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Abstract

Recently, sparsity has become a key concept in various areas of applied mathematics,
computer science, and electrical engineering. One application of this novel methodology
is the separation of data, which is composed of two (or more) morphologically distinct
constituents. The key idea is to carefully select representation systems each providing
sparse approximations of one of the components. Then the sparsest coefficient vector
representing the data within the composed – and therefore highly redundant – repre-
sentation system is computed by ℓ1 minimization or thresholding. This automatically
enforces separation.

This paper shall serve as an introduction to and a survey about this exciting area
of research as well as a reference for the state-of-the-art of this research field.
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1 Introduction

Over the last years, scientists face an ever growing deluge of data, which needs to be
transmitted, analyzed, and stored. A close analysis reveals that most of these data might
be classified as multimodal data, i.e., being composed of distinct subcomponents. Prominent
examples are audio data, which might consist of a superposition of the sounds of different
instruments, or imaging data from neurobiology, which is typically a composition of the
soma of a neuron, its dendrites, and its spines. In both these exemplary situations, the
data has to be separated into appropriate single components for further analysis. In the
first case, separating the audio signal into the signals of the different instruments is a first
step to enable the audio technician to obtain a musical score from a recording. In the
second case, the neurobiologist might aim to analyze the structure of dendrites and spines
separately for the study of Alzheimer specific characteristics. Thus data separation is often
a crucial step in the analysis of data.

As a scientist, three fundamental problems immediately come to one’s mind:

(P1) What is a mathematically precise meaning of the vague term ‘distinct components’?

(P2) How do we separate data algorithmically?

(P3) When is separation possible at all?

To answer those questions, we need to first understand the key problem in data separation.
In a very simplistic view, the essence of the problem is as follows: Given a composed signal
x of the form x = x1 + x2, we aim to extract the unknown components x1 and x2 from it.
Having one known data and two unknowns obviously makes this problem underdetermined.
Thus, the novel paradigm of sparsity – appropriately utilized – seems a perfect fit for
attacking data separation, and this chapter shall serve as both an introduction into this
intriguing application of sparse representations as well as a reference for the state-of-the-art
of this research area.

1.1 Morphological Component Analysis

Intriguingly, when considering the history of Compressed Sensing, the first mathematically
precise result on recovery of sparse vectors by ℓ1 minimization is related to a data separation
problem: The separation of sinusoids and spikes in [16, 11]. Thus it might be considered
a milestone in the development of Compressed Sensing. In addition, it reveals a surprising
connection with uncertainty principles.

The general idea allowing separation in [16, 11] was to choose two bases or frames Φ1 and
Φ2 adapted to the two components to be separated in such a way that Φ1 and Φ2 provide a
sparse representation for x1 and x2, respectively. Searching for the sparsest representation of
the signal in the combined (highly overcomplete) dictionary [Φ1 |Φ2 ] should then intuitively
enforce separation provided that x1 does not have a sparse representation in Φ2 and that x2
does not have a sparse representation in Φ1. This general concept was later – in the context
of image separation, but the term seems to be fitting in general – coined Morphological
Component Analysis [36].
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This viewpoint now measures the morphological difference between components in terms
of the incoherence of suitable sparsifying bases or frames Φi, thereby giving one possible
answer to (P1); see also the respective chapters in the novel book [33]. One possibility
for measuring incoherence is the mutual coherence. We will however see in the sequel that
there exist even more appropriate coherence notions, which provide a much more refined
measurement of incoherence specifically adapted to measuring morphological difference.

1.2 Separation Algorithms

Going again back in time, we observe that far before [11], Coifman, Wickerhauser, and
co-workers already presented very inspiring empirical results on the separation of image
components using the idea of Morphological Component Analysis, see [7]. After this, several
techniques to actually compute the sparsest expansion in a composed dictionary [ Φ1 | Φ2 ]
were introduced. In [31], Mallat and Zhang developed Matching Pursuit as one possible
methodology. The study by Chen, Donoho, and Saunders in [6] then revealed that the ℓ1
norm has a tendency to find sparse solutions when they exist, and coined this method Basis
Pursuit.

As explained before, data separation by Morphological Component Analysis – when
suitably applied – can be reduced to a sparse recovery problem. To solve this problem, there
nowadays already exist a variety of utilizable algorithmic approaches; thereby providing a
general answer to (P2). Such approaches include, for instance, a canon of greedy-type
algorithms. Most of the theoretical separation results however consider ℓ1 minimization as
the main separation technique, which is what we will also mainly focus on in this chapter.

1.3 Separation Results

As already mentioned, the first mathematically precise result was derived in [11] and solved
the problem of separation of sinusoids and spikes. After this ‘birth of sparse data separation’,
a deluge of very exciting results started. One direction of research are general results on
sparse recovery and Compressed Sensing; here we would like to cite the excellent survey
paper [4].

Another direction continued the idea of sparse data separation initiated in [11]. In
this realm, the most significant theoretical results might be considered firstly the series of
papers [19, 10], in which the initial results from [11] are extended to general composed
dictionaries, secondly the paper [23], which also extends results from [11] though with a
different perspective, and thirdly the papers [3] and [14], which explore the clustering of the
sparse coefficients and the morphological difference of the components encoded in it.

We also wish to mention the abundance of empirical work showing that utilizing the
idea of sparse data separation often gives very compelling results in practice, as examples,
we refer to the series of papers on applications to astronomical data [2, 36, 34], to general
imaging data [32, 20, 35], and to audio data [22, 25].

Let us remark that also the classical problem of denoising can be regarded as a separation
problem, since we aim to separate a signal from noise by utilizing the characteristics of the
signal family and the noise. However, as opposed to the separation problems discussed in
this chapter, denoising is not a ‘symmetric’ separation task, since the characterization of
the signal and the noise are very different.
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1.4 Design of Sparse Dictionaries

For satisfactorily answering (P3), one must also raise the question of how to find suitable
sparsifying bases or frames for given components. This search for ‘good’ systems in the sense
of sparse dictionaries can be attacked in two ways, either non-adaptively or adaptively.

The first path explores the structure of the component one would like to extract, for
instance, it could be periodic such as sinusoids or anisotropic such as edges in images.
This typically allows one to find a suitable system among the already very well explored
representation systems such as the Fourier basis, wavelets, or shearlets, to name a few. The
advantage of this approach is the already explored structure of the system, which can hence
be exploited for deriving theoretical results on the accuracy of separation, and the speed of
associated transforms.

The second path uses a training set of data similar to the to-be-extracted component,
and ‘learns’ a system which best sparsifies this data set. Using this approach customarily
referred to as dictionary learning, we obtain a system extremely well adapted to the data
at hand; as the state-of-the-art we would like to mention the K-SVD algorithm introduced
by Aahron, Elad, and Bruckstein in [1]; see also [17] for a ‘Compressed Sensing’ perspective
to K-SVD. Another appealing dictionary training algorithm, which should be cited is the
method of optimal directions (MOD) by Engan et al. [21]. The downside however is the
lack of a mathematically exploitable structure, which makes a theoretical analysis of the
accuracy of separation using such a system very hard.

1.5 Outline

In Section 2, we discuss the formal mathematical setting of the problem, present the nowa-
days already considered classical separation results, and then discuss more recent results
exploiting the clustering of significant coefficients in the expansions of the components as
a means to measure their morphological difference. We conclude this section by reveal-
ing a close link of data separation to uncertainty principles. Section 3 is then devoted to
both theoretical results as well as applications for separation of 1D signals, elaborating,
in particular, on the separation of sinusoids and spikes. Finally, Section 4 focuses on di-
verse questions concerning separation of 2D signals, i.e., images, such as the separation of
point- and curvelike objects, again presenting both application aspects as well as theoretical
results.

2 Separation Estimates

As already mentioned in the introduction, data separation can be regarded within the
framework of underdetermined problems. In this section, we make this link mathematically
precise. Then we discuss general estimates on the separability of composed data, firstly
without any knowledge of the geometric structure of sparsity patterns, and secondly, by
taking known geometric information into account. A revelation of the close relation with
uncertainty principles concludes the section.

In Sections 3 and 4, we will then see the presented general results and uncertainty
principles in action, i.e., applied to real-world separation problems.
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2.1 Relation with Underdetermined Problems

Let x be our signal of interest, which we for now consider as belonging to some Hilbert
space H, and assume that

x = x01 + x02.

Certainly, real data is typically composed of multiple components, hence not only the sit-
uation of two components, but three or more is of interest. We will however focus on the
two-component situation to clarify the fundamental principles behind the success of sepa-
rating those by sparsity methodologies. It should be mentioned though that, in fact, most
of the presented theoretical results can be extended to the multiple component situation in
a more or less straightforward manner.

To extract the two components from x, we need to assume that – although we are not
given x01 and x02 – certain ‘characteristics’ of those components are known to us. Such
‘characteristics’ might be, for instance, the pointlike structure of stars and the curvelike
structure of filaments in astronomical imaging. This knowledge now enables us to choose
two representation systems, Φ1 and Φ2, say, which allow sparse expansions of x01 and x02,
respectively. Such representation systems might be chosen from the collection of well-
known systems such as wavelets. A different possibility is to choose adaptively the systems
via dictionary learning procedures. This approach however requires training data sets for
the two components x01 and x02 as discussed in Subsection 1.4.

Given now two such representation systems Φ1 and Φ2, we can write x as

x = x01 + x02 = Φ1c
0
1 +Φ2c

0
2 = [ Φ1 | Φ2 ]

[

c01
c02

]

with ‖c01‖0 and ‖c02‖0 ‘sufficiently small’. Thus, the data separation problem has been
reduced to solving the underdetermined linear system

x = [ Φ1 | Φ2 ]

[

c1
c2

]

(1)

for [c1, c2]
T . Unique recovery of the original vector [c01, c

0
2]
T automatically extracts the

correct two components x01 and x02 from x, since

x01 = Φ1c
0
1 and x02 = Φ2c

0
2.

Ideally, one might want to solve

min
c1,c2

‖c1‖0 + ‖c2‖0 s.t. x = [ Φ1 | Φ2 ]

[

c1
c2

]

, (2)

which however is an NP-hard problem. Instead one aims to solve the ℓ1 minimization
problem

(Seps) min
c1,c2

‖c1‖1 + ‖c2‖1 s.t. x = [ Φ1 | Φ2 ]

[

c1
c2

]

. (3)

The lower case ‘s’ in Seps indicates that the ℓ1 norm is placed on the synthesis side. Other
choices for separation are, for instance, greedy-type algorithms. In this chapter we will focus
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on ℓ1 minimization as the separation technique, consistent with most known separation
results from the literature.

Before discussing conditions on [c01, c
0
2]
T and [Φ1 |Φ2 ], which guarantee unique solvability

of (1), let us for a moment debate whether uniqueness is necessary at all. If Φ1 and Φ2

form bases, it is certainly essential to recover [c01, c
0
2]
T uniquely from (1). However, some

well-known representation systems are in fact redundant and typically constitute Parseval
frames such as curvelets or shearlets. Also, systems generated by dictionary learning are
normally highly redundant. In this situation, for each possible separation

x = x1 + x2, (4)

there exist infinitely many coefficient sequences [c1, c2]
T satisfying

x1 = Φ1c1 and x2 = Φ2c2. (5)

Since we are only interested in the correct separation and not in computing the sparsest
expansion, we can circumvent presumably arising numerical instabilities when solving the
minimization problem (3) by selecting a particular coefficient sequence for each separation.
Assuming Φ1 and Φ2 are Parseval frames, we can exploit this structure and rewrite (5) as

x1 = Φ1(Φ
T
1 x1) and x2 = Φ2(Φ

T
2 x2).

Thus, for each separation (4), we choose a specific coefficient sequence when expanding the
components in the Parseval frames, in fact, we choose the analysis sequence. This leads
to the following different ℓ1 minimization problem in which the ℓ1 norm is placed on the
analysis rather than the synthesis side:

(Sepa) min
x1,x2

‖ΦT
1 x1‖1 + ‖ΦT

2 x2‖1 s.t. x = x1 + x2. (6)

This new minimization problem can be also regarded as a mixed ℓ1-ℓ2 problem, since
the analysis coefficient sequence is exactly the coefficient sequence which is minimal in the
ℓ2 norm.

2.2 General Separation Estimates

Let us now discuss the main results of successful data separation, i.e., stating conditions on
[c01, c

0
2]
T and [ Φ1 |Φ2 ] for extracting x

0
1 and x02 from x. The strongest known general result

was derived in 2003 by Donoho and Elad [10] and used the notion of mutual coherence.
Recall that, for a normalized frame Φ = (ϕi)i∈I , the mutual coherence of Φ is defined by

µ(Φ) = max
i,j∈I,i 6=j

|〈ϕi, ϕj〉|.

The result states the following.

Theorem 2.1 ([10]) Let Φ1 and Φ2 be two frames for a Hilbert space H, and let x ∈ H,
x 6= 0. If x = [Φ1|Φ2]c and

‖c‖0 <
1

2

(

1 +
1

µ([Φ1|Φ2])

)

,

then the solution of the ℓ1 minimization problem (Seps) stated in (3) coincides with the
solution of the ℓ0 minimization problem stated in (2).
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Before presenting the proof, we require some prerequisites. Firstly, we need to introduce
the so-called nullspace property.

Definition 2.2 Let Φ = (ϕi)i∈I be a frame for a Hilbert space H, and let N (Φ) denote the
null space of Φ. Then Φ is said to have the null space property of order k if

‖1Λd‖1 <
1

2
‖d‖1

for all d ∈ N (Φ) \ {0} and for all sets Λ ⊆ I with |Λ| ≤ k.

This notion provides a very useful characterization of the existence of unique sparse
solutions of the ℓ1 minimization problem (Seps) stated in (3).

Lemma 2.3 Let Φ = (ϕi)i∈I be a frame for a Hilbert space H, and let x ∈ H. Then the
following conditions are equivalent.

(i) All vectors c with ‖c‖0 ≤ k are unique solutions of the ℓ1 minimization problem (Seps)
stated in (3) (with Φ instead of [Φ1|Φ2]).

(ii) Φ satisfies the null space property of order k.

Proof. First, assume that (i) holds. Let d ∈ N (Φ) \ {0} and Λ ⊆ I with |Λ| ≤ k be
arbitrary. Then, by (i), the sparse vector 1Λd is the unique minimizer of ‖c‖1 subject to
Φc = Φ(1Λd). Further, since d ∈ N (Φ) \ {0},

Φ(−1Λcd) = Φ(1Λd).

Hence
‖1Λd‖1 < ‖1Λcd‖1,

or, in other words,

‖1Λd‖1 <
1

2
‖d‖1,

which implies (ii), since d and Λ were chosen arbitrarily.
Secondly, assume that (ii) holds, and let c1 be a vector with ‖c1‖0 ≤ k and support

denoted by Λ. Further, let c2 be an arbitrary solution of x = Φc, and set

d = c2 − c1.

Then
‖c2‖1 − ‖c1‖1 = ‖1Λcc2‖1 + ‖1Λc2‖1 − ‖1Λc1‖1 ≥ ‖1Λcd‖1 − ‖1Λd‖1.

This term is greater than zero for any d 6= 0 if

‖1Λcd‖1 > ‖1Λd‖1,
or

1

2
‖d‖1 > ‖1Λd‖1.

This is ensured by (ii). Hence ‖c2‖1 > ‖c1‖1, and thus c1 is the unique solution of (Seps).
This implies (i). ✷

Using this result, we next prove that a solution satisfying ‖c‖0 < 1
2

(

1 + 1
µ(Φ)

)

is the

unique solution of the ℓ1 minimization problem (Seps).
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Lemma 2.4 Let Φ = (ϕi)i∈I be a frame for a Hilbert space H, and let x ∈ H. If c is a
solution of the ℓ1 minimization problem (Seps) stated in (3) (with Φ instead of [Φ1|Φ2]) and
satisfies

‖c‖0 <
1

2

(

1 +
1

µ(Φ)

)

,

then it is the unique solution.

Proof. Let d ∈ N (Φ) \ {0}, hence, in particular,

Φd = 0;

thus also
Φ⋆Φd = 0. (7)

Without loss of generality, we now assume that the vectors in Φ are normalized. Then, (7)
implies that, for all i ∈ I,

di = −
∑

j 6=i

〈ϕi, ϕj〉dj .

Using the definition of mutual coherence µ(Φ) (cf. Subsection 2.2), we obtain

|di| ≤
∑

j 6=i

|〈ϕi, ϕj〉| · |dj | ≤ µ(Φ)(‖d‖1 − |di|),

and hence

|di| ≤
(

1 +
1

µ(Φ)

)−1

‖d‖1.

Thus, by the hypothesis on ‖c‖0 and for any Λ ⊆ I with |Λ| = ‖c‖0, we have

‖1Λd‖1 ≤ |Λ| ·
(

1 +
1

µ(Φ)

)−1

‖d‖1 = ‖c‖0 ·
(

1 +
1

µ(Φ)

)−1

‖d‖1 <
1

2
‖d‖1.

This shows that Φ satisfies the null space property of order ‖c‖0, which, by Lemma 2.3,
implies that c is the unique solution of (Seps). ✷

We further prove that a solution satisfying ‖c‖0 < 1
2

(

1 + 1
µ(Φ)

)

is also the unique

solution of the ℓ0-minimization problem.

Lemma 2.5 Let Φ = (ϕi)i∈I be a frame for a Hilbert space H, and let x ∈ H. If c is
a solution of the ℓ0 minimization problem stated in (2) (with Φ instead of [Φ1|Φ2]) and
satisfies

‖c‖0 <
1

2

(

1 +
1

µ(Φ)

)

,

then it is the unique solution.
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Proof. By Lemma 2.4, the hypotheses imply that c is the unique solution of the ℓ1 min-
imization problem (Seps). Now, towards a contradiction, assume that there exists some c̃
satisfying x = Φc̃ with ‖c̃‖0 ≤ ‖c‖0. Then c̃ must satisfy

‖c̃‖0 <
1

2

(

1 +
1

µ(Φ)

)

.

Again, by Lemma 2.4, c̃ is the unique solution of the ℓ1 minimization problem (Seps), a
contradiction. ✷

These lemmata now immediately imply Theorem 2.1.

Proof [Proof of Theorem 2.1]. Theorem 2.1 follows from Lemmata 2.4 and 2.5. ✷

Interestingly, in the situation of Φ1 and Φ2 being two orthonormal bases the bound can
be slightly strengthened. For the proof of this result, we refer the reader to [19].

Theorem 2.6 ([19]) Let Φ1 and Φ2 be two orthonormal bases for a Hilbert space H, and
let x ∈ H. If x = [Φ1|Φ2]c and

‖c‖0 <
√
2− 0.5

µ([Φ1|Φ2])
,

then the solution of the ℓ1 minimization problem (Seps) stated in (3) coincides with the
solution of the ℓ0 minimization problem stated in (2).

This shows that in the special situation of two orthonormal bases, the bound is nearly
a factor of 2 stronger than in the general situation of Theorem 2.1.

2.3 Clustered Sparsity as a Novel Viewpoint

In a concrete situation, we often have more information on the geometry of the to-be-
separated components x01 and x02. This information is typically encoded in a particular
clustering of the non-zero coefficients if a suitable basis or frame for the expansion of x01
or x02 is chosen. Think, for instance, of the tree clustering of wavelet coefficients of a point
singularity. Thus, it seems conceivable that the morphological difference is encoded not
only in the incoherence of the two chosen bases or frames adapted to x01 and x02, but in the
interaction of the elements of those bases or frames associated with the clusters of significant
coefficients. This should intuitively allow for weaker necessary conditions for separation.

One possibility for a notion capturing this idea is the so-called joint concentration which
was introduced in [14] with concepts going back to [16], and was in between again revived
in [11]. To provide some intuition for this notion, let Λ1 and Λ2 be subsets of indexing
sets of two Parseval frames. Then the joint concentration measures the maximal fraction
of the total ℓ1 norm which can be concentrated on the index set Λ1 ∪ Λ2 of the combined
dictionary.

Definition 2.7 Let Φ1 = (ϕ1i)i∈I and Φ2 = (ϕ2j)j∈J be two Parseval frames for a Hilbert
space H. Further, let Λ1 ⊆ I and Λ2 ⊆ J . Then the joint concentration κ =κ(Λ1,Φ1; Λ2,Φ2)
is defined by

κ(Λ1,Φ1; Λ2,Φ2) = sup
x

‖1Λ1
ΦT
1 x‖1 + ‖1Λ2

ΦT
2 x‖1

‖ΦT
1 x‖1 + ‖ΦT

2 x‖1
.

9



One might ask how the notion of joint concentration relates to the widely exploited,
and for the previous result utilized mutual coherence. For this, we first briefly discuss some
derivations of mutual coherence. A first variant better adapted to clustering of coefficients
was the Babel function first introduced in [10] and later in [37] under the label cumulative
coherence function, which, for a normalized frame Φ = (ϕi)i∈I and some m ∈ {1, . . . , |I|} is
defined by

µB(m,Φ) = max
Λ⊂I,|Λ|=m

max
j 6∈Λ

∑

i∈I
|〈ϕi, ϕj〉|.

This notion was later refined in [3] by considering the so-called structured p-Babel function,
defined for some family S of subsets of I and some 1 ≤ p <∞ by

µsB(S,Φ) = max
Λ∈S

(

max
j 6∈Λ

∑

i∈I
|〈ϕi, ϕj〉|p

)1/p

.

Another variant, better adapted to data separation, is the cluster coherence introduced in
[14], whose definition we now formally state. Notice that we do not assume that the vectors
are normalized.

Definition 2.8 Let Φ1 = (ϕ1i)i∈I and Φ2 = (ϕ2j)j∈J be two Parseval frames for a Hilbert
space H, let Λ1 ⊆ I, and let Λ2 ⊆ J . Then the cluster coherence µc(Λ1,Φ1; Φ2) of Φ1 and
Φ2 with respect to Λ1 is defined by

µc(Λ1,Φ1; Φ2) = max
j∈J

∑

i∈Λ1

|〈ϕ1i, ϕ2j〉|,

and the cluster coherence µc(Φ1; Λ2,Φ2) of Φ1 and Φ2 with respect to Λ2 is defined by

µc(Φ1; Λ2,Φ2) = max
i∈I

∑

j∈Λ2

|〈ϕ1i, ϕ2j〉|.

The relation between joint concentration and cluster coherence is made precise in the
following result from [14].

Proposition 2.9 ([14]) Let Φ1 = (ϕ1i)i∈I and Φ2 = (ϕ2j)j∈J be two Parseval frames for
a Hilbert space H, and let Λ1 ⊆ I and Λ2 ⊆ J . Then

κ(Λ1,Φ1; Λ2,Φ2) ≤ max{µc(Λ1,Φ1; Φ2), µc(Φ1; Λ2,Φ2)}.

Proof. Let x ∈ H. We now choose coefficient sequences c1 and c2 such that

x = Φ1c1 = Φ2c2

and, for i = 1, 2,
‖ci‖1 ≤ ‖di‖1 for all di with x = Φidi. (8)

This implies that

‖1Λ1
ΦT
1 x‖1 + ‖1Λ2

ΦT
2 x‖1

10



= ‖1Λ1
ΦT
1 Φ2c2‖1 + ‖1Λ2

ΦT
2Φ1c1‖1

≤
∑

i∈Λ1





∑

j∈J
|〈ϕ1i, ϕ2j〉||c2j |



+
∑

j∈Λ2

(

∑

i∈I
|〈ϕ1i, ϕ2j〉||c1i|

)

=
∑

j∈J





∑

i∈Λ1

|〈ϕ1i, ϕ2j〉|



 |c2j |+
∑

i∈I





∑

j∈Λ2

|〈ϕ1i, ϕ2j〉|



 |c1i|

≤ µc(Λ1,Φ1; Φ2)‖c2‖1 + µc(Λ2,Φ2; Φ1)‖c1‖1
≤ max{µc(Λ1,Φ1; Φ2), µc(Λ2,Φ2; Φ1)}(‖c1‖1 + ‖c2‖1).

Since Φ1 and Φ2 are Parseval frames, we have

x = Φi(Φ
T
i Φici) for i = 1, 2.

Hence, by exploiting (8),

‖1Λ1
ΦT
1 x‖1 + ‖1Λ2

ΦT
2 x‖1

≤ max{µc(Λ1,Φ1; Φ2), µc(Λ2,Φ2; Φ1)}(‖ΦT
1 Φ1c1‖1 + ‖ΦT

2 Φ2c2‖1)

= max{µc(Λ1,Φ1; Φ2), µc(Λ2,Φ2; Φ1)}(‖ΦT
1 x‖1 + ‖ΦT

2 x‖1). ✷

Before stating the data separation estimate which uses joint concentration, we need to
discuss the conditions on sparsity of the components in the two Parseval frames. Since for
real data ‘true sparsity’ is unrealistic, a weaker condition will be imposed. For the next
result, a notion invoking the clustering of the significant coefficients will be required. This
notion, first utilized in [9], is defined for our data separation problem as follows.

Definition 2.10 Let Φ1 = (ϕ1i)i∈I and Φ2 = (ϕ2j)j∈J be two Parseval frames for a Hilbert
space H, and let Λ1 ⊆ I and Λ2 ⊆ J . Further, suppose that x ∈ H can be decomposed as
x = x01 + x02. Then the components x01 and x02 are called δ-relatively sparse in Φ1 and Φ2

with respect to Λ1 and Λ2, if

‖1Λc
1
ΦT
1 x

0
1‖1 + ‖1Λc

2
ΦT
2 x

0
2‖1 ≤ δ.

We now have all ingredients to state the data separation result from [14], which – as
compared to Theorem 2.1 – now invokes information about the clustering of coefficients.

Theorem 2.11 ([14]) Let Φ1 = (ϕ1i)i∈I and Φ2 = (ϕ2j)j∈J be two Parseval frames for a
Hilbert space H, and suppose that x ∈ H can be decomposed as x = x01 + x02. Further, let
Λ1 ⊆ I and Λ2 ⊆ J be chosen such that x01 and x02 are δ-relatively sparse in Φ1 and Φ2

with respect to Λ1 and Λ2. Then the solution (x⋆1, x
⋆
2) of the ℓ1 minimization problem (Sepa)

stated in (6) satisfies

‖x⋆1 − x01‖2 + ‖x⋆2 − x02‖2 ≤
2δ

1− 2κ
.
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Proof. First, using the fact that Φ1 and Φ2 are Parseval frames,

‖x⋆1 − x01‖2 + ‖x⋆2 − x02‖2 = ‖ΦT
1 (x

⋆
1 − x01)‖2 + ‖ΦT

2 (x
⋆
2 − x02)‖2

≤ ‖ΦT
1 (x

⋆
1 − x01)‖1 + ‖ΦT

2 (x
⋆
2 − x02)‖1.

The decomposition x01 + x02 = x = x⋆1 + x⋆2 implies

x⋆2 − x02 = −(x⋆1 − x01),

which allows us to conclude that

‖x⋆1 − x01‖2 + ‖x⋆2 − x02‖2 ≤ ‖ΦT
1 (x

⋆
1 − x01)‖1 + ‖ΦT

2 (x
⋆
1 − x01)‖1. (9)

By the definition of κ,

‖ΦT
1 (x

⋆
1 − x01)‖1 + ‖ΦT

2 (x
⋆
1 − x01)‖1

= (‖1Λ1
ΦT
1 (x

⋆
1 − x01)‖1 + ‖1Λ2

ΦT
2 (x

⋆
1 − x01)‖1) + ‖1Λc

1
ΦT
1 (x

⋆
1 − x01)‖1

+‖1Λc
2
ΦT
2 (x

⋆
2 − x02)‖1

≤ κ ·
(

‖ΦT
1 (x

⋆
1 − x01)‖1 + ‖ΦT

2 (x
⋆
1 − x01)‖1

)

+ ‖1Λc
1
ΦT
1 (x

⋆
1 − x01)‖1

+‖1Λc
2
ΦT
2 (x

⋆
2 − x02)‖1,

which yields

‖ΦT
1 (x

⋆
1 − x01)‖1 + ‖ΦT

2 (x
⋆
1 − x01)‖1

≤ 1

1− κ
(‖1Λc

1
ΦT
1 (x

⋆
1 − x01)‖1 + ‖1Λc

2
ΦT
2 (x

⋆
2 − x02)‖1)

≤ 1

1− κ
(‖1Λc

1
ΦT
1 x

⋆
1‖1 + ‖1Λc

1
ΦT
1 x

0
1‖1 + ‖1Λc

2
ΦT
2 x

⋆
2‖1 + ‖1Λc

2
ΦT
2 x

0
2‖1).

Now using the relative sparsity of x01 and x02 in Φ1 and Φ2 with respect to Λ1 and Λ2, we
obtain

‖ΦT
1 (x

⋆
1 − x01)‖1 + ‖ΦT

2 (x
⋆
1 − x01)‖1 ≤ 1

1− κ

(

‖1Λc
1
ΦT
1 x

⋆
1‖1 + ‖1Λc

2
ΦT
2 x

⋆
2‖1 + δ

)

. (10)

By the minimality of x⋆1 and x⋆2 as solutions of (Sepa) implying that

2
∑

i=1

(

‖1Λc
i
ΦT
i x

⋆
i ‖1 + ‖1Λi

ΦT
i x

⋆
i ‖1
)

= ‖ΦT
1 x

⋆
1‖1 + ‖ΦT

2 x
⋆
2‖1

≤ ‖ΦT
1 x

0
1‖1 + ‖ΦT

2 x
0
2‖1,

we have

‖1Λc
1
ΦT
1 x

⋆
1‖1 + ‖1Λc

2
ΦT
2 x

⋆
2‖1

≤ ‖ΦT
1 x

0
1‖1 + ‖ΦT

2 x
0
2‖1 − ‖1Λ1

ΦT
1 x

⋆
1‖1 − ‖1Λ2

ΦT
2 x

⋆
2‖1

≤ ‖ΦT
1 x

0
1‖1 + ‖ΦT

2 x
0
2‖1 + ‖1Λ1

ΦT
1 (x

⋆
1 − x01)‖1 − ‖1Λ1

ΦT
1 x

0
1‖1

+‖1Λ2
ΦT
2 (x

⋆
2 − x02)‖1 − ‖1Λ2

ΦT
2 x

0
2‖1.
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Again exploiting relative sparsity leads to

‖1Λc
1
ΦT
1 x

⋆
1‖1 + ‖1Λc

2
ΦT
2 x

⋆
2‖1 ≤ ‖1Λ1

ΦT
1 (x

⋆
1 − x01)‖1 + ‖1Λ2

ΦT
2 (x

⋆
2 − x02)‖1 + δ. (11)

Combining (10) and (11) and again using joint concentration,

‖ΦT
1 (x

⋆
1 − x01)‖1 + ‖ΦT

2 (x
⋆
1 − x01)‖1

≤ 1

1− κ

[

‖1Λ1
ΦT
1 (x

⋆
1 − x01)‖1 + ‖1Λ2

ΦT
2 (x

⋆
1 − x01)‖1 + 2δ

]

≤ 1

1− κ

[

κ · (‖ΦT
1 (x

⋆
1 − x01)‖1 + ‖ΦT

2 (x
⋆
1 − x01)‖1) + 2δ

]

.

Thus, by (9), we finally obtain

‖x⋆1 − x01‖2 + ‖x⋆2 − x02‖2 ≤
(

1− κ

1− κ

)−1

· 2δ

1− κ
=

2δ

1− 2κ
. ✷

Using Proposition 2.9, this result can also be stated in terms of cluster coherence, which
on the one hand provides an easier accessible estimate and allows a better comparison with
results using mutual coherence, but on the other hand poses a slightly weaker estimate.

Theorem 2.12 ([14]) Let Φ1 = (ϕ1i)i∈I and Φ2 = (ϕ2j)j∈J be two Parseval frames for a
Hilbert space H, and suppose that x ∈ H can be decomposed as x = x01 + x02. Further, let
Λ1 ⊆ I and Λ2 ⊆ J be chosen such that x01 and x02 are δ-relatively sparse in Φ1 and Φ2 with
respect to Λ1 and Λ2. Then the solution (x⋆1, x

⋆
2) of the minimization problem (Sepa) stated

in (6) satisfies

‖x⋆1 − x01‖2 + ‖x⋆2 − x02‖2 ≤
2δ

1− 2µc
,

with
µc = max{µc(Λ1,Φ1; Φ2), µc(Φ1; Λ2,Φ2)}.

To thoroughly understand this estimate, it is important to notice that both relative
sparsity δ as well as cluster coherence µc depend heavily on the choice of the sets of signifi-
cant coefficients Λ1 and Λ2. Choosing those sets too large allows for a very small δ, however
µc might not be less than 1

2 anymore, thereby making the estimate useless. Choosing those
sets too small will force µc to become simultaneously small, in particular, smaller than 1

2 ,
with the downside that δ might be large.

It is also essential to realize that the sets Λ1 and Λ2 are a mere analysis tool; they do
not appear in the minimization problem (Sepa). This means that the algorithm does not
care about this choice at all, however the estimate for accuracy of separation does.

Also note that this result can be easily generalized to general frames instead of Parseval
frames, which then changes the separation estimate by invoking the lower frame bound. In
addition, a version including noise was derived in [14].
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2.4 Relation with Uncertainty Principles

Intriguingly, there exists a very close connection between uncertainty principles and data
separation problems. Given a signal x ∈ H and two bases or frames Φ1 and Φ2, loosely
speaking, an uncertainty principle states that x cannot be sparsely represented by Φ1 and
Φ2 simultaneously; one of the expansions is always not sparse unless x = 0. For the relation
to the ‘classical’ uncertainty principle, we refer to Subsection 3.1.

The first result making this uncertainty viewpoint precise was proven in [19] with ideas
already lurking in [16] and [11]. Again, it turns out that the mutual coherence is an appro-
priate measure for allowed sparsity, here serving as a lower bound for the simultaneously
achievable sparsity of two expansions.

Theorem 2.13 ([19]) Let Φ1 and Φ2 be two orthonormal bases for a Hilbert space H, and
let x ∈ H, x 6= 0. Then

‖ΦT
1 x‖0 + ‖ΦT

2 x‖0 ≥
2

µ([Φ1|Φ2])
.

Proof. First, let Φ1 = (ϕ1i)i∈I and Φ2 = (ϕ2j)j∈J . Further, let Λ1 ⊆ I and Λ2 ⊂ J denote
the support of ΦT

1 x and ΦT
2 x, respectively. Since x = Φ1Φ

T
1 x, for each j ∈ J ,

|(ΦT
2 x)j | =

∣

∣

∣

∣

∣

∣

∑

i∈Λ1

(ΦT
1 x)i〈ϕ1i, ϕ2j〉

∣

∣

∣

∣

∣

∣

. (12)

Since Φ1 and Φ2 are orthonormal bases, we have

‖x‖2 = ‖ΦT
1 x‖2 = ‖ΦT

2 x‖2. (13)

Using in addition the Cauchy-Schwarz inequality, we can continue (12) by

|(ΦT
2 x)j|2 ≤ ‖ΦT

1 x‖22 ·

∣

∣

∣

∣

∣

∣

∑

i∈Λ1

|〈ϕ1i, ϕ2j〉|2
∣

∣

∣

∣

∣

∣

≤ ‖x‖22 · |Λ1| · µ([Φ1|Φ2])
2.

This implies

‖ΦT
2 x‖2 =





∑

j∈Λ2

|(ΦT
2 x)j |2





1/2

≤ ‖x‖2 ·
√

|Λ1| · |Λ2| · µ([Φ1|Φ2]).

Since |Λi| = ‖ΦT
i x‖0, i = 1, 2, and again using (13), we obtain

√

‖ΦT
1 x‖0 · ‖ΦT

2 x‖0 ≥
1

µ([Φ1|Φ2])
.

Using the geometric-algebraic relationship,

1

2
(‖ΦT

1 x‖0 + ‖ΦT
2 x‖0) ≥

√

‖ΦT
1 x‖0 · ‖ΦT

2 x‖0 ≥
1

µ([Φ1|Φ2])
,

which proves the claim. ✷
This result can be easily connected to the problem of simultaneously sparse expansions.

The following version was first explicitly stated in [4].
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Theorem 2.14 ([4]) Let Φ1 and Φ2 be two orthonormal bases for a Hilbert space H, and
let x ∈ H, x 6= 0. Then, for any two distinct coefficient sequences ci satisfying x = [Φ1|Φ2]ci,
i = 1, 2, we have

‖c1‖0 + ‖c2‖0 ≥
2

µ([Φ1|Φ2])
,

Proof. First, set d = c1 − c2 and partition d into [dΦ1
, dΦ2

]T such that

0 = [Φ1|Φ2]d = Φ1dΦ1
+Φ2dΦ2

.

Since Φ1 and Φ2 are bases and d 6= 0, the vector y defined by

y = Φ1dΦ1
= −Φ2dΦ2

is non-zero. Applying Theorem 2.13, we obtain

‖d‖0 = ‖dΦ1
‖0 + ‖dΦ2

‖0 ≥
2

µ([Φ1|Φ2])
.

Since d = c1 − c2, we have

‖c1‖0 + ‖c2‖0 ≥ ‖d‖0 ≥ 2

µ([Φ1|Φ2])
. ✷

We would also like to mention the very recent paper [39] by Tropp, in which he stud-
ies uncertainty principles for random sparse signals over an incoherent dictionary. He, in
particular, shows that the coefficient sequence of each non-optimal expansion of a signal
contains far more non-zero entries than the one of the sparsest expansion.

3 Signal Separation

In this section, we study the special situation of signal separation, where we refer to 1D
signals as opposed to images, etc. For this, we start with the most prominent example of
separating sinusoids from spikes, and then discuss further problem classes.

3.1 Separation of Sinusoids and Spikes

Sinusoidal and spike components are intuitively the morphologically most distinct features
of a signal, since one is periodic and the other transient. Thus, it seems natural that the
first results using sparsity and ℓ1 minimization for data separation were proven for this
situation. Certainly, real-world signals are never a pristine combination of sinusoids and
spikes. However, thinking of audio data from a recording of musical instruments, these
components are indeed an essential part of such signals.

The separation problem can be generally stated in the following way: Let the vector
x ∈ R

n consist of n samples of a continuum domain signal at times t ∈ {0, . . . , n− 1}. We
assume that x can be decomposed into

x = x1 + x2.
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Here x1 shall consist of n samples – at the same points in time as x – of a continuum
domain signal of the form

1√
n

n−1
∑

ω=0

c1ωe
2πiωt/n, t ∈ R.

Thus, by letting Φ1 = (ϕ1ω)0≤ω≤n−1 denote the Fourier basis, i.e.,

ϕ1ω =
(

1√
n
e2πiωt/n

)

0≤t≤n−1
,

the discrete signal x1 can be written as

x1 = Φ1c1 with c1 = (c1ω)0≤ω≤n−1.

If x1 is now the superposition of very few sinusoids, then the coefficient vector c1 is sparse.
Further, consider a continuum domain signal which has a few spikes. Sampling this

signal at n samples at times t ∈ {0, . . . , n − 1} leads to a discrete signal x2 ∈ R
n which

has very few non-zero entries. In order to expand x2 in terms of a suitable representation
system, we let Φ2 denote the Dirac basis, i.e., Φ2 is simply the identity matrix, and write

x2 = Φ2c2,

where c2 is then a sparse coefficient vector.
The task now consists in extracting x1 and x2 from the known signal x, which is il-

lustrated in Figure 1. It will be illuminating to detect the dependence on the number of
sampling points of the bound for the sparsity of c1 and c2 which still allows for separation
via ℓ1 minimization.
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Figure 1: Separation of artificial audio data into sinusoids and spikes.

The intuition that – from a morphological standpoint – this situation is extreme, can be
seen by computing the mutual coherence between the Fourier basis Φ1 and the Dirac basis
Φ2. For this, we obtain

µ([Φ1|Φ2]) =
1√
n
, (14)

and, in fact, 1/
√
n is the minimal possible value. This can be easily seen: If Φ1 and Φ2 are

two general orthonormal bases of Rn, then ΦT
1Φ2 is an orthonormal matrix. Hence the sum

of squares of its entries equals n, which implies that all entries can not be less than 1/
√
n.

The following result from [19] makes this dependence precise. We wish to mention that
the first answer to this question was derived in [11]. In this paper the slightly weaker bound
of (1 +

√
n)/2 for ‖c1‖0 + ‖c2‖0 was proven by using the general result in Theorem 2.1

instead of the more specialized Theorem 2.6 exploited to derive the result from [19] stated
below.
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Theorem 3.1 ([19]) Let Φ1 be the Fourier basis for R
n and let Φ2 be the Dirac basis for

R
n. Further, let x ∈ R

n be the signal

x = x1 + x2, where x1 = Φ1c1 and x2 = Φ2c2,

with coefficient vectors ci ∈ R
n, i = 1, 2. If

‖c1‖0 + ‖c2‖0 < (
√
2− 0.5)

√
n,

then the ℓ1 minimization problem (Seps) stated in (3) recovers c1 and c2 uniquely, and hence
extracts x1 and x2 from x precisely.

Proof. Recall that we have (cf. (14))

µ([Φ1|Φ2]) =
1√
n
.

Hence, by Theorem 2.6, the ℓ1 minimization problem (Seps) recovers c1 and c2 uniquely,
provided that

‖c1‖0 + ‖c2‖0 <
√
2− 0.5

µ([Φ1|Φ2])
= (

√
2− 0.5)

√
n.

The theorem is proved. ✷
The classical uncertainty principle states that, roughly speaking, a function cannot both

be localized in time as well as in frequency domain. A discrete version of this fundamental
principle was – besides the by now well-known continuum domain Donoho-Stark uncertainty
principle – derived in [16]. It showed that a discrete signal and its Fourier transform cannot
both be highly localized in the sense of having ‘very few’ non-zero entries. We will now
show that this result – as it was done in [11] – can be interpreted as a corollary from data
separation results.

Theorem 3.2 ([16]) Let x ∈ R
n, and denote its Fourier transform by x̂. Then

‖x‖0 + ‖x̂‖0 ≥ 2
√
n.

Proof. For the proof, we intend to use Theorem 2.13. First, we note that by letting Φ1

denote the Dirac basis, we trivially have

‖ΦT
1 x‖0 = ‖x‖0.

Secondly, letting Φ2 denote the Fourier basis, we obtain

x̂ = ΦT
2 x.

Now recalling that, by (14),

µ([Φ1|Φ2]) =
1√
n
,

we can conclude from Theorem 2.13 that

‖x‖0 + ‖x̂‖0 = ‖ΦT
1 x‖0 + ‖ΦT

2 x‖0 ≥
2

µ([Φ1|Φ2])
= 2

√
n.

This finishes the proof. ✷
As an excellent survey about sparsity of expansions of signals in the Fourier and Dirac

basis, data separation, and related uncertainty principles as well as on very recent results
using random signals, we refer to [38].
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3.2 Further Variations

Let us briefly mention the variety of modifications of the previous discussed setting, most
of them empirical analyses, which were developed during the last few years.

The most common variation of the sinusoid and spike setting is the consideration of a
more general periodic component, which is then considered to be sparse in a Gabor system,
superimposed by a second component, which is considered to be sparse in a system sensitive
to spike-like structures similar to wavelets. This is, for instance, the situation considered in
[22]. An example for a different setting is the substitution of a Gabor system by a Wilson
basis, analyzed in [3]. In this paper, as already mentioned in Subsection 2.3, the clustering
of coefficients already plays an essential role. It should also be mentioned that a specifically
adapted norm, namely the mixed ℓ1,2 or ℓ2,1 norm, is used in [25] to take advantage of this
clustering, and various numerical experiments show successful separation.

4 Image Separation

This section is devoted to discuss results on image separation exploiting Morphological
Component Analysis, first focussing on empirical studies and secondly on theoretical results.

4.1 Empirical Results

In practice, the observed signal x is often contaminated by noise, i.e., x = x1 + x2 + n
containing the to-be-extracted components x1 and x2 and some noise n. This requires
an adaption of the ℓ1 minimization problem. As proposed in numerous publications, one
typically considers a modified optimization problem – so-called Basis Pursuit Denoising
– which can be obtained by relaxing the constraint in order to deal with noisy observed
signals. The ℓ1 minimization problem (Seps) stated in (3), which places the ℓ1 norm on the
synthesis side then takes the form:

min
c1,c2

‖c1‖1 + ‖c2‖1 + λ‖x−Φ1c1 −Φ2c2‖22

with appropriately chosen regularization parameter λ > 0. Similarly, we can consider the
relaxed form of the ℓ1 minimization problem (Sepa) stated in (6), which places the ℓ1 norm
on the analysis side:

min
x1,x2

‖ΦT
1 x1‖1 + ‖ΦT

2 x2‖1 + λ‖x− x1 − x2‖22.

In these new forms, the additional content in the image – the noise –, characterized by the
property that it can not be represented sparsely by either one of the two systems Φ1 and
Φ2, will be allocated to the residual x−Φ1c1−Φ2c2 or x−x1−x2 depending on which of the
two minimization problems stated above is chosen. Hence, performing this minimization,
we not only separate the data, but also succeed in removing an additive noise component
as a by-product.

There exist by now a variety of algorithms which numerically solve such minimization
problems. One large class are, for instance, iterative shrinkage algorithms; and we refer to
the beautiful new book [18] by Elad for an overview. It should be mentioned that it is also
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possible to perform these separation procedures locally, thus enabling parallel processing,
and again we refer to [18] for further details.

Let us now delve into more concrete situations. One prominent class of empirical studies
concerns the separation of point- and curvelike structures. This type of problem arises, for
instance, in astronomical imaging, where astronomers would like to separate stars (pointlike
structures) from filaments (curvelike structures). Another area in which the separation of
points from curves is essential is neurobiological imaging. In particular, for Alzheimer
research, neurobiologists analyze images of neurons, which – considered in 2D – are a
composition of the dendrites (curvelike structures) of the neuron and the attached spines
(pointlike structures). For further analysis of the shape of these components, dendrites and
spines need to be separated.

From a mathematical perspective, pointlike structures are generally speaking 0D struc-
tures whereas curvelike structures are 1D structures, which reveals their morphological
difference. Thus it seems conceivable that separation using the idea of Morphological Com-
ponent Analysis can be achieved, and the empirical results presented in the sequel as well
as the theoretical results discussed in Subsection 4.2 give evidence to this claim.

To set up the minimization problem properly, the question arises which systems adapted
to the point- and curvelike objects to use. For extracting pointlike structures, wavelets seem
to be optimal, since they provide optimally sparse approximations of smooth functions
with finitely many point singularities. As a sparsifying system for curvelike structures,
two different possibilities were explored so far. From a historical perspective, the first
system to be utilized were curvelets [5], which provide optimally sparse approximations of
smooth functions exhibiting curvilinear singularities. The composed dictionary of wavelets-
curvelets is used in MCALab1, and implementation details are provided in the by now
considered fundamental paper [35]. A few years later shearlets were developed, see [24] or
the survey paper [27], which deal with curvilinear singularities in a similarly favorable way
as curvelets (cf. [28]), but have, for instance, the advantage of providing a unified treatment
of the continuum and digital realm and being associated with a fast transform. Separation
using the resulting dictionary of wavelets-shearlets is implemented and publicly available in
ShearLab2. For a close comparison between both approaches we refer to [29] – in this paper
the separation algorithm using wavelets and shearlets is also detailed –, where a numerical
comparison shows that ShearLab provides a faster as well as more precise separation.

For illustrative purposes, Figure 2 shows the separation of an artificial image composed
of points, lines, and a circle as well as added noise into the pointlike structures (points) and
the curvelike structures (lines and the circle), while removing the noise simultaneously. The
only visible artifacts can be seen at the intersections of the curvelike structures, which is not
surprising since it is even justifiable to label these intersections as ‘points’. As an example
using real data, we present in Figure 3 the separation of a neuron image into dendrites and
spines again using ShearLab.

Another widely explored category of image separation is the separation of cartoons
and texture. Here, the term cartoon typically refers to a piecewise smooth part in the
image, and texture means a periodic structure. A mathematical model for a cartoon was

1MCALab (Version 120) is available from http://jstarck.free.fr/jstarck/Home.html.
2ShearLab (Version 1.1) is available from http://www.shearlab.org.
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(a) Original image (b) Noisy image

(c) Pointlike Component (d) Curvelike Component

Figure 2: Separation of an artificial image composed of points, lines, and a circle into point-
and curvelike components using ShearLab.

first introduced in [8] as a C2 function containing a C2 discontinuity. In contrast to this,
the term texture is a widely open expression, and people have debated for years over an
appropriate model for the texture content of an image. A viewpoint from applied harmonic
analysis characterizes texture as a structure which exhibits a sparse expansion in a Gabor
system. As a side remark, the reader should be aware that periodizing a cartoon part of an
image produces a texture component, thereby revealing the very fine line between cartoons
and texture, illustrated in Figure 4.

As sparsifying systems, again curvelets or shearlets are suitable for the cartoon part,
whereas discrete cosines or a Gabor system can be used for the texture part. MCALab
uses for this separation task a dictionary composed of curvelets and discrete cosines, see
[35]. For illustrative purposes, we display in Figure 5 the separation of the Barbara image
into cartoon and texture component performed by MCALab. As can be seen, all periodic
structure is captured in the texture part, leaving the remainder to the cartoon component.

4.2 Theoretical Results

The first theoretical result explaining the successful empirical performance of Morphological
Component Analysis was derived in [14] by considering the separation of point- and curvelike
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(a) Original image

(b) Pointlike Component (c) Curvelike Component

Figure 3: Separation of a neuron image into point- and curvelike components using Shear-
Lab.

Figure 4: Periodic small cartoons versus one large cartoon.

features in images coined the Geometric Separation Problem. The analysis in this paper
has three interesting features. Firstly, it introduces the notion of cluster coherence (cf.
Definition 2.8) as a measure for the geometric arrangements of the significant coefficients
and hence the encoding of the morphological difference of the components. It also initiates
the study of ℓ1 minimization in frame settings, in particular those where singleton coherence
within one frame may be high. Secondly, it provides the first analysis of a continuum model
in contrast to the previously studied discrete models which obscure continuum elements
of geometry. And thirdly, it explores microlocal analysis to understand heuristically why
separation might be possible and to organize a rigorous analysis. This general approach
applies in particular to two variants of geometric separation algorithms. One is based on
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(a) Barbara image

(b) Cartoon Component (c) Texture Component

Figure 5: Separation of the Barbara image into cartoon and texture using MCALab.

tight frames of radial wavelets and curvelets and the other uses orthonormal wavelets and
shearlets.

These results are today the only results providing a theoretical foundation to image
separation using ideas from sparsity methodologies. The same situation – separating point-
and curvelike objects – is also considered in [13] however using thresholding as a separation
technique. Finally, we wish to mention that some initial theoretical results on the separation
of cartoon and texture in images are contained in [15].

Let us now dive into the analysis of [14]. As a mathematical model for a composition of
point- and curvelike structures, the following two components are considered: The function
P on R

2, which is smooth except for point singularities and defined by

P =
P
∑

i=1

|x− xi|−3/2,

serves as a model for the pointlike objects, and the distribution C with singularity along a
closed curve τ : [0, 1] → R

2 defined by

C =

∫

δτ(t)dt,

models the curvelike objects. The general model for the considered situation is then the

22



sum of both, i.e.,
f = P + C, (15)

and the Geometric Separation Problem consists of recovering P and C from the observed
signal f .

As discussed before, one possibility is to set up the minimization problem using an
overcomplete system composed of wavelets and curvelets. For the analysis, radial wavelets
are used due to the fact that they provide the same subbands as curvelets. To be more
precise, let W be an appropriate window function. Then radial wavelets at scale j and
spatial position k = (k1, k2) are defined by the Fourier transforms

ψ̂λ(ξ) = 2−j ·W (|ξ|/2j) · ei〈k,ξ/2j〉,

where λ = (j, k) indexes scale and position. For the same window function W and a ‘bump
function’ V , curvelets at scale j, orientation ℓ, and spatial position k = (k1, k2) are defined
by the Fourier transforms

γ̂η(ξ) = 2−j 3

4 ·W (|ξ|/2j)V ((ω − θj,ℓ)2
j/2) · ei(Rθj,ℓ

A
2−j k)

′ξ
,

where θj,ℓ = 2πℓ/2j/2, Rθ is planar rotation by −θ radians, Aa is anisotropic scaling with
diagonal (a,

√
a), and we let η = (j, ℓ, k) index scale, orientation, and scale; see [5] for more

details. The tiling of the frequency domain generated by these two systems is illustrated in
Figure 6.

(a) Radial wavelets (b) Curvelets

Figure 6: Tiling of the frequency domain by radial wavelets and curvelets.

By using again the window W , we define the family of filters Fj by their transfer
functions

F̂j(ξ) =W (|ξ|/2j), ξ ∈ R
2.

These filters provide a decomposition of any distribution g into pieces gj with different
scales, the piece gj at subband j generated by filtering g using Fj :

gj = Fj ⋆ g.

A proper choice of W then enables reconstruction of g from these pieces using the formula

g =
∑

j

Fj ⋆ gj .
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Application of this filtering procedure to the model image f from (15) yields the decompo-
sitions

fj = Fj ⋆ f = Fj ⋆ (P + C) = Pj + Cj,
where (fj)j is known, and we aim to extract (Pj)j and (Cj)j . We should mention at this
point that, in fact, the pair (P, C) was chosen in such a way that Pj and Cj have the same
energy for each j, thereby making the components comparable as we go to finer scales and
the separation challenging at each scale.

Let now Φ1 and Φ2 be the tight frame of radial wavelets and curvelets, respectively.
Then, for each scale j, we consider the ℓ1 minimization problem (Sepa) stated in (6), which
now reads:

min
Pj ,Cj

‖ΦT
1 Pj‖1 + ‖ΦT

2 Cj‖1 s.t. fj = Pj + Cj . (16)

Notice that we use the ‘analysis version’ of the minimization problem, since both radial
wavelets as well as curvelets are overcomplete systems.

The theoretical result of the precision of separation of fj via (16) proved in [14] can now
be stated in the following way:

Theorem 4.1 ([14]) Let P̂j and Ĉj be the solutions to the optimization problem (16) for
each scale j. Then we have

‖Pj − P̂j‖2 + ‖Cj − Ĉj‖2
‖Pj‖2 + ‖Cj‖2

→ 0, j → ∞.

This result shows that the components Pj and Cj are recovered with asymptotically
arbitrarily high precision at very fine scales. The energy in the pointlike component is
completely captured by the wavelet coefficients, and the curvelike component is completely
contained in the curvelet coefficients. Thus, the theory evidences that the Geometric Sep-
aration Problem can be satisfactorily solved by using a combined dictionary of wavelets
and curvelets and an appropriate ℓ1 minimization problem, as already the empirical results
indicate.

We next provide a sketch of proof and refer to [14] for the complete proof.

Proof [Sketch of proof of Theorem 4.1]. The main goal will be to apply Theorem 2.12
to each scale and prove that the sequence of bounds 2δ

1−2µc
converges to zero. For this, let

j be arbitrarily fixed, and apply Theorem 2.12 in the following way:

• S: Filtered signal fj (= Pj + Cj).

• Φ1: Wavelets filtered with Fj .

• Φ2: Curvelets filtered with Fj .

• Λ1: Significant wavelet coefficients of Pj .

• Λ2: Significant curvelet coefficients of Cj.

• δj : Degree of approximation by significant coefficients.

• (µc)j : Cluster coherence of wavelets-curvelets.
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If
2δj

1− 2(µc)j
= o(‖Pj‖2 + ‖Cj‖2) as j → ∞ (17)

can be then shown, the theorem is proved.
One main problem to overcome is the highly delicate choice of Λ1 and Λ2. It would be

ideal to define those sets in such a way that

δj = o(‖Pj‖2 + ‖Cj‖2) as j → ∞ (18)

and
(µc)j → 0 as j → ∞ (19)

are true. This would then imply (17), hence finish the proof.
A microlocal analysis viewpoint now provides insight into how to suitably choose Λ1

and Λ2 by considering the wavefront sets of P and C in phase space R
2 × [0, 2π), i.e.,

WF (P) = {xi}Pi=1 × [0, 2π)

and
WF (C) = {(τ(t), θ(t)) : t ∈ [0, L(τ)]},

where τ(t) is a unit-speed parametrization of τ and θ(t) is the normal direction to τ at
τ(t). Heuristically, the significant wavelet coefficients should be associated with wavelets
whose index set is ‘close’ to WF (P) in phase space and, similarly, the significant curvelet
coefficients should be associated with curvelets whose index set is ‘close’ to WF (C). Thus,
using Hart Smith’s phase space metric,

dHS((b, θ); (b
′, θ′)) = |〈eθ, b− b′〉|+ |〈eθ′ , b− b′〉|+ |b− b′|2 + |θ − θ′|2,

where eθ = (cos(θ), sin(θ)), an ‘approximate’ form of sets of significant wavelet coefficients
is

Λ1,j = {wavelet lattice} ∩ {(b, θ) : dHS((b, θ);WF (P)) ≤ ηj2
−j},

and an ‘approximate’ form of sets of significant curvelet coefficients is

Λ2,j = {curvelet lattice} ∩ {(b, θ) : dHS((b, θ);WF (C)) ≤ ηj2
−j}

with a suitable choice of the distance parameters (ηj)j . In the proof of Theorem 4.1, the
definition of (Λ1,j)j and (Λ2,j)j is much more delicate, but follows this intuition. Lengthy
and technical estimates then lead to (18) and (19), which – as mentioned before – completes
the proof. ✷

Since it was already mentioned in Subsection 4.1 that a combined dictionary of wavelets
and shearlets might be preferable, the reader will wonder whether the just discussed theo-
retical results can be transferred to this setting. In fact, this is proven in [26], see also [12].
It should be mentioned that one further advantage of this setting is the fact that now a
basis of wavelets can be utilized in contrast to the tight frame of radial wavelets explored
before.
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As a wavelet basis, we now choose orthonormal Meyer wavelets, and refer to [30] for the
definition. For the definition of shearlets, for j ≥ 0 and k ∈ Z, let – the notion A2j was
already introduced in the definition of curvelets – Ã2j and Sk be defined by

Ã2j =

(

2j/2 0
0 2j

)

and Sk =

(

1 k
0 1

)

.

For φ,ψ, ψ̃ ∈ L2(R2), the cone-adapted discrete shearlet system is then the union of

{φ(· −m) : m ∈ Z
2},

{2 3

4
jψ(SkA2j · −m) : j ≥ 0,−⌈2j/2⌉ ≤ k ≤ ⌈2j/2⌉,m ∈ Z

2},
and

{2 3

4
jψ̃(ST

k Ã2j · −m) : j ≥ 0,−⌈2j/2⌉ ≤ k ≤ ⌈2j/2⌉,m ∈ Z
2}.

The term ‘cone-adapted’ originates from the fact that these systems tile the frequency
domain in a cone-like fashion; see Figure 7b.

(a) Wavelets (b) Shearlets

Figure 7: Tiling of the frequency domain by orthonormal Meyer wavelets and shearlets.

As can be seen from Figure 7, the subbands associated with orthonormal Meyer wavelets
and shearlets are the same. Hence a similar filtering into scaling subbands can be performed
as for radial wavelets and curvelets.

Adapting the optimization problem (16) by using wavelets and shearlets instead of
radial wavelets and curvelets generates purported point- and curvelike objects Ŵj and Ŝj ,
say, for each scale j. Then the following result, which shows similarly successful separation
as Theorem 4.1, was derived in [26] with the new concept of sparsity equivalence, here
between shearlets and curvelets, introduced in the same paper as main ingredient.

Theorem 4.2 ([26]) We have

‖Pj − Ŵj‖2 + ‖Cj − Ŝj‖2
‖Pj‖2 + ‖Cj‖2

→ 0, j → ∞.
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