Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T02:50:55.358Z Has data issue: false hasContentIssue false

LOGICALITY AND MODEL CLASSES

Published online by Cambridge University Press:  26 July 2021

JULIETTE KENNEDY
Affiliation:
DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF HELSINKIHELSINKI, FINLANDE-mail: juliette.kennedy@helsinki.fi
JOUKO VÄÄNÄNEN
Affiliation:
DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF HELSINKIHELSINKI, FINLAND and ILLC, UNIVERSITY OF AMSTERDAM AMSTERDAM, NETHERLANDS E-mail: jouko.vaananen@helsinki.fi

Abstract

We ask, when is a property of a model a logical property? According to the so-called Tarski–Sher criterion this is the case when the property is preserved by isomorphisms. We relate this to model-theoretic characteristics of abstract logics in which the model class is definable. This results in a graded concept of logicality in the terminology of Sagi [46]. We investigate which characteristics of logics, such as variants of the Löwenheim–Skolem theorem, Completeness theorem, and absoluteness, are relevant from the logicality point of view, continuing earlier work by Bonnay, Feferman, and Sagi. We suggest that a logic is the more logical the closer it is to first order logic. We also offer a refinement of the result of McGee that logical properties of models can be expressed in $L_{\infty \infty }$ if the expression is allowed to depend on the cardinality of the model, based on replacing $L_{\infty \infty }$ by a “tamer” logic.

Type
Articles
Copyright
The Author(s), 2021. Published by Cambridge University Press on behalf of Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, P. M., Newman’s objection. The British Journal for the Philosophy of Science, vol. 60 (2009), no. 1, pp. 135171.CrossRefGoogle Scholar
Akkanen, J., Absolute logics. Annales Academiæ Scientiarum Fennicæ Mathematica Dissertationes, vol. 100. Helsinki: Academia Scientiarum Fennica, 1995.Google Scholar
Asser, G., Das Repräsentantenproblem im Prädikatenkalkül der ersten Stufe mit Identität. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 1 (1955), pp. 252263.Google Scholar
Barwise, J., Absolute logics and ${L}_{\infty \omega }$ . Annals of Mathematical Logic, vol. 4 (1972), pp. 309340.CrossRefGoogle Scholar
Barwise, J., Back and forth through infinitary logic, Studies in Model Theory (Morley, M. D., editor), MAA Studies in Math, vol. 8, 1973, pp. 534.Google Scholar
Barwise, J., Axioms for abstract model theory. Annals of Mathematical Logic, vol. 7 (1974), pp. 221265.10.1016/0003-4843(74)90016-3CrossRefGoogle Scholar
Barwise, J., Admissible Sets and Structures , Springer-Verlag, Berlin, 1975.CrossRefGoogle Scholar
Barwise, J., Model-theoretic logics: Background and aims, Model-Theoretic Logics (Barwise, J. and Feferman, S., editors), Perspectives in Logic, vol. 8, Springer, New York, 1985, pp. 323.Google Scholar
Bonnay, D., Logicality and invariance. Bulletin of Symbolic Logic, vol. 14 (2008), no. 1, pp. 2968.Google Scholar
Bonnay, D., Carnap’s criterion of logicality, Carnap’s Logical Syntax of Language (Beany, M., editor), MacMillan, New York, 2009, pp. 147164.CrossRefGoogle Scholar
Bonnay, D. and Speitel, S. G. W., The ways of logicality: Invariance and categoricity, The Semantic Conception of Logic: Essays on Consequence, Invariance, and Meaning (Sagi, G. and Woods, J., editors), Cambridge University Press, Cambridge, 2021.Google Scholar
Bonnay, D. and Westerståhl, D., Compositionality solves Carnap’s problem. Erkenntnis, vol. 81 (2016), no. 4, pp. 721739.CrossRefGoogle Scholar
Boolos, G., Nominalist platonism. The Philosophical Review, vol. XCIV (1985), no. 3, pp. 327344.CrossRefGoogle Scholar
Burgess, J. P. Descriptive set theory and infinitary languages . Zbornik Radova, vol. 2 (1977), no. 10, pp. 930.Google Scholar
Carnap, R., The Logical Syntax of Language, Routledge & Kegan Paul, Oxford, 1937.Google Scholar
Carnap, R., Formalization of Logic, Harvard University Press, Cambridge, MA, 1943.Google Scholar
Carnap, R., Logische Syntax der Sprache, Zweite, unveränderte Auflage, Springer-Verlag, Vienna-New York, 1968.Google Scholar
Carnap, R., Der logische Aufbau der Welt, Volume 514 of Philosophische Bibliothek [Philosophical Library], Felix Meiner Verlag, Hamburg, 1998. Reprint of the 1928 original and of the author’s preface to the 1961 edition.CrossRefGoogle Scholar
Craig, W., Linear reasoning. a new form of the Herbrand-Gentzen theorem. Journal of Symbolic Logic, vol. 22 (1957), pp. 250268.CrossRefGoogle Scholar
Dickmann, M., Large Infinitary Languages: Model Theory, Studies in Logic and the Foundations of Mathematics, vol. 83, North-Holland Publishing Co., Amsterdam, 1975.Google Scholar
Feferman, S., Logic, logics, and logicism. Notre Dame Journal of Formal Logic, vol. 40 (1999), pp. 3154. Special issue in honor and memory of George S. Boolos (Notre Dame, IN, 1998).CrossRefGoogle Scholar
Feferman, S., Set-theoretical invariance criteria for logicality. Notre Dame Journal of Formal Logic, vol. 51 (2010), no. 1, pp. 320.Google Scholar
Fuhrken, G., A remark on the Härtig quantifier. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 18 (1972), pp. 227228.CrossRefGoogle Scholar
Hauschild, K., Zum Vergleich von Härtigquantor und Rescherquantor. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 27 (1981), no. 3, pp. 255264.Google Scholar
Herre, H., Krynicki, M., Pinus, A., and Väänänen, J., The Härtig quantifier: A survey. Journal of Symbolic Logic, vol. 56 (1991), no. 4, pp. 11531183.CrossRefGoogle Scholar
Jech, T., Set Theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.Google Scholar
Jones, N. D. and Selman, A. L., Turing machines and the spectra of first-order formulas. Journal of Symbolic Logic, vol. 39 (1974), pp. 139150.CrossRefGoogle Scholar
Kanamori, A., The Higher Infinite, second ed., Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2009.Google Scholar
Karp, C. R., Languages with Expressions of Infinite Length, North–Holland Publishing Co., Amsterdam, 1964.Google Scholar
Keisler, H. J., Models with orderings, Logic, Methodology and Philos. Sci. III (Proc. Third Internat. Congr., Amsterdam, 1967) (van Rootselaar, B. and Staal, J. F., editors), North-Holland, Amsterdam, 1968, pp. 3562.CrossRefGoogle Scholar
Kennedy, J., Gödel, Tarski and the Lure of Natural Language: Logical Entanglement, Formalism Freeness, Cambridge University Press, Cambridge, 2020.CrossRefGoogle Scholar
Lindström, P., First order predicate logic with generalized quantifiers. Theoria, vol. 32 (1966), pp. 186195.Google Scholar
Lindström, P., On extensions of elementary logic. Theoria, vol. 35 (1969), pp. 111.CrossRefGoogle Scholar
Lopez-Escobar, E. G. K., An interpolation theorem for denumerably long formulas. Fundamenta Mathematicae, vol. 57 (1965), pp. 253272.10.4064/fm-57-3-253-272CrossRefGoogle Scholar
Lopez-Escobar, E. G. K., On defining well-orderings. Fundamenta Mathematicae, vol. 59 (1966), pp. 1321.10.4064/fm-59-1-13-21CrossRefGoogle Scholar
Magidor, M., On the role of supercompact and extendible cardinals in logic. Israel Journal of Mathematics, vol. 10 (1971), pp. 147157.CrossRefGoogle Scholar
Magidor, M., Large cardinals and strong logics, 2016. Unpublished lecture notes at CRM, Universitat Autònoma de Barcelona, http://www.crm.cat/en/Activities/Curs_2016-2017/Documents/Tutorial%20lecture%202.pdf.Google Scholar
Magidor, M. and Väänänen, J., On Löwenheim-Skolem-Tarski numbers for extensions of first order logic. Journal of Mathematical Logic, vol. 11 (2011), no. 1, pp. 87113.Google Scholar
Makowsky, J. A., Shelah, S., and Stavi, J., $\varDelta$ -logics and generalized quantifiers. Annals of Mathematical Logic, vol. 10 (1976), no. 2, pp. 155192.CrossRefGoogle Scholar
Malitz, J., Infinitary analogs of theorems from first order model theory. Journal of Symbolic Logic, vol. 36 (1971), pp. 216228.CrossRefGoogle Scholar
McGee, V., Logical operations. Journal of Philosophical Logic, vol. 25 (1996), no. 6, pp. 567580.CrossRefGoogle Scholar
Mostowski, A., An undecidable arithmetical statement. Fundamenta Mathematicae, vol. 36 (1949), pp. 143164.CrossRefGoogle Scholar
Mostowski, A., On a generalization of quantifiers. Fundamenta Mathematicae, vol. 44 (1957), pp. 1236.CrossRefGoogle Scholar
Oikkonen, J., On PC- and RPC-classes in generalized model theory, Proceedings from 5th Scandinavian Logic Symposium (Aalborg, 1979) (Jensen, F. V., Mayoh, B. H., and Møller, K. K., editors), Aalborg University Press, Aalborg, 1979, pp. 257270.Google Scholar
Quine, W. V. O., Philosophy of Logic, second ed., Harvard University Press, Cambridge, MA, 1986.Google Scholar
Sagi, G. Logicality and meaning. Review of Symbolic Logic, vol. 11 (2018), no. 1, 133159.CrossRefGoogle Scholar
Scott, D., Logic with denumerably long formulas and finite strings of quantifiers, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley) (Addison, J. W., Henkin, L., and Tarski, A., editors), North-Holland, Amsterdam, Netherlands, 1965, pp. 329341.Google Scholar
Sher, G., The Bounds of Logic, MIT Press, Cambridge, MA, 1991.Google Scholar
Sher, G., Epistemic Friction. Oxford University Press, Oxford, 2016.CrossRefGoogle Scholar
Silver, J. H., Some applications of model theory in set theory. Annals of Mathematical Logic, vol. 3 (1971), no. 1, pp. 45110.CrossRefGoogle Scholar
Solovay, R. M., Reinhardt, W. N., and Kanamori, A., Strong axioms of infinity and elementary embeddings. Annals of Mathematical Logic, vol. 13 (1978), no. 1, pp. 73116.CrossRefGoogle Scholar
Tarski, A., What are logical notions? History and Philosophy of Logic, vol. 7 (1986), no. 2, pp. 143154. Edited by John Corcoran.Google Scholar
Väänänen, J., Two axioms of set theory with applications to logic. Annales Academiae Scientiarum Fennicae. Series A I. Mathematica, vol. 20 (1978), p. 19.Google Scholar
Väänänen, J., Boolean-valued models and generalized quantifiers. Annals of Mathematical Logic, vol. 18 (1980), no. 3, pp. 193225.CrossRefGoogle Scholar
Väänänen, J., $\varDelta$ -extension and Hanf-numbers. Fundamenta Mathematicae, vol. 115 (1983), no. 1, pp. 4355.CrossRefGoogle Scholar
Väänänen, J., Dependence Logic, Cambridge University Press, Cambridge, 2007.CrossRefGoogle Scholar
Väänänen, J., Sort logic and foundations of mathematics, Infinity and Truth (Chong, C., Feng, Q., Slaman, T. A., and Woodin, W. H., editors), World Scientific Publishing, Hackensack, NJ, 2014, pp. 171186.CrossRefGoogle Scholar
Westerståhl, D., Sameness, Feferman on Foundations (Jaeger, G. and Sieg, W., editors), Springer, New York, 2017.Google Scholar
Westerståhl, D., Fixing ${Q}_0$ . Unpublished manuscript, 2021.Google Scholar