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Abstract. It is shown that the celebrated result of Sparre Andersen for ran-

dom walks and Lévy processes has intriguing consequences when the last time
of the process in (−∞, 0], say σ, is added to the picture. In the case of no

positive jumps this leads to six random times, all of which have the same dis-

tribution - the uniform distribution on [0, σ]. Surprisingly, this result does not
appear in the literature, even though it is based on some classical observations

concerning exchangeable increments.

1. The main observation

The main observation of this note is best illustrated by a Lévy process Xt, t ≥ 0
without positive jumps. A particular example of such X is given by a compound
Poisson process with positive linear drift and negative jumps, which occupies a
central place in applied probability: in risk theory it is known as a Cramér-Lundberg
model [5], and in queueing theory −X drives the workload process in the classical
M/G/1 queue [4].
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Figure 1. A sample path of X and the corresponding random times.

Let σ = sup{t ≥ 0 : Xt ≤ 0} be the last time of X in (−∞, 0], which is finite
a.s. when EX1 > 0. Define the following random times, see Fig. 1:

N− =

∫ σ

0

1{Xs≤0}ds, N+ =

∫ σ

0

1{Xs≥0}ds,

−→
F = sup{t ∈ [0, σ) : Xt = Xt},

−→
G = sup{t ∈ [0, σ) : Xt = Xt},

←−
F = σ −−→F , ←−

G = σ −−→G,
1
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2 J. IVANOVS

where Xt = sup{Xs : s ∈ [0, t]} and Xt = inf{Xs : s ∈ [0, t]} are the running
supremum and infimum processes respectively. When σ = 0 we assume that all

these times are 0. In words, N− is the time spent in the non-positive half-line,
−→
F

is the time of the infimum, and
←−
F is the time from the infimum to σ.

Proposition 1.1. Let X be a Lévy process without positive jumps, such that EX1 >

0. Then
−→
F ,
←−
F ,
−→
G,
←−
G,N−, N+ have the same distribution.

Note that we can replace σ by∞ in the definitions ofN− and
−→
F . The equivalence

of laws of these two random variables is known as Sparre-Andersen identity, see
e.g. [6, Lem. VI.15]. This identity for random walks was first established by E.
Sparre Andersen in [2] using combinatorial approach; a simpler proof can be found
in [9, Thm. XII.8.2].

The transform of the single distribution in Proposition 1.1 is well known. Define
the first passage time τx = inf{t ≥ 0 : Xt > x} and let ψ(s) = log(EesX1),Φ(s) =
− log(Ee−sτ1) for s ≥ 0, which are known to satisfy ψ(Φ(s)) = s. Then it follows
from [6, Thm. VII.4(ii)] that

(1) Ee−s
−→
F = ψ′(0)

Φ(s)

s
, s > 0.

Alternatively,
←−
F is the last passage time of the post-infimum process (known as

X conditioned to stay positive) over I = −X∞. It is well known that the post-
infimum process is independent of the infimum and by William’s representation [6,
Thm. VII.18] its last passage time over x has the law of τx. Hence we can add the
following identity to Proposition 1.1:

(2)
←−
F

d
= τ̂I ,

where τ̂ is a copy of τ independent of X. In particular, this readily implies that the

transform of
←−
F coincides with (1) by way of the generalized Pollaczek-Khinchine

formula: Ee−sI = ψ′(0)s/ψ(s).
Similarly to the classical identity, Proposition 1.1 can be reformulated for a Lévy

process on a finite interval [0, T ], see Proposition 1.2 below. Yet another possibility
is to consider a general Lévy process and to condition on the event {Xσ = 0},
assuming it has positive probability. Corollary 3.1 presents this type of result for

random walks. Note that if local extrema are not necessarily distinct then
←−
F and←−

G must be defined in a slightly different way, see Section 3.

Proposition 1.2. Let X be a Lévy process without positive jumps, such that
P(XT > 0) > 0, and let σ = sup{t ∈ [0, T ] : Xt ≤ 0}. On the event {XT > 0} the

random times
−→
F ,
←−
F ,
−→
G,
←−
G,N−, N+ have the same distribution.

In general, when jumps of both signs are allowed, the above equivalence of laws
does not hold. Instead, we can partition these times into two classes of three
elements in each according to their laws. We state this general result for random
walks and provide its short proof in Section 3. Its standard extension to Lévy
processes is discussed in short in Section 4, where we also give some additional
comments.
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2. Intuitive explanation and further consequences

There is a simple explanation of the above results: the Sparre-Andersen identity
holds for the random time interval [0, σ] (applied to −X), and the process seen
from σ (backwards in time and downwards in space) has the same law as the
original process up to σ. The fundamental reason behind these observations is
that the increments of the approximating random walk are exchangeable random
variables conditioned on {σ = n}, see Section 3 and Section 4 for details.

By considering the approximating random walk we observe some interesting
further consequences. Firstly, we notice that the above 6 random times have the
same distribution conditional on σ, and so

the pairs (
−→
G,
←−
G), (

−→
F ,
←−
F ), (N+, N−) have the same distribution(3)

with exchangeable components. The corresponding transform (under assumptions
of Proposition 1.1) can be obtained in a similar way as above:

(4) Ee−s
−→
F −t←−F = Ee−s

−→
F −tτ̂I = Ee−s

−→
F +Φ(t)X∞ = ψ′(0)

Φ(s)− Φ(t)

s− t

using (2) and the explicit form of the Wiener-Hopf factor corresponding to the
infimum, see e.g. [6, Thm. VII.4(ii)]. Taking t ↑ s we get Ee−sσ = ψ′(0)Φ′(s)
confirming the result of [8].

Finally, another result by Sparre Andersen [3], see also [9, Thm. XII.8.3], states
that the time of the maximum of a random walk ‘conditioned’ to hit 0 at its terminal
time, cf. Brownian bridge, has a uniform distribution. This is a simple consequence
of cyclical rearrangements of increments. In our setting this result implies that our
6 random times have a uniform distribution on [0, σ], i.e.

(5) P(
−→
F ∈ dx|σ = t) =

1

t
1{x∈[0,t]}dx, t > 0.

This result complements well-known uniform laws for Lévy bridges [7, 10] stemming
from the same result of Sparre Andersen, see also [1, 11] for an extension of the
cyclical rearrangement idea. In general, we have to assume that X is a Lévy process
with distinct extrema conditioned on {Xσ = 0}.

3. Random walk

Consider a random walk Si =
∑i
j=1 ζj for i = 0, . . . , n, where ζ1, . . . , ζn be iid

random variables. Let us condition this random walk on the (positive probability)
event {Sn ∈ B} for some Borel set B; later we will take B = R and B = [0,∞).
Let

σ = max{i ≤ n : Si ≤ 0}

be the last time of Si in the non-positive half line. Let

S = min{Si : i ≤ σ}, S = max{Si : i ≤ σ}
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and define the following 8 quantities:

N− =

σ∑
i=1

1{Si≤0}, N+ =

σ∑
i=1

1{Si≥0},

Ñ− =

σ−1∑
i=0

1{Si≤Sσ}, Ñ+ =

σ−1∑
i=0

1{Si≥Sσ},

−→
F = max{i ≤ σ : Si = S}, −→

G = max{i ≤ σ : Si = S},
←−
F = σ −min{i ≤ σ : Si = S}, ←−

G = σ −min{i ≤ σ : Si = S},

see Fidure 2. Moreover, we define a process Ŝi, i = 0, . . . , σ by

b

b

b b

b
b

b

b

b

b

b

b

b

b

b

b

b

N+

Ñ−
σ

←−
F

−→
G

Figure 2. A realization of a random walk S and the corresponding
random times.

Ŝi = Sσ − Sσ−i,
which is just −S time reversed at σ.

Proposition 3.1. For a random walk Si, i = 0, . . . , n conditioned on {Sn ∈ B} it
holds that

• Ŝ has the law of S considered up to σ,

• N−, Ñ+,
−→
F ,
←−
G have the same distribution,

• N+, Ñ−,
←−
F ,
−→
G have the same distribution.

Proof. For fixed k = 0, . . . , n consider an event {σ = k} = {Sk ≤ 0, Si > 0 for all k <
i ≤ n} (assuming it has a positive probability). Note that on the event {σ = k, Sn ∈
B} the sequences ζ1, . . . , ζk and ζk, . . . , ζ1 have the same law, and so Si, i = 0, . . . , k

and Ŝi, i = 0, . . . , k have the same laws. Now the first statement follows by condi-
tioning on σ.

From the law equivalence of S and Ŝ we get that

N−
d
= Ñ+, N+ d

= Ñ−,
−→
F

d
=
←−
G,

←−
F

d
=
−→
G,

which is easily understood by drawing a picture. Otherwise, observe that Si ≥ Sσ
is the same as 0 ≥ Sσ − Si = Ŝσ−i and so

(6) Ñ+ =

σ−1∑
i=0

1{Ŝσ−i≤0} =

σ∑
i=1

1{Ŝi≤0}.
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This proves the first equality, and the second follows similarly. Also
←−
G = max{σ − i ∈ [0, σ] : Si = S} = max{j ∈ [0, σ] : Sσ − Sσ−j = Sσ − S}

= max{j ∈ [0, σ] : Ŝj = min{Ŝi : i ≤ σ}}.(7)

This proves the third statement and the fourth follows similarly.
Next, note that ζ1, . . . , ζn conditioned on the event {Sn ∈ B} are exchangeable

random variables. Thus it follows from Sparre-Andresen identity, see [9, Thm.

XII.8.2], that N− and
−→
F have the same distribution (note that in their definitions

σ can be replaced by n).
Recall that ζ1, . . . , ζk conditioned on the event {σ = k, Sn ∈ B} are exchangeable

random variables. Thus on this event N+ and
−→
G have the same distribution, which

by conditioning is also true on the event {Sn ∈ B}. �

Corollary 3.1. Assume that P(Sσ = 0) > 0, then on the event {Sσ = 0} it holds

that N−, N+,
−→
F ,
←−
F ,
−→
G,
←−
G have the same distribution.

Proof. The above proof requires only a small modification: we need to condition on

{σ = k} in the proof of N−
d
=
−→
F . Finally, it follows that N− = Ñ− and N+ = Ñ+,

showing that there is a single distribution. �

4. Lévy process

Extension of Proposition 3.1 to the case of a Lévy process is standard, and hence
only a sketch of it is presented in this note. Consider a general Lévy process X, and
without loss of generality assume that T = 1. Define σ = sup{t ∈ [0, T ] : Xt ≤ 0}
and the corresponding time reversed process by

X̂t = Xσ− −X(σ−t)−, t ∈ [0, σ),

where Xt− denotes the left limit of X at t. Define the random times as in Section 1
and in addition put

Ñ− =

∫ σ

0

1{Xt≤Xσ−}dt, Ñ+ =

∫ σ

0

1{Xt≥Xσ−}dt.

Consider a sequence of random walks S(n), defined by S
(n)
i = Xi/n, i = 0, . . . , n,

and the corresponding sequence of continuous approximations X(n) of X, where
points (i/n,Xi/n), i = 0, . . . , n are connected by line segments (the appropriate

topology is M1, see [12, Ch. 3.3]). This setup and law equivalence of Ŝ and S

readily show that X̂ has the same law as Xt, t ∈ [0, σ).

Finally, we need to show that n−1N (n)− (corresponding to S(n)) converges to
N− (corresponding to X) a.s., and the same for the other quantities. The case of a
compound Poisson process is rather obvious, but requires to use another definition

of
←−
F and

←−
G :

←−
F = σ −min{t ∈ [0, σ) : Xt = XT },

←−
G = σ −min{t ∈ [0, σ) : Xt = Xσ−}.

Now suppose that X is not a compound Poisson process. Then
∫ σ

0
1{Xt=0}dt = 0

a.s, see [6, Prop. I.15], and then also
∫ σ

0
1{Xt=Xσ−}dt = 0 a.s., because of the law

equivalence of X and X̂. In addition, local extrema of X are all distinct, see [6,
Prop. VI.4]. Now the convergence of the scaled times for random walks to their
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Lévy counterparts is clear, see also the proof of [6, Lem. VI.15] presenting extension
of the Sparre-Andersen identity to the Lévy process case.

In conclusion, N−, Ñ+,
−→
F ,
←−
G have the same distribution, and the same is true

for N+, Ñ−,
←−
F ,
−→
G . Moreover, Proposition 1.1 follows from Proposition 1.2, and

the latter follows immediately from the general result, by noticing that Xσ− = 0

and thus N− = Ñ−, N+ = Ñ+. Finally, under conditions of Proposition 1.1 the
time-reversed process X̂t = −X(σ−t)−, t ∈ [0, σ) has the law of X considered up
to σ.
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