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Abstract

Inspired by works of Landriault et al. [11, 12], we study the Gerber–Shiu

distribution at Parisian ruin with exponential implementation delays for a

spectrally negative Lévy insurance risk process. To be more specific, we study

the so-called Gerber–Shiu distribution for a ruin model where at each time the

surplus process goes negative, an independent exponential clock is started. If

the clock rings before the surplus becomes positive again then the insurance

company is ruined. Our methodology uses excursion theory for spectrally

negative Lévy processes and relies on the theory of so-called scale functions.

In particular, we extend recent results of Landriault et al. [11, 12].
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Guanajuato, Mexico. Email: jcpardo@cimat.mx
∗∗∗ Postal address: Department of Probability and Statistics, IIMAS, UNAM. , C.P. 04510, Mexico,

D.F., Mexico. Email: garmendia@sigma.iimas.unam.mx
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1. Introduction and main results

Originally motivated by pricing American claims, Gerber and Shiu [8, 9] introduced

in risk theory a function that jointly penalizes the present value of the time of ruin,

the surplus before ruin and the deficit after ruin for Cramér–Lundberg-type processes.

Since then this expected discounted penalty function, by now known as the Gerber–

Shiu function, has been deeply studied. Recently, Biffis and Kyprianou [3] characterized

a generalized version of this function in the setting of processes with stationary and

independent increments with no positive jumps, also known as spectrally negative Lévy

processes, using scale functions. In the current actuarial setting, we refer to the latter

class of processes as Lévy insurance risk processes.

In the traditional ruin theory literature, if the surplus becomes negative, the com-

pany is ruined and has to go out of business. Here, we distinguish between being

ruined and going out of business, where the probability of going out of business is

a function of the level of negative surplus. The idea of this notion of going out of

business comes from the observation that in some industries, companies can continue

doing business even though they are technically ruined (see [11] for more motivation).

In this paper, our definition of going out of business is related to so-called Parisian ruin.

The idea of this type of actuarial ruin has been introduced by A. Dassios and S. Wu

[7], where they consider the application of an implementation delay in the recognition

of an insurer’s capital insufficiency. More precisely, they assume that ruin occurs if the

excursion below the critical threshold level is longer than a deterministic time. It is

worth pointing out that this definition of ruin is referred to as Parisian ruin due to its

ties with Parisian options (see Chesney et al. [4]).

In [7], the analysis of the probability of Parisian ruin is done in the context of the

classical Cramér–Lundberg model. More recently, Landriault et al. [11, 12] and Loeffen

et al. [13] considered the idea of Parisian ruin with respectively a stochastic implemen-

tation delay and a deterministic implementation delay, but in the more general setup

of Lévy insurance risk models. In [11], the authors assume that the deterministic

delay is replaced by a stochastic grace period with a pre-specified distribution, but

they restrict themselves to the study of a Lévy insurance risk process with paths of

bounded variation; explicit results are obtained in the case the delay is exponentially
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distributed. The model with a deterministic delay has also been studied in the Lévy

setup by Czarna and Palmowski [6] and by Czarna [5].

In this paper, we study the Gerber–Shiu distribution at Parisian ruin for general

Lévy insurance risk processes, when the implementation delay is exponentially dis-

tributed. Since the Lévy insurance risk process does not jump at the time when

Parisian ruin occurs, the Gerber–Shiu function that we present here only considers the

discounted value of the surplus at ruin. Our results extend those of Landriault et al.

[11], in the exponential case, by simultaneously considering more general ruin-related

quantities and Lévy insurance risk processes of unbounded and bounded variation. Our

approach is based on a heuristic idea presented in [12] and which consists in marking

the excursions away from zero of the underlying surplus process. We will fill this gap

and provide a rigorous definition of the time of Parisian ruin. Our main contribution

is an explicit and compact expression, expressed in terms of the scale functions of the

process, for the Gerber–Shiu distribution at Parisian ruin. From our results, we easily

deduce the probability of Parisian ruin originally obtained by Landriault et al. [11, 12].

The rest of the paper is organized as follows. In the remainder of Section 1, we

introduce Lévy insurance risk processes and their associated scale functions and we

state some well-known fluctuation identities that will be useful for the sequel. We also

introduce, formally speaking, the notion of Parisian ruin in terms of the excursions

away from 0 of the Lévy insurance risk process and we provide the main results of

this paper. As a consequence, we recover the results that appear in Landriault et al.

[11, 12] and remark on an interesting link with recent findings in [1] on exit identities

of spectrally negative Lévy processes observed at Poisson arrival times. Section 2 is

devoted to the proofs of the main results.

1.1. Lévy insurance risk processes

In what follows, we assume thatX = (Xt, t ≥ 0) is a spectrally negative Lévy process

with no monotone paths (i.e. we exclude the case of the negative of a subordinator)

defined on a probability space (Ω,F ,P). For x ∈ R denote by Px the law of X when it

is started at x and write for convenience P in place of P0. Accordingly, we shall write

Ex and E for the associated expectation operators. It is well known that the Laplace
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exponent ψ : [0,∞)→ R of X, defined by

ψ(λ) := logE
[
eλX1

]
, λ ≥ 0,

is given by the so-called Lévy-Khintchine formula

ψ(λ) = γλ+
σ2

2
λ2 −

∫
(0,∞)

(
1− e−λx − λx1{x<1}

)
Π(dx),

where γ ∈ R, σ ≥ 0 and Π is a measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ x2)Π(dx) <∞,

which is called the Lévy measure of X. Even though X only has negative jumps, for

convenience we choose the Lévy measure to have mass only on the positive instead of

the negative half line.

It is also known that X has paths of bounded variation if and only if

σ = 0 and

∫
(0,1)

xΠ(dx) <∞.

In this case X can be written as Xt = ct− St, t ≥ 0, where c = γ +
∫

(0,1)
xΠ(dx) and

(St, t ≥ 0) is a driftless subordinator. Note that necessarily c > 0, since we have ruled

out the case that X has monotone paths. In this case its Laplace exponent is given by

ψ(λ) = logE
[
eλX1

]
= cλ−

∫
(1,∞)

(
1− e−λx

)
Π(dx).

The reader is referred to Bertoin [2] and Kyprianou [10] for a complete introduction

to the theory of Lévy processes.

A key element of the forthcoming analysis relies on the theory of so-called scale

functions for spectrally negative Lévy processes. We therefore devote some time in

this section reminding the reader of some fundamental properties of scale functions.

For each q ≥ 0, define W (q) : R → [0,∞), such that W (q)(x) = 0 for all x < 0 and on

[0,∞) is the unique continuous function whose Laplace transform satisfies∫ ∞
0

e−λxW (q)(x)dx =
1

ψ(λ)− q
, λ > Φ(q),

where Φ(q) = sup{λ ≥ 0 : ψ(λ) = q} which is well defined and finite for all q ≥ 0, since

ψ is a strictly convex function satisfying ψ(0) = 0 and ψ(∞) = ∞. The initial value



Gerber–Shiu distribution at Parisian ruin for Lévy insurance risk processes 5

of W (q) is known to be

W (q)(0) =

1/c when σ = 0 and
∫

(0,1)
xΠ(dx) <∞,

0 otherwise,

where we used the following definition: W (q)(0) = limx↓0W
(q)(x). For convenience,

we write W instead of W (0). Associated to the functions W (q) are the functions

Z(q) : R→ [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y)dy, q ≥ 0.

The functions W (q) and Z(q) are collectively known as q-scale functions and predomi-

nantly appear in almost all fluctuation identities for spectrally negative Lévy processes.

The theorem below is a collection of known fluctuation identities which will be used

throughout this work. See, for example, Chapter 8 of [10] for their proofs and origin.

Theorem 1.1. Let X be a spectrally negative Lévy process and denote (for a > 0) the

first passage times by

τ+
a = inf{t > 0 : Xt > a} and τ−0 = inf{t > 0 : Xt < 0}.

The two-sided exit problem and the corresponding resolvent measure are given as fol-

lows.

(i) For q ≥ 0 and x ≤ a

Ex
[
e−qτ

+
a 1{τ−0 >τ

+
a }

]
=
W (q)(x)

W (q)(a)
. (1.1)

(ii) For any a > 0, x, y ∈ [0, a], q ≥ 0∫ ∞
0

e−qtPx
(
Xt ∈ dy, t < τ+

a ∧ τ−0
)

dt =

{
W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y)

}
dy.

(1.2)

Finally, we recall the following two useful identities taken from [14]: for p, q ≥ 0 and

x ∈ R, we have

(q − p)
∫ x

0

W (p)(x− y)W (q)(y)dy = W (q)(x)−W (p)(x) (1.3)
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and, for p, q ≥ 0 and y ≤ a ≤ x ≤ b, we have (with the obvious notation for τ−a )

Ex
[
e−pτ

−
a W (q)(Xτ−a

− y)1{τ−a <τ+
b }

]
= W (q)(x− y)− (q − p)

∫ x

a

W (p)(x− z)W (q)(z − y)dz

− W (p)(x− a)

W (p)(b− a)

(
W (q)(b− y)− (q − p)

∫ b

a

W (p)(b− z)W (q)(z − y)dz

)
. (1.4)

1.2. Parisian ruin with exponential implementation delays

We first give a descriptive definition of the time of Parisian ruin, here denoted by

τq, using Itô’s excursion theory (for excursions away from zero) for spectrally negative

Lévy processes. In order to do so, we mark the Poisson point process of excursions

away from zero with independent copies of a generic exponential random variable

eq with parameter q > 0. We will refer to them as implementation clocks. If the

length of the negative part of a given excursion away from 0 is less than its associated

implementation clock, then such an excursion is neglected as far as ruin is concerned.

More precisely, we assume that ruin occurs at the first time that an implementation

clock rings before the end of its corresponding excursion. Formally, let G be the set

of left-end points of negative excursions, and for each g ∈ G consider an independent,

exponentially distributed random variables egq , also independent of X. Then we define

the time of Parisian ruin by

τq = inf{t : Xt < 0 and t > gt + egtq },

where gt = sup{s ≤ t : Xs ≥ 0}. Note that Xt < 0 implies that gt ∈ G.

It is worth pointing out that τq can be defined recursively in the case when the

Lévy insurance risk processes has paths of bounded variation, see for example [11].

We will not make any assumptions on the variation of X here and our method uses a

limiting argument which is motivated by the work of Loeffen et al. [13]. For ease of

presentation, we assume in this section that the underlying Lévy insurance risk process

X satisfies the net profit condition, i.e.

E[X1] = ψ′(0+) > 0. (1.5)

Note that this assumption is actually not needed for our main results in the next section
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and is really only relevant to retrieve from our formulas the expression for Px(τq <∞)

as established in [12]; see Equation (1.14) below.

Let ε > 0 and consider the path of X up to the first time that the process returns

to 0 after reaching the level −ε, More precisely, on the event {τ−−ε <∞} let

(Xt, 0 ≤ t ≤ τ+,ε
0 ) where τ+,ε

0 = inf{t > τ−−ε : Xt > 0}.

Let τ−,1−ε := τ−−ε and τ+,1
0 := τ+,ε

0 . Recursively, we define two sequences of stopping

times (τ−,k−ε )k≥1 and (τ+,k
0 )k≥1 as follows: for a natural number k ≥ 2, if

τ−,k−ε := inf{t > τ+,k−1
0 : Xt < −ε}

is finite, define

τ+,k
0 = inf{t > τ−,k−ε : Xt > 0}.

Let

Kε = inf{k : τ−,k−ε =∞}

and denote Y (k) = (Xt, τ
+,k−1
0 ≤ t ≤ τ+,k

0 ) for k < Kε. We call (Y (k))1≤k<Kε the ε-

excursions of X away from 0 and note that due to the strong Markov property they are

independent and identically distributed. Observe that under the net profit condition

(1.5) we necessarily have that Kε is almost surely finite. We also observe that the

limiting case, i.e. when ε goes to 0, corresponds to the usual excursion of X away

from 0. To avoid confusion we call the limiting case a 0-excursion. Note that each

ε-excursion ends with a 0-excursion that reaches the level −ε (possibly preceeded by

excursions not reaching this level). For each k ≥ 1, we denote by ekq the implementation

clock of the last 0-excursion of Y (k).

We define the approximated Parisian ruin time τεq as in [11] by

τεq := τ
−,kεq
−ε + e

kεq
q ,

where

kεq = inf{k ≥ 1 : τ−,k−ε + ekq < τ+,k
0 }.

To see why τεq is an approximation of τq, first note that τεq ≥ τq. This follows

from the observations that Xs < 0 for all s ∈ (τ
−,kεq
−ε , τ

−,kεq
−ε + e

kεq
q ) and that τ

−,kεq
−ε
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is clearly greater than the left-end point of the negative excursion it is contained in.

Furthermore, since limε↓0 τ
−
ε = τ−0 P-a.s., it readily follows that

τεq −−→
ε↓0

τq, P-a.s. (1.6)

1.3. Main results

In this section, we are interested in computing different Gerber–Shiu functions for a

Lévy insurance risk process subject to Parisian ruin, as defined in the previous section.

To do so, we first identify the Gerber–Shiu distribution. It is important to point out

that in all the results in this subsection the net profit condition is not necessary.

Let us now define two auxiliary functions which will appear in the Gerber–Shiu

distribution. First, for p ≥ 0 and q ∈ R such that p+ q ≥ 0 and for x ∈ R, define as in

[14] the function

H(p,q)(x) = eΦ(p)x

(
1 + q

∫ x

0

e−Φ(p)yW (p+q)(y)dy

)
.

We further introduce, for θ, q ≥ 0, x > 0 and y ∈ [−x,∞), the function

g(θ, q, x, y) = W (θ+q)(x+ y)− q
∫ x

0

W (θ)(x− z)W (θ+q)(z + y)dz. (1.7)

Note that g is of the same form as W(p,q)
a in [14].

Here is the main result of this paper.

Theorem 1.2. For θ, a, b ≥ 0, x ∈ [−a, b) and y ∈ [−a, 0], we have

Ex
[
e−θτq , Xτq ∈ dy, τq < τ+

b ∧ τ
−
−a

]
= q

[
g(θ, q, x, a)

g(θ, q, b, a)
g(θ, q, b,−y)− g(θ, q, x,−y)

]
dy.

(1.8)

Note that the above result can be written differently using the identity in Equa-

tion (1.3). More precisely, one can re-write g(θ, q, x, y) as follows:

g(θ, q, x, y) = W (θ)(x+ y) + q

∫ y

0

W (θ)(x+ y − z)W (θ+q)(z)dz. (1.9)

By taking appropriate limits in Equation (1.8) either with the definition of g(θ, q, x, y)

given in (1.7) or in (1.9), one can obtain the following corollary.
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Corollary 1.1. For θ, a, b ≥ 0, then:

1. for x ≥ −a and y ∈ [−a, 0], we have

Ex
[
e−θτq , Xτq ∈ dy, τq < τ−−a

]
= q

[
g(θ, q, x, a)

H(θ,q)(a)
H(θ,q)(−y)− g(θ, q, x,−y)

]
dy.

(1.10)

2. for x ≤ b and y ∈ (−∞, 0], we have

Ex
[
e−θτq , Xτq ∈ dy, τq < τ+

b

]
= q

[
H(θ+q,−q)(x)

H(θ+q,−q)(b)
g(θ, q, b,−y)− g(θ, q, x,−y)

]
dy.

(1.11)

3. for x ∈ R and y ∈ (−∞, 0], we have

Ex
[
e−θτq , Xτq ∈ dy, τq <∞

]
=

[(
Φ(θ + q)− Φ(θ)

)
H(θ+q,−q)(x)H(θ,q)(−y)− qg(θ, q, x,−y)

]
dy. (1.12)

Before moving on to the proofs of these results, let us see how we can use the Gerber–

Shiu distributions of Theorem 1.2 and Corollary 1.1 to compute specific Gerber–Shiu

functions and derive a number of identities established in the literature. Consider for

λ ≥ 0 the Gerber–Shiu function

Ex
[
e−θτq+λXτq , τq < τ+

b

]
=

∫ 0

−∞
eλyEx

[
e−θτq , Xτq ∈ dy, τq < τ+

b

]
.

To calculate this integral, we make use of the following identity (see Equation (6)

in [14])

(q − p)
∫ x

0

W (p)(x− y)Z(q)(y)dy = Z(q)(x)− Z(p)(x),

which holds for for p, q ≥ 0 and x ∈ R. Invoking Equation (1.11), a direct calculation

then yields (by letting λ ↓ 0) that the Laplace transform of the time to ruin before the

surplus exceeds the level b is given by

Ex
[
e−θτq , τq < τ+

b

]
=

q

θ + q

(
Z(θ)(x)− H

(θ+q,−q)(x)

H(θ+q,−q)(b)
Z(θ)(b)

)
. (1.13)

The above identity extends the result of Landriault et al. (see Lemma 2.2 in [11]),

in the case of exponential implementation delays and when the insurance risk process
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X has paths of bounded variation. We observe that the function H(θ+q,−q) is the same

as the function H
(θ)
d defined in section 2.2 in [11].

Next, we are interested in computing the probability of Parisian ruin in the case

when the net profit condition (1.5) is satisfied. To this end we take θ = 0 and let

b→∞ and find

Px (τq <∞) = lim
b→∞

(
1− H

(q,−q)(x)

H(q,−q)(b)

)
= 1− ψ′(0+)

Φ(q)

q
H(q,−q)(x) (1.14)

as limb→∞W (b) = 1/ψ′(0). The probability of Parisian ruin (1.14) agrees with

Theorem 1 and Corollary 1 in [12] since we have the following identity (using a change

of variable and an integration by parts):

H(q,−q)(x) = q

∫ ∞
0

e−Φ(q)yW (x+ y)dy.

We finish this section with two remarks.

Remark 1.1. There is an interesting link with the results obtained in [1] concerning

exit identities for a spectrally negative Lévy process observed at Poisson arrival times.

In particular, consider

T−0 = min{Ti : X(Ti) < 0}

where Ti are the arrival times of an independent Poisson process with rate q. By taking

θ = 0 and integrating euy (u ≥ 0) with respect to the density given in Equation (1.11)

of Corollary 1.1 we retrieve the same expression for

Ex
[
euXτq , τq < τ+

b

]
as is given in equation (15) of Theorem 3.1 in [1] for

Ex
[
e
uX

T
−
0 , T−0 < τ+

b

]
.

The method of proof in [1] relies mostly on the strong Markov property and fluctuation

identities for spectrally negative Lévy processes.

Remark 1.2. Note that since {τq < τ+
b } = {Xτq < b}, with Xt = sup0≤s≤tXs the

running supremum process, we can also derive a more general form for the Gerber–Shiu

measure that takes into account the law of the process and its running supremum (as

well as its running infimum) up to the time of Parisian ruin. For the sake of brevity

the explicit form of this joint law is left to the reader.
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2. Proofs

Proof of Theorem 1.2. Take ε ∈ (0, a). We first compute

E
[
e−θτ

ε
q f
(
−Xτεq

)
1{τεq<τ

+
b ∧τ

−
−a}

]
(2.15)

for a bounded, continuous function f . Here, we express (2.15) in terms of the ε-

excursions of X confined to the interval [−a, b] and such that the time that each

ε-excursion away from 0 spends below 0 after reaching the level −ε is less than its

associated implementation clock, followed by the first ε-excursion away from 0 that

exits the interval [−a, b] or such that the time that the ε-excursion spends below 0

after reaching the level −ε is greater than its implementation clock. More precisely,

let (ξi,εs , 0 ≤ s ≤ `εi ) be the i-th ε-excursion of X away from 0 confined to the interval

[−a, b] and such that `εi − σi−ε ≤ eiq, where `εi denotes the length of ξi,ε, and

σi−ε = inf{s < `εi : ξi,εs < −ε}.

Similarly, let (ξ∗,εs , 0 ≤ s ≤ `ε∗) be the first ε-excursion of X away from 0 that exits the

interval [−a, b], or such that `ε∗ − σ∗−ε > e
kq
q where `ε∗ is its length and

σ∗−ε = inf{s < `ε∗ : ξ∗,εs < −ε}.

We also define the infimum and supremum of the excursion ξ∗,ε, as follows

ξ∗,ε = inf
s<`ε∗

ξ∗,εs and ξ
∗,ε

= sup
s<`ε∗

ξ∗,εs .

From the strong Markov property, it is clear that the random variables
(
e−q`

ε
i

)
i≥1

are

i.i.d. and also independent of

Ξ
(∗,ε)
a,b := e−θ(σ

∗
−ε+e

kq
q )f

(
− ξ∗,ε

σ∗−ε+e
kq
q

)
1{`ε∗<∞}1{ξ∗,ε≤b}1{ξ∗,ε≥−a}.

Let ζ = τ+,ε
0 and p = P(E), where

E =
{

sup
t≤ζ

Xt ≤ b, inf
t≤ζ

Xt ≥ −a, ζ − τ−−ε ≤ eq

}
,

where we recall that eq denotes an exponential random variable (with parameter q)

independent of X. A standard description of ε-excursions of X away from 0 confined

to the interval [−a, b] with the amount of time spent below 0 after reaching the level
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−ε less than an exponential time, dictates that the number of such ε-excursions is

distributed according to an independent geometric random variable, sayGp, (supported

on {0, 1, 2, . . .}) with parameter p. Moreover, the random variables
(
e−q`

ε
i

)
i≥1

have the

same distribution as e−θζ under the conditional law P(·|E) and the random variable

Ξ
(∗,ε)
a,b is equal in distribution to

e−θ(τ
−
−ε+eq)f

(
−Xτ−−ε+eq

)
1{inf

t≤τ−−ε+eq
Xt≥−a}1{sup

t≤τ−−ε+eq
Xt≤b},

but now under the conditional law P(·|Ec). Then, it follows that

E
[
e−θτ

ε
q f
(
−Xτεq

)
1{τεq<τ

+
b ∧τ

−
−a}

]

= E

Gp∏
i=1

e−θ`
ε
i e−θ(σ

∗
−ε+e

kq
q )f

(
− ξ∗,ε

σ∗−ε+e
kq
q

)
1{`ε∗<∞}1{ξ∗,ε≤b}1{ξ∗,ε≥−a}


= E

[
E
[
e−θ`

ε
1

]Gp]
E
[
e−θ(σ

∗
−ε+e

kq
q )f

(
− ξ∗,ε

σ∗−ε+e
kq
q

)
1{`ε∗<∞}1{ξ∗,ε≤b}1{ξ∗,ε≥−a}

]
.

(2.16)

Recall that the moment generating function F of the geometric random variable Gp

satisfies

F (s) =
p

1− ps
, |s| < 1

p
,

where p = 1− p. Therefore, if we can make sure that E
[
e−θ`

ε
1

]
< 1/p, then

E
[
E
[
e−θ`

ε
1

]Gp]
=

p

1− pE
[
e−θ`

ε
1

] . (2.17)

Now, using (2.16) and (2.17), we have

E
[
e−θτ

ε
q f
(
−Xτεq

)
1{τεq<τ

+
b ∧τ

−
−a}

]
=

pE
[
Ξ

(∗,ε)
a,b

]
1− pE

[
e−θ`

ε
1

] . (2.18)

Recall that p = P(E) and that

E
[
e−θ`

ε
1

]
=

E
[
e−θζ , E

]
p

.

Note that the exponential clock starts running at τ−−ε. An application of the strong
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Markov property at the latter stopping time therefore yields

E
[
e−θ`

ε
1

]
=

1

p
E
[
e−θτ

−
−ε1{τ−−ε<τ

+
b ∧τ

−
−a}

EX
τ
−
−ε

[
e−θτ

+
0 , τ+

0 < τ−−a ∧ eq

]]
=

1

p
E
[
e−θτ

−
−ε1{τ−−ε<τ

+
b ∧τ

−
−a}

EX
τ
−
−ε

[
e−(θ+q)τ+

0 , τ+
0 < τ−−a

]]
=

1

p
Eε

[
e−θτ

−
0 1{τ−0 <τ

+
b+ε}

W (θ+q)(Xτ−0
− ε+ a)

W (θ+q)(a)

]
.

Note that we do not need the indicator function of {Xτ−0
− ε > −a} since, on its

complement, the scale function vanishes. Note also that it is now clear from the above

computation that E
[
e−θ`

ε
1

]
< 1/p. Using the identity in Equation (1.4), one can write

Eε
[
e−θτ

−
0 W (θ+q)

(
Xτ−0

− ε+ a
)

1{τ−0 <τ
+
b+ε}

]
= W (θ+q)(a)− q

∫ a

a−ε
W (θ)(a− z)W (θ+q)(z)dz

− W (θ)(ε)

W (θ)(b+ ε)

(
W (θ+q)(b+ a)− q

∫ b+a

a−ε
W (θ)(b+ a− z)W (θ+q)(z)dz

)
.

As a consequence,

1− pE
[
e−θ`

ε
1

]
=

q

W (θ+q)(a)

∫ a

a−ε
W (θ)(a− z)W (θ+q)(z)dz

+
W (θ)(ε)

W (θ+q)(a)W (θ)(b+ ε)

(
W (θ+q)(b+ a)− q

∫ b+a

a−ε
W (θ)(b+ a− z)W (θ+q)(z)dz

)
.

Next, we compute the expectation of Ξ
(∗,ε)
a,b . Recalling that under P(·|Ec) and on

the event {ξ∗,ε < b, ξ∗,ε ≥ −a}, we necessarily have that the excursion goes below the

level −ε and the exponential clock rings before the end of the excursion, i.e.

pE
[
Ξ

(∗,ε)
a,b

]
= E

[
e−θτ

−
−εEX

τ
−
−ε

[
e−θeqf

(
−Xeq

)
, eq < τ−−a ∧ τ+

0

]
1{τ−−ε<τ

−
−a∧τ

+
b }

]
= q

∫ 0

−a

(
E
[
e−θτ

−
−εh(y)1{τ−−ε<τ

+
b }

]
f(−y))

)
dy,

(2.19)

with

h(y) =
W (θ+q)(Xτ−−ε

+ a)W (θ+q)(−y)

W (θ+q)(a)
−W (θ+q)(Xτ−−ε

− y),

thanks to Fubini’s theorem and identity (1.2) in Theorem 1.1. Using once more the
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identity in Equation (1.4) and rearranging the terms, one can write

E

[
e−θτ

−
−ε

{
W (θ+q)(Xτ−−ε

+ a)W (θ+q)(−y)

W (θ+q)(a)
−W (θ+q)(Xτ−−ε

− y)

}
1{τ−−ε<τ

+
b }

]

=
W (θ)(ε)

W (θ)(b+ ε)

{[
W (θ+q)(b− y)− q

∫ b+ε

0

W (θ)(b+ ε− z)W (θ+q)(z − y − ε)dz

]

−W
(θ+q)(−y)

W (θ+q)(a)

[
W (θ+q)(b+ a)− q

∫ b+ε

0

W (θ)(b+ ε− z)W (θ+q)(z + a− ε)dz

]}

+q

{∫ ε

0

W (θ)(ε− z)W (θ+q)(z − y − ε)dz

− W (θ+q)(−y)

W (θ+q)(a)

∫ ε

0

W (θ)(ε− z)W (θ+q)(z + a− ε)dz
}
.

Now we are interested in computing the limit of E
[
e−θτ

ε
q f
(
−Xτεq

)
1{τεq<τ

+
b ∧τ

−
−a}

]
,

as given in Equation (2.18), when ε goes to 0. We use the above computations for the

numerator and the denominator, and we divide both by W (θ)(ε). First, we have

1− pE
[
e−θ`

ε
1

]
W (θ)(ε)

=
q

W (θ+q)(a)

∫ a
a−εW

(θ)(a− z)W (θ+q)(z)dz

W (θ)(ε)

+
1

W (θ+q)(a)W (θ)(b+ ε)

(
W θ+q)(b+ a)− q

∫ b+a

a−ε
W (θ)(b+ a− z)W (θ+q)(z)dz

)

−→
ε↓0

1

W (θ+q)(a)W (θ)(b)

(
W (θ+q)(b+ a)− q

∫ b+a

a

W (θ)(b+ a− z)W (θ+q)(z)dz

)
.

Indeed, when the process has paths of bounded variation, we have∫ a
a−εW

(θ)(a− z)W (θ+q)(z)dz

W (θ)(ε)
−→
ε↓0

0

W (θ)(0)
= 0,

while, when it has paths of unbounded variation, we have

1

W (θ)(ε)/ε

∫ a
a−εW

(θ)(a− z)W (θ+q)(z)dz

ε
−→
ε↓0

W (θ)(0)W (θ+q)(a)

W (θ)′(0)
= 0.

Similarly, using Lebesgue’s dominated convergence theorem, we have

pE
[
Ξ

(∗,ε)
a,b

]
W (θ)(ε)

−→
ε↓0

q

∫ 0

−a

f(−y)

W (θ)(b)

{[
W (θ+q)(b− y)− q

∫ b

0

W (θ)(b− z)W (θ+q)(z − y)dz

]

− W (θ+q)(−y)

W (θ+q)(a)

[
W (θ+q)(b+ a)− q

∫ b

0

W (θ)(b− z)W (θ+q)(z + a)dz

]}
dy.
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Putting all the pieces together, we deduce

lim
ε↓0

E
[
e−θτ

ε
q f
(
−Xτεq

)
1{τεq<τ

+
b ∧τ

−
−a}

]
= q

∫ 0

−a
f(−y)

{
W (θ+q)(a)

g(θ, q, b,−y)

g(θ, q, b, a)
−W (θ+q)(−y)

}
dy, (2.20)

where g(θ, q, x, y) is given as in (1.7).

Hence, from (1.6) we have that if f is a continuous and bounded function, we can

use Lebesgue’s dominated convergence theorem to conclude

E
[
e−θτqf

(
−Xτq

)
1{τq<τ+

b ∧τ
−
−a}

]
= lim

ε↓0
E
[
e−θτ

ε
q f
(
−Xτεq

)
1{τεq<τ

+
b ∧τ

−
−a}

]
.

In order to prove the result when the process starts at x > 0, we consider the first

0-excursion. Here, we have two possibilities when the process X goes below the level

0, either it touches 0 (coming from below) before the exponential clock rings, or the

clock rings before the process X finishes its negative excursion. In the first case, once

the process X returns to 0, we can start the procedure all over again. Hence, using

the strong Markov property and the independence between the excursions, we obtain

Ex
[
e−θτqf

(
−Xτq

)
1{τq<τ+

b ∧τ
−
−a}

]
= Ex

[
e−θτ

−
0 EX

τ
−
0

[
e−θeqf

(
−Xeq

)
1{eq<τ−−a∧τ

+
0 }

]
1{τ−0 <τ

+
b ∧τ

−
−a}

]
+ Ex

[
e−θτ

−
0 EX

τ
−
0

[
e−θτ

+
0 1{τ+

0 <τ
−
−a∧eq}

]
1{τ−0 <τ

+
b }

]
E0

[
e−θτqf

(
−Xτq

)
1{τq<τ+

b ∧τ
−
−a}

]
.

The identities in Equations (1.1), (1.2), (1.4) and (2.20) now lead to the result.

Proof of Corollary 1.1. The first two results in Equation (1.10) and Equation (1.11)

follow by taking appropriate limits, i.e. letting a and b go to infinity in Equation (1.8)

or Equation (1.9), and by using the following identity (see e.g. Exercice 8.5 in [10]):

for r ≥ 0 and x ∈ R,

lim
c→∞

W (r)(c− x)

W (r)(c)
= e−Φ(r)x.

The third part of the Corollary, i.e. Equation (1.12), is obtained by computing the

following limit

lim
b→∞

Ex
[
e−θτq , Xτq ∈ dy, τq < τ+

b

]
= Ex

[
e−θτq , Xτq ∈ dy, τq <∞

]
,
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and by observing that

lim
b→∞

W (θ)(b)

eΦ(θ+q)b − q
∫ b

0
W (θ)(b− z)eΦ(θ+q)zdz

=
Φ(θ + q)− Φ(θ)

q
(2.21)

and

lim
b→∞

W (θ+q)(b− y)− q
∫ b

0
W (θ)(b− z)W (θ+q)(z − y)dz

eΦ(θ+q)b − q
∫ b

0
W (θ)(b− z)eΦ(θ+q)zdz

=
Φ(θ + q)− Φ(θ)

q

(
e−Φ(θ)y + q

∫ −y
0

e−Φ(θ)(y+z)W (θ+q)(z)dz

)
. (2.22)

Here, (2.21) follows from an application of l’Hôpital’s rule to the quotient

e−Φ(θ+q)bW (θ)(b)

1− q
∫ b

0
e−Φ(θ+q)zW (θ)(z)dz

and

lim
b→∞

W (θ)′(b)

W (θ)(b)
= Φ(θ),

whereas (2.22) can be obtained by combining (2.21) with

q

∫ b

0

W (θ)(b− z)W (θ+q)(z − y)dz

= W (θ+q)(b− y)−W (θ)(b− y)− q
∫ −y

0

W (θ)(b− z − y)W (θ+q)(z)dz,

with the latter due to (1.3).
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