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Abstract

We call ‘bits’ a sequence of devices indexed by positive integers,
where every device can be in two states: 0 (idle) and 1 (active).
Start from the ‘ground state’ of the system when all bits are in
0-state. In our first Binary Flipping (BF) model, the evolution of
the system is the following: at each time step choose one bit from
a given distribution P on the integers independently of anything
else, then flip the state of this bit to the opposite. In our sec-
ond Damaged Bits (DB) model a ‘damaged’ state is added: each
selected idling bit changes to active, but selecting an active bit
changes its state to damaged in which it then stays forever.

In both models we analyse the recurrence of the system’s ground
state when no bits are active. We present sufficient conditions for
both BF and DB models to show recurrent or transient behaviour,
depending on the properties of P. We provide a bound for frac-
tional moments of the return time to the ground state for the BF
model, and prove a Central Limit Theorem for the number of ac-
tive bits for both models.
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1 Introduction and Model Description

In many areas of engineering and science one faces an array of devices
which possess a few states. In the simplest case these could be on-off
or idle-active states, in other situations a damaged state is also possible.
By the analogy with computer science, such a two-state device can be
called a bit which in some case can also be ‘damaged’. If the activation-
deactivation cycles (flipping) or damage produce themselves in a random
fashion, a natural question to ask is when, if at all, the system of bits
recovers to some initial or ground state when none of the bits are active,
allowing only for idling and damaged bits to be seen. The time to recover
may be finite, but, in general, may also assume infinite values when the
system actually does not recover. In the latter case we speak of transient
behaviour of the system. In the former case, depending on whether the
mean of the recover time exists or not, we speak of a positive- or of a
null-recurrence. Similarly to random walk models, this classification is
tightly related to the exact random mechanism governing the change of
the bits’ states.

In the present paper we consider two basic models. In both models
we deal with a countably infinite array of bits which we index by the
positive integers N = {1, 2, . . . }. Initially, at step 0, the system is in the
ground state, i.e. all the bits are idling. At each next step the index of
the bit to change its state is sampled independently of the current state
of the bits from a given probability distribution on N,

P = (p1, p2, . . . ) :

∞∑
i=1

pi = 1.

Without loss of generality, we may assume that the bits are indexed in
such a way that

p1 ≥ p2 ≥ p3 ≥ . . .

so that the bits most likely to change their state are put first. We also
assume that the support of the distribution P is unbounded, otherwise
our models are described by a finite state Markov chain with an evident
behaviour. The main quantities of interest are the number of steps τ
until the first return to the ground state, and ηn – the number of bits
being active at step n. The two models are the following.

Binary Flipping (BF). In this model the bits alternate between the
two states: idle and active. At step 0 all of the bits are idling. Let
χ1, χ2, . . . be i.i.d. variables taken from the distribution P. At the ith
step, i = 1, 2, . . . , the bit with index χi is flipped, i.e. its state is changed
to the opposite:

idle ↔ active
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If 0 and 1 represent, respectively, the idling and the active states, the
evolution of the system is described by a discrete time Markov chain
{ζn}n≥0 = {(ζ1

n, ζ
2
n, ζ

3
n, . . . )}n≥0 with the state space

X =
{
x ∈ {0, 1}N : x has finitely many non-zeros

}
such that ζ0 = 0 is the zero-vector, and

ζkn+1 =

{
ζkn, k 6= χn+1,

1− ζkn, k = χn+1,
k = 1, 2, . . . , n = 0, 1, 2, . . . . (1)

The main quantity of interest is the number of steps required for the
system to return to the ground state, i.e. the following stopping time:

τBF = min{n ≥ 1 : no bits are active at step n}
= min{n ≥ 1 : ζkn = 0, ∀k = 1, 2, . . . } .

Damaged Bits (DB). This second model elaborates on the first one
by adding a damaged state to the bits. As in BF model above, we start
with a sequence of idling bits and then consecutively sample from P
for the index of the bit to change its state according to the following
dynamics:

idle → active → damaged.

Thus in this model, the reversal of states is not possible: once a bit is
active it will never become idle again. An attempt to activate an already
active bit leads to its damage. Also, the damaged bits never become
functional again and if a damaged bit is selected to change its state
nothing happens: it just remains damaged.

If 0,1,2 encode idle, active and damaged states respectively, the cor-
responding Markov chain {ζn}n≥0 with the state space

Y =
{
y ∈ {0, 1, 2}N : y has finitely many non-zeros

}
is defined by

ζkn+1 =

{
ζkn, k 6= χn+1,

min{2, 1 + ζkn}, k = χn+1,
k, n ∈ N (2)

with the starting configuration ζ0 being the vector of all zeroes, ζ0 = 0.
Here again we are looking for the number of steps to return to the

ground state which is now understood as the collection of all of the states
without active bits:

τDB = min{n ≥ 1 : no bits are active at step n}
= min{n ≥ 1 : ζkn ∈ {0, 2}, ∀k = 1, 2, . . . } .

In contrast to BF model, the ground state in DB model in general cannot
be identified with any one particular state of the Markov chain {ζn}.
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Continuous Time Version. So far we have formulated the discrete
time dynamics of the system of bits. It is also sensible to consider
continuous-time versions of both BF and DB models. Let ζt = (ζ1

t , ζ
2
t , . . . )

be a sequence of continuous-time Markov jump processes, each with the
state space {0, 1} in the BF case, and with {0, 1, 2} in the DB case. The
kth process {ζkt }t≥0 represents the corresponding change of states of the
kth bit which happens with exponentially distributed holding times at
rate pk. Note that since all pk sum up to 1, there is an a.s. finite number
of state changes of the whole system of bits in any finite period of time.
Therefore one can define the renewal process {tn} of times when some of
the bits changes its state. The embedded Markov chain {ζtn}n≥0 is then
a distributional copy of the discrete-time version {ζn}n≥0 of the model.
One of the advantages of this representation, also known as Poissoni-
sation and widely used since at least [2], is the independence of ζkt for
different k = 1, 2, . . . . This often leads to explicitly computable probabil-
ities as we also demonstrate here. Further we use the discrete time and
the continuous time versions of the models interchangeably, whichever
is more convenient at the moment: the notion of recurrence/transience
stays the same for both.

The Markov chains (1) and (2) describing our models can be regarded
as random walks on an infinite-dimensional group, see, e.g., [6]. Typically
the analysis of random walks on discrete groups assumes a finite generator
set, so that the underlying Cayley graph is locally finite, as for example,
in [8]. However, the state spaces in our models are not finitely generated
groups, so analysis of a random walk in such a space is interesting in
its own right. But practical applications are also envisaged: in addition
to an evident relation to modelling reliability of a complex system with
multiple components prone to fail at different rates, one can also mention
computer science and information encryption techniques. The very term
“Bit Flipping” is borrowed from the literature on randomised simplex
algorithms [3], where a similar model was analysed: each flipped bit
there makes all of the bits to the right change their states as well. This
model applies to estimate the running speed of a random edge simplex
algorithm on a Klee-Minty cube which is particularly ‘bad’ for many
optimisation algorithms thus providing a worst-case scenario, see, e.g.,
[5] and the references therein.

Finally, we mention and interesting interpretation of the BF model
as a dynamical percolation process on Z, where we start with all edges
’open’, and then they start ’closing’ independently of each other, each
with different rate. The question of recurrence is then equivalent to the
question of existence of a sequence of percolation times when all the edges
are open and thus 0 is connected to the infinity. For a recent survey on
the dynamical percolation, see [7].
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2 Main Results

For the above models we prove the following main result: each model
exhibits a transient or recurrent behaviour, depending on how fast pk’s
decay. There is a critical decay separating both regimes, different for each
model. We start characterising the critical decay in the Binary Flipping
model.

Theorem 2.1. If the distribution P is such that:

(i) lim sup
k→∞

2kpk <∞, then BF model is recurrent, i.e. P(τBF <∞) =

1,

(ii) lim inf
k→∞

(2 − ε)kpk > 0 for some ε > 0, then BF model is transient,

i.e. P(τBF =∞) > 0.

Loosely speaking, the critical decay of pk’s in BF model is the ge-
ometric distribution with parameter 1

2 . Although deterministic systems
may behave rather differently from stochastic ones, often in a non-critical
regime they provide a good intuition to what is happening. Imagine an
infinite row of lamps, turning on and off with deterministic frequencies
pk = (1/2)k−1. That means, the first lamp changes its state every second,
the second lamp every 2 seconds, the third every 4 seconds, etc., mean-
ing that this row is nothing else than a digital clock showing the time
since the start in a binary format. Then at least one lamp is lit at every
positive time instant. This is still true when pk = pk with p > 1/2: the
(n+ 1)th lamp will always turn on before the nth turns off, so the active
intervals of nth and (n + 1)th lamps will overlap for every n. Thus this
deterministic system never returns to the ground state whenever p ≥ 1/2.
However, for p < 1/2 the first n lamps will have time to run through all
possible combinations (including all zeroes) before the (n+1)th lamp will
be turned on, so there will always be an infinite number of occurrences of
the ground state when no lamp is lit. As Theorem 2.1 shows, the same
critical decay separates the stochastic BF model too.

Furthermore, the BF model is never positive recurrent, as the next
theorem shows.

Theorem 2.2. When a BF model is recurrent, it is null-recurrent, i.e.
E τBF =∞ always.

This result can be easily foreseen by regarding the BF process as
an irreducible time-reversible Markov chain (1). The time-reversibility
implies that the stationary measure is uniform, but the state space is
countably infinite, hence it cannot be probabilistic so the chain cannot
be positive recurrent.
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Although the first moment of τBF is infinite, it is reasonable to ask for
which values of r < 1 the rth moment becomes finite. The next theorem
presents bounds for such r in the case of asymptotically geometrically
decaying {pk}, these are presented graphically on Figure 1.

Theorem 2.3. Consider the recurrent BF model in discrete time with
pk ∼ C1p

k for some fixed constant C1 > 0 and p ∈ (0, 1/2). Then

(i) E τ rBF <∞ for any positive r < 1− log 2
log(1/p) . Moreover, for any such

r, if the Markov chain (1) is started from an arbitrary ζ0 with the
largest active bit M0, then there exists a constant C2 = C2(C1, p, r)
such that

E [τ rBF|M0 = m] ≤ C2

(
1

2p

)m
;

(ii) E τ rBF =∞ for any r > 1− log(2−p)
log(1/p) .
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E τ rBF =∞

E τ rBF <∞

Figure 1: Integrability of τ rBF as given by Theorem 2.3.

Remark 2.1. There is an obvious coupling of the DB model with the BF
model: just declare the bits which flipped more than once in BF model
damaged in DB. Then τDB ≤ τBF almost surely and the same upper
bound (i) of Theorem 2.3 is also true for τDB.
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The DB model can also be recurrent or transient, depending on pk.
The recurrence/transience of the model now does not correspond to re-
currence/transience of the Markov chain (2), because the ground state
of the DB model is an infinite collection of states of {ζn}. Still, we call
the DB model recurrent, if τDB < ∞ with probability 1, and transient
otherwise. Denote by Qk the tail of the distribution P:

Qk =

∞∑
j=k+1

pk.

Theorem 2.4. If the distribution P is such that:

(i) lim sup
k→∞

Qk+1

Qk
= p < 1, then the DB model is recurrent,

(ii) pk ∼ C exp(−αkγ), k → ∞ for some α > 0, γ ∈ (0, 1/2), then the
DB model is transient.

Denote by ηt the total number of active bits in the continuous version
of the model at time t ≥ 0. In both BF and DB models, whenever
E ηt → ∞, conditions of the Central Limit Theorem are fulfilled for ηt.
We prove the following fact:

Theorem 2.5. For both BF and DB models, whenever

E ηt →∞, (3)

then also var ηt →∞ as t→∞ and

ηt −E ηt√
var ηt

D→ N (0, 1) as t→∞.

In BF model the condition (3) is always fulfilled, and in DB model a
sufficient condition for (3) is:

pk ∼ C exp(−αkγ), k →∞, (4)

for some constants C > 0, α > 0, γ ∈ (0, 1).

Remark 2.2. In the above theorem, both E ηt and var ηt admit an ex-
plicit form of a series:

E ηt =

∞∑
k=1

f(pkt), var ηt =

∞∑
k=1

f(pkt)(1− f(pkt)),

where f(x) = (1 − e−x)/2 for BF and f(x) = xe−x for DB model. In
both cases, f(pkt) is the probability for the kth bit to be active at time t
in the corresponding model.
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3 Proofs

3.1 Transience and recurrence of BF model

Proof of Theorem 2.1. First, we are going to prove the theorem for a
particular case of pk = Cpk for some p ∈ (0, 1) and then extend it using
monotonicity arguments.

Consider the continuous-time BF model. Recall ζt = (ζkt )k≥1, a
continuous-time Markov jump process on X representing the configu-
ration of the bits at time t ≥ 0, and ζ0 = 0 = (0, 0, . . . ), see (1). Denote
by νtotal the total time {ζt} spends in the state 0 for t > 0. Since the
process {ζt} is irreducible, recurrence of the BF model implies that the
state 0 is recurrent. Since the holding times at state 0 are i.i.d. expo-
nential with parameter 1, we get E νtotal = ∞. When the BF model is
transient, i.e. when

q = P{ζt = 0 for some finite t > t1 ζ0 = 0} < 1,

where t1 is the time of the first jump of the process ζt, then νtotal is
distributed as the sum

∑ν
i=1 εi, where ν has geometrical distribution with

parameter q and εi’s are i.i.d. exponentially distributed with parameter
1 r.v.’s representing holding times at state 0. In that case, E νtotal =
E ν E εi = 1/q < ∞. Thus E νtotal = ∞ is equivalent to recurrence of
ζ(t) and of the BF model.

One can write

E νtotal = E

∞∫
0

∞∏
k=1

1I{kth bit is idle at time t} dt =

∞∫
0

∞∏
k=1

P{ζkt = 0} dt.

Next,

P{ζkt = 0} =

∞∑
j=0

P{kth bit flipped 2j times by time t}

= e−pkt
∞∑
j=0

(pkt)
2j

(2j)!
= (1 + e−2pkt)/2,

thus the transience is equivalent to the convergence of the integral

E νtotal =

∫ ∞
0

∞∏
k=1

(1 + e−2pkt)/2 dt . (5)

In the second part of the proof we provide the lower and upper bounds
for the infinite product under the integral.

Denote by f(x) = (1−e−2x)/2, so that the product under the integral

in (5) becomes
∞∏
k=1

(1− f(pkt)).
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Fix an arbitrary small ε > 0. Note that the function 1 − f(x) is
monotone decreasing in x and the equation

1− f(x) =
1

2− ε
has the only root. Call this root zε. Now, represent the product as a
multiplication of the two factors:

∞∏
k=1

(1− f(pkt)) =
∏

k:pkt<zε

(1− f(pkt))︸ ︷︷ ︸
Φ1(t)

∏
k:pkt≥zε

(1− f(pkt))︸ ︷︷ ︸
Φ2(t)

,

First, note that every term of the product Φ1(t) is less or equal than
1, therefore, Φ1(t) ≤ 1. Next, observe that {pk}k≥1 is the geometric dis-
tribution, and therefore Φ1(t) = Φ1( t

pn ) for each n = 1, 2, . . . , moreover,
taking into account that the function f is continuous, non-increasing, we
obtain

Φ1(t) =
∏

k:pkt<zε

(1− f(pkt)) ≥
∞∏
k=1

(1− f(zεpk))

= exp

{ ∞∑
k=1

log(1− f(pkzε))

}
≥ exp

{
−
∞∑
k=1

f(pkzε)

}

= exp

{
−1

2

∞∑
k=1

(1− e−2pkzε)

}
≥ exp

{
−1

2

∞∑
k=1

2pkzε

}

= exp

{
− zε

1− p

}
Therefore for any positive t, C1 < Φ1(t) < C2 with fixed and finite
positive constants C1, C2.

As for the second factor Φ2(t), if we denote A(t) = {k : pkt ≥ zε},
then for any k ∈ A(t) we have 1− f(pkt) ≤ 1/(2− ε), and thus(1

2

)|A(t)|
≤ Φ2(t) ≤

( 1

2− ε

)|A(t)|
.

Since |A(t)| = card{k : pk ≥ zε
t } = card{k : k < log zε

log p −
logCt
log p } =

C3 + b log t
log 1

p

c, we obtain

C4

(1

2

) log t

log 1
p < Φ2(t) < C5

( 1

2− ε

) log t

log 1
p ,

and finally,

C6t
− log 2

log 1
p <

∞∏
k=1

(1− f(pkt)) < C7t
− log(2−ε)

log 1
p ,
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which yields the theorem statement for geometric {pk}, recalling an ar-
bitrary small choice of ε.

Moving to a general {pk}, in case (i) for all sufficiently large k, pk <
C82−k < 2C9−k, and since 1−f(x) is non-increasing in x, and 1−f(x) >
1/2 for x > 0, we can choose a large enough M and write∫ ∞

0

∞∏
k=1

(1− f(pkt)) dt ≥ C10

∫ ∞
0

∞∏
k=M

(1− f(pkt)) dt

≥ C10

∫ ∞
0

(1− f(2C9−kt)) dt

= C10

∫ ∞
0

∞∏
k=1

(1− f(2−k · 2C9+M−1t))
d(2C9+M−1t)

2C9+M−1

= C11

∫ ∞
0

∞∏
k=1

(1− f(2−kt)) dt.

Similarly, in case (ii), for all sufficiently large k, pk > C12(2 − ε)−k >
(2 − ε)C13−k, and 1 − f(x) ≤ 1, x > 0, so we can choose a sufficiently
large M so that∫ ∞

0

∞∏
k=1

(1− f(pkt)) dt ≤ C14

∫ ∞
0

∞∏
k=1

(1− f((2− ε)−kt)) dt,

and the theorem statement follows.

We have seen that a BF model can be recurrent, but can it be positive
recurrent, i.e. can the number of steps to return to the ground state have
a finite expectation? The negative answer is provided by Theorem 2.2
which we prove next.

Proof of Theorem 2.2.
Introduce the following notation:

ζ∧mn = (ζ1
n, . . . , ζ

m
n ), 0∧m = (0, . . . , 0︸ ︷︷ ︸

m

), τ∧mBF = inf{n ∈ N : ζ∧mn = 0∧m}

Obviously, τBF = inf{n ∈ N : ζn = 0} ≥ τ∧mBF almost surely. Next,
{ζ∧mn }n≥0 is an irreducible aperiodic (contrary to {ζn}n≥0, which has
period 2) Markov chain with the finite state space {0, 1}m and a sym-
metric transition matrix, hence its unique stationary distribution π∧m,
given by the solution of the detailed balance equations

π∧m(x)p(x, y) = π∧m(y)p(y, x), x, y ∈ {0, 1}m,

is uniform on {0, 1}m. Consequently, π∧m(0∧m) = 2−m and E τ∧mBF =
(π∧m(0∧m))−1 = 2m.
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Finally,
E τBF ≥ E τ∧mBF = 2m for every m ∈ N,

finishing the proof.

In order to prove Theorem 2.3, we make use of Theorem 1 and Corol-
lary 1 in [1]. For convenience of the reader, we give their formulation in
our notation.

Theorem 3.1 ([1, Theorem 1]). Suppose that {Yn}n≥0 is an {Fn}-
adapted stochastic process taking values in an unbounded subset of R+.
Introduce τA = inf{n ≥ 0 : Yn ≤ A}. Suppose there exist positive con-
stants A, ε such that for every n, Y 2r

n is integrable and

Y 2−2r
n E

[
Y 2r
n+1 − Y 2r

n Fn
]
≤ −ε on {τA ≥ n}. (6)

Then for any r∗ satisfying 0 < r∗ < r there exists a constant c =
c(ε, r∗, r) such that for any x ≥ 0

E τ r
∗

A ≤ cx2r whenever Y0 = x a.s.

Theorem 3.2 ([1, Corollary 1]). Let {Yn}n≥0, τA be as in Theorem 3.1.
Suppose there exist positive constants A, ε, and J such that for any n,

E [Y 2
n+1 − Y 2

n Fn] ≥ −ε on {τA > n}

and, for some ρ > 1,

Y 2−2ρ
n E [Y 2ρ

n+1 − Y 2ρ
n Fn] ≤ J on {τA > n}.

Suppose also that Y0 = x > A and for some positive r0 the process
{Y 2r0

n∧τA}n≥0 is a submartingale. Then for any r > r0, E τ rA =∞.

We will also need the following technical Lemma.

Lemma 3.1. Let {ζn}n≥0 be a discrete time BF model starting from the
ground state ζ0 = 0 with the parameter distribution P = {p1, p2, . . . } pos-
sibly with a finite support: p1 ≥ p2 ≥ p3 ≥ . . . ≥ 0. Then for K = min{k :∑∞
i=k pi ≤ 1/2} and any n = 1, 2, . . . , the vector (ζKn , ζ

K+1
n , . . . ) is

stochastically dominated by the vector (ζ̌K , ζ̌K+1, . . . ) of i.i.d. Bern(1/2)
random variables.

Proof of Lemma 3.1. Assume that
∑∞
k=K pk > 0, otherwise the Lemma

statement is trivial. Let {ζn}n≥0, {ζ̌n}n≥0 be two discrete time BF models
with the same transition probabilities

P{ζkn+1 = 1− ζkn} = P{ζ̌kn+1 = 1− ζ̌kn} = pk, k ∈ N, n = 0, 1, . . . , (7)
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where the first one starts from the ground state ζ0 = 0 and the second one
starts from the stationarity: ζ̌0 is a sequence of i.i.d. symmetric Bernoulli
random variables:

P{ζ̌k0 = 1} = 1−P{ζ̌k0 = 0} = 1/2 for all k ∈ N.

Obviously, 0 = ζk0 ≤ ζ̌k0 for all k ∈ N almost surely. Our goal is to couple
the Markov chains {ζn} and {ζ̌n} on {0, 1}N preserving the almost sure
coordinate-wise domination ζkn ≤ ζ̌kn for all n and all k = K,K + 1, . . . .

The idea is to treat the first (K − 1) bits of both Markov chains as a
kind of ‘buffer’ for which the domination does not generally holds. This
is an expense to pay for the donination for the large coordinates.

Specifically, we define the joint transition dynamics for ζn, ζ̌n induc-
tively, for n = 0, 1, 2, . . . . Denote by Dn the (random) set of discrepancies
at time n, i.e. the set of indices k ≥ K at which ζn, ζ̌n disagree. The in-
duction assumption is that the coordinate-wise domination is preserved
on step n: ζkn ≤ ζ̌kn for all k ≥ K and hence only discrepancies of the
form ζkn = 0, ζ̌kn = 1 are possible. Denote these by

Dn = {k ≥ K : ζkn = 0, ζ̌kn = 1}.

The domination obviously holds for n = 0.
Let F−1(u) be the quantile function for the distribution P:

F−1(u) = min

{
k :

k∑
i=1

pi > u

}
, u ∈ (0, 1).

The key element of the construction is a map sn(u) : (0, 1)→ (0, 1) which
swaps the parts of (0, 1) corresponding to Dn with the parts of (0, 1) of
the same length, corresponding to the buffer:

sn(u) =

{
1− u, if F−1(u) ∈ Dn, or F−1(1− u) ∈ Dn

u, otherwise.

Introduce a common source of randomness for the chains: the se-
quence U1, U2, . . . of i.i.d. random variables distributed uniformly on the
interval (0, 1). The indices of the bits to flip on step (n + 1) in ζn and
ζ̌n, n = 0, 1, . . . , are defined, respectively, as

χn+1 = F−1(Un+1),

χ̌n+1 = F−1(sn(Un+1)).

Since sn(u) preserves the Lebesgue measure, sn(Un+1) is also uniformly
distributed implying that both chains have correct transition probabili-
ties:

P(χn+1 = k) = P(χ̌n+1 = k) = pk, k = 1, 2, . . . , n = 0, 1, 2, . . .

12



Moreover, if one of the chains is flipped at some coordinate k ≥ K,
where the chains agree, the other one does the same. If, otherwise, one
of the chains is selected to be flipped at some coordinate k ≥ K, where
the chains disagree, the other one is flipped at one of the coordinates
k = 1, 2, . . . ,K − 1 of the buffer. As a result, the chains will agree at
the flipped coordinate from Dn. Thus no new discrepancies are created
for k ≥ K and the coordinate-wise domination ζkn+1 ≤ ζ̌kn+1 is preserved
almost surely.

Proof of Theorem 2.3. Part (i). Denote by Mn the index of the rightmost
active bit at time n: Mn = max{k : ζkn = 1} with convention Mn = 0
for ζn = 0. Put Y 2r

n = yMn for some y > 1 which will be selected
later. Define the filtration Fn = σ(ζ0,M1, . . . ,Mn). The process {Yn} is
obviously adapted to {Fn}. Recall that χk is an index of a bit flipped on
step k, χk ∼ P by the assumptions of (i). We have that

E (Y 2r
n ) = E (yMn) ≤ E (y

∑n
k=1 χk) = (E (yχ1))

n
. (8)

The inequality above follows, sinceMn ≤ max{χ1, χ2, . . . , χn} ≤
∑n
k=1 χk,

so that the right-hand side of (8) is finite whenever

py < 1. (9)

Next,

E [Y 2r
n+1 − Y 2r

n Mn = m] = E [(Y 2r
n+1 − Y 2r

n ) 1I{χn+1=m} Mn = m]︸ ︷︷ ︸
E1

+ E [(Y 2r
n+1 − Y 2r

n ) 1I{χn+1>m} Mn = m]︸ ︷︷ ︸
E2

.

Introduce ψ(xK , . . . , xm−1) = ymax{j: xj=1, j=K,...,m−1} − ym. Then

E1 ≤ E
[
ψ(ζKn , . . . , ζ

m−1
n ) 1I{χn+1 = m} Mn = m

]
= pmE

[
ψ(ζKn , . . . , ζ

m−1
n ) Mn = m

]
(10)

Our next step is to show that the vector (ζKn , . . . , ζ
m−1
n ) conditionally

on {Mn = m} is stochastically dominated by a vector of i.i.d. Bernoulli
random variables (ζ̌K , . . . , ζ̌m−1). Introduce an embedded Markov chain{

ζ̃l

}
l≥0

=
{

(ζ̃1
l , . . . , ζ̃

m−1
l )

}
l≥0

tracking the state of the first (m−1) coordinates of {ζn} considered at the

times when one of those coordinates changes. We set ζ̃0 = (ζ1
0 , . . . , ζ

m−1
0 )

13



and define ζ̃l = (ζ1
tl(m), . . . , ζ

m−1
tl(m)), where tl(m) is the lth time when one

of the first (m− 1) coordinates of ζn is flipped.

Lemma 3.1 applied to the BF model {ζ̃l}l≥0 with the corresponding
flipping probabilities

P̃ =

{
p1

Sm−1
, . . . ,

pm−1

Sm−1
, 0, 0, . . .

}
, Sm−1 =

m−1∑
k=1

pk,

implies for every l = 0, 1, 2, . . . the stochastic domination

(ζ̃K̃l , . . . , ζ̃
m−1
l ) ≤st (ζ̌K̃ , . . . , ζ̌m−1),

where ζ̌K̃ , . . . , ζ̌m−1 are i.i.d. Bern(1/2) random variables. Note that

K̃ = min{k :

∞∑
i=k

pi ≤ 1/2Sm−1} ≤ K = min{k :

∞∑
i=k

pi ≤ 1/2}.

Therefore, for every l = 0, 1, 2, . . . ,

(ζ̃Kl , . . . , ζ̃
m−1
l ) ≤st (ζ̌K , . . . , ζ̌m−1). (11)

Introduce the series of events:

A(n,m, l) ={by the time n the first m− 1 coordinates of ζ

are flipped l times}

=
{ n∑
k=1

1I{1 ≤ χk ≤ m− 1} = l
}
,

for n = 0, 1 . . . , and l = 0, . . . , n. Conditionally on A(n,m, l), the distri-

bution of (ζ1
n, . . . , ζ

m−1
n ) is the same as that of (ζ̃1

l , . . . , ζ̃
m−1
l ), so we can

continue (10) with:

E1 ≤ pm
n∑
l=0

E
[
ψ(ζKn , . . . , ζ

m−1
n ) 1IA(n,m,l) Mn = m

]
= pm

n∑
l=0

E
[
ψ(ζKn , . . . , ζ

m−1
n ) 1IMn=m A(n,m, l)

] P (A(n,m, l))

P(Mn = m)
.

Now notice, that conditionally on A(n,m, l), random variables

ψ(ζKn , . . . , ζ
m−1
n ) = ψ(ζ̃Kl , . . . , ζ̃

m−1
l ) and 1IMn=m are independent. In-

deed, on A(n,m, l), the first variable is a function of the chain ζ̃ after l

steps which is governed by transition probabilities P̃. While the event
Mn = m relates to configuration of the bits m,m + 1, . . . after n − l

14



steps of the BF model with parameter distribution {pk/(1− Sm−1), k =
m,m+ 1, . . . }. Therefore,

E1 ≤pm
n∑
l=0

E
[
ψ(ζKn , . . . , ζ

m−1
n ) A(n,m, l)

]
×

P
(
Mn = m A(n,m, l)

)P(A(n,m, l)
)

P(Mn = m)

=pm

n∑
l=0

E
[
ψ(ζ̃Kl , . . . , ζ̃

m−1
l )

]
P
(
A(n,m, l) Mn = m

)
.

The function ψ is non-decreasing with respect to the coordinate-wise
order on its argument, so the stochastic domination (11) implies:

E1 ≤ pmEψ(ζ̌K , . . . , ζ̌m−1)

n∑
l=0

P
(
A(n,m, l) Mn = m

)
︸ ︷︷ ︸

=1

= pmEψ(ζ̌K , . . . , ζ̌m−1)

=

m−1∑
k=K

(yk − ym)pm

(
1

2

)m−k
.

Fix an arbitrary small ε > 0. Since pk ∼ C1p
k, k → ∞, one can, if

necessary, increase K so that pk ≥ C1(1 − ε)pk for any k ≥ K, and
continue:

E1 ≤ C1(1− ε)(py)m
m−1∑
k=K

((2y)−k − 2−m+k)

= C1(1− ε)(py)m
(

2− 2y

2y − 1
− (2y)−m+K

2y − 1
+ 2−m+K

)
≤ C1(1− ε)(py)m

(
2− 2y

2y − 1
+ 2−m+K

)
.

Because of our assumption py < 1, and the asymptotic equivalence pk ∼
C1p

k, k →∞, for an arbitrary small ε > 0 we can choose a large enough
M = M(ε) so that for any m ≥M :

E2 =

∞∑
k=1

pm+k(ym+k − ym) ≤ C1(1 + ε)(py)m

( ∞∑
k=1

(py)k −
∞∑
k=1

pk

)

= C1(1 + ε)(py)m
(

py

1− py
− p

1− p

)
.

Introduce

Q(p, y, ε) = (1− ε)2− 2y

2y − 1
+ (1 + ε)

( py

1− py
− p

1− p

)
.
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Then Y 2r
n = yMn yields

Y 2−2r
n E

[
Y 2r
n+1 − Y 2r

n Mn = m
]
≤ C1(Q(p, y, ε)+(1−ε)2−m+2)(py

1
r )m.

Now fix a p < 1/2. For the last expression to be negative and separated
from zero for all m large enough, it is necessary for Q(p, y, ε) to be nega-

tive and for py
1
r to be greater than one. However, Q(p, y, ε) < 0 reduces

to 
0 < p < 1/2,

1 < y < 1
2p ,

0 < ε < 2p2y−4py−p+2
2p2y−3p+2 .

The right part of the third inequality is positive whenever the first two
inequalities are satisfied. Putting it all together, for a fixed pair of p, r

we can pick y and M so that Yn = y
Mn
2r , given that M0 > M , satis-

fies the conditions of Theorem 3.1 if and only if the following system of
inequalities can be solved for y:{

1 < y < 1
2p ,

py
1
r > 1,

and the latter is possible when r < 1− log 2
log 1

p

.

Denote τx = inf{n ≥ 1 : Mn ≤ x}. Then Theorem 3.1 implies that
for p < 1/2 and r < 1 − log 2

log 1
p

there exists C = C(p, r) such that for a

particular choice of y,M we have

E [τ rM M0 = x] ≤ Cyx ≤ C
(

1

2p

)x
.

Now we prove that τ rBF = τ r0 is integrable and satisfies the same asymp-
totic bound. In E [τ r0 |M0 = x], τ0 is the first time when the process
Mn reaches 0 starting from the state x. For any M ≥ 0 we have
τ0 = τM +(τM−τ0). By simple coupling arguments, the law of (τM−τ0),
conditional on {M0 = x}, is stochastically dominated by the law of τ0,
conditional on {M0 = M}. That, together with the inequality (a+ b)r ≤
2r(ar + br) for 0 < r < 1 and non-negative a, b, gives the bound:

E [τ r0 M0 = x] ≤ 2r
(
E [τ rM M0 = x] + E [τ r0 M0 = M ]

)
.

We have just obtained an asymptotic upper bound for the first conditional
expectation under the parentheses. It is left now to show that the second
expectation is also bounded. Conditionally on {M0 = M}, τ0 is stochas-
tically dominated from above by the sum of two terms. The first one is
the time needed for ζn to reach 0 not leaving the finite sub-cube {0, 1}M ,
which is in turn dominated by τ∧M0 = inf{n : ζ∧Mn = 0∧M}. The second
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one is a geometrically distributed number of excursions γ ∼ Geom(π)
from {0, 1}M . Thus

E [τ r0 M0 = M ] ≤
∞∑
k=1

E [τ r0 M0 = M,γ = k] P{γ = k}.

Now, conditionally on {γ = k},

E [τ r0 M0 = M,γ = k] ≤ E

(τ∧M0 +

k∑
j=1

ψj

)r
M0 = M


≤ k1+r(E [(τ∧M0 )r M0 = M ] + Eψr),

where ψj is the length of excursion j = 1, . . . , γ and ψ stands for length
of a typical excursion. The first expectation inside the parentheses is a
finite constant. As for the second, for some constant C2 > 0 we have

Eψr = 1 +

∞∑
k=1

pk+ME [τ rM M0 = k +M ]

≤ 1 +

∞∑
k=1

C2p
k+M

(
1

2p

)k+M

<∞.

Thus for some constant C3 > 0

E [τ r0 M0 = M ] ≤
∞∑
k=1

C3k
1+rπ(1− π)k−1 <∞,

finishing the proof of part (i).
Proof of part (ii). Put Y 2

n = yMn for some y > 1 and check the
conditions of Theorem 3.2. As before, Yn is adapted and for an arbitrary
small ε > 0 we can choose M = M(ε) large enough so that:

E [Y 2
n+1 − Y 2

n Mn = m] ≥− pmym +

∞∑
k=1

pm+k(ym+k − ym)

=− C1(1− ε)pmym

+

∞∑
k=1

C1(1 + ε)pm+k(ym+k − ym)

=C1(py)m(−1 + ε+ (1 + ε)

∞∑
k=1

pk(yk − 1))

=C1(py)m
(
−1 + ε+

(1 + ε)p(−1 + y)

(1− p)(1− py)

)
=C1(py)mR(p, y, ε),
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where R(p, y, ε) =
(
−1 + ε+ (1+ε)p(−1+y)

(1−p)(1−py)

)
. It is then possible to choose

a small enough ε > 0 and a large M so that the latter expression is
bounded from below for all m > M , when py < 1. Furthermore, for such
p, y we have as before:

Y 2−2ρ
n E [Y 2ρ

n+1 − Y 2ρ
n Mn = m] ≤C1y

m(1−ρ)(pyρ)m×

(Q(p, yρ, ε) + (1− ε)2−m+K)

which is bounded from above when ρ is such that pyρ < 1 (such a ρ > 1
exists whenever py < 1).

Finally, check for which r0 the process Y 2r0
n∧τM is a submartingale.

Since
E [Y 2r0

n+1 − Y 2r0
n Mn = m] ≥ C1(pyr0)mR(p, yr0 , ε),

we can choose ε > 0 so that the latter is greater than zero for any m > M ,

if r0 ∈ (
log 1

2p−p2

log y , 1). Recalling that we can take y arbitrary close to 1/p,
we conclude that the conditions of Theorem 3.2 are satisfied for any r0

such that r0 ∈ (1 − log(2−p)
log 1

p

, 1). Adding this together with the results

of Theorem 2.2 implies that none of the fractional moments of τM (and

hence of τ0) of order higher than 1 − log(2−p)
log 1

p

exists, finishing the proof

of Part (ii).

3.2 Transience and recurrence of DB model

Proof of Theorem 2.4. (i) Consider the discrete-time version of the DB
model. Introduce Rn – the index of the rightmost bit (i.e. with the largest
index) that has ever been flipped by time n. The sequence {Rn} is a.s.
non-decreasing. We aim to prove that almost surely for infinitely many
terms of the sequence {Rn}, each of the bits 1, 2, . . . , Rn is flipped at least
twice before the next flip of some bit with an index larger than Rn. That
would guarantee that the ground state of the DB model, corresponding
to the set of states{

y ∈ {0, 1, 2}N : y has no 1’s and only a finite number of 2’s
}

of Markov chain {ζn}, is visited infinitely often.
It is convenient to use the continuous-time representation now. Let

Π1(t),Π2(t), . . . be the sequence of independent Poisson processes (clocks)
describing the times at which, respectively, the 1st, the 2nd, etc. bits are
flipped. Introduce τ>k = inf{t > 0 :

∑∞
j=k+1 Πj(t) > 0}, the time of

the first flip of a bit with an index greater than k. Note that τ>k is a
stopping time for each k = 0, 1, 2, . . . , and, moreover,

τ>1 ≤ τ>2 ≤ τ>3 ≤ . . .

18



Introduce the events

Ak = {kth bit appears in the sequence {Rn}},
Bk = Ak ∩ {starting from the first flip of k’th bit, each of the bits

1, 2, . . . , k is flipped at least twice before the first flip

of one of the bits k + 1, k + 2, . . . }

Our aim is to prove that the events Bk happen infinitely often. In terms
of a continuous-time notation, we can rewrite:

Ak = {τ>k−1 < τ>k},

Bk =
⋂
j≤k

{Πj(τ>k−1, τ>k) ≥ 2}, (12)

where Π(t1, t2) stands for the number of points a Poisson process Π has
in (t1, t2). Since {τ>k} is a sequence of stopping times, it is not hard
now to see that the events Bk are independent of each other. By the
Borel–Cantelli Lemma it suffices to prove that the series

∑
k≥1 P{Bk}

diverges.
The probability of Ak (probability of an index k to ever appear in

the sequence {Rn}) is exactly pk/(pk + Qk) = 1 − Qk/Qk−1, which is
uniformly bounded away from zero given assumptions of (i).

As follows from (12), the probability P(Bk Ak) is equal to the proba-
bility for each of the first k Poisson clocks Π1(t), . . . ,Πk(t) to tick at least
twice before the time of the first tick of one of the clocks Πk+1(t),Πk+2(t), . . .
We write:

P(Bk Ak) = P
( k⋂
j=1

{Πj(τ>k) ≥ 2}
)

=

∫ ∞
0

k∏
j=1

P{Πj(t) ≥ 2} dP(τ>k ≤ t) (13)

Introduce g(x) = e−x(1+x). Now, due to (i), there exists a large K such
that for any k ≥ j ≥ K:

pj
Qk

=
pj

Qj−1

Qj−1

Qj
. . .

Qk−1

Qk
≥
(

1

p
− 1

)
·1
p
. . .

1

p︸ ︷︷ ︸
k−j+1

= C2p
j−k.
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The function g(x) is strictly decreasing in x, so we can continue (13) :

=

∫ ∞
0

k∏
j=1

(1− g(pjt))Qke
−Qkt dt

=

∫ ∞
0

k∏
j=1

(1− g(
pj
Qk

t))e−t dt

≥ C1

∫ ∞
0

k−K∏
j=1

(1− g(C2p
−jt))e−t dt, for k ≥ K,

where C1, C2 are positive constants. Next,

k−K∏
j=1

(1− g(C2p
−jt)) ≥

∞∏
j=1

(1− g(C2p
−jt)).

Show that the latter is strictly positive:

∞∑
j=1

g(C2tp
−j) =

∞∑
j=1

e−C2tp
−j

(1 + C2tp
−j) ≤ C3

∞∑
j=1

e−C4tp
−j
<∞

for all t, thus
∏k−K
j=1 (1−g(C2p

−kt)) is bounded away from zero uniformly

in k, k ≥ K, by h(t) =
∏∞
j=1(1 − g(C2p

−jt)) > 0, and P(Bk Ak) ≥
C1

∫∞
0
h(t)e−t dt > 0, so the series

∑∞
k=1 P(Bk) diverges and the DB

model is recurrent under the assumptions of (i).
(ii) Now, assume that pk ∼ Ce−αk

γ

. Consider the total time ν spent
in the ground state, when none of the bits is active. We are going to
prove for this particular choice of pk that the expected time spent in the
ground state

E ν =

∫ ∞
0

∞∏
k=1

(1− pkte−pkt) dt

is finite. The product under the integral is bounded by

∞∏
k=1

(1− pkte−pkt) ≤ exp
{

card{k : l1,ε ≤ pkt ≤ l2,ε} log(1− 1/e+ ε)
}
.

Here l1,ε, l2,ε are the left and the right boundaries of the interval, where
the function xe−x is greater or equal than 1/e − ε. Taking into account
the particular choice of pk, we write:

card{k : l1,ε ≤ pkt ≤ l2,ε} ∼
(

1

α
log

tC

l1,ε

)1/γ

−
(

1

α
log

tC

l2,ε

)1/γ

∼ log l2,ε − log l1,ε

γα
1
γ−1

(log(tC))
1
γ−1, (14)

hence the infinite product in question is integrable for γ < 1/2.
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Remark 3.1. The sufficient condition in Theorem 2.4, (i) is slightly
stronger than a condition similar to the one in Theorem 2.1, (i):

lim sup
k→∞

βkpk <∞ for some constant β > 1. (15)

It is not hard to see that the assumption of Theorem 2.4, (i) implies (15)
for β = 1/(p+ ε) for any ε ∈ (0, 1− p). The converse implication is not
true in general, for a counterexample we can put

κ(k) = min{j2 : j ∈ N and j2 > k},

and then
pk = C2−κ(k), k = 1, 2, . . .

for a suitable constant C. Then (15) holds with β = 2. The assumption
of Theorem 2.4, (i) fails to hold: for the subsequence ki = i2, i = 1, 2, . . .
we have

Qki
Qki−1

= 1− pki
Qki−1

= 1− pi2∑∞
j=ki

pj
≥ 1− pi2∑(i+1)2−1

j=i2 pj

= 1− C2−(i+1)

((i+ 1)2 − i2)C2−(i+1)
≥ 1− 1

2i+ 1
→ 1, i→∞.

However, the converse implication will hold if in addition to (15) we
require, for instance, the sequence {Qk/Qk+1} to be monotone.

3.3 The Central Limit Theorem

For the proof of the CLT for the number of active bits in BF and DB
models we use the following general CLT for the triangular array, see,
e.g., [4, Ch.8, Theorem 5]:

Theorem 3.3. Let {ξk,n}, 1 ≤ k ≤ rn, 1 ≤ n ≤ ∞ be a triangular array
of random variables such that E ξk,n = 0 and that the random variables
(ξk,n)1≤k≤rn are mutually independent inside of every row n = 1, 2, . . . .
Assume that:

(i)
rn∑
k=1

E ξ2
k,n = 1,

(ii)
rn∑
k=1

E
[
ξ2
k,n; |ξk,n| > M

]
→ 0, n→∞, for every M > 0.

Then
rn∑
k=1

ξk,n
D

=⇒ N (0, 1), as n→∞

21



Proof of Theorem 2.5. It is easy to see that the expected number of active
bits E ηt in BF model tends to infinity. We can write E ηt explicitly as

E ηt =

∞∑
k=1

P{ζkt = 1} =

∞∑
k=1

1

2
(1− e−2pkt).

Every term in the latter sum monotonously approaches 1/2 as t → ∞,
thus the whole sum tends to infinity.

Next, for the DB model, given the assumption (4), if we fix a small
ε > 0 and take l1,ε, l2,ε to be as in (14) the left and the right borders of
the interval where the function xe−x is greater than 1/e− ε, then, by the
same reasoning as in (14), we obtain:

E ηt =

∞∑
k=1

P{ζkt = 1} =

∞∑
k=1

pkte
−pkt

≥ (e−1 − ε) card{k : λ1,ε ≤ pkt ≤ λ2,ε} ≥ C1(log(tC))
1
γ−1 →∞

for a constant C1 depending on ε, γ and α.
The rest of the proof works for both BF and DB models. It is sufficient

to prove the CLT for the embedded discrete time process {ηTn}n≥1 for
an arbitrary non-random time sequence {Tn}n≥1 going to infinity. Let
us fix such a sequence and denote ζn := ζTn and ηn := ηTn , for short.
Introduce random variables

Zn,k = 1I{ζkn = 1},

ξn,k =


Zn,k−EZn,k√

var ηn
, k < rn,∑

k≥rn
(Zn,k−EZn,k)

√
var ηn

, k = rn.

We leave ourselves a freedom to choose a suitable sequence {rn} later.
Check the conditions of Theorem 3.3. The random variables {ξn,k}rnk=1

are mutually independent for every n. Condition (i) holds trivially. As
for (ii), one has:

∑
1≤k≤rn

E
[
ξ2
n,k; |ξn,k| > M

]
=

S1︷ ︸︸ ︷∑
1≤k≤rn−1

E
[
ξ2
n,k; |ξn,k| > M

]
+ E

[
ξ2
n,rn ; |ξrn,n| > M

]︸ ︷︷ ︸
S2

. (16)

By the assumptions E η(t)→∞ as t→∞. Moreover,

C2E η(t) ≤ var η(t) =
∑
k≥1

f(pkt)(1− f(pkt)) ≤ E η(t),
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where f(x) = 1
2 (1 − e−x) in BF model, f(x) = xe−x in DB model, and

C2 = (1 − supx∈R+ f(x)), with the respective f , so that 0 < C2 < 1 in
both cases. Hence, by construction of ξn,k, the sum S1 in (16) tends to
0 as n goes to infinity, because almost surely ξn,k ≤ 1/var ηn → 0 and
every term in S1 is eventually zero. Lastly,

E ξ2
rn,n =

1

var ηn

∑
k≥rn

f(pkTn)(1− f(pkTn))

and so we can choose such rn that the latter sum is no larger than,
for instance,

√
var ηn, thus satisfying Condition (ii) of Theorem 3.3 and

finishing the proof.

Acknowledgements

The authors thank Sergey Foss for the discussions from which the Bit
Flipping models we consider here started, as well as for the follow-up
talks and insights on relation of Bit Flipping to other fields. The authors
are grateful to Robin Pemantle for an idea of a continuous-time imple-
mentation of the process, which proved to be an irreplaceable tool in the
analysis. We are grateful to two anonymous referees for thorough reading
and their valuable comments which allowed us to significantly improve
the presentation of the material.

23



References

[1] S. Aspandiiarov, R. Iasnogorodski, and M. Menshikov. Passage-time
moments for nonnegative stochastic processes and an application to
reflected random walks in a quadrant. Ann. Probab., 24:932–960,
1996.

[2] K. Athreya and S. Karlin. Embedding of urn schemes into continuous
time Markov branching process and related limit theorem. Ann. Math.
Statist., 39:1801–1817, 1968.

[3] J. Balogh and R. Pemantle. The Klee-Minty random edge chain moves
with linear speed. Random Structures and Algorithms, 30(4):371–390,
2007.

[4] A. Borovkov. Probability Theory. Amsterdam : Gordon and Breach,
1998.

[5] A. Deza, E. Nematollahi, and T. Terlaky. How good are interior point
methods? Klee-Minty cubes tighten iteration-complexity bounds.
Math. Program., Ser. A, 113(1):1–14, 2008.

[6] R. Lyons, R. Pemantle, and Y. Peres. Random walks on the lamp-
lighter group. Ann. Probab, 24:1993–2006, 1996.

[7] J. Steif. A survey of dynamical percolation. In Fractal geometry and
stochastics IV, pages 145–174. Springer, 2009.

[8] W. Woess. Random walks on infinite graphs and groups, volume 138.
Cambridge university press, 2000.

24


	1 Introduction and Model Description
	2 Main Results
	3 Proofs
	3.1 Transience and recurrence of BF model
	3.2 Transience and recurrence of DB model
	3.3 The Central Limit Theorem


