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NOTES ON THE STABLE REGULARITY LEMMA

M. MALLIARIS AND S. SHELAH

Abstract. This is a short expository account of the regularity lemma for stable graphs proved by the
authors, with some comments on the model theoretic context, written for a general logical audience.

Some years ago, we proved a “stable regularity lemma” showing essentially that Szemerédi’s regularity
lemma behaves much better if the graphs in question do not contain large half-graphs [11, Theorem 5.18].
Since that time, it has been a pleasure to see the work which has grown out from that theorem, with various
interesting extensions, further developments, and new directions worked out by many different colleagues.
Nonetheless, it seems the clear ‘picture’ of the original proof has not necessarily been widely communicated.
Perhaps having a short exposition available may help inspire further interactions and applications.

So in these brief expository notes we give a short overview of the proof itself and the model-theoretic
ideas behind the proof. Recall that our story begins with:

Theorem A (Szemerédi’s regularity lemma, 1978). For every ǫ > 0 there is N(ǫ) s.t. every finite graph G

may be partitioned into m classes V1 ∪ · · · ∪ Vm where m ≤ N and:

• all of the pairs Vi, Vj satisfy ||Vi| − |Vj || ≤ 1.
• all but at most ǫm2 of the pairs (Vi, Vj) are ǫ-regular.

It was known by work of Gowers that the bound N on the number of pieces is very large as a function
of ǫ [5]. Regarding whether the irregular pairs can be eliminated, in [7], section 1.8, Komlós and Simonovits
write: “The Regularity Lemma does not assert that all pairs of clusters are regular. In fact, it allows ǫk2

pairs to be irregular. For a long time it was not known if there must be irregular pairs at all. It turned
out that there must be at least ck irregular pairs.” They continue: “Alon, Duke, Leffman, Rödl and Yuster
[2] write: ‘In [16] the author raises the question if the assertion of the lemma holds when we do not allow
any irregular pairs in the definition of a regular partition. This, however, is not true, as observed by several
researchers, including L. Lovász, P. Seymour, T. Trotter and ourselves. A simple example showing irregular
pairs are necessary is a bipartite graph with vertex classes A = {a1, ..., an} and B = {b1, ..., bn} in which aibj
is an edge iff i ≤ j.’ [footnote: This important graph is called the half-graph.] ”

The stable regularity lemma will show that half-graphs characterize existence of irregular pairs by proving
that in the absence of long half-graphs, there is a much stronger regularity lemma, which among other things,
has no irregular pairs. At the time, the idea that there might be better regularity lemmas on certain sub-
classes of graphs was not new: it was already known [2], [8] that assuming bounded VC dimension, the
number of pieces could be taken to be polynomial in 1

ǫ
(though necessarily with irregular pairs). However,

to our knowledge, the order property was not suspected by the combinatorial community be an indicator of
a sea-change in structure.

To a model theorist, half-graphs are an instance of the order property for the graph edge relation. In the
case of infinite structures, we know from the second author’s Classification Theory, Theorem II.2.2 that the
presence or absence of the order property, here the presence or absence of infinite half-graphs, is a very strong
indicator of a change in structural properties, the dividing line at stability. One of the contributions of [11]
was the idea that one might try to finitize some of the structure familiar from stability to prove that when
half-graphs are small relative to the size of the finite graph, one may look for suitable finite approximations
to stable behavior – and thus build a much stronger regularity lemma. Note that an interesting line of work
starting with C. Terry and J. Wolf [17] has since carried this idea further and into the arithmetic setting.

Thanks: Malliaris was partially supported by NSF DMS-1553653 and by a Minerva Research Foundation membership at
the IAS. Shelah was partially supported by ERC grant 338821. Both authors thank NSF grant 1362974 (Rutgers) and ERC
338821. This is paper E98 in Shelah’s list. These notes especially benefitted from lectures in the Chicago REU over several
summers. We thank E. Bajo and C. Terry for helpful comments on versions of this manuscript.
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1. Proof of the lemma

In this section we review the Stable Regularity Lemma as it was proved in [11], Section 5. All graphs in
the paper are finite.

Given k ∈ N, we say the graph G is k-edge stable if it contains no half-graph of length k. That is, there
do not exist distinct vertices a1, . . . , ak, b1, . . . , bk of G such that R(ai, bj) holds iff i < j. (Note that this
forbids a family of graphs, not just a bipartite half-graph.)

Theorem 1.1 (Stable regularity lemma, [11]). For each ǫ > 0 and k ∈ N there is N = N(ǫ, k) such that for
any sufficiently large finite k-edge stable graph G, for some ℓ with ℓ ≤ N , G can be partitioned into disjoint
pieces A1, . . . , Aℓ and:

(1) the partition is equitable, i.e. the sizes of the pieces differ by at most 1,
(2) all pairs of pieces (Ai, Aj) are ǫ-regular, and moreover have density either > 1− ǫ or < ǫ.

(3) N < (4
ǫ
)2

k+3−7.

The strategy of [11, §5] is to use the hypothesis of k-edge stability to divide a given graph into pieces
which have an atomicity property called ǫ-excellence. It will follow from the definition that the distribution
of edges between any two ǫ-excellent sets is highly uniform, in fact δ-regular for a related δ. So if we can
get an equipartition into excellent pieces, we will have regularity for all pairs, just by construction. This is
exactly what the paper does: proves a regularity lemma with excellent pieces (Theorem 1.15 below), from
which Theorem 1.1 is easily deduced.

After giving the proof, we will make some comments on the model theoretic ideas behind it.
Comment on notation: we consider graphs model-theoretically, that is, as a set of vertices on which there

is a certain symmetric irreflexive binary relation, the edge relation. This is reflected in writing things like (a)
“A ⊆ G” to mean A is an induced subgraph of G corresponding to this set of vertices, (b) “b ∈ G” to mean
b is a vertex of G, and (c) writing “size of” a graph G or of some A ⊆ G to mean the number of vertices.

Definition 1.2. Call A ⊆ G ǫ-good if for any b ∈ G either |{a ∈ A : R(b, a)}| < ǫ|A| or |{a ∈ A :
¬R(b, a)}| < ǫ|A|.

In other words, any b ∈ G (not necessarily outside A) induces a partition of A into two pieces, and ǫ-good
means any such partition is strongly imbalanced: there is a majority opinion in A regarding whether to
connect to b. We may express this by saying that there is a truth value t = t(b, A) ∈ {0, 1} and that for all
but < ǫ|A| of the elements of A, R(b, a)t holds. (In logical shorthand, for a formula ϕ, ϕ1 = ϕ and ϕ0 = ¬ϕ.)

Note that for any a ∈ G and any 1
2 > ǫ > 0, {a} is ǫ-good. So a posteriori the definition “A is good” can

be described by saying: elements of A have a majority opinion with respect to certain specific good sets,
namely the singletons. Of course, we can ask for majority opinions with respect to larger good sets. This
leads naturally to the definition of excellent, informally, that elements of A have coherent, majority opinions
with respect to all other good sets.

Definition 1.3. Call A ⊆ G ǫ-excellent if for any B ⊆ G, if B is ǫ-good then either |{a ∈ A : t(a,B) =
1}| < ǫ|A| or |{a ∈ A : t(a,B) = 0}| < ǫ|A|.

First note that if A is ǫ-excellent it is ǫ-good. (When B = {b}, t(a, {b}) is simply 1 if R(a, b) and 0 if
¬R(a, b). Since any singleton set is good, the definition entails that if A is excellent and b ∈ G, then either
|{a ∈ A : R(a, b)}| < ǫ|A| or |{a ∈ A : ¬R(a, b)}| < ǫ|A|. Thus A is ǫ-good.) So existence of larger ǫ-good
sets under stability will be a special case of 1.8. In the case of singleton sets, we will write simply t(a, b).

In Definition 1.3, as B is good, any element a ∈ A will reveal a majority opinion among elements of B
regarding whether to connect to a. If A is an excellent set, most of the time the revealed opinion is the same.
We may express this by clause (a) of Claim 1.11 below.

It isn’t obvious that large ǫ-excellent subsets of a given graph should exist (e.g. a random graph tends not
to have nontrivial ǫ-good sets); our proof will use k-edge stability in a direct way. We will use the following
definition and fact from model theory, which specialized to our case says that from edge stability we may
infer a specific finite bound on the height of a certain tree, which let us call a special tree.

Definition 1.4. A full special tree of height n in a graph is a configuration consisting of two sequences of
vertices, 〈bρ : ρ ∈ 2<n〉, called nodes, and 〈aη : η ∈ 2n〉, called leaves, with edges satisfying the following
constraint: given η ∈ 2n and ρ ∈ 2<n, if ρa〈ℓ〉 E η then R(aη, bρ)

ℓ.
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Other than the edges and non-edges which we have explicitly mentioned, anything is allowed; so as with
half-graphs, asserting that there is no special tree of a certain height forbids a family of configurations.

Example 1.5. Consider a special tree of height 2 with nodes b∅, b0, b1 and leaves a00, a01, a10, a11. Then
the following edges and non-edges must occur: R(b∅, a11), R(b∅, a10), ¬R(b∅, a01), ¬R(b∅, a00), R(b1, a11),
¬R(b1, a10), R(b0, a01), ¬R(b0, a00).

The relevant fact relating edge stability to special trees is the following.

Fact 1.6 (see e.g. Hodges [6] Lemma 6.7.9 p. 313).

(1) If the graph G is k-edge stable, then there is no full special tree in G of height 2k+2 − 2.
(2) If G contains no full special trees of height n, then G is 2n+1-edge stable.

Convention 1.7. When G is k-edge stable, we will say “let t = t(k) be the tree bound” to abbreviate “let
t = t(k) be the best strict upper bound on the height of a full special tree from Fact 1.6,” so t(k) ≤ 2k+2 − 2.

When G is k-edge stable, we can use Fact 1.6 to partition into ǫ-excellent sets as follows. (Note that the
same proof gives existence of ǫ-good sets in the case where we take the Bη’s to be singletons.)

Claim 1.8. Suppose G is a k-edge stable graph, t = t(k) is the tree bound, and ǫ < 1
2t . Then for every

A ⊆ G with |A| ≥ 1
ǫt

there exists an ǫ-excellent subset A′ ⊆ A with |A′| ≥ ǫt−1|A|.
Proof. By induction on m ≤ t let us try to choose 〈Aη : η ∈ 2m〉 and 〈Bη : η ∈ 2m〉 such that:

(i) in general, for m ≥ 0 and ρ of length m, Bρ is an ǫ-good set witnessing that Aρ is not ǫ-excellent;
(ii) for m = 0, A∅ = A and B∅ is an ǫ-good set witnessing that A∅ is not ǫ-excellent.
(iii) for m > 0 and η of length m− 1,

• Aηa〈0〉 = {a ∈ Aη : t(a,Bη) = 0} and
• Aηa〈1〉 = {a ∈ Aη : t(a,Bη) = 1}

noting that both are nonempty, and in fact of size at least ǫ|Aη|, since Bη witnesses that Aη is not
excellent. (Why is t(a,Bη) always defined? Because Bη is good.)

If we can indeed choose the sets Bη at each stage up to and including m = t, we arrive at a contradiction
by building a special tree as follows. First we choose the leaves: for each η ∈ 2t, let aη be any element of
the set Aη, which is nonempty as it is of size ≥ ǫt|A| and |A| ≥ 1

ǫt
. Next we choose the nodes. For each

m < t, each ρ ∈ 2m, and each η ∈ 2t such that ρ E η, the set Uη = {b ∈ Bρ : R(aη, b)
1−t(aη,Bρ)} is small,

of size < ǫ|Bρ| because Bρ is ǫ-good. All together |Uρ :=
⋃{Uη : ρ E η ∈ 2t}| < 2tǫ|Bρ| < |Bρ|, with the

last inequality from our assumption that ǫ < 1
2t . Choose bρ to be any element of Bρ \Uρ. This constructs a

special tree, which gives us our contradiction.
Therefore we were wrong in assuming the construction could continue: one of the Aη must have been

ǫ-excellent, and it will be a subset of A of size at least ǫm|A| where m =length(η) ≥ t− 1. �

Our plan is to partition the graph G into ǫ-excellent sets by induction: running Claim 1.8 on the graph,
setting aside the excellent subset A0, running Claim 1.8 on the remainder A = G \A0 to obtain A1, · · · and
iterating as far as we can until the leftover vertices are few enough to distribute among the excellent sets
already obtained without causing much trouble. The issue to be solved is that we would like to end up with
an equipartition, but as we’ve stated it, Claim 1.8 gives us little control on the size of the excellent sets it
returns. If the construction stops at the zero-th level the excellent set will have size |A|; at the first level, size
≥ ǫ|A|; at the second level, ≥ ǫ2|A|; and so on, with a lower bound of ǫt−1|A|. A first simple modification is
to choose a short list of possible sizes in advance, as we now do.1

Definition 1.9. Call the sequence s0, . . . , st−1 of natural numbers a size sequence for ǫ when:

(a) ǫsℓ ≥ sℓ+1 for ℓ < t− 2.
(b) st−1 divides all other elements of the sequence.
(c) st−1 > t.

Claim 1.10. Suppose G is a k-edge stable graph, t = t(k) is the tree bound, and ǫ < 1
2t . Let s0, . . . , st−1

be a size sequence for ǫ. Then for every A ⊆ G with |A| ≥ max{s0, 1
ǫn
} there exists an ǫ-excellent subset

A′ ⊆ A with |A′| = sℓ for some ℓ = 0, . . . , t− 1.

11.9(b) suggests that we will aim for an equipartition into pieces of size st−1.
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Proof. Just as in the proof of Claim 1.8, adding to (ii) of the inductive hypothesis the condition that at
stage m, both Aηa〈0〉 and Aηa〈1〉 have size exactly sm. This is handled by a simple modification to the
construction. At stage 0, let A∅ be any subset of A of size s0. At stage m, by inductive hypothesis, the set
Aη will have size sm−1, so Aηa〈0〉 and Aηa〈1〉 will have size at least ǫsm−1 ≥ sm; if necessary throw away
vertices to obtain size exactly sm. �

At this point, two points about excellent sets come in to play. First, that any two interact uniformly:

Claim 1.11. Suppose A ⊆ G, B ⊆ G and ǫ < 1
2 and both A,B are ǫ-excellent. Then:

(a) the pair (A,B) is ǫ-uniform, meaning that there is a truth value t = t(A,B) ∈ {0, 1} and that for
all but < ǫ|A| of the elements of A, for all but < ǫ|B| of the elements of B, R(a, b)t.

(b) for ζ =
√
2ǫ, the pair (A,B) is ζ-regular with d(A,B) > 1− ζ or d(A,B) < ζ.

Proof. (a) restates excellence, (b) is a straightforward calculation made in [11] Claim 5.17. �

Second, for ǫ < 1
2 , observe that ǫ-excellence need not be preserved under subset, nor indeed is ǫ-goodness.

(Suppose the partition induced on A by b is imbalanced, with the smaller side of size ℓ: A has a subset of
size 2ℓ whose partition induced by b is exactly balanced, so this subset clearly isn’t ǫ-good.) To preserve
excellence, a subset should retain roughly proportional intersection with every partition induced by every
element in the graph on A. However, we can ensure this if we do it randomly, because k-edge stability implies
the VC dimension is also small. This is explained by the following, an instance of the Sauer-Shelah lemma.

Fact 1.12 (see [14] Theorem II.4.10(4) p. 72). If G is a k-edge stable graph, then for any finite A ⊆ G,

|{{a ∈ A : R(a, b)} : b ∈ G}| ≤ |A|k

more precisely, ≤ Σi≤k

(

|A|
i

)

.

Corollary 1.13. Whenever k is fixed, for any graph G which is k-edge stable, any A ⊆ G and any ǫ > 0
the family

{{a ∈ A : R(a, b)} : b ∈ G} ∪ {{a ∈ A : ¬R(a, b)} : b ∈ G} ⊆ P(A)

has VC dimension ≤ k + 1.

Again, informally, call a subset of A a trace if it is the intersection of A with a neighborhood of some
b ∈ G, or if it is the complement (in A) of the neighborhood of some b ∈ G. By the previous corollary there
are relatively few traces. In order that the partition retain excellence for a related ǫ, it suffices that every
piece of the partition intersect all of the traces of A in approximately the expected proportion.

Corollary 1.14. For all ζ > ǫ > 0 and r, k ≥ 1, there exists M1.14 = M(ζ, ǫ, r, k) such that if:

(a) A is a subset of a k-edge stable graph G, |A| ≥ M1.14,
(b) A is ǫ-excellent in G, and
(c) the size of A is divisible by r

then there exists a partition of A into r disjoint pieces of equal size each of which is ζ-excellent.

About the bounds : Recently Ackerman, Freer, and Patel [1] have computed a bound on this quantity, in
the context of proving a stable regularity lemma for hypergraphs, indeed for finite structures in arbitrary
finite relational languages. To read [1] Proposition 4.5 specialized to the case of graphs, the number |L| of
non-equality symbols is 1, the maximal arity of a relation qL is 2, and τ̂ is their notation for the tree bound.

Returning to the main line of [11] §5, here is the core result of that section, essentially [11] Theorem 5.18
(with some more information about bounds).

Theorem 1.15 (Stable regularity lemma – version with excellence). For each k ≥ 1 and ǫ > 0, there are
N = N(ǫ, k) such that if G is any sufficiently large k-edge stable graph there is a partition of G into disjoint
pieces A0, . . . , Aℓ−1 with ℓ ≤ N such that:

(a) the partition is equitable, i.e. for i, j < N , |Ai|, |Aj | differ by at most 1.
(b) for each i < N , Ai is ǫ-excellent.
(c) thus every pair (Ai, Aj) is ǫ-uniform in the sense of 1.11(a).

(d) if ǫ < 1
2t , N ≤ 4

(

8
ǫ

)t−2
, where t = t(k) is the tree bound from 1.7.
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Proof. We’re given k, thus the tree bound t (recall that by Fact 1.6, t ≤ 2k+2 − 2). Let n be the size of G.
Without loss of generality, to simplify notation, suppose ǫ < 1

2t , and ǫ is a fraction whose denominator is 1.
For the proof, we’ll need 0 < α < β < ǫ; for definiteness, we will use α = ǫ

4 , β = ǫ
3 .

Let q = ⌈ 1
α
⌉ ∈ N, so 2

α
≥ q ≥ 1

α
. Let c be maximal such that qt−1c ∈

(

αn
2 − qt−1, αn

2

]

. Define a sequence

by s0 = qt−1c, s1 = qt−2c, . . . , st−1 = c. This is a size sequence (1.9): it is integer valued and satisfies the
conditions on divisibility, and since G is sufficiently large (see step 4) c > t.

Step 1. By induction, construct a partition {Bj : j < j∗} ∪ {B} of G into α-excellent pieces each with size
sℓ for some ℓ ∈ {0, . . . , t − 1}, plus a remainder B of size < s0. That is, apply Claim 1.10 to G to obtain
B0; if the remainder G \B0 has size ≥ s0, apply Claim 1.10 again to obtain B1; continue until fewer than s0
elements remain.

Step 2. As the elements Bj of the partition are sufficiently large, see step 4, we may randomly partition each
of them into pieces of size st−1, i.e. c, which are β-excellent. Call this new partition {B′

i : i < i∗} ∪ {B} –
we still have the remainder.

Step 3. Distribute the remainder among the pieces {B′
i : i < i∗} to obtain {Ai : i < i∗} where for all i, j < i∗,

||Ai| − |Aj || ≤ 1. Since our choice of c implies s0 ≤ αn
2 , a short calculation shows that this new partition

remains 3β-excellent. (The calculation is given in [11] Claim 5.14(3), with β here for ǫ′ there, and noting
that our assumption (∗) implies c > 1

β
.)

Step 4. As for a lower bound on n, it is sufficient that

(i) α2n
4 − 1 > max{t, 3

ǫ
} and also

(ii) α2n
4 − 1 > 1

α
M1.14(β, α, r, k) for all integer values of r in { αn

2qt−1 − 1, . . . , αn
2qt−1 }, it suffices to check

for the largest, say r = ⌈ αn
2qt−1 ⌉.

Note that by our construction, c ≥ (αn2 − qt−1)(qt−1)−1 = αn
2qt−1 − 1 ≥ α2n

4 − 1. So the assumption (i)

says that c i.e. st−1 is sufficiently large to get a size sequence and to run steps 1 and 3, and condition (ii)
says that all the pieces in the partition are large enough to admit a random partition in step 2.

Step 5. To bound the number of pieces: first note that by our choice of c, αn
2 −qt−1 < qt−1c, so αn

2qt−1 −1 < c,

so αn
4qt−1 < c. Note also that by choice of q, q ≤ 2

α
. Then we can bound n

c
by: n

c
≤ (n)

(

αn
4qt−1

)−1

= 4qt−1

α
≤

4( 2
α
)t−1

α
= 4

(

2
α

)t−2
. In terms of ǫ, this is 4

(

8
ǫ

)t−2
. �

Discussion 1.16. Often such lemmas are stated with an input m corresponding to a lower bound on ℓ. It
should be clear that by shrinking ǫ, one can ensure the minimum number of pieces is as large as desired.

Discussion 1.17. One could easily convert the appearance of t in 1.15(d),(e) into a bound stated in terms
of k using Fact 1.6; but in cases where t is computable directly from the graph (perhaps it is much less than
2k+2 − 2) the present form gives more information.

We’ve done the work needed for Theorem 1.1 (i.e. Conclusion 5.19 of [11]).

Proof of Theorem 1.1. Apply Theorem 1.15 with k and ǫ2

2 , and since the statement does not mention t,

replace k by 2k+2 − 2. �

2. A spectrum of regularity lemmas

Section 5 is the final section of [11]. What were the aims of the rest of the paper?
As the plural in the title suggests, the main thread of the paper investigates the structure of stable graphs

by proving a spectrum of Regularity Lemmas, capturing different aspects of stability. For the first, inspired
by the fact that infinite models of stable theories contain large indiscernible sets, we prove that for finite
stable graphs or hypergraphs (indeed, in any finite stable relational structure, suitably defined) one can
extract much larger indiscernible sets than expected from Ramsey’s theorem, of size nc rather than log n for
c depending on the set of relations and their ‘stability,’ as measured by rank. (This was well exposited, in
the case of graphs, in [13], where it found a nice application.) By iteratively using this theorem, one then

5



can, with some additional care, build a first regularity lemma for stable graphs in which all pieces are cliques
or independent sets of size nc, plus a remainder, though necessarily the number of pieces grows with the
size of the graph. The second and third regularity lemmas in some sense progressively relax the ‘uniformity’
conditions on the pieces until arriving at the fourth, the stable regularity lemma described above, in which
the pieces are now ‘only’ approximately uniform, i.e. ǫ-excellent, at the gain of the number of pieces no
longer growing with the size of the graph.

We may note that for a structure M and infinite A ⊆ M and ultrafilter D on A, there is an average type
Av(A,D). For stable T we know that for suitable sets (so-called indiscernible) the filter is degenerated: the
co-finite sets are enough. The notions of ǫ-good and ǫ-excellent are finitary analogues.

The reader may wonder: the importance of both stability theory and the regularity lemma were indepen-
dently well understood by the early eighties. Why did they come together some thirty-odd years later? As we
have written elsewhere, to our knowledge the first connections of Szemerédi regularity to model theory came
in the context of thinking about the relation of finite and infinite combinatorics necessary to understand
Keisler’s order [9], [10]. It was not by mistake that that [11], the first joint paper of the authors, came at the
beginning of our joint work on Keisler’s order. Indeed, ideas from regularity play a certain, perhaps more
hidden role in our recent discovery [12] that Keisler’s order has the maximum number of classes, continuum
many (we may refer the interested reader to the open problems section in that paper). As our knowledge of
this order develops, our understanding of the finite is also changing.
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