theorem tells us that S ✂ (Q + Con(S)) (see [135] for the details). As a
corollary, we have the following version of G2 which highlights the inter-
pretability power of consistency statements.

Corollary 5.4. For any consistent r.e. theory S, we have S✁(Q+Con(S)).

Definition 5.5. Let T be a consistent extension of Q. A formula I(x) with
one free variable (understood as a number variable) is a definable cut in T
(in short, a T -cut) if

• T ⊢ I(0);
• T ⊢ ∀x(I(x) → I(x+ 1));
• T ⊢ ∀x∀y(y < x ∧ I(x) → I(y)).

Definition 5.6. Let T ⊇ IΣ1, let J be a T -cut and let τ be a Σexp
0 -definition

of T .29

• PrIτ (x) is the formula ∃y(I(y) ∧Proof Iτ (x, y)) (saying that there is
a τ -proof of x in I).

• ConI
τ is the formula ¬∃y(I(y) ∧Proof Iτ (0 6= 0, y)).

The following theorem generalizes G2 to definable cuts.

Theorem 5.7 (Theorem 3.11, [55]). Let T ⊇ IΣ1, let J be a T -cut and τ
a Σexp

0 -definition of T . Then T 0 ConI
τ .

Next, consider a theory U and an interpretation N of the Tarski-Mostowski-
Robinson theory R in U . A U -predicate △ is an L-predicate for U,N if it
satisfies the following Löb conditions. We write △A for △(pAq), where pAq
is the numeral of the Gödel number of A and we interpret the numbers via
N . The Gödel numbering is supposed to be fixed and standard.

Definition 5.8 (Löb conditions).

L1: ⊢ A⇒ ⊢ △A.
L2: △A,△(A→ B) ⊢ △B.
L3: △A ⊢ △△A.

Proposition 5.9 (Löb’s theorem, Theorem 3.3.2, [138]). Suppose that U is
a theory, N is an interpretation of the theory R in U , and △ is a U -predicate
that is an L-predicate for U,N . Then:

• For all U -sentences A we have: if U ⊢ △A→ A, then U ⊢ A.
• For all U -sentences A we have: U ⊢ △(△A→ A) → △A.

28Instead of Robinson’s Arithmetic Q, we can as well have taken S1
2, or PA−, or

I∆0 + Ω1. Moreover, instead of an arithmetical theory we can have employed a string
theory like Grzegorczyk’s theory TC or adjunctive set theory AS. All these theories are
the same in the sense that they are mutually interpretable (see [138]).

29We extend the language L(PA) by a new unary function symbol 2
x

for the x-th power
of two. The extended language is denoted L0(exp). A formula is Σexp

0 if it results from
atomic formulas of L0(exp) by iterated application of logical connectives and bounded
quantifiers of the form (∀x ≤ y) or (∃x ≤ y) (see [55]).
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As a corollary of Proposition 5.9, we formulate a general version of G2
which does not mention the notion of provability predicate.

Theorem 5.10 (Visser, [138]). For all consistent theories U and all inter-
pretations N of R in U and all L-predicates △ for U,N , we have U 0 ¬△ ⊥.

5.3. The intensionality of G2. In this section, we discuss the intension-
ality of G2 which reveals the limit of the applicability of G2.

5.3.1. Introduction. For a consistent theory T , we say that G2 holds for T if
the consistency of T is not provable in T . However, this definition is vague,
and whether G2 holds for T depends on how we formulate the consistency
statement. We refer to this phenomenon as the intensionality of G2. In fact,
G2 is essentially different from G1 due to the intensionality of G2: “whether
G2 holds for the base theory” depends on how we formulate the consistency
statement in the first place.

Both mathematically and philosophically, G2 is more problematic than
G1. In the case of G1, we are mainly interested in the fact that some sentence
is independent of PA. We make no claim to the effect that that sentence
“really” expresses what we would express by saying “PA cannot prove this
sentence”. But in the case of G2, we are also interested in the content
of the consistency statement. We can say that G1 is extensional in the
sense that we can construct a concrete independent mathematical statement
without referring to arithmetization and provability predicate. However, G2
is intensional and “whether G2 holds for T” depends on varied factors as we
will discuss.

In this section, unless stated otherwise, we assume the following:

• T is a consistent r.e. extension of Q;
• the canonical arithmetic formula to express the consistency of the
base theory T is Con(T ) , ¬PrT (0 6= 0);

• the canonical numbering we use is Gödel’s numbering;
• the provability predicate we use is standard;
• the formula representing the set of axioms is Σ0

1.

The intensionality of Gödel sentence and the consistency statement has
been widely discussed from the literature (e.g. Halbach-Visser [56, 57],
Visser [135]). Halbach and Visser examine the sources of intensionality in the
construction of self-referential sentences of arithmetic in [56, 57], and argue
that corresponding to the three stages of the construction of self-referential
sentences of arithmetic, there are at least three sources of intensionality:
coding, expressing a property and self-reference. The three sources of inten-
sionality are not independent of each other, and a choice made at an earlier
stage will have influences on the availability of choices at a later stage.
Visser [135] locates three sources of indeterminacy in the formalization of a
consistency statement for a theory T :

• the choice of a proof system;
• the choice of a way of numbering;
• the choice of a specific formula representing the set of axioms of T .

In summary, the intensional nature ultimately traces back to the various
parameter choices that one has to make in arithmetizing the provability
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predicate. That is the source of both the intensional nature of the Gödel
sentence and the consistency sentence.

Based on this and other works from the literature, we argue that “whether
G2 holds for the base theory” depends on the following factors:

(1) the choice of the provability predicate (Section 5.3.2);
(2) the choice of the formula expressing consistency (Section 5.3.3);
(3) the choice of the base theory (Section 5.3.4);
(4) the choice of the numbering (Section 5.3.5);
(5) the choice of the formula representing the set of axioms (Section 5.3.6).

These factors are not independent, and a choice made at an earlier stage
may have effects on the choices available at a later stage. In the following,
unless stated otherwise, when we discuss how G2 depends on one factor,
we always assume that other factors are fixed, and only the factor we are
discussing is varied. For example, Visser [135] rests on fixed choices for (1)-
(2) and (4)-(5) but varies the choice of (3); Grabmayr [47] rests on fixed
choices for (1)-(3) and (5) but varies the choice of (4); Feferman [33] rests
on fixed choices for (1)-(4) but varies the choice of (5).

5.3.2. The choice of provability predicate. In this section, we show that
“whether G2 holds for the base theory” depends on the choice of the prov-
ability predicate we use.

As Visser argues in [138], being a consistency statement is not an absolute
concept but a role w.r.t. a choice of provability predicate (see Visser [138]).
From Theorem 5.1, G2 holds for standard provability predicates. However,
G2 may fail for non-standard provability predicates.

Mostowski [101] gives an example of a Σ0
1 provability predicate for which

G2 fails. Let PrMT (x) be the Σ0
1 formula “∃y(PrfT (x, y) ∧ ¬PrfT (p0 6=

0q, y))” where PrfT (x, y) is a ∆0
1 formula saying that “y is a proof of x”.

Then ¬PrMT (p0 6= 0q) is trivially provable in PA. We know that G2 holds for
provability predicates satisfying D1-D3. Since the formula PrMT (x) satisfies
D1 and D3, it does not satisfy D2. Mostowski’s example [101] shows that
G2 may fail for Σ0

1 provability predicates satisfying D1 and D3.

One important non-standard provability predicate is Rosser provability
predicate PrRT (x) introduced by Rosser [116] to improve Gödel’s first in-
completeness theorem. Recall that we have defined the Rosser provability
predicate in Definition 3.8. The consistency statement ConR(T ) based on a
Rosser provability predicate PrRT (x) is naturally defined as ¬PrRT (p0 6= 0q).

It is an easy fact that for any sentence φ and Rosser provability predicate
PrRT (x), if T ⊢ ¬φ, then T ⊢ ¬PrRT (pφq) (see [78, Proposition 2.1]). As a

corollary, the consistency statement ConR(T ) based on Rosser provability
predicate PrRT (x) is provable in T . In this sense, we can say that G2 fails for
the consistency statement constructed from Rosser provability predicates.

We can construct different Rosser provability predicates with varied prop-
erties. We know that each Rosser provability predicate PrRT (x) does not
satisfy at least one of conditions D2 and D3. Guaspari and Solovay [52]
establish a very powerful method of constructing a new proof predicate with
required properties from a given proof predicate by reordering nonstandard



40 YONG CHENG

proofs. Applying this tool, Guaspari and Solovay [52] construct a Rosser
provability predicate for which both D2 and D3 fail. Arai [1] constructs
a Rosser provability predicate with condition D2, and a Rosser provability
predicate with condition D3.

Slow provability, introduced by S.D. Friedman, M. Rathjen and A. Weier-
mann [42], is another notion of nonstandard provability for PA from the
literature. The slow consistency statement Con∗(PA) asserts that a con-
tradiction is not slow provable in PA (for the definition of Con∗(PA), we
refer to [42]). In fact, G2 holds for slow provability: Friedman, Rathjen and
Weiermann show that PA 0 Con∗(PA) (see [42, Proposition 3.3]). More-
over, Friedman, Rathjen and Weiermann [42] show that PA+Con∗(PA) 0
Con(PA) (see [42, Theorem 3.10]), and the logical strength of the theory
PA + Con∗(PA) lies strictly between PA and PA + Con(PA): PA  
PA+Con∗(PA)  PA+Con(PA). Henk and Pakhomov [59] study three
variants of slow provability, and show that the associated consistency state-
ment of each of these notions of provability yields a theory that lies strictly
between PA and PA+Con(PA) in terms of logical strength.

5.3.3. The choice of the formula expressing consistency. We show that “whether
G2 holds for the base theory” depends on the choice of the arithmetic for-
mula used to express consistency. In the literature, an arithmetic formula
is usually used to express the consistency statement. Artemov [3] argues
that in Hilbert’s consistency program, the original formulation of consis-
tency “no sequence of formulas is a derivation of a contradiction” is about
finite sequences of formulas, not about arithmetization, proof codes, and
internalized quantifiers.

The canonical consistency statement, the arithmetical formula Con(PA),
says that for all x, x is not a code of a proof of a contradiction in PA. In
a nonstandard model of PA, the universal quantifier “for all x” ranges over
both standard and nonstandard numbers, and henceCon(PA) expresses the
consistency of both standard and nonstandard proof codes (see [3]). Thus,
Con(PA) is stronger than the original formulation of consistency which
only talks about sequences of formulas and such sequences have only stan-
dard codes. Hence, Artemov [3] concludes that G2, saying that PA cannot
prove Con(PA), does not actually exclude finitary consistency proofs of the
original formulation of consistency (see [3]).

Artemov shows that the original formulation of consistency admits a di-
rect proof in informal arithmetic, and this proof is formalizable in PA (see
[3]).30 Artemov’s work establishes the consistency of PA by finitary means,
and vindicates Hilbert’s consistency program to some extent.

In the following, we use a single arithmetic sentence to express the con-
sistency statement. Among consistency statements defined via arithmetiza-
tion, there are three candidates of arithmetic formulas to express consistency
as follows:

30Informal arithmetic is the theory of informal elementary number theory containing
recursive identities of addition and multiplication as well as the induction principle. The
formal arithmetic PA is just the conventional formalization of the informal arithmetic
(see [3]).



CURRENT RESEARCH ON GÖDEL’S INCOMPLETENESS THEOREMS 41

• Con0(T ) , ∀x(Fml(x) ∧PrT (x) → ¬PrT (¬̇x));
31

• Con(T ) , ¬PrT (p0 6= 0q);
• Con1(T ) , ∃x(Fml(x) ∧ ¬PrT (x)).

Gödel originally formulates G2 with the consistency statement Con1(T ):
if T is consistent, then T 0 Con1(T ). From the literature, Con(T ) is the
widely used canonical consistency statement. Note that Con0(T ) implies
Con(T ), and Con(T ) implies Con1(T ). However the converse implications
do not hold in general (see [92]). Kurahashi [92] proposes different sets of
derivability conditions (local version, uniform version and global version),
and examines whether they are sufficient to show the unprovability of these
consistency statements (e.g. Con(T ),Con0(T ) and Con1(T )).

HB1: If T ⊢ φ→ ϕ, then T ⊢ PrT (pφq) → PrT (pϕq).
HB2: T ⊢ PrT (p¬φ(x)q) → PrT (p¬φ(ẋ)q).
HB3: T ⊢ f(x) = 0 → PrT (pf(ẋ) = 0q) for every primitive recursive

term f(x).

HB1-HB3 is called the Hilbert-Bernays derivability conditions. If a prov-
ability predicate PrT (x) satisfies HB1-HB3, then T 0 Con0(T ) (see [62]).
Kurahashi [93] constructes two Rosser provability predicates satisfyingHB1-
HB3. Thus, HB1-HB3 is not sufficient to prove that T 0 Con(T ).

Löb [96] proves that if PrT (x) satisfies the Hilbert-Bernays-Löb deriv-
ability conditions D1-D3 (see Definition 3.6), then Löb’s theorem holds:
for any sentence φ, if T ⊢ PrT (pφq) → φ, then T ⊢ φ. It is well-known
that Löb’s theorem implies G2: T 0 Con(T ) (see [102]). Thus, if a prov-
ability predicate PrT (x) satisfies D1-D3, then T 0 Con(T ). Kurahashi
[92, Proposition 4.11] constructes a provability predicate PrT (x) with con-
ditions D1-D3, but T ⊢ Con1(T ). Thus, D1-D3 is not sufficient to prove
that T 0 Con1(T ).

Montagna [98] proves that if a provability predicate PrT (x) satisfies the
following two conditions, then T 0 Con1(T ):

• T ⊢ ∀x(“x is a logical axiom” → PrT (x));
• T ⊢ ∀x∀y(Fml(x)∧Fml(y) → (PrT (x→ y) → (PrT (x) → PrT (y)))).

5.3.4. The choice of base theory. We show that “whether G2 holds for the
base theory” depends on the base theory we choose. A foundational ques-
tion about G2 is: how much information about arithmetic is required for the
proof of G2. If the base system does not contain enough information about
arithmetic, then G2 may fail. The widely used notion of consistency is con-
sistency in proof systems with cut elimination. However, notions like cutfree
consistency, Herbrand consistency, tableaux consistency, and restricted con-
sistency for different base theories behave differently (see [135]). We do have
proof systems that prove their own cutfree consistency: for example, finitely
axiomatized sequential theories prove their own cut-free consistency on a
definable cut (see [140], p.25).

A natural question is: whether G2 can be generalized to base systems
weaker than PA w.r.t. interpretation. As a corollary of Theorem 5.3, we
have Q 0 Con(Q) and hence Q 0 Con0(Q). Bezboruah and Shepherdson

31Fml(x) is the formula which represents the relation that x is a code of a formula.
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[12] define the consistency of Q as the sentence Con0(Q)32, and prove that
G2 holds for Q : Q 0 Con0(Q). However, the method used by Bezboruah
and Shepherdson in [12] is quite different from Theorem 5.3. Bezboruah-
Shepherdson’s proof depends on some specific assumptions about the coding,
does not easily generalize to stronger theories, and tells us nothing about
the question whether Q can prove its consistency on some definable cut (see
[137]). The next question is: whether G2 holds for other theories weaker
than Q w.r.t. interpretation (e.g. R). In a forthcoming paper, we will show
that G2 holds for R via the canonical consistency statement. However, we
can find weak theories mutually interpretable with R for which G2 fails.

Willard [151] explores the generality and boundary-case exceptions of
G2 over some base theories. Willard constructs examples of r.e. arithmeti-
cal theories that cannot prove the totality of their successor functions but
can prove their own canonical consistencies (see [150], [151]). However, the
theories Willard constructs are not completely natural since some axioms
are constructed using Gödel’s Diagnolisation Lemma. Pakhomov [107] con-
structs a more natural example of this kind. Pakhomov [107] defines a
theory H<ω, and shows that it proves its own canonical consistency. Unlike
Willard’s theories, H<ω isn’t an arithmetical theory but a theory formulated
in the language of set theory with an additional unary function. From [107],
H<ω and R are mutually interpretable. Hence, the theory H<ω can be re-
garded as the set-theoretic analogue of R from the interpretability theoretic
point of view.

From Theorem 5.3, G2 holds for any consistent r.e. theory interpreting
Q. However, it is not true that G2 holds for any consistent r.e. theory
interpreting R since H<ω interprets R, but G2 fails for H<ω. We know that
if S ✂ T and G1 holds for S, then G1 holds for T . However, it is not true
that if S ✂ T and G2 holds for S, then G2 holds for T since R ✂H<ω, G2
holds for R but G2 fails for H<ω. This shows the difference between Q and
R, and the difference between G1 and G2.

One way to eliminate the intensionality of G2 is to uniquely characterize
the consistency statement. In [135], Visser proposes the interesting ques-
tion of a coordinate-free formulation of G2 and a unique characterization of
the consistency statement. Visser [135] shows that consistency for finitely
axiomatized sequential theories can be uniquely characterized modulo EA-
provable equivalence (see [135], p.543). But characterizing the consistency of
infinitely axiomatized r.e. theories is more delicate and a big open problem
in the current research on the intensionality of G2.

After Gödel, Gentzen constructs a theory T∗ (primitive recursive arith-
metic with the additional principle of quantifier-free transfinite induction
up to the ordinal ǫ0)

33, and proves the consistency of PA in T∗. Gentzen’s
theory T∗ contains Q but does not contain PA since T∗ does not prove
the ordinary mathematical induction for all formulas. By the Arithmetized

32This sentence says that for any x, if x is the code of a formula φ and φ is provable
in Q, then ¬φ is not provable in Q.

33ǫ0 is the first ordinal α such that ωα = α.
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Completeness Theorem, Q+Con(PA) interprets PA. Since Gentzen’s the-
ory T∗ contains Q and T∗ ⊢ Con(PA), Gentzen’s theory T∗ interprets
PA. By Pudlák’s result that no consistent r.e. extension T of Q can in-
terpret Q + Con(T ), PA does not interpret Gentzen’s theory T∗. Thus
PA ✁ T∗. Gentzen’s work has opened a productive new direction in proof
theory: finding the means necessary to prove the consistency of a given
theory. More powerful subsystems of Second-Order Arithmetic have been
given consistency proofs by Gaisi Takeuti and others, and theories that have
been proved consistent by these methods are quite strong and include most
ordinary mathematics.

5.3.5. The choice of numbering. We show that “whether G2 holds for the
base theory” depends on the choice of the numbering encoding the language.

For the influence of different numberings on G2, we refer to [47]. Any
injective function γ from a set of L(PA)-expressions to ω qualifies as a
numbering. Gödel’s numbering is a special kind of numberings under which
the Gödel number of the set of axioms of PA is recursive. In fact, G2 is
sensitive to the way of numberings. Let γ be a numbering and pϕγq denote
γ(ϕ), i.e., the standard numeral of the γ-code of ϕ.

Definition 5.11 (Relativized Löb conditions). A formula Pr
γ
T (x) is said to

satisfy Löb’s conditions relative to γ for the base theory T if for all L(PA)-
sentences ϕ and ψ we have that:

D1∗: If T ⊢ ϕ, then PA ⊢ Pr
γ
T (pϕ

γq);
D2∗: T ⊢ Pr

γ
T (p(ϕ → ψ)γq) → (Pr

γ
T (pϕ

γq) → Pr
γ
T (pψ

γq));
D3∗: T ⊢ Pr

γ
T (pϕ

γq) → Pr
γ
T (p(Pr

γ
T (pϕ

γq))γq).

Grabmayr [47] examines different criteria of acceptability, and proves the
invariance of G2 with regard to acceptable numberings (for the definition of
acceptable numberings, we refer to [47]).
Theorem 5.12 (Invariance of G2 under acceptable numberings, Theorem
4.8, [47]). Let γ be an acceptable numbering and T be a consistent r.e. ex-
tension of Q. If Pr

γ
T (x) satisfies Löb’s conditions D1∗-D3∗ relative to γ

for T , then T 0 ¬Pr
γ
T (p(0 6= 0)γq).

Theorem 5.12 shows that G2 holds for acceptable numberings. But G2

may fail for non-acceptable numberings. Grabmayr [47] gives some examples
of deviant numberings γ such that G2 fails w.r.t. γ: T ⊢ Pr

γ
T (p(0 6= 0)γq).

Definition 5.13. We say that α(x) is a numeration of T if for any n, we
have PA ⊢ α(n) if and only if n is the Gödel number of some φ ∈ T .

5.3.6. The choice of the formula representing the set of axioms. We show
that “whether G2 holds for T” depends on the way the axioms of T are
represented.

First of all, Definition 5.14 gives a more general definition of provability
predicate and consistency statement for T w.r.t. the numeration of T .

Definition 5.14. Let T be any consistent r.e. extension of Q and α(x) be
a formula in L(T ).
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• Define the formula Prfα(x, y) saying “y is the Gödel number of
a proof of the formula with Gödel number x from the set of all
sentences satisfying α(x)”.

• Define the provability predicate Prα(x) of α(x) as ∃yPrfα(x, y) and
the consistency statement Conα(T ) as ¬Prα(p0 6= 0q).

For each formula α(x), we have:

D2′ PA ⊢ Prα(pϕ → ψq) → (Prα(pϕq) → Prα(pψq)).

If α(x) is a numeration of T , then Prα(x) satisfies the following properties
(see [90, Fact 2.2]):

D1′: If T ⊢ ϕ, then PA ⊢ Prα(pϕq);
D3′: If ϕ is Σ0

1, then PA ⊢ ϕ→ Prα(pϕq).

Now we give a new reformulation of G2 via numerations.

Theorem 5.15. Let T be any consistent r.e. extension of Q. If α(x) is any
Σ0
1 numeration of T , then T 0 Conα(T ).

In fact, G2 holds for any Σ0
1 numeration of T , but fails for some Π0

1

numeration of T . Feferman [33] constructs a Π0
1 numeration π(x) of T such

that G2 fails, i.e. Conπ(T ) , ¬Prπ(p0 6= 0q) is provable in T . Feferman’s
construction keeps the proof predicate and its numbering fixed but varies
the formula representing the set of axioms. Notice that Feferman’s predicate
satisfies D1 and D2, but does not satisfy D3. Feferman’s example shows
that G2 may fail for provability predicates satisfying D1 and D2.

Generally, Feferman [33] shows that if T is a Σ0
1-definable extension of

Q, then there is a Π0
1 definition τ(u) of T such that T ⊢ Conτ (T ). In

summary, G2 is not coordinate-free (it is dependent on numerations of PA).
An important question is how to formulate G2 in a general way such that it
is coordinate-free (independent of numerations of T ).

The properties of the provability predicate are intensional and depend on
the numeration of the theory. I.e., under different numerations of T , the
provability predicate may have different properties. It may happen that T
has two numerations α(x) and β(x) such that Conα(T ) is not equivalent
to Conβ(T ). For example, under Gödel’s recursive numeration τ(x) and
Feferman’s Π0

1 numeration π(x) of T , the corresponding consistency state-
ment Conτ (T ) and Conπ(T ) are not equivalent. But PA does not know
this fact, i.e. PA 0 ¬(Conτ (T ) ↔ Conπ(T )) since PA 0 ¬Conτ (T ).

Generally, Kikuchi and Kurahashi prove in [74, Corollary 5.11] that if T
is Σ0

n+1-definable and not Σ0
n-sound, then there are Σ0

n+1 definitions σ1(x)
and σ2(x) of T such that T ⊢ Conσ1

(T ) and T ⊢ ¬Conσ2
(T ).

Provability logic is an important tool for the study of incompleteness and
meta-mathematics of arithmetic. The origins of provability logic (e.g. Henkin’s
problem, the isolation of derivability conditions, Löb’s theorem) are all
closely tied to Gödel’s incompleteness theorems historically. In this sense, we
can say that Gödel’s incompleteness theorems play a unifying role between
first order arithmetic and provability logic.

Provability logic is the logic of properties of provability predicates. Note
that G2 is very sensitive to the properties of the provability predicate used in
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its formulation. Provability logic provides us with a new viewpoint and an
important tool that can be used to understand incompleteness. Provability
logic based on different provability predicates reveals the intensionality of
provability predicates which is one source of the intensionality of G2.

Let T be a consistent r.e. extension of Q, and τ(u) be any numeration
of T . Recall that an arithmetical interpretation f is a mapping from the
set of all modal propositional variables to the set of L(T )-sentences. Every
arithmetical interpretation f is uniquely extended to the mapping fτ from
the set of all modal formulas to the set of L(T )-sentences such that fτ
satisfies the following conditions:

• fτ (p) is f(p) for each propositional variable p;
• fτ (⊥) is 0 6= 0;
• fτ commutes with every propositional connective;
• fτ (✷A) is Prτ (pfτ (A)q) for every modal formula A.

Provability logic provides us with a new way of examining the intensionality
of provability predicates. Under different numerations of T , the provabil-
ity predicate may have different properties, and hence may correspond to
different modal principles under different arithmetical interpretations.

Definition 5.16. Given a numeration τ(u) of T , the provability logic PLτ (T )
of τ(u) is defined to be the set of modal formulas A such that T ⊢ fτ (A) for
all arithmetical interpretations f .

Note that the provability logic PLτ (T ) of a Σ0
n numeration τ(x) of T is

a normal modal logic. A natural and interesting question is: which nor-
mal modal logic can be realized as a provability logic PLτ (T ) of some Σ0

n

numeration τ(x) of T ? An interesting research program is to classify the
provability logic PLα(T ) according to the numeration α(x) of T . We first
discuss Σ0

1 numerations of T .
Theorem 5.17 (Generalized Solovay’s Arithmetical Completeness Theo-
rem, Theorem 2.5, [90]). Let T be any consistent r.e. extension of PA. If
T is Σ0

1-sound, then for any Σ0
1 numeration α(x) of T , the provability logic

PLα(T ) is precisely GL.34

Moreover, Visser [133] examines all possible provability logics for Σ0
1 nu-

merations of Σ0
1-unsound theories. To state Visser’s result, we need some

definitions.

Definition 5.18 (Definition 3.5-3.6, [91]). We define the sequence {Conn
τ :

n ∈ ω} recursively as follows: Con0
τ is 0 = 0, andConn+1

τ is ¬Prτ (p¬Conn
τ q).

The height of τ(u) is the least natural number n such that T ⊢ ¬Conn
τ if

such an n exists. If not, the height of τ(u) is ∞.

For Σ0
1-unsound theories, Visser proves that PLτ (T ) is determined by

the height of the numeration τ(u). Visser [133, Theorem 3.7] shows that the
height of τ(u) is ∞ if and only if PL(τ) = GL; and the height of τ(u) is n if
and only if PL(τ) = GL+✷n⊥. Beklemishev [7, Lemma 7] shows that if T
is Σ0

1-unsound, then the height of Σ0
1 numerations of T can take any values

except 0.

34It is a big open problem that whether Solovay’s arithmetical completeness theorem
holds for weak arithmetic.



46 YONG CHENG

Let U be any consistent theory of arithmetic. Based on the previous
work by Artemov, Visser and Japaridze, Beklemishev [7] proves that for Σ0

1

numeration τ of U , PLτ (U) coincides with one of the logics GLα,Dβ ,Sβ

and GL−
β where α and β are subsets of ω and β is cofinite (for definitions

of GLα,Dβ ,Sβ and GL−
β , we refer to [7, 4]).

Feferman [33] constructs a Π0
1 numeration π(x) of T such that the con-

sistency statement Conπ(T ) defined via Prπ(x) is provable in T . Thus,
the provability logic PLπ(T ) of Prπ(x) contains the formula ¬✷⊥, and is
different from GL. However, the exact axiomatization of the provability
logic PLπ(T ) under Feferman’s numeration π(x) is not known. Kurahashi
[90] proves that for any recursively axiomatized consistent extension T of
PA, there exists a Σ0

2 numeration α(x) of T such that the provability logic
PLα(T ) is the modal system K. As a corollary, the modal principles com-
monly contained in every provability logic PLα(T ) of T is just K.

It is often thought that a provability predicate satisfies D1-D3 if and
only if G2 holds (i.e. for the induced consistency statement Con(T ) from
the provability predicate, T 0 Con(T )). But this is not true. From Defi-
nition 5.14, conditions D1-D2 hold for any numeration of T . Whether the
provability predicate satisfies condition D3 depends on the numeration of T .
For any Σ0

1-numeration α(x) of T , D3 holds for Prα(x). From Kurahashi
[90], there is a Σ0

2-numeration α(x) of T such that the provability logic for
that numeration is precisely K. Since K 0 ¬�⊥, as a corollary, G2 holds
for T , i.e. Conα(T ) defined as ¬Prα(p0 6= 0q) is not provable in T . But
the Löb condition D3 does not hold since K 0 �A → ��A. This gives us
an example of a Σ0

2 numeration α(x) of T such that D3 does not hold for
Prα(x) but G2 holds for T . Thus, G2 may hold for a provability predicate
which does not satisfy the Löb condition D3.

Moreover, Kurahashi [91] proves that for each n ≥ 2, there exists a Σ0
2

numeration τ(x) of T such that the provability logic PLτ (T ) is just the
modal logic K+�(�np→ p) → �p. Hence there are infinitely many normal
modal logics that are provability logics for some Σ0

2 numeration of T . A good
question from Kurahashi [91] is: for n ≥ 2, is the class of provability logics
PLτ (T ) for Σ0

n numerations τ(x) of T the same as the class of provability
logics PLτ (T ) for Σ0

n+1 numerations τ(x) of T ? However, this question is
still open as far as we know. Define that KD = K + ¬✷⊥. A natural and
interesting question, which is also open as far as we know, is: can we find a
numeration τ(x) of T such that PLτ (T ) = KD?

In summary, G2 is intensional with respect to the following parameters:
the formalization of consistency, the base theory, the method of numbering,
the choice of a provability predicate, and the representation of the set of
axioms. Current research on incompleteness reveals that G2 is a deep and
profound theorem both mathematically and philosophically in the founda-
tions of mathematics, and there is a lot more to be explored about the
intensionality of G2.
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6. Conclusion

We conclude this paper with some personal comments. To the author,
the research on concrete incompleteness is very deep and important.

After Gödel, people have found many different proofs of incompleteness
theorems via pure logic, and many concrete independent statements with
real mathematical contents. As Harvey Friedman comments, the research
on concrete mathematical incompleteness shows how the Incompleteness
Phenomena touches normal concrete mathematics, and reveals the impact
and significance of the foundations of mathematics.

Harvey Friedman’s research project on concrete incompleteness plans to
show that we will be able to find, in just about any subject of mathemat-
ics, many natural looking statements that are independent of ZFC. Harvey
Friedman’s work is very profound and promising, and will reveal that incom-
pleteness is everywhere in mathematics, which, if it is true, may be one of the
most important discoveries after Gödel in the foundations of mathematics.
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[45] Kurt Gödel; Kurt Gödel’s Collected Works, vol. 1, pp. 145-195.
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torics, Ann. Pure Appl. Logic. 33:1, 23-41, 1987.

[71] Richard Kaye and Henryk Kotlarski; On models constructed by means of the arith-
metized completeness theorem, Mathematical Logic Quarterly, 46(4):505-516, 2000.



50 YONG CHENG

[72] Makoto Kikuchi; A note on Boolos’ proof of the incompleteness theorem, Math. Log.

Quart 40, 528-532, 1994.
[73] Makoto Kikuchi; Kolmogorov complexity and the second incompleteness theorem,

Archive for Mathematical Logic, 36(6):437-443, 1997.
[74] Makoto Kikuchi and Taishi Kurahashi; Generalizations of Gödel’s incompleteness
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[142] Petr Vopěnka; A new proof of Gödel’s result on non-provability of consistency, Bul-

letin del’Académie Polonaise des Sciences. Série des Sciences Mathématiques. As-
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