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1.1 Introduction

High-dimensional inference problems cannot be accurately solved without enor-
mous amounts of data or prior assumptions about the nature of the object to
be inferred. Great progress has been made in recent years by exploiting intrinsic
low-dimensional structure in high-dimensional objects. Sparsity is perhaps the
simplest model for taking advantage of reduced dimensionality. It is based on the
assumption that the object of interest can be represented as a linear combina-
tion of a small number of elementary functions. The specific functions needed in
the representation are assumed to belong to a larger collection or dictionary of
functions, but are otherwise unknown. The sparse recovery problem is to deter-
mine which functions are needed in the representation based on measurements
of the object. This general problem can usually be cast as a problem of identify-
ing a vector x ∈ Rn from measurements. The vector is assumed to have k " n
non-zero elements, however the locations of the non-zero elements are unknown.
Most of the existing theory and methods for the sparse recovery problem

are based on non-adaptive measurements. In this chapter we investigate the
advantages of sequential samplingschemes that adapt to x using information
gathered throughout the sampling process. The distinction between adaptive
and non-adaptive measurement can be made more precise, as follows. Infor-
mation is obtained from samples or measurements of the form y1(x), y2(x) . . . ,
where yt are functionals from a space Y representing all possible measurement
forms and yt(x) are the values the functionals take for x. We distinguish between
two types of information:

Non-Adaptive Information: y1, y2, · · · ∈ Y are chosen non-adaptively
(deterministically or randomly) and independently of x.

Adaptive Information: y1, y2, · · · ∈ Y are selected sequentially, and the choice
of yt+1 may depend on the previously gathered information, y1(x), . . . , yt(x).

In this chapter we will see that adaptive information can be significantly
more powerful when the measurements are contaminated with additive noise. In
particular, we will discuss a variety of adaptive measurement procedures that
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2 Chapter 1. Adaptive Sensing for Sparse Recovery

gradually focus on the subspace, or sparse support set, where x lives, allowing
for increasingly precise measurements to be obtained. We explore adaptive
schemes in the context of two common scenarios, which are described in some
detail below.

1.1.1 Denoising

The classic denoising problem deals with the following. Suppose we observe x in
noise according to the non-adaptive measurement model

y = x+ e, (1.1)

where e ∈ Rn represents a vector of additive Gaussian white noise; i.e., ej
i.i.d.∼

N (0, 1), j = 1, . . . , n, where i.i.d. stands for independent and identically dis-
tributed and N (0, 1) denotes the standard Gaussian distribution. It is sufficient
to consider unit variance noises in this model, since other values can be accounted
for by an appropriate scaling of the entries of x.

Let x be deterministic and sparse, but otherwise unknown. The goal of the
denoising problem we consider here is to determine the locations of the non-
zero elements in x from the measurement y. Because the noises are assumed
to be i.i.d., the usual strategy is to simply threshold the components of y at
a certain level τ , and declare those that exceed the threshold as detections.
This is challenging for the following simple reason. Consider the probability
Pr(maxj ej > τ) for some τ > 0. Using a simple bound on the Gaussian tail and
the union bound, we have

Pr(max
j

ej > τ) ≤ n

2
exp

(
−τ

2

2

)
= exp

(
−τ

2

2
+ log n− log 2

)
. (1.2)

This shows that if τ >
√
2 log n, then the probability of false detections can be

controlled. In fact, in the high-dimensional limit [1]

Pr

(
lim
n→∞

maxj=1,...,n ej√
2 log n

= 1

)
= 1 (1.3)

and therefore, for large n, we see that false detections cannot be avoided with τ <√
2 log n. These basic facts imply that this classic denoising problem cannot be

reliably solved unless the non-zero components of x exceed
√
2 log n in magnitude.

This dependence on the problem size n can be viewed as a statistical “curse of
dimensionality.”

The classic model is based on non-adaptive measurements. Suppose instead
that the measurements could be performed sequentially as follows. Assume that
each measurement yj results from integration over time or averaging of repeated
independent observations. The classic non-adaptive model allocates an equal por-
tion of the full measurement budget to each component of x. In the sequential
adaptive model, the budget can be distributed in a more flexible and adaptive
manner. For example, a sequential sensing method could first measure all of
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the components using a third of the total budget, corresponding to observations
of each component plus an additive noise distributed as N (0, 3). The measure-
ments are very noisy, but may be sufficiently informative to reliably rule out
the presence of non-zero components at a large fraction of the locations. After
ruling out many locations, the remaining two thirds of the measurement bud-
get can be directed at the locations still in question. Now, because there are
fewer locations to consider, the variance associated with the subsequent mea-
surements can be even smaller than in the classic model. An illustrative example
of this process is depicted in Figure 1.1. We will see in later sections that such
sequential measurement models can effectively mitigate the curse of dimension-
ality in high-dimensional sparse inference problems. This permits the recovery of
signals having nonzero components whose magnitudes grow much more slowly
than

√
2 log n.

1.1.2 Inverse Problems

The classic inverse problem deals with the following observation model. Suppose
we observe x in noise according to the non-adaptive measurement model

y = Ax+ e, (1.4)

where A ∈ Rm×n is a known measurement matrix, e ∈ Rn again represents a
vector of independent Gaussian white noise realizations, and x is assumed to be
deterministic and sparse, but otherwise unknown. We will usually assume that
the columns of A have unit norm. This normalization is used so that the SNR
is not a function of m, the number of rows. Note that in the denoising problem
we have A = In×n, the identity operator, which also has unit norm columns.
The goal of the inverse problem is to recover x from y. A natural approach to

this problem is to find a solution to the constrained optimization

min
x
‖y −Ax‖22 , subject to ‖x‖0 ≤ k , (1.5)

where, as stated in Chapter 1, ‖x‖0 is the "0 (pseudo-)norm which counts the
number of non-zero components in x. It is common to refer to an "0 constraint as
a sparsity constraint. Note that in the special case where A = In×n the solution
of the optimization (1.5) corresponds to hard-thresholding of y at the level of
the magnitude of the minimum of the k largest (in magnitude) components of
y. Therefore the "0-constrained optimization (1.5) coincides with the denoising
problem described above.
For the general inverse problem, A is not proportional to the identity matrix

and it may even be non-invertible. Nevertheless, the optimization above can still
have a unique solution due to the sparsity constraint. Unfortunately, in this case
the optimization (1.5) is combinatorial in nature, generally requiring a brute-
force search over all

(n
k

)
sparsity patterns. A common alternative is to instead
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Figure 1.1 Qualitative illustration of a sequential sensing process. A total of 3
observation steps are utilized, and the measurement budget is allocated uniformly
over the steps. The original signal is depicted in panel (a). In the first observation
step, shown in panel (b), all components are observed and a simple test identifies two
subsets—one corresponding to locations to be measured next, and another set of
locations to subsequently ignore. In the second observation step (panel (b)), each
observation has twice the precision as the measurements in the previous step, since
the same portion of the measurement budget is being used to measure half as many
locations. Another refinement step leads to the final set of observations depicted in
panel (d). Note that a single-step observation process would yield measurements with
variance 1, while the adaptive procedure results in measurements with lower variance
at the locations of interest.

solve a convex relaxation of the form

min
x
‖y −Ax‖22 , subject to ‖x‖1 ≤ τ , (1.6)

for some τ > 0. This "1-constrained optimization is relatively easy to solve using
convex optimization techniques. It is well known that the solutions of the opti-
mization (1.6) are sparse, and the smaller τ , the sparser the solution.

If the columns of A are not too correlated with one another and τ is chosen
appropriately, then the solution to this optimization is close to the solution of the
"0-constrained optimization. In fact in the absence of noise, perfect recovery of
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the sparse vector x is possible. For example, compressed sensing methods often
employ an A comprised of realizations of i.i.d. symmetric random variables. If m
(the number of rows) is just slightly larger than k, then every subset of k columns
from such an A will be close to orthogonal [2, 3, 4]. This condition suffices to
guarantee that any sparse signal with k or fewer non-zero components can be
recovered from {y,A} – see, for example, [5].
When noise is present in the measurements, reliably determining the locations

of the non-zero components in x requires that these components are significantly
large relative to the noise level. For example, if the columns ofA are scaled to have
unit norm, recent work [6] suggests that the optimization in (1.6) will succeed
(with high probability) only if the magnitudes of the non-zero components exceed
a fixed constant times

√
log n. In this chapter we will see that this fundamental

limitation can again be overcome by sequentially designing the rows of A so that
they tend to focus on the relevant components as information is gathered.

1.1.3 A Bayesian Perspective

The denoising and inverse problems each have a simple Bayesian interpreta-
tion which is a convenient perspective for the development of more general
approaches. Recall the "0-constrained optimization in (1.5). The Lagrangian for-
mulation of this optimization is

min
x

{
‖y −Ax‖22 + λ‖x‖0

}
, (1.7)

where λ > 0 is the Lagrange multiplier. The optimization can be viewed as a
Bayesian procedure, where the term ‖y −Ax‖22 is the negative Gaussian log-
likelihood of x, and λ‖x‖0 is the negative log of a prior distribution on the support
of x. That is, the mass allocated to x with k non-zero elements is uniformly
distributed over the

(n
k

)
possible sparsity patterns. Minimizing the sum of these

two quantities is equivalent to solving for the Maximum a Posteriori (MAP)
estimate.
The "1-constrained optimization also has a Bayesian interpretation. The

Lagrangian form of that optimization is

min
x

{
‖y −Ax‖22 + λ‖x‖1

}
. (1.8)

In this case the prior is proportional to exp(−λ‖x‖1), which models components
of x independently with a heavy-tailed (double-exponential, or Laplace) distri-
bution. Both the "0 and "1 priors, in a sense, reflect a belief that the x we are
seeking is sparse (or approximately so) but otherwise unstructured in the sense
that all patterns of sparsity are equally probable a priori.
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1.1.4 Structured Sparsity

The Bayesian perspective also provides a natural framework for more structured
models. By modifying the prior (and hence the penalizing term in the optimiza-
tion), it is possible to encourage solutions having more structured patterns of
sparsity. A very general information-theoretic approach to this sort of problem
was provided in [7], and we adopt that approach in the following examples. Priors
can be constructed by assigning a binary code to each possible x. The prior prob-
ability of any given x is proportional to exp(−λK(x)), where λ > 0 is a constant
and K(x) is the bit-length of the code assigned to x. If A is an m× n matrix
with entries drawn independently from a symmetric binary-valued distribution,
then the expected mean square error of the estimate

x̂ = argmin
x∈X

{
‖y −Ax‖22 + λK(x)

}
(1.9)

selected by optimizing over a set X of candidates (which, for example, could be
a discretized subset of the set of all vectors in Rn with "2 norm bounded by some
specified value), satisfies

E‖x̂− x∗‖22/n ≤ Cmin
x∈X

{
‖x− x∗‖22/n+ cK(x)/m

}
. (1.10)

Here, x∗ is the vector that generated y and C, c > 0 are constants depending on
the choice of λ. The notation E denotes expectation, which here is taken with
respect to the distribution on A and the additive noise in the observation model
(1.4). The ‖x‖0 prior/penalty is recovered as a special case in which logn bits
are allocated to encode the location and value of each non-zero element of x (so
that K(x) is proportional to ‖x‖0 log n). Then the error satisfies the bound

E‖x̂− x∗‖22/n ≤ C ′‖x∗‖0 log n/m , (1.11)

for some constant C ′ > 0.
The Bayesian perspective also allows for more structured models. To illustrate,

consider a simple sparse binary signal x∗ (i.e., all non-zero components take the
value 1). If we make no assumptions on the sparsity pattern, then the location of
each non-zero component can be encoded using logn bits, resulting in a bound
of the same form as (1.11). Suppose instead that the sparsity pattern of x can
be represented by a binary tree whose vertices correspond the elements of x.
This is a common model for the typical sparsity patterns of wavelet coefficients,
for example see [8]. The tree-structured restriction means that a node can be
non-zero if and only if its “parent” node is also non-zero. Thus, each possible
sparsity pattern corresponds to a particular branch of the full binary tree. There
exist simple prefix codes for binary trees, and the codelength for a tree with k
vertices is at most 2k + 1 (see, for example, [9]). In other words, we require just
over 2 bits per component, rather than logn. Applying the general error bound
(1.10) we obtain

E‖x̂− x∗‖22/n ≤ C ′′‖x∗‖0/m , (1.12)
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for some constant C ′′ > 0 which, modulo constants, is a factor of logn bet-
ter than the bound under the unstructured assumption. Thus, we see that
the Bayesian perspective provides a formalism for handling a wider variety of
modeling assumptions and deriving performance bounds. Several authors have
explored various other approaches to exploiting structure in the patterns of spar-
sity [10, 11].
Another possibility offered by the Bayesian perspective is to customize the

sensing matrix in order to exploit more informative prior information (other
than simple unstructured sparsity) that may be known about x. This has been
formulated as a Bayesian experimental design problem [12, 13]. Roughly speak-
ing, the idea is to identify a good prior distribution for x and then optimize the
choice of the sensing matrix A in order to maximize the expected information
of the measurement. In the next section we discuss how this idea can be taken
a step further, to sequential Bayesian experimental designs that automatically
adapt the sensing to the underlying signal in an on-line fashion.

1.2 Bayesian Adaptive Sensing

The Bayesian perspective provides a natural framework for sequential adaptive
sensing, wherein information gleaned from previous measurements is used to
automatically adjust and focus the sensing. In principle the idea is very sim-
ple. Let Q1 denote a probability measure over all m× n matrices having unit
Frobenius norm in expectation. This normalization generalizes the column nor-
malization discussed earlier. It still implies that the SNR is independent of m,
but it also allows for the possibility of distributing the measurement budget
more flexibly throughout the columns. This will be crucial for adaptive sensing
procedures. For example, in many applications the sensing matrices have entries
drawn i.i.d. from a symmetric distribution (see Chapter 5 for a detailed discus-
sion of random matrices). Adaptive sensing procedures, including those discussed
in later sections of this chapter, are often also constructed from entries drawn
from symmetric, but not identical, distributions. By adaptively adjusting the
variance of the distributions used to generate the entries, these sensing matrices
can place more or less emphasis on certain components of the signal.
Now consider how we might exploit adaptivity in sparse recovery. Suppose

that we begin with a prior probability distribution p(x) for x. Initially collect a
set of measurements y ∈ Rm according to the sensing model y = Ax+ w with
A ∼ Q1, where Q1 is a prior probability distribution on m× n sensing matrices.
For example, Q1 could correspond to drawing the entries of A independently
from a common symmetric distribution. A posterior distribution for x can be
calculated by combining these data with a prior probability model for x, using
Bayes’ rule. Let p(x|y) denote this posterior distribution. It then becomes natu-
ral to ask, which sensing actions will provide the most new information about x?
In other words, we are interested in designing Q2 so that the next measurement
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using a sensing matrix A ∼ Q2 maximizes our gain in information about x. For
example, if certain locations are less likely (or even completely ruled-out) given
the observed data y, then Q2 should be designed to place little (or zero) prob-
ability mass on the corresponding columns of the sensing matrix. Our goal will
be to develop strategies that utilize information from previous measurements
to effectively “focus” the sensing energy of subsequent measurements into sub-
spaces corresponding to the true signal of interest (and away from locations of
less interest). An example depicting the notion of focused sensing is shown in
Figure 1.2.

More generally, the goal of the next sensing action should be to reduce the
uncertainty about x as much as possible. There is a large literature dealing with
this problem, usually under the topic of “sequential experiments.” The classical
Bayesian perspective is nicely summarized in the work of DeGroot [14]. He credits
Lindley [15] with first proposing the use of Shannon entropy as a measure of
uncertainty to be optimized in the sequential design of experiments. Using the
notion of Shannon entropy, the “information-gain” of an experiment can be
quantified by the change that the new data produces in the entropy associated
with the unknown parameter(s). The optimal design of a number of sequential
experiments can be defined recursively and viewed as a dynamic programming
problem. Unfortunately, the optimization is intractable in all but the most simple
situations. The usual approach, instead, operates in a greedy fashion, maximizing
the information-gain at each step in a sequence of experiments. This can be
suboptimal, but often is computationally feasible and effective.

An adaptive sensing procedure of this sort can be devised as follows. Let p(x)
denote the probability distribution of x after the (t)-th measurement step. Imag-
ine that in the (t+ 1)-th step we measure y = Ax+ e, where A ∼ Q and Q is a
distribution we can design as we like. Let p(x|y) denote the posterior distribu-
tion according to Bayes’ rule. The “information” provided by this measurement
is quantified by the Kullback-Leibler (KL) divergence of p(x) from p(x|y) which
is given by

EX

[
log

p(x|y)
p(x)

]
, (1.13)

where the expectation is with respect to the distribution of a random variable
X ∼ p(x|y). Notice that this expression is a function of y, which is undetermined
until the measurement is made. Thus, it is natural to consider the expectation
of the KL divergence with respect to the distribution of y, which depends on the
prior p(x), the distribution of the noise, and most importantly, on the choice ofQ.
Let p(y) denote the distribution of the random measurement obtained using the
observation matrix A ∼ Q. The expected information gain from a measurement
based on A is defined to be

EYQEX

[
log

p(x|y)
p(x)

]
, (1.14)
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Figure 1.2 Traditional vs. focused sensing. Panel (a) depicts a sensing vector that may
be used in a traditional non-adaptive measurement approach. The components of the
sensing vector have uniform amplitudes, implying that an equal amount of “sensing
energy” is being allocated to all locations regardless of the signal being measured.
Panel (b) depicts a focused sensing vector where most of the sensing energy is focused
on a small subset of the components corresponding to the relevant entries of the
signal.

where the outer expectation is with respect to the distribution of a random
variable YQ ∼ p(y). This suggests choosing a distribution for the sensing matrix
for the next measurement to maximize the expected information gain, that is

Qt+1 = argmax
Q

EYQEX

[
log

p(x|y)
p(x)

]
, (1.15)

where the optimization is over a space of possible distributions on m× n matri-
ces.
One useful interpretation of this selection criterion follows by observing that

maximizing the expected information gain is equivalent to minimizing the con-
ditional entropy of the posterior distribution [15]. Indeed, simplifying the above
expression we obtain

Qt+1 = argmax
Q

EYQEX

[
log

p(x|y)
p(x)

]

= argmin
Q
−EYQEX log p(x|y) + EYQEX log p(x)

= argmin
Q

H(X|YQ)−H(X)

= argmin
Q

H(X|YQ), (1.16)

where H(X) denotes the Shannon entropy and H(X|YQ) the entropy of X con-
ditional on YQ. Another intuitive interpretation of the information gain criterion
follows from the fact that

EYQEX

[
log

p(x|y)
p(x)

]
= EX,YQ

[
log

p(x, y)

p(x)p(y)

]
(1.17)
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where the right-hand side is just the mutual information between the random
variables X and YQ. Thus, the information gain criterion equivalently suggests
that the next measurements should be constructed in a way that maximizes the
mutual information between X and YQ.

Now, given this selection of Qt+1, we may draw A ∼ Qt+1, collect the next
measurement y = Ax+ e, and use Bayes’ rule to obtain the new posterior. The
rationale is that at each step we are choosing a sensing matrix that maximizes
the expected information gain, or equivalently minimizes the expected entropy
of the new posterior distribution. Ideally, this adaptive and sequential approach
to sensing will tend to focus on x so that sensing energy is allocated to the cor-
rect subspace, increasing the SNR of the measurements relative to non-adaptive
sensing. The performance could be evaluated, for example, by comparing the
result of several adaptive steps to that obtained using a single non-adaptively
chosen A.

The approach outlined above suffers from a few inherent limitations. First,
while maximizing the expected information gain is a sensible criterion for focus-
ing, the exposition makes no guarantees about the performance of such methods.
That is, one cannot immediately conclude that this procedure will lead to an
improvement in performance. Second, and perhaps more importantly in prac-
tice, selecting the sensing matrix that maximizes the expected information gain
can be computationally prohibitive. In the next few sections, we discuss sev-
eral efforts where approximations or clever choices of the prior are employed to
alleviate the computational burden of these procedures.

1.2.1 Bayesian Inference Using a Simple Generative Model

To illustrate the principles behind the implementation of Bayesian sequential
experimental design, we begin with a discussion of the approach proposed in [16].
Their work employed a simple signal model in which the signal vector x ∈ Rn

was assumed to consist of only a single nonzero entry. Despite the potential
model misspecification, this simplification enables the derivation of closed-form
expressions for model parameter update rules. It also leads to a simple and
intuitive methodology for the shaping of projection vectors in the sequential
sampling process.

1.2.1.1 Single Component Generative Model
We begin by constructing a generative model for this class of signals. This model
will allow us to define the problem parameters of interest, and to perform infer-
ence on them. First, we define L to be a random variable whose range is the set of
indices of the signal, j = {1, 2, . . . , n}. The entries of the probability mass func-
tion of L, denoted by qj = Pr(L = j), encapsulate our belief regarding which
index corresponds to the true location of the single nonzero component. The
amplitude of the single nonzero signal component is a function of its location
L, and is denoted by α. Further, conditional on the outcome L = j, we model
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the amplitude of the nonzero component as a Gaussian random variable with
location-dependent mean and variance, µj and νj , respectively. That is, the dis-
tribution of α given L = j is given by

p(α|L = j) ∼ N (µj , νj). (1.18)

Thus, our prior on the signal x is given by p(α, L), and is described by the
hyperparameters {qj , µj , νj}nj=1.
We will perform inference on the hyperparameters, updating our knowledge of

them using scalar observations collected according to the standard observation
model,

yt = Atx+ et, (1.19)

where At is a 1× n vector and the noises {et} are assumed to be i.i.d.N (0,σ2) for
some known σ > 0. We initialize the hyperparameters of the prior to qj(0) = 1/n,
µj(0) = 0, and νj(0) = σ2

0 for some specified σ0, for all j = 1, 2, . . . , n. Now, at
time step t ≥ 1, the posterior distribution for the unknown parameters at a
particular location j can be written as

p(α, L = j|yt, At) = p(α|yt, At, L = j) · qj(t− 1). (1.20)

Employing Bayes’ rule, we can rewrite the first term on the right-hand side to
obtain

p(α|yt, At, L = j) ∝ p(yt|At,α, L = j) · p(α|L = j), (1.21)

and thus the posterior distribution for the unknown parameters satisfies

p(α, L = j|yt, At) ∝ p(yt|At,α, L = j) · p(α|L = j) · qj(t− 1). (1.22)

The proportionality notation has been used to suppress the explicit specification
of the normalizing factor. Notice that, by construction, the likelihood function
p(yt|At,α, L = j) is conjugate to the prior p(α|L = j), since each is Gaussian.
Substituting in the corresponding density functions, and following some straight-
forward algebraic manipulation, we obtain the following update rules for the
hyperparameters:

µj(t) =
At,jνj(t− 1)yt + µj(t− 1)σ2

A2
t,jνj(t− 1) + σ2

, (1.23)

νj(t) =
νj(t− 1)σ2

A2
t,jνj(t− 1) + σ2

, (1.24)

qj(t) ∝
qj(t− 1)√

A2
t,jνj(t− 1) + σ2

exp

(
−1

2

(yt −At,jµj(t− 1))2

A2
t,jνj(t− 1) + σ2

)
. (1.25)

1.2.1.2 Measurement Adaptation
Now, as mentioned above, our goal here is twofold. One one hand, we want
to estimate the parameters corresponding to the location and amplitude of the
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unknown signal component. On the other hand, we want to devise a strategy
for focusing subsequent measurements onto the features of interest to boost the
performance of our inference methods. This can be accomplished by employing
the information gain criterion, that is, selecting our next measurement to be
the most informative measurement that can be made given our current state of
knowledge of the unknown quantities. This knowledge is encapsulated by our
current estimates of the problem parameters.

We adopt the criterion in (1.16), as follows. Suppose that the next measure-
ment vector At+1 is drawn from some distribution Q over 1× n vectors. Let
YQ denote the random measurement obtained using this choice of At+1. Our
goal is to select Q to minimize the conditional entropy of a random variable X
distributed according to our generative model with parameters that reflect infor-
mation obtained up to time t, given YQ. In other words, the information gain
criterion suggests that we choose the distribution from which the next sensing
vector will be drawn according to (1.16).

To facilitate the optimization, we will consider a simple construction for the
space from which Q is to be chosen. Namely, we will assume that the next
projection vector is given by the element-wise product between a random sign
vector ξ ∈ {−1, 1}n and a non-negative weight vector ψ ∈ Rn, so that At+1,j =
ξjψj . Further, we assume that the entries of the sign vector are equally likely
and independent. In other words, we will assume that the overall observation
process is as depicted in Figure 1.3, and our goal will be to determine the weight
vector ψ.

Let us focus on the objective termH(X|YQ). First, note that conditional on the
outcome yt+1, x is distributed according to a Gaussian mixture with hyperparam-
eters {qj(t), µj(t), νj(t)}nj=1. There is no closed-form expression for the entropy
of a Gaussian mixture. Instead, using the fact that the conditional differential
entropy is a lower bound for the differential entropy [17], and conditioning on
the selection of the mixture component, the upper-bound

H(X|YQ = yt) ≤ H(q) +
1

2

n∑

j=1

qj(t) log

(
2πe

(
νj(t)σ2

(ξjψj)2νj(t) + σ2

))

= H(q) +
1

2

n∑

j=1

qj(t) log

(
2πe

(
νj(t)σ2

ψ2
j νj(t) + σ2

))

can be obtained following some straightforward algebraic manipulations. Now,
notice that this bound is independent of the actual outcome of the sign vector
at location j because only the square of that term appears in the expression.
Similarly, the actual observed value yt+1 does not appear at all. Thus, we can
easily take the expectation with respect to the distribution of the observed values
to obtain

H(X|YQ) ≤ H(q) +
1

2

n∑

j=1

qj(t) log

(
2πe

(
νj(t)σ2

ψ2
j νj(t) + σ2

))
(1.26)
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Now, we consider choosing the weights ψj for j = 1, 2, . . . , n by optimizing over
this upper bound:

ψ = arg min
z∈Rn:‖z‖2=1

H(p) +
1

2

n∑

j=1

qj(t) log

(
2πe

(
νj(t)σ2

z2j νj(t) + σ2

))

= arg max
z∈Rn:‖z‖2=1

n∑

j=1

qj(t) log
(
z2j νj(t) + σ2

)
. (1.27)

This optimization can be solved by a simple application of Lagrange multipliers,
but it is perhaps more illustrative to consider one further simplification that is
appropriate in low-noise settings. In particular, let us assume that σ2 ≈ 0, then
the optimization becomes

ψ = arg max
z∈Rn:‖z‖2=1

n∑

j=1

qj(t) log
(
z2j
)
. (1.28)

Now, it is easy to show that the objective in this simplified formulation is max-
imized by selecting zj =

√
qj(t).

The focusing criterion obtained here is generally consistent with our intuition
for this problem. It suggests that the amount of “sensing energy” that should
be allocated to a given location j be proportional to our current belief that the
nonzero signal component is indeed at location j. Initially, when we assume that
the location of the nonzero component is uniformly distributed among the set
of indices, this criterion instructs us to allocate our sensing energy uniformly, as
is the case in traditional “non-adaptive” CS methods. On the other hand, as we
become more confident in our belief that we have identified a set of promising
locations at which the the nonzero component could be present, the criterion
suggests that we focus our energy on those locations to reduce the measurement
uncertainty (ie, to obtain the highest SNR measurements possible).
The procedure outlined here can be extended, in a straightforward way, to set-

tings where the unknown vector x has multiple nonzero entries. The basic idea
is to identify the nonzero entries of the signal one-at-a-time, using a sequence of
iterations of the proposed procedure. For each iteration, the procedure is exe-
cuted as described above until one entry of the posterior distribution for the
location parameter exceeds a specified threshold τ ∈ (0, 1). That is, the current
iteration of the sequential sensing procedure terminates when the posterior like-
lihood of a true nonzero component at any of the locations becomes large, which
corresponds to the event that qj(t) > τ for any j ∈ {1, 2, . . . , n}, for a specified
τ that we choose to be close to 1. At that point, we conclude that a nonzero sig-
nal component is present at the corresponding location. The sequential sensing
procedure is then restarted and the parameters {qj , µj , νj}nj=1 are reinitialized,
except that the initial values of {qj}nj=1 are set to zero at locations identified
as signal components in previous iterations of the procedure, and uniformly dis-
tributed over the remaining locations. The resulting multi-step procedure is akin
to an “onion peeling” process.
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Figure 1.3 Block diagram of the adaptive focusing procedure. Previous observations
are utilized to “shape” the weights associated with each location of the random
vectors which will be used in the sensing process.

1.2.2 Bayesian Inference Using Multi-Component Models

The simple single-component model for the unknown signal x described above is
but one of many possible generative models that might be employed in a Bayesian
treatment of the sparse inference problem. Another, perhaps more natural, option
is to employ a more sophisticated model that explicitly allows for the signal to
have multiple nonzero components.

1.2.2.1 Multi-component Generative Model
As discussed above, a widely used sparsity promoting prior is the Laplace dis-
tribution,

p(x|λ) =
(
λ

2

)n

· exp



−λ
n∑

j=1

|xj |



 . (1.29)

From an analytical perspective in Bayesian inference, however, this particular
choice of prior on x can lead to difficulties. In particular, under a Gaussian
noise assumption, the resulting likelihood function for the observations (which
is conditionally Gaussian given x and the projection vectors) is not conjugate to
the Laplace prior, and so closed-form update rules cannot be easily obtained.

Instead, here we discuss the method that was examined in [18], which utilizes
a hierarchical prior on the signal x, similar to a construction proposed in the
context of sparse Bayesian learning in [19]. As before, we begin by constructing
a generative model for the signal x. To each xj , j = 1, 2, . . . , n, we associate a
parameter ρj > 0. The joint distribution of the entries of x, conditioned on the
parameter vector ρ = (ρ1, ρ2, . . . , ρn), is given in the form of a product distribu-
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tion,

p(x|ρ) =
n∏

j=1

p(xj |ρj), (1.30)

and we let p(xj |ρj) ∼ N (0, ρ−1j ). Thus, we may interpret the ρj as precision or
“inverse variance” parameters. In addition, we impose a prior on the entries of
ρ, as follows. For global parameters α,β > 0, we set

p(ρ|α,β) =
n∏

j=1

p(ρj |α,β), (1.31)

where p(ρj |α,β) ∼ Gamma(α,β) is distributed according to a Gamma distribu-
tion with parameters α and β. That is,

p(ρj |α,β) =
ρα−1j βα exp(−βρj)

Γ(α)
, (1.32)

where

Γ(α) =

∫ ∞

0
zα−1 exp(−z)dz (1.33)

is the Gamma function. As in the previous section we will assume that the
noise is Gaussian-distributed, but here we also impose a Gamma prior on the
distribution of the noise precision, resulting in a hierarchical prior similar to
that utilized for the signal vector. Formally, we model our observations using the
standard matrix-vector formulation,

y = Ax+ e, (1.34)

where y ∈ Rm and A ∈ Rm×n, and we let p(e|ρ0) ∼ N (0, ρ0Im×m), and
p(ρ0|γ, δ) ∼ Gamma(γ, δ). A graphical summary of the generative signal and
observation models is depicted in Figure 1.4.
Now, the hierarchical model was chosen primarily to facilitate analysis, since

the Gaussian prior on the signal components is conjugate to the Gaussian (con-
ditional) likelihood of the observations. Generally speaking, a Gaussian prior
itself will not promote sparsity; however, incorporating the effect of the Gamma
hyperprior lends some additional insight into the situation here. By marginal-
izing over the parameters ρ, we can obtain an expression for the overall prior
distribution of the signal components in terms of the parameters α and β,

p(x|α,β) =
n∏

j=1

∫ ∞

0
p(xj |ρj) · p(ρj |α,β)dρj . (1.35)
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The integral(s) can be evaluated directly, giving

p(xj |α,β) =
∫ ∞

0
p(xj |ρj) · p(ρj |α,β)dρj

=
βαΓ(α+ 1/2)

(2π)1/2Γ(α)

(
β +

x2
j

2

)−(α+1/2)

. (1.36)

In other words, the net effect of the prescribed hierarchical prior on the signal
coefficients is that of imposing a Student-t prior distribution on each signal
component. The upshot is that, for certain choices of the parameters α and β,
the product distribution can be strongly-peaked about zero, similar (in spirit)
to the Laplace distribution—see [19] for further discussion.

Given the hyperparameters ρ and ρ0, as well as the observation vector y and
corresponding measurement matrix A, the posterior for x is conditionally a mul-
tivariate Gaussian distribution with mean µ and covariance matrix Σ. Letting
R = diag(ρ), and assuming that the matrix

(
ρ0ATA+R

)
is full-rank, we have

Σ =
(
ρ0A

TA+R
)−1

, (1.37)

and

µ = ρ0ΣA
T y. (1.38)

The goal of the inference procedure, then, is to estimate the hyperparameters ρ
and ρ0 from the observed data y. From Bayes’ rule, we have that

p(ρ, ρ0|y) ∝ p(y|ρ, ρ0)p(ρ)p(ρ0). (1.39)

Now, following the derivation in [19], we consider improper priors obtained by
setting the parameters α,β, γ, and δ all to zero, and rather than seeking a fully-
specified posterior for the hyperparameters we instead obtain point estimates
via a maximum likelihood procedure. In particular, the maximum likelihood
estimates of ρ and ρ0 are obtained by maximizing

p(y|ρ, ρ0) = (2π)−m/2

∣∣∣∣
1

ρ0
Im×m +AR−1AT

∣∣∣∣
−1/2

exp

{
−1

2
yT

(
1

ρ0
Im×m +AR−1AT

)−1
y

}
. (1.40)

This yields the the following update rules:

ρnewj =
1− ρjΣj,j

µ2
j

, (1.41)

ρnew0 =
m−

∑n
j=1 (1− ρjΣj,j)

‖y −Aµ‖22
. (1.42)

Overall, the inference procedure alternates between solving for ρ0 and ρ as func-
tions of µ and Σ using (1.41) and (1.42), and solving for µ and Σ as functions
of ρ0 and ρ using (1.37) and (1.38).
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Figure 1.4 Graphical model associated with the multi-component Bayesian CS model.

1.2.2.2 Measurement Adaptation
As in the previous section, we may devise a sequential sensing procedure by first
formulating a criterion under which the next projection vector can be chosen
to be the most informative. Let us denote the distribution of x given the first t
measurements by p(x). Suppose that the (t+ 1)-th measurement is obtained by
projecting onto a vector At+1 ∼ Q, and let p(x|y) denote the posterior. Now, the
criterion for selecting the distribution Qt+1 from which the next measurement
vector should be drawn is given by (1.16). As in the previous example, we will
simplify the criterion by first restricting the space of distributions over which the
objective is to be optimized. In this case, we will consider a space of degenerate
distributions. We assume that each Q corresponds to a distribution that takes a
deterministic value Q ∈ Rn with probability one, where ‖Q‖2 = 1. The goal of
the optimization, then, is to determine the “direction” vector Q.
Recall that by construction, given the hyperparameters ρ0 and ρ the signal x

is multivariate Gaussian with mean and variance µ and Σ as given in (1.38) and
(1.37), respectively. The hierarchical prior(s) imposed on the hyperparameters
ρ0 and ρ make it difficult to evaluate H(X|YQ) directly. Instead, we simplify the
problem further by assuming that x is unconditionally Gaussian (ie, ρ0 and ρ are
deterministic and known). In this case the objective function of the information
gain criterion can be evaluated directly, and the criterion for selecting the next
measurement vector becomes

At+1 = arg min
Q∈Rn,‖Q‖2=1

−1

2
log

(
1 + ρ0QΣQ

T
)
, (1.43)

where Σ and ρ0 reflect the knowledge of the parameters up to time t. From this
it is immediately obvious that At+1 should be in the direction of the eigenvector
corresponding to the largest eigenvalue of the covariance matrix Σ.
As with the simple single-component signal model case described in the pre-

vious section, the focusing rule obtained here also lends itself to some intuitive
explanations. Recall that at a given step of the sequential sensing procedure, Σ
encapsulates our knowledge of both our level of uncertainty about which entries
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of the unknown signal are relevant as well as our current level of uncertainty
about the actual component value. In particular, note that under the zero-mean
Gaussian prior assumption on the signal amplitudes large values of the diagonal
entries of R can be understood to imply the existence of a true nonzero signal
component at the corresponding location. Thus, the focusing criterion described
above suggests that we focus our sensing energy onto locations at which we are
both fairly certain that a signal component is present (as quantified by large
entries of the diagonal matrix R), and fairly uncertain about its actual value
because of the measurement noise (as quantified by the ρ0ATA term in (1.37)).
Further, the relative contribution of each is determined by the level of the addi-
tive noise or, more precisely, our current estimate of it.

1.2.3 Quantifying Performance

The adaptive procedures discussed in the previous sections can indeed provide
realizable performance improvements relative to non-adaptive CS methods. It
has been shown, via simulation, that these adaptive sensing procedures can out-
perform traditional CS in noisy settings. For example, adaptive methods can pro-
vide a reduction in mean-square reconstruction error, relative to non-adaptive
CS, in situations where each utilizes the same total number of observations.
Similarly, it has been shown that in some settings adaptive methods can achieve
the same error performance as non-adaptive methods using a smaller number of
measurements. We refer the reader to [16, 18], as well as [20, 21] for extensive
empirical results and more detailed performance comparisons of these proce-
dures.

A complete analysis of these adaptive sensing procedures would ideally also
include an analytical performance evaluation. Unfortunately, it appears to be
very difficult to devise quantitative error bounds, like those known for non-
adaptive sensing, for Bayesian sequential methods. Because each sensing matrix
depends on the data collected in the previous steps, the overall process is riddled
with complicated dependencies that prevent the use of the usual approaches to
obtain error bounds based, for example, on concentration of measure and other
tools.

In the next section, we present a recently-developed alternative to Bayesian
sequential design called distilled sensing (DS). In essence, the DS framework
encapsulates the spirit of sequential Bayesian methods, but uses a much sim-
pler strategy for exploiting the information obtained from one sensing step to
the next. The result is a powerful, computationally efficient procedure that is
also amenable to analysis, allowing us to quantify the dramatic performance
improvements that can be achieved through adaptivity.
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1.3 Quasi-Bayesian Adaptive Sensing

In the previous section, the Bayesian approach to adaptive sensing was discussed,
and several examples were reviewed to show how this approach might be imple-
mented in practice. The salient aspect of these techniques, in essence, was the use
of information from prior measurements to guide the acquisition of subsequent
measurements in an effort to obtain samples that are most informative. This
results in sensing actions that focus sensing resources toward locations that are
more likely to contain signal components, and away from locations that likely
do not. While this notion is intuitively pleasing, its implementation introduces
statistical dependencies that make an analytical treatment of the performance
of such methods quite difficult.
In this section we discuss a recently-developed adaptive sensing procedure

called distilled sensing (DS) [22] which is motivated by Bayesian adaptive sens-
ing techniques, but also has the added benefit of being amenable to theoretical
performance analysis. The DS procedure is quite simple, consisting of a num-
ber of iterations, each of which is comprised of an observation stage followed
by a refinement stage. In each observation stage, measurements are obtained at
a set of locations which could potentially correspond to nonzero components.
In the corresponding refinement stage, the set of locations at which observa-
tions were collected in the measurement stage is partitioned into two disjoint
sets—one corresponding to locations at which additional measurements are to
be obtained in the next iteration, and a second corresponding to locations to sub-
sequently ignore. This type of adaptive procedure was the basis for the example
in Figure 1.1. The refinement strategy utilized in DS is a sort of “poor-man’s
Bayesian” methodology intended to approximate the focusing behavior achieved
by methods that employ the information gain criterion. The upshot here is that
this simple refinement is still quite effective at focusing sensing resources toward
locations of interest. In this section we examine the performance guarantees that
can be attained using the DS procedure.
For the purposes of comparison, we begin with a brief discussion of the perfor-

mance limits for non-adaptive sampling procedures, expanding on the discussion
of the denoising problem in Section 1.1.1. We then present and discuss the DS
procedure in some detail, and we provide theoretical guarantees on its perfor-
mance which quantify the gains that can be achieved via adaptivity. In the last
subsection we discuss extensions of DS to underdetermined compressed sensing
observation models, and we provide some preliminary results on that front.

1.3.1 Denoising using Non-Adaptive Measurements

Consider the general problem of recovering a sparse vector x ∈ Rn from its sam-
ples. Let us assume that the observations of x are described by the simple model

y = x+ e, (1.44)
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where e ∈ Rn represents a vector of additive perturbations, or “noise.” The signal
x is assumed to be sparse, and for the purposes of analysis in this section we
will assume that all the non-zero components of x take the same value µ > 0.
Even with this restriction on the form of x, we will see that non-adaptive sensing
methods cannot reliably recover signals unless the amplitude µ is considerably
larger than the noise level. Recall that the support of x, denoted by S = S(x) =
supp(x), is defined to be the set of all indices at which the vector x has a
nonzero component. The sparsity level ‖x‖0 is simply the cardinality of this set,
‖x‖0 = |S|. To quantify the effect of the additive noise, we will suppose that the
entries of e are i.i.d. N (0, 1). Our goal will be to perform support recovery (also
called model selection), or to obtain an accurate estimate of the support set of
x, using the noisy data y. We denote our support estimate by Ŝ = Ŝ(y).

Any estimation procedure based on noisy data is, of course, subject to error.
To assess the quality of a given support estimate Ŝ, we define two metrics to
quantify the two different types of errors that can occur in this setting. The
first type of error corresponds to the case where we declare that nonzero signal
components are present at some locations where they are not, and we refer to
such mistakes as false discoveries. We quantify the number of these errors using
the false discovery proportion (FDP), defined here as

FDP(Ŝ) :=
|Ŝ\S|
|Ŝ|

, (1.45)

where the notation Ŝ\S denotes the set difference. In words, the FDP of Ŝ
is the ratio of the number of components falsely declared as non-zero to the
total number of components declared non-zero. The second type of error occurs
when we decide that a particular location does not contain a true nonzero signal
component when it actually does. We refer to these errors as non-discoveries,
and we quantify them using the non-discovery proportion (NDP), defined as

NDP(Ŝ) :=
|S\Ŝ|
|S| . (1.46)

In words, the NDP of Ŝ is the ratio of the number of non-zero components missed
to the number of actual non-zero components. For our purposes, we will consider
a testing procedure to be effective if its errors in these two metrics are suitably
small.

In contrast to the Bayesian treatments discussed above, here we will assume
that x is fixed, but it is otherwise unknown. Recall that by assumption the
nonzero components of x are assumed to be nonnegative. In this case it is natural
to focus on a specific type of estimator for S, which is obtained by applying a
simple, coordinate-wise, one-sided thresholding test to the outcome of each of
the observations. In particular, the support estimate we will consider here is

Ŝ = Ŝ(y, τ) = {j : yj > τ}, (1.47)

where τ > 0 is a specified threshold.
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To quantify the error performance of this estimator, we examine the behavior
of the resulting FDP and NDP for a sequence of estimation problems indexed
by the dimension parameter n. Namely, for each value of n, we consider the
estimation procedure applied to a signal x ∈ Rn having k = k(n) nonzero entries
of amplitude µ = µ(n), observed according to (1.44). Analyzing the procedure
for increasing values of n is a common approach to quantify performance in high-
dimensional settings, as a function of the corresponding problem parameters. To
that end we consider letting n tend to infinity to identify a critical value of the
signal amplitude µ below which the estimation procedure fails, and above which
it succeeds. The result is stated here as a theorem [23, 22].

Theorem 1.1. Assume x has n1−β non-zero components of amplitude µ =√
2r log n for some β ∈ (0, 1) and r > 0. If r > β, there exists a coordinate-wise

thresholding procedure with corresponding threshold value τ(n) that yields an
estimator Ŝ for which

FDP(Ŝ) P→ 0 , NDP(Ŝ) P→ 0 , (1.48)

as n→∞, where
P→ denotes convergence in probability. Moreover, if r < β, then

there does not exist a coordinate-wise thresholding procedure that can guarantee
that both the FDP and NDP tend to 0 as n→∞.

This result can be easily extended to settings where the nonzero entries of x
are both positive and negative, and may also have unequal amplitudes. In those
cases, an analogous support estimation procedure can be devised which applies
the threshold test to the magnitudes of the observations. Thus, Theorem 1.1 can
be understood as a formalization of the general statement made in Section. 1.1.1
regarding the denoising problem. There it was argued, based on simple Gaussian
tail bounds, that the condition µ ≈

√
2 log n was required in order to reliably

identify the locations of the relevant signal components from noisy entry-wise
measurements. The above result was obtained using a more sophisticated anal-
ysis, though the behavior with respect to the problem dimension n is the same.
In addition, and perhaps more interestingly, Theorem 1.1 also establishes a con-
verse result—that reliable recovery from non-adaptive measurements is impos-
sible unless µ increases in proportion to

√
log n as n gets large. This result gives

us a baseline with which to compare the performance of adaptive sensing, which
is discussed in the following section.

1.3.2 Distilled Sensing

We begin our discussion of the distilled sensing procedure by introducing a slight
generalization of the sampling model (1.44). This will facilitate explanation of the
procedure and allow for direct comparison with non-adaptive methods. Suppose
that we are able to collect measurements of the components of x in a sequence



22 Chapter 1. Adaptive Sensing for Sparse Recovery

of T observation steps, according to the model

yt,j = xj + ρ−1/2t,j et,j , j = 1, 2, . . . , n, t = 1, 2, . . . , T, (1.49)

where et,j are i.i.d. N (0, 1) noises, t indexes the observation step, and the ρt,j
are non-negative “precision” parameters that can be chosen to modify the noise
variance associated with a given observation. In other words, the variance of
additive noise associated with observation yt,j is ρ−1t,j , so larger values of ρt,j
correspond to more precise observations. Here, we adopt the convention that
setting ρt,j = 0 for some pair (t, j) means that component j is not observed at
step t.

This multi-step observation model has natural practical realizations. For exam-
ple, suppose that observations are obtained by measuring at each location one
or more times and averaging the measurements. Then

∑
t,j ρt,j expresses a con-

straint on the total number of measurements that can be made. This mea-
surement budgetcan be distributed uniformly over the locations (as in non-
adaptive sensing), or non-uniformly and adaptively. Alternatively, suppose that
each observation is based on a sensing mechanism that integrates over time to
reduce noise. The quantity

∑
t,j ρt,j , in this case, corresponds to a constraint on

the total observation time. In any case, the model encapsulates an inherent flex-
ibility in the sampling process, in which sensing resources may be preferentially
allocated to locations of interest. Note that, by dividing through by ρt,j > 0,

we arrive at an equivalent observation model, ỹt,j = ρ1/2t,j xj + et,j , which fits the
general linear observation model utilized in the previous sections. Our analysis
would proceed similarly in either case; we choose to proceed here using the model
as stated in (1.49) because of its natural interpretation.

To fix the parameters of the problem, and to facilitate comparison with non-
adaptive methods, we will impose a constraint on the overall measurement bud-
get. In particular, we assume that

∑T
t=1

∑n
j=1 ρt,j ≤ B(n). In the case T = 1

and ρ1,j = 1 for j = 1, 2, . . . , n, which corresponds to the choice B(n) = n, the
model (1.49) reduces to the canonical non-adaptive observation model (1.44).
For our purposes here we will adopt the same measurement budget constraint,
B(n) = n.

With this framework in place, we now turn to the description of the DS proce-
dure. To begin, we initialize by selecting the number of observation steps T that
are to be performed. The total measurement budget B(n) is then divided among
the T steps so that a portion Bt is allocated to the t-th step, for t = 1, 2, . . . , T ,
and

∑T
t=1 Bt ≤ B(n). The set of indices to be measured in the first step is ini-

tialized to be the set of all indices, I1 = {1, 2, . . . , n}. Now, the portion of the
measurement budget B1 designated for the first step is allocated uniformly over
the indices to be measured, resulting in the precision allocation ρ1,j = B1/|I1| for
j ∈ I1. Noisy observations are collected, with the given precision, for each entry
j ∈ I1. The set of observations to be measured in the next step, I2, is obtained
by applying a simple threshold test to each of the observed values. Specifically,
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Algorithm 1.1 (Distilled sensing).

Input:
Number of observation steps T

Resource allocation sequence {Bt}Tt=1 satisfying
∑T

t=1 Bt ≤ B(n)

Initialize:
Initial index set I1 = {1, 2, . . . , n}

Distillation:
For t = 1 to T

Allocate resources: ρt,j =

{
Bt/|It| j ∈ It

0 j /∈ It

}

Observe: yt,j = xj + ρ−1/2t,j et,j , j ∈ It
Refine: It+1 = {j ∈ It : yt,j > 0}

End for

Output:
Final index set IT
Distilled observations yT = {yT,j : j ∈ IT }

we identify the locations to be measured in the next step as those corresponding
to observations that are strictly greater than zero, giving I2 = {j ∈ I1 : yj > 0}.
This procedure is repeated for each of the T measurement steps, where (as stated
above) the convention ρt,j = 0 implies that the signal component at location j
is not observed in measurement step t. The output of the procedure consists of
the final set of locations measured, IT , and the observations collected at those
locations yT,j , j ∈ IT . The entire process is summarized as Algorithm 1.1.
A few aspects of the DS procedure are worth further explanation. First, we

comment on the apparent simplicity of the refinement step, which identifies the
set of locations to be measured in the subsequent observation step. This simple
criterion encapsulates the notion that, given that the nonzero signal components
are assumed to have positive amplitude, we expect that their corresponding noisy
observation should be nonnegative as well. Interpreting this from a Bayesian
perspective, the hard-thresholding selection operation encapsulates the idea that
the probability of yt,j > 0 given xj = µ and ρt,j > 0 is approximately equal to
one. In reality, using a standard bound on the tail of the Gaussian distribution,
we have that

Pr(yt,j > 0|ρt,j > 0, xj = µ) ≥ 1− exp

(
−ρt,jµ

2

2

)
, (1.50)
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suggesting that the quality of this approximation may be very good, depending
on the particular values of the signal amplitude µ and the precision parameter
for the given observation, ρt,j .

Second, as in the simple testing problem described in Section 1.3.1, the DS
procedure can also be extended in a straight-forward way to account for signals
with both positive and negative entries. One possible approach would be to
further divide the measurement budget allocation for each step Bt in half, and
then perform the whole DS procedure twice. For the first pass, the procedure
is performed as stated in Algorithm 1.1 with the goal of identifying positive
signal components. For the second pass, replacing the refinement criterion by
It+1 = {i ∈ It : yt,j < 0} would enable the procedure to identify the locations
corresponding to negative signal components.

1.3.2.1 Analysis of Distilled Sensing
The simple adaptive behavior of DS, relative to a fully-Bayesian treatment of
the problem, renders the procedure amenable to analysis. As in Section 1.3.1,
our objects of interest here will be sparse vectors x ∈ Rn having n1−β nonzero
entries, where β ∈ (0, 1) is a fixed (and typically unknown) parameter. Recall
that our goal is to obtain an estimate Ŝ of the signal support S, for which the
errors as quantified by the False Discovery Proportion (1.45) and Non-Discovery
Proportion (1.46) are simultaneously controlled. The following result shows that
the DS procedure results in significant improvements over the comparable non-
adaptive testing procedure using the same measurement budget [22]. This is
achieved by carefully calibrating the problem parameters, i.e., the number of
observation steps T and the measurement budget allocation {Bt}Tt=1.

Theorem 1.2. Assume x has n1−β non-zero components, where β ∈ (0, 1) is
fixed, and that each nonzero entry has amplitude exceeding µ(n). Sample x using
the distilled sensing procedure with! T = T (n) = max{0log2 log n1, 0}+ 2 measurement steps,! measurement budget allocation {Bt}Tt=1 satisfying

∑T
t=1 Bt ≤ n, and for which

– Bt+1/Bt ≥ δ > 1/2, and
– B1 = c1n and BT = cT n for some c1, cT ∈ (0, 1)

If µ(n)→∞ as a function of n, then the support set estimator constructed using
the output of the DS algorithm

ŜDS := {j ∈ IT : yT,j >
√

2/cT } (1.51)

satisfies

FDP(ŜDS)
P→ 0 , NDP(ŜDS)

P→ 0, (1.52)

as n→∞.
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This result can be compared directly to the result of Theorem 1.1, where it was
shown that the errors associated with the estimator obtained from non-adaptive
observations would converge to zero in probability only in the case µ >

√
2β log n.

In contrast, the result of Theorem 1.2 states that the same performance metrics
can be met for an estimator obtained from adaptive samples, under the much
weaker constraint µ(n)→∞. This includes signals whose nonzero components
have amplitude on the order of µ ∼

√
log log n, or µ ∼

√
log log log · · · log n, in

fact, the result holds if µ(n) is any arbitrarily slowly growing function of n. If we
interpret the ratio between the squared amplitude of the nonzero signal compo-
nents and the noise variance as the SNR, the result in Theorem 1.2 establishes
that adaptivity can provide an improvement in effective SNR of up to a factor
of log n over comparable non-adaptive methods. This improvement can be very
significant in high-dimensional testing problems where n can be in the hundreds
or thousands, or more.
Interpreted another way, the result of Theorem 1.2 suggests that adaptivity

can dramatically mitigate the “curse of dimensionality,” in the sense that the
error performance for DS exhibits much less dependence on the ambient signal
dimension than does the error performance for non-adaptive procedures. This
effect is demonstrated in finite-sample regimes by the simulation results in Fig-
ure 1.5. Each panel of the figure depicts a scatter plot of the FDP and NDP
values resulting from 1000 trials of both the adaptive DS procedure, and the non-
adaptive procedure whose performance was quantified in Theorem 1.1. Each trial
used a different (randomly-selected) threshold value to form the support esti-
mate. Panels (a)-(d) correspond to four different values of n: n = 210, 213, 216,
and 219, respectively. In all cases, the signals being estimated have 128 nonzero
entries of amplitude µ, and the SNR is fixed by the selection µ2 = 8. For each
value of n, the measurement budget allocation parameters Bt were chosen so that
Bt+1 = 0.75Bt for t = 1, . . . , T − 2, B1 = BT , and

∑T
t=1 Bt = n. Comparing the

results across panels, we see that the error performance of the non-adaptive pro-
cedure degrades significantly as a function of the ambient dimension, while the
error performance of DS is largely unchanged across 9 orders of magnitude. This
demonstrates the effectiveness of DS for acquiring high-precision observations
primarily at the signal locations of interest.
The analysis of the DS procedure relies inherently upon two key ideas pertain-

ing to the action of the refinement step(s) at each iteration. First, for any iteration
of the procedure, observations collected at locations where no signal component
is present will be independent samples of a zero-mean Gaussian noise process.
Despite the fact that the variance of the measured noise will depend on the allo-
cation of sensing resources, the symmetry of the Gaussian distribution ensures
that the value obtained for each such observation will be (independently) posi-
tive with probability 1/2. This notion can be made formal by a straightforward
application of Hoeffding’s inequality.
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Figure 1.5 The curse of dimensionality and the virtue of adaptivity. Each panel
depicts a scatter plot of FDP and NDP values resulting for non-adaptive sensing (•)
and the adaptive DS procedure (∗). Not only does DS outperform the non-adaptive
method, it exhibits much less dependence on the ambient dimension.

Lemma 1.1. Let {yj}mj=1
iid∼ N (0,σ2). For any 0 < ε < 1/2, the number of yj

exceeding zero satisfies
(
1

2
− ε

)
m ≤

∣∣∣∣

{
j ∈ {1, 2, . . . ,m} : yj > 0

}∣∣∣∣ ≤
(
1

2
+ ε

)
m, (1.53)

with probability at least 1− 2 exp (−2mε2).

In other words, each refinement step will eliminate about half of the (remain-
ing) locations at which no signal component is present with high probability.

The second key idea is that the simple refinement step will not incorrectly
eliminate too many of the locations corresponding to nonzero signal components
from future consideration. A formal statement of this result, which is fundamen-
tally a statement about the tails of the Binomial distribution , is given in the
following lemma [22]. The proof is repeated here for completeness.
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Lemma 1.2. Let {yj}mj=1
iid∼ N (µ,σ2) with σ > 0 and µ > 2σ. Let

δ =
σ

µ
√
2π

, (1.54)

and note that δ < 0.2, by assumption. Then,

(1− δ)m ≤
∣∣∣∣

{
j ∈ {1, 2, . . . ,m} : yj > 0

}∣∣∣∣ ≤ m, (1.55)

with probability at least

1− exp

(
− µm

4σ
√
2π

)
. (1.56)

Proof. Let q = Pr(yj > 0). Using a standard bound on the tail of the Gaussian
distribution, we have

1− q ≤ σ

µ
√
2π

exp

(
− µ2

2σ2

)
. (1.57)

Next, we employ the Binomial tail bound from [24]: for any 0 < b <
E[
∑m

j=1 1{yj>0}] = mq,

Pr




m∑

j=1

1{yj>0} ≤ b



 ≤
(
m−mq

m− b

)m−b (mq

b

)b
. (1.58)

Note that δ > 1− q (or equivalently, 1− δ < q), so we can apply the Binomial
tail bound to the sum

∑m
j=1 1{yj>0} with b = (1− δ)m to obtain

Pr




m∑

j=1

1{yj>0} ≤ (1− δ)m



 ≤
(
1− q

δ

)δm(
q

1− δ

)(1−δ)m
(1.59)

≤ exp

(
−µ2δm

2σ2

)(
1

1− δ

)(1−δ)m
. (1.60)

Now, to establish the stated result, it suffices to show that

exp

(
−µ2δm

2σ2

)(
1

1− δ

)(1−δ)m
≤ exp

(
− µm

4σ
√
2π

)
. (1.61)

Taking logarithms and dividing through by δm, the condition to establish
becomes

− µ2

2σ2
+

(
1− δ

δ

)
log

(
1

1− δ

)
≤ − µ

4δσ
√
2π

= − µ2

4σ2
, (1.62)
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where the last equality follows from the definition of δ. The bound holds provided
µ ≥ 2σ, since 0 < δ < 1 and

(
1− δ

δ

)
log

(
1

1− δ

)
≤ 1 (1.63)

for δ ∈ (0, 1).

Overall, the analysis of the DS procedure entails the repeated application
of these two lemmas across iterations of the procedure. Note that the result
in Lemma 1.1 is independent of the noise power, while the parameter δ in
Lemma 1.2 is a function of both the signal amplitude and the observation noise
variance. The latter is a function of how the sensing resources are allocated to
each iteration and how many locations are being measured in that step. In other
words, statistical dependencies are present across iterations with this procedure,
as in the case of the Bayesian methods described above. However, unlike in the
Bayesian methods, here the dependencies can be tolerated in a straight-forward
manner by conditioning on the output of the previous iterations of the procedure.

Rather than presenting the full details of the proof here, we instead provide a
short sketch of the general idea. To clarify the exposition, we will find it useful
to fix some additional notation. First, we let St = |S ∩ It| be the number of
locations corresponding to nonzero signal components that are to be observed in
step t. Similarly, let Nt = |Sc ∩ It| = |It|− St denote the number of remaining
locations that are to be measured in the (t)-th iteration. Let σ1 =

√
|I1|/B1

denote the standard deviation of the observation noise in the first iteration, and
let δ1 be the corresponding quantity from Lemma 1.2 described in terms of the
quantity σ1. Notice that since the quantity |I1| is fixed and known, the quantities
σ1 and δ1 are deterministic.

Employing Lemmas 1.1 and 1.2, we determine that the result of the refinement
step in the first iteration is that for any 0 < ε < 1/2, the bounds (1− δ1)S1 ≤
S2 ≤ S1 and (1/2− ε)N1 ≤ N2 ≤ (1/2 + ε)N1 hold simultaneously, except in an
event of probability no greater than

2 exp (−2N1ε
2) + exp

(
− µS1

4σ1
√
2π

)
. (1.64)

To evaluate the outcome of the second iteration, we condition on the event
that the bounds on S2 and N2 stated above hold. In this case, we can obtain
bounds on the quantity I2 = S2 +N2, which in turn imply an upper bound
on the variance of the observation noise in the second iteration. Let σ2 denote
such a bound, and δ2 its corresponding quantity from Lemma 1.2. Following
the second iteration step, we have that the bounds (1− δ1)(1− δ2)S1 ≤ S3 ≤ S1

and (1/2− ε)2 N1 ≤ N3 ≤ (1/2 + ε)2 N1 hold simultaneously, except in an event
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of probability no greater than

2 exp (−2N1ε
2) + exp

(
− µS1

4σ1
√
2π

)
+ (1.65)

2 exp (−2(1− ε)N1ε
2) + exp

(
−µ(1− δ1)S1

4σ2
√
2π

)
. (1.66)

The analysis proceeds in this fashion, by iterated applications of Lemmas 1.1
and 1.2 conditioned on the outcome of all previous refinement steps. The end
result is a statement quantifying the probability that the bounds

∏T−1
t=1 (1−

δt)S1 ≤ ST ≤ S1 and (1/2− ε)T−1 N1 ≤ Ns ≤ (1/2 + ε)T−1 N1 hold simultane-
ously following the refinement step in the (T − 1)-st iteration, prior to the (T )-th
observation step. It follows that the final testing problem is equivalent in struc-
ture to a general testing problem of the form considered in Section 1.1.1, but with
a different effective observation noise variance. The final portion of the proof of
Theorem 1.2 entails a careful balancing between the design of the resource allo-
cation strategy, the number of observation steps T , and the specification of the
parameter ε. The goal is to ensure that as n→∞ the stated bounds on ST and
NT are valid with probability tending to one, the fraction of signal components
missed throughout the refinement process tends to zero, and the effective vari-
ance of the observation noise for the final set of observations is small enough to
enable the successful testing of signals with very weak features. The full details
can be found in [22].

1.3.3 Distillation in Compressed Sensing

While the results above demonstrate that adaptivity in sampling can provide a
tremendous improvement in effective measurement SNR in certain sparse recov-
ery problems, the benefits of adaptivity are somewhat less clear with respect
to the other problem parameters. In particular, the comparison outlined above
was made on the basis that each procedure was afforded the same measurement
budget, as quantified by a global quantity having a natural interpretation in the
context of a total sample budget or a total time constraint. Another basis for
comparison would be the total number of measurements collected with each pro-
cedure. In the non-adaptive method in Section 1.3.1, a total of n measurements
were collected (one per signal component). In contrast, the number of measure-
ments obtained via the DS procedure is necessarily larger, since each component
is directly measured at least once, and some components may be measured up
to a total of T times—once for each iteration of the procedure. Strictly speak-
ing, the total number of measurements collected during the DS procedure is a
random quantity which depends implicitly on the outcome of the refinements at
each step, which in turn are functions of the noisy measurements. However, our
high-level intuition regarding the behavior of the procedure allows us to make
some illustrative approximations. Recall that each refinement step eliminates (on
average) about half of the locations at which no signal component is present. Fur-
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ther, under the sparsity level assumed in our analysis, the signals being observed
are vanishingly sparse—that is, the fraction of locations of x corresponding to
non-zero components tends to zero as n→∞. Thus, for large n, the number of
measurements collected in the t-th step of the DS procedure is approximately
given by n · 2−(t−1), which implies (upon summing over t) that the DS procedure
requires on the order of 2n total measurements.

By this analysis, the SNR benefits of adaptivity come at the expense of a
(modest) relative increase in the number of measurements collected. Motivated
by this comparison, it is natural to ask whether the distilled sensing approach
might also be extended to the so-called underdetermined observation settings,
such as those found in standard compressed sensing (CS) problems. In addi-
tion, and perhaps more importantly, can an analysis framework similar to that
employed for DS be used to obtain performance guarantees for adaptive CS pro-
cedures? We will address these questions here, beginning with a discussion of
how the DS procedure might be applied in CS settings.

At a high level, the primary implementation differences relative to the original
DS procedure result from the change in observation model. Recall that, for ρt,j >
0, the observation model (1.49) from the previous section could alternatively be
written as

yt,j = ρ1/2t,j xj + et,j , j = 1, 2, . . . , n, t = 1, 2, . . . , T, (1.67)

subject to a global constraint on
∑

t,j ρt,j . Under this alternative formulation,
the overall sampling process can be effectively described using the matrix-vector
formulation y = Ax+ e where A is a matrix whose entries are either zero (at
times and locations where no measurements were obtained) or equal to some
particular ρ1/2t,j . The first point we address relates to the specification of the
sampling or measurement budget. In this setting, we can interpret our budget of
measurement resources in terms of the matrix A, in a natural way. Recall that in
our original formulation, the constraint was imposed on the quantity

∑
t,j ρt,j .

Under the matrix-vector formulation, this translates directly to a constraint on
the sum of the squared entries of A. Thus, we can generalize the measurement
budget constraint to the current setting by imposing a condition on the Frobenius
norm of A. To account for the possibly random nature of the sensing matrix (as
in traditional CS applications), we impose the constraint in expectation:

E
[
‖A‖2F

]
= E




∑

t,j

A2
t,j



 ≤ B(n). (1.68)

Note that, since the random matrices utilized in standard CS settings typically
are constructed to have unit-norm columns, they satisfy this constraint when
B(n) = n.

The second point results from the fact that each observation step will now
comprise a number of noisy projection samples of x. This gives rise to another
set of algorithmic parameters to specify how many measurements are obtained
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in each step, and these will inherently depend on the sparsity of the signal being
acquired. In general, we will denote bymt the number of rows in the measurement
matrix utilized in step t.
The final point to address in this setting pertains to the refinement step. In

the original DS formulation, because the measurement process obtained direct
samples of the signal components plus independent Gaussian noises, the sim-
ple one-sided threshold test was a natural choice. Here the problem is slightly
more complicated. Fundamentally the goal is the same—to process the current
observations in order to accurately determine promising locations to measure in
subsequent steps. However in the current setting, the decisions must be made
using (on average) much less than one measurement per location. In this con-
text, each refinement decision can itself be thought of as a coarse-grained model
selection task.
We will discuss one instance of this procedure, which we call Compressive Dis-

tilled Sensing (CDS), corresponding to particular choices of the algorithm param-
eters and refinement strategy. Namely, for each step, indexed by t = 1, 2, . . . , T ,
we will obtain measurements using an mt × n sampling matrix At constructed as
follows. For u = 1, 2, . . . ,mt and v ∈ It, the (u, v)-th entry of At is drawn inde-
pendently from the distribution N (0, τt/mt) where τt = Bt/|It|. The entries of
At are zero otherwise. Notice that this choice automatically guarantees that the
overall measurement budget constraint E

[
‖A‖2F

]
≤ B(n) is satisfied. The refine-

ment at each step is performed by coordinate-wise thresholding of the crude
estimate x̂t = AT

t yt. Specifically, the set It+1 of locations to subsequently con-
sider is obtained as the subset of It corresponding to locations at which x̂t is
positive. This approach is outlined in Algorithm 1.2.
The final support estimate is obtained by applying the Least Absolute Shrink-

age and Selection Operator (LASSO) to the distilled observations. Namely, for
some λ > 0, we obtain the estimate

x̃ = arg min
z∈Rn

‖yT −AT z‖22 + λ‖z‖1, (1.69)

and from this, the support estimate ŜDS = {j ∈ IT : x̃j > 0} is constructed. The
following theorem describes the error performance of this support estimator
obtained using the CDS adaptive compressive sampling procedure. The result
follows from iterated application of Lemmas 1 and 2 in [25], which are analogous
to Lemmas 1.1 and 1.2 here, as well as the results in [26] which describe the
model selection performance of the LASSO.

Theorem 1.3. Let x ∈ Rn be a vector having at most k(n) = n1−β nonzero
entries for some fixed β ∈ (0, 1), and suppose that every nonzero entry of x has
the same value µ = µ(n) > 0. Sample x using the compressive distilled sensing
procedure described above with! T = T (n) = max{0log2 log n1, 0}+ 2 measurement steps,! measurement budget allocation {Bt}Tt=1 satisfying

∑T
t=1 Bt ≤ n, and for which
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Algorithm 1.2 (Compressive distilled sensing).

Input:
Number of observation steps T
Measurement allocation sequence {mt}Tt=1

Resource allocation sequence {Bt}Tt=1 satisfying
∑T

t=1 Bt ≤ B(n)

Initialize:
Initial index set: I1 = {1, 2, . . . , n}

Distillation:
For t = 1 to T

Construct mt × n measurement matrix:

At(u, v) ∼ N
(
0, Bt

mt|It|

)
, u = 1, 2, . . . ,mt, v ∈ It

At(u, v) = 0, u = 1, 2, . . . ,mt, v ∈ Ic
t

Observe: yt = Atx+ et
Compute: x̂t = AT

t yt
Refine: It+1 = {i ∈ It : x̂t > 0}

End for

Output:
Index sets {It}Tt=1

Distilled observations {yt, At}Tt=1

– Bt+1/Bt ≥ δ > 1/2, and
– B1 = c1n and BT = cT n for some c1, cT ∈ (0, 1).

There exist constants c, c′, c′′ > 0 and λ = O(1) such that if µ ≥ c
√
log log log n

and the number of measurements collected satisfies mt ≥ c′ · k · log log log n for
t = 1, . . . , T − 1 and mT ≥ c′′ · k · log n, then the support estimate ŜDS obtained
as described above satisfies

FDP(ŜDS)
P→ 0 , NDP(ŜDS)

P→ 0, (1.70)

as n→∞.

A few comments are in order regarding results of Theorems 1.2 and Theo-
rem 1.3. First, while Theorem 1.2 guaranteed recovery provided only that µ(n)
be a growing function of n, the result in Theorem 1.3 is slightly more restric-
tive, requiring that µ(n) grow like

√
log log log n. Even so, this still represents a

dramatic improvement relative to the non-adaptive testing case in Section 1.3.1.
Second, we note that Theorem 1.3 actually requires that the signal components
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have the same amplitudes (or, more precisely, that their amplitudes be within
a constant multiple of each other), whereas the result in Theorem 1.2 placed
no restrictions on the values of the signal amplitudes relative to each other. In
essence these two points arise from the choice of refinement procedure. Here,
the threshold tests are no longer statistically independent as they were in the
original DS formulation, and the methods employed to tolerate this dependence
give rise to these subtle differences.
The effectiveness of CDS can also be observed in finite sample regimes. Here,

we examine (by experiment) the performance of CDS relative to a non-adaptive
compressed sensing that utilizes a random measurement matrix with i.i.d. zero-
mean Gaussian entries. For both cases, the support estimators we consider are
constructed as the positive components of the LASSO estimate that is obtained
using the corresponding adaptive or non-adaptive measurements. Our applica-
tion of the CDS recovery procedure differs slightly from the conditions of Theo-
rem 1.3, in that we apply the LASSO to all of the adaptively collected measure-
ments.
The results of the comparison are depicted in Figure 1.6. Each panel of the

figure shows a scatter plot of the FDP and NDP values resulting from 1000 trials
of both the CDS procedure and the non-adaptive sensing approach, each using a
different randomly selected LASSO regularization parameter. For each trial, the
unknown signals x ∈ Rn were constructed to have 128 nonzero entries of uniform
(positive) amplitude µ, and the SNR is fixed by the selection µ2 = 12. Panels
(a)-(d) correspond to n = 213, 214, 215, and 216 respectively, and the number of
measurements in all cases was m = 212.
The measurement budget allocation parameters for CDS, Bt, were chosen so

that Bt+1 = 0.75Bt for j = 1, . . . , T − 2, B1 = BT , and
∑T

t=1 Bt = n, where n is
the ambient signal dimension in each case. Measurement allocation parameters
mt were chosen so that 3m/34 = 1365 measurements were utilized for the last
step of the procedure, and the remaining 32m/34 measurements were equally
allocated to the first T − 1 observation steps. Comparing the results across all
panels of Figure 1.6, we see that CDS exhibits much less dependence on the ambi-
ent dimension than the non-adaptive procedure. As with the examples for DS
above, we see that CDS is an effective approach to mitigate the “curse of dimen-
sionality” here as well. In particular, the performance of CDS shows much less
dependence on the ambient dimension n than does the nonadaptive procedure.
In conclusion, we note that the result of Theorem 1.3 has successfully

addressed our initial question, at least in part. We have shown that in some
special settings, the CDS procedure can achieve similar performance to the
DS procedure but using many fewer total measurements. In particular, the
total number of measurements required to obtain the result in Theorem 1.3 is
m = O(k · log log log n · log log n+ k log n) = O(k log n), while the result of The-
orem 1.2 required O(n) total measurements. The discussion in this section
demonstrates that it is possible to obtain the benefits of both adaptive sampling
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Figure 1.6 Adaptivity in compressed sensing. Each panel depicts a scatter plot of FDP
and NDP values resulting for non-adaptive CS (•) and the adaptive CDS procedure
(∗).

and compressed sensing. This is a significant step toward a full understanding
of the benefits of adaptivity in CS.

1.4 Related Work and Suggestions for Further Reading

Adaptive sensing methods for high-dimensional inference problems are becom-
ing increasingly common in many modern applications of interest, primarily due
to the continuing tremendous growth of our acquisition, storage, and computa-
tional abilities. For instance, multiple testing and denoising procedures are an
integral component of many modern bioinformatics applications (see [27] and
the references therein), and sequential acquisition techniques similar in spirit
to those discussed here are becoming quite popular in this domain. In partic-
ular, two stage testing approaches in gene association and expression studies
were examined in [28, 29, 30]. Those works described procedures where a large
number of genes is initially tested to identify a promising subset, which is then
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examined more closely in a second stage. Extensions to multi-stage approaches
were discussed in [31]. Two-stage sequential sampling techniques have also been
examined recently in the signal processing literature. In [32], two-stage target
detection procedures were examined, and a follow-on work examined a Bayesian
approach for incorporating prior information into such two-step detection pro-
cedures [33].
The problem of target detection and localization from sequential compressive

measurements was recently examined in [34]. That work examined a multi-step
binary bisection procedure to identify signal components from noisy projection
measurements, and provided bounds for its sample complexity. Similar adaptive
compressive sensing techniques based on binary bisection were examined in [35].
In [36], an adaptive compressive sampling method for acquiring wavelet-sparse
signals was proposed. Leveraging the inherent tree structure often present in the
wavelet decompositions of natural images, that work discussed a procedure where
the sensing action is guided by the presence (or absence) of significant features
at a given scale to determine which coefficients to acquire at finer scales.
Finally, we note that sequential experimental design continues to be popular

in other fields as well, such as in computer vision and machine learning. We refer
the reader to the survey article [37] as well as [38, 39] and the references therein
for further information on active vision and active learning.
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