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Abstract

In this paper, we investigate the functional central limit theorem for stochastic

processes associated to partial sums of additive functionals of reversible Markov chains

with general spate space, under the normalization standard deviation of partial sums.

For this case, we show that the functional central limit theorem is equivalent to the

fact that the variance of partial sums is regularly varying with exponent 1 and the

partial sums satisfy the CLT. It is also equivalent to the conditional CLT.

1 Introduction and Result

Reversible Markov chains play a very important role in applications to infinite particle

systems, random walks, processes in random media, Metropolis-Hastings algorithms.

For instance, Kipnis and Varhadhan (1986) and Kipnis and Landim (1999) considered

applications to interacting particle systems, Tierney (1994), Zhao et al. (2010), Longla

et al. (2012) discussed the applications to Markov Chain Monte Carlo. Our paper is

motivated by the functional limit theorem in the paper by Longla et al. (2012). Our

result will bring further clarification on this subject. Without assuming aperiodicity or

irreducibility properties, we shall show that for an additive functional of a stationary
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reversible Markov chain the functional CLT is equivalent to CLT plus the fact that the

variance of partial sums is regularly varying with exponent 1.

We assume that (ξn)n∈Z is a stationary Markov chain defined on a probability space

(Ω,F ,P) with values in a general state space (S,A). The marginal distribution is

denoted by π(A) = P(ξ0 ∈ A). Assume that there is a regular conditional distribution

for ξ1 given ξ0 denoted by Q(x,A) = P(ξ1 ∈ A| ξ0 = x). Let Q also denote the Markov

operator acting via (Qf)(x) =
∫

S
f(s)Q(x, ds). Next, let L2

0(π) be the set of measurable

functions on S such that
∫

f 2dπ < ∞ and
∫

fdπ = 0. For some function f ∈L2
0(π),

let

Xi = f(ξi), Sn =

n
∑

i=1

Xi, σn = (ES2
n)

1/2. (1)

For any integrable random variable X we denote Eξn(X) = E(X|ξn). The symbol

⇒ denotes convergence in distribution.

The Markov chain is called reversible if Q = Q∗, where Q∗ is the adjoint operator

of Q. The condition of reversibility is equivalent to requiring that (ξ0, ξ1) and (ξ1, ξ0)

have the same distribution or

∫

A

Q(ω,B)π(dω) =

∫

B

Q(ω,A)π(dω),

for all Borel sets A,B ∈ A.

Gordin and Lif̌sic (1981) proved a CLT for functionals of a normal Markov chain.

In particular this implies a CLT for functions of reversible Markov chains under the

normalization
√
n. Kipnis and Varadhan (1986) provided a functional form of this

result. They showed that for a stationary reversible and ergodic Markov chain the

condition var(Sn)/n → σ2
f implies the convergence of S[ns]/

√
n to the Brownian motion

|σf |W (s), (here, 0 ≤ s ≤ 1, [ns] is the integer part of ns and W (s) is the standard

Brownian motion). All these results used the normalization
√
n.

Zhao et al. (2010) addressed the central limit theorem question for reversible

Markov chains under the weaker condition,

σ2
n = nh(n), (2)
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where h is a slowly varying function (i.e. limn→∞ h(nu)/h(n) = 1 for all u > 0). First,

they proved that if lim infn h(n) = 0, then necessarily

2Sn = (1 + (−1)n−1)X1 a.s. (3)

and if lim infn h(n) = c2 6= 0 then σ2
n/n → c2. In the following, to avoid the trivial case,

we shall assume that

lim inf σ2
n/n > 0.

Zhao et al. (2010) also showed, by a class of examples, the surprising result that the

distribution of Sn/σn needs not converge to the standard normal distribution under

(2). Their example satisfies the central limit theorem, in the sense that

Sn

σn
⇒ |c|Z, (4)

where Z is a standard normal variable, N(0, 1), and |c| 6= 0, 1. A large class of examples

satisfying (4) is given in Deligiannidis et al. (2014). This paper also contains necessary

and sufficient conditions for (2) in terms of the operator spectral measure.

A natural question is whether, in the context of reversible Markov chains, the central

limit theorem in (4) implies the invariance principle namely

S[ns]

σn
⇒ |c|W (s), (5)

where W (s), s ≥ 0 is the standard Brownian motion. This question is interesting in

itself, especially in the light of recent examples of stationary sequences which satisfy

CLT but not its functional forms (Giraudo and Volný, 2014).

A step in this direction is Theorem 2 in Longla et al. (2012), showing that condi-

tional CLT implies the functional CLT in (5) for functions of reversible Markov chains.

By the conditional CLT we understand that some c > 0 and for all t,

Eξ0(exp it
Sn

σn

) → exp(− t2

2c2
) in probability. (6)

This form of the conditional CLT was essentially used in Longla et al. (2012), in order

to establish the convergence of finite dimensional distributions.
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In this paper we show that actually (4) and (2) implies (5) for functionals of re-

versible Markov chains. More precisely we shall establish the following theorem:

Theorem 1 Assume that (Xn) is defined by (1) and the Markov chain is stationary

and reversible. Then, the following statements are equivalent:

(a) The functional CLT in (5) holds.

(b) The CLT in (4) holds and the variance of partial sums is regularly varying with

exponent 1 (as in relation (2)).

(c) The conditional CLT in (6) holds.

2 Proof of Theorem 1

The fact that (a) implies (b) follows by standard arguments in the following way.

Clearly, since the partial sum is just a finite dimensional distribution for s = 1, the

functional CLT in (5) implies the CLT in (4). Then, by (4), we have that S[ns]/σ[ns] ⇒
|c|Z, for every s > 0. On the other hand, the convergence in (5) implies S[ns]/σn ⇒ |c|sZ
for all s > 0. By the theorem of types (see Theorem 14.2 in Billingsley, 1995), it

follows that σ2
[ns]/σ

2
n → s. The fact that (c) implies (a) was established in Theorem

2 in Longla et al. (2012). It remains to prove that (b) implies (c). The idea of

proof is to show that from any subsequence of Eξ0(exp it(Sn/σn)) we can extract one

converging to exp(−t2/2c2) in probability. To achieve this goal, we need a technical

lemma concerning conditional convergence.

Lemma 2 Assume (Vn, η) is convergent in distribution to (V, Y ). Then, we can con-

struct on the same probability space a sequence (V ′
n, η

′), where each vector is distributed

as (Vn, η) and a vector (V ′, η′) distributed as (V, Y ) such that for all t,

Eη′ exp(itV
′
n) → Eη′ exp(itV

′) in probability.

Proof of Lemma 2. By the Skorohod theorem (see Skorohod, 1956), we can con-

struct on the same probability space a sequence (V ′
n, η

′), where each vector is distributed
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as (Vn, η), and a vector (V ′, Y ′) distributed as (V, Y ) such that (V ′
n, η

′)(ω) → (V ′, Y ′)(ω)

for all ω. Clearly η′ = Y ′ and V ′
n(ω) → V ′(ω) for all ω. Then, by the mean value theo-

rem, for any t and δ > 0,

|Eη′ exp(itV
′
n)− Eη′ exp(itV

′)| ≤

Eη′ | exp(itV ′
n)− exp(itV ′)|I(|V ′

n − V ′| ≤ δ) + 2Pη′(|V ′
n − V ′| > δ)

≤ |t|δ + 2Pη′(|V ′
n − V ′| > δ) a.s.

By taking the expectation

E|Eη′ exp(itV
′
n)− Eη′ exp(itV

′)| ≤ |t|δ + 2P(|V ′
n − V ′| > δ),

which tends to 0 as n → ∞ and then δ → 0. ⋄

We continue to prove Theorem 1 by proving that (b) implies (c). We remind that

we work under the assumption that lim inf σ2
n/n > 0. Note that, by stationarity and

the fact that X0 is square integrable, it follows that max1≤i≤n |Xi|/
√
n → 0 a.s. and in

L
2 and therefore

max
1≤i≤n

|Xi|/σn → 0 a.s. and in L
2. (7)

This property will allow us to adjust the sums by a few variables without changing

the limiting distribution. We shall use some notations: S̄n = Xn+1 + ... +X2n; Pn =

σ(ξi, i ≤ n) is the past sigma field.

Step 1. As a preliminary computation, we show that for all t,

E(Eξ0
(exp

itSn

σn

))2 → exp(− t2

c2
) . (8)

By (7), the properties of conditional expectation and Markov property,

E(exp
itS2n

σn
) = E(exp

it(Sn + S̄n)

σn
) = E

(

(exp
itSn

σn
)E(exp

itS̄n

σn
|Pn)

)

= E

(

(exp
itSn

σn

)Eξn(exp
itS̄n

σn

)

)

.

We write now Sn = (X0 + ... +Xn−1)−X0 +Xn = S[0,n−1] + (Xn −X0).
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Clearly by simple computations and (7),

|E
(

exp
itSn

σn
Eξn(exp

itS̄n

σn
)

)

− E

(

exp
itS[0,n−1]

σn
Eξn(exp

itS̄n

σn
)

)

|

≤ E| exp it(Xn −X0)

σn

− 1| → 0 as n → ∞.

Therefore, by combining these facts we obtain

E(exp
itS2n

σn
)− E

(

exp
itS[0,n−1]

σn
Eξn(exp

itS̄n

σn
)

)

→ 0. (9)

Note now that, by the properties of conditional expectation,

E

(

exp
itS[0,n−1]

σn
Eξn(exp

itS̄n

σn
)

)

= E

(

Eξn(exp
itS[0,n−1]

σn
)Eξn(exp

itS̄n

σn
)

)

.

By taking into account the reversibility of the process, we obtain

Eξn(exp
itS[0,n−1]

σn
) = Eξn(exp

itS̄n

σn
).

Therefore, by combining this identity with (9), it follows that

E(exp
itS2n

σn
)− E

(

Eξn(exp
itS̄n

σn
)

)2

→ 0.

So, by using now the stationary, the representation of the variance in (2) and the

central limit theorem in (4), the convergence given in relation (8) follows.

Step 2. We show now that from any subsequence (n′) we can extract one (n”) ⊂
(n′) for which there is a pair of random variables (V, ξ), with ξ distributed as ξ0 and

V is normally distributed with mean 0 and variance c2 (i.e. N(0, c2)) and such that

Eξ exp(itV
′
n”) → Eξ exp(itV ) in probability, (10)

where (V ′
n”, ξ) is distributed as (Sn”/σn”, ξ0). In addition,

E(Eξ0
(exp

itSn”

σn”
))2 → E(Eξ exp(itV ))2. (11)

Indeed, since (Sn/σn, ξ0) is tight, from any subsequence (n′) we can extract one (n”) ⊂
(n′) such that (Sn”/σn”, ξ0) is convergent in distribution to (V, Y ) where, by (4), V is
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N(0, c2) and Y is distributed as ξ0. By Lemma 2, applied to Vn” = Sn”/σn”, there exists

two pairs of variables: (V ′
n”, ξ) distributed as (Sn”/σn”, ξ

′
0) and (V, ξ), with ξ distributed

as ξ0 and V centered normal with variance c2, such that convergence in (10) holds. Now

by starting from (10) and applying the Lebesgue dominated convergence theorem, (11)

follows.

Step 3. In order to finish the proof of the theorem we shall show that the limit in

(10) does not depend on the subsequence. As a matter of fact we shall show that

Eξ exp(itV ) = exp(− t2

2c2
) a.s. (12)

We shall use the fact that V is N(0, c2) and also, by Step 2 and by Step 1, we know

that

E(Eξ exp(itV ))2 = exp(− t2

c2
). (13)

Note that, in order to establish (12), it is enough to show that, for all integers m ≥ 0,

Eξ(V
m) = E(V m) a.s. (14)

With this aim, we redefine V on a larger probability space together with two indepen-

dent variables uniformly distributed U and Ũ which are also independent on ξ and such

that V = f(ξ, U) and Ṽ = f(ξ, Ũ). Note that V and Ṽ are conditionally independent

given ξ and (V, ξ) has the same distribution as (Ṽ , ξ). In addition, let N, Ñ be i.i.d.

random variables N(0, c2).

Then, by (13),

E(Eξ exp(itV ))2 = E( exp(it(V + Ṽ )))2

=
∞
∑

m=0

E(V + Ṽ )m
(it)m

m!
=

∞
∑

m=0

E(N + Ñ)m
(it)m

m!
.

Hence, for all n = 0, 1, 2, . . .

E(V + Ṽ )n = E(N + Ñ)n. (15)

Further, we proceed by induction to prove (14). Note that (14) obviously holds for

m = 0. Assume (14) holds for m ≤ k. To prove it for (k + 1) we use (15) with

n = 2k + 2 and develop the binomial
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2k+2
∑

ℓ=0

Cℓ
2k+2EV

ℓṼ 2k+2−ℓ =
2k+2
∑

ℓ=0

Cℓ
2k+2EN

ℓ
EN2k+2−ℓ. (16)

By the induction hypothesis, conditional independence of V and Ṽ and the properties

of conditional expectation we obtain, for 0 ≤ ℓ ≤ k, and every integer m,

EV ℓṼ m = E(Eξ(V
ℓṼ m)) = E(EξV

ℓ
EξV

m) = E(V ℓ)E(V m) = E(N ℓ)E(Nm)

and similarly,

EṼ ℓV m = E(N ℓ)E(Nm).

By using both these estimates in (16), we observe that the terms in the sum from

0 ≤ ℓ ≤ k and k + 2 ≤ ℓ ≤ 2k + 2 all cancel, and it follows that

EV k+1Ṽ k+1 = (ENk+1)2 = (EV k+1)2.

Taking into account that

EV k+1Ṽ k+1 = E(EξV
k+1

EξṼ
k+1) = E(EξV

k+1)2,

we obtain by the above arguments that

E(EξV
k+1)2 = (EV k+1)2.

It follows that

E(EξV
k+1 − EV k+1)2 = 0,

which completes the proof of (14) and therefore of (12). Combining (12) with (10) we

get

Eξ exp(
itS ′

n”

σn”
) → exp(− t2

2c2
) in probability.

Consequently,

Eξ0 exp(
itSn”

σn”
) → exp(− t2

2c2
) in probability,

completing the proof of the theorem.
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