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Abstract

The susceptible-exposed-infectious-susceptible (SEIS) model is well-known in mathematical epidemi-
ology as a model of infection in which there is a latent period between the moment of infection and the
onset of infectiousness. The compartment model is well studied, but the corresponding particle system
has so far received no attention. For the particle system model in one spatial dimension, we give upper
and lower bounds on the critical values, prove convergence of critical values in the limit of small and
large latent time, and identify a limiting process to which the SEIS model converges in the limit of large
latent time.
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1 Introduction

The SEIS model is a model of the spread of an infection that in addition to the usual susceptible and in-
fectious classes includes an exposed class that is infected but not yet infectious; it can be used to model
infections such as gonorrhea in which there is a short latent stage before the onset of infectiousness, and in
which recovery from the infection confers no immunity. The classical model, usually called a compartment
model, is deterministic and consists of a set of three differential equations describing the evolution of the
number of susceptible, exposed and infectious individuals (the three compartments), which for simplicity are
taken to be real-valued; for a formal definition see [1], Chapter 2. The model has either a globally stable
disease-free state or an unstable disease-free state together with a globally stable endemic state, according
as the basic reproduction number for the infection is ≤ 1 or > 1; see [10] for a proof using Lyapunov functions.

Now, the classical SEIS model is deterministic and assumes that the population is well-mixed. However,
there is a natural way to define an SEIS model that incorporates both spatial and random effects, using an
interacting particle system (see [12] for an introduction to interacting particle systems). For the simpler SIS
model with no exposed class, this system is called the contact process, and has been well studied over the
last forty years, in a variety of spatial settings including the d-dimensional integer lattices, trees, random
graphs, and even more general sequences of finite graphs; [12] and [14] give an overview of results up to
1985 and 1999 respectively, and [5] includes a survey of results on random graphs up to about 2009; a recent
result on fairly general sequences of finite graphs can be found in [15].

For the contact process on the d-dimensional lattice Zd with a single initially infectious site there is a
critical value λc of the infection parameter λ such that for λ ≤ λc the process dies out with probability 1,
and for λ > λc the process survives with a positive probability, spreading linearly in time and converging
to a non-trivial invariant measure when it survives; for a proof of convergence see [14], Part I, and for a
proof of linear spread in d = 1 and linear spread with convergence to a limiting shape in d ≥ 2, see [2] and [3].

According to numerical simulations in d = 1, 2, the SEIS model behaves in the same way as the contact
process, in this case with a critical value that varies slightly with the average latent time, and spreading
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linearly in time when it survives. However, for the SEIS model it is not clear how to prove this, because of
the absence of a property called monotonicity that enables much of the analysis of the contact process. Nev-
ertheless, we can show that the infection survives when the infection parameter is large enough, uniformly
in the latent time, and we can obtain reasonable bounds when the latent time is either very large or very
small. In addition, in the limit of large latent time the model, when properly rescaled in time, approaches
a limit process, and we describe the limit process and the convergence to the limit process. We begin by
describing the process and summarizing the main results.

2 Main Results

To distinguish it from the compartment model, we use “SEIS process” to refer to the SEIS model as an
interacting particle system. Given a finite or countably infinite connected undirected graph G = (V,E) with
bounded degree i.e., for some d <∞, |{y ∈ V : xy ∈ E}| ≤ d for each x ∈ V , the SEIS process with infection
parameter λ > 0 and average latent time τ ≥ 0 is defined as follows. Letting 0 denote susceptible, 1 denote
exposed and 2 denote infectious, each site x ∈ V is in one of the states 0, 1 or 2 (that we later refer to as
types), with transitions

• 0→ 1 at rate λn2(x) (transmission)

• 1→ 2 at rate 1/τ or instantaneously if τ = 0 (onset)

• 2→ 0 at rate 1 (recovery)

where n2(x) is cardinality of the set {xy ∈ E : y is in state 2 }. The case τ = 0 is the contact process with
transmission parameter λ. The meaning of “rate” is that in the absence of other transitions, each transition
occurs after an amount of time which is exponentially distributed with parameter given by the rate.

A standard reference on particle systems, and methods for constructing them, can be found in [12]. Since
it will help us later on, we follow [9] and use a graphical representation to construct the process. We begin
with the spacetime set S = G× [0,∞), which we picture as a copy of G extruded upward along fibers in the
increasing time direction; this is particularly easy to imagine if G is a planar graph. When required we use
the topology on S with base {a}× (t, t′) : a ∈ V ∪E, t < t′}. Place independent 1-dimensional Poisson point
processes (p.p.p.’s) along fibers {·} × [0,∞) as follows:

• at each site x ∈ V , recovery with intensity 1 and label ×,

• at each site x ∈ V , onset with intensity 1/τ and label ? if τ > 0, or omitting if τ = 0, and

• along each edge xy ∈ E, transmission with intensity λ and label ↔.

This furnishes the probability space Ω, which we can think of as a random labelling of S, and which we refer
to as the substructure; the notation P is used to denote the law of the substructure, and when necessary, we
write for example Pλ or Pτ to emphasize the dependence on parameters. Define the following notation: for a
Borel measurable set R ⊂ S let F(R) denote the σ-algebra generated by the restriction of the substructure
to R, and for t > 0 let F(t) = F(G × [0, t]). If we view the substructure as a function of time Ut then
Ut is adapted to the filtration F(t) and it follows from the strong Markov property applied to Ut that for
any stopping time s the law of E(Ut+s|F(s)) is the same as the law of Ut. Also, it follows from standard
properties of p.p.p’s that if {Ri : i = 1, 2, ...} are pairwise disjoint then {F(Ri) : i = 1, 2, ...} are independent;
the same is true if the sets are disjoint up to measure zero in the measure on S given by the product of
counting measure on edges and vertices of G with Lebesgue measure on [0,∞). Both of these facts will be
useful throughout the paper.

Given an initial configuration η0 ∈ {0, 1, 2}V , to determine ηt(x) for each realization ω ∈ Ω consider the
set Tt(x) of points (u, s) ∈ G× [0, t] that can reach (x, t) by moving either upwards in time along vertices or
horizontally along transmission labels ↔. In order to compute ηt(x) from the transition labels it suffices to
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Figure 1: Depiction of the graphical construction for the SEIS model, starting from site 4 exposed and site
3 infectious. Bold dashed lines denote exposed sites, and bold solid lines denote infectious sites.

compute ηs(y) for (y, s) ∈ Tt(x). By a simple comparison, |{u ∈ G : (u, t− s) ∈ Tt(x)}| is bounded above by
a branching process with no deaths in which pairs of offspring are produced at rate λd, so with probability
1, Tt(x) is a bounded set, and it follows easily (for example, by considering the events Tt(x) ⊂ Gn× [0, t] for
a sequence of graphs Gn with ∪Gn = G) that the number of labels in Tt(x) is almost surely finite. Denote
the timing of labels by t1 < t2 < ... < tm, then given ηti(x) for x such that (x, ti) ∈ Tt(x), if the label at
time ti+1 is

• × at x and ηti(x) = 2 then ηti+1(x) = 0,

• ? at x and ηti(x) = 1 then ηti+1
(x) = 2,

• ↔ along xy and ηti(x) = 0, ηti(y) = 2 then ηti+1
(x) = 1 if τ > 0 and ηti+1

(x) = 2 if τ = 0.

otherwise nothing happens. Then, let ηt(x) = ηtm(x). The reader may easily verify that this approach defines
ηt(x) for all x ∈ V , t ≥ 0 in a consistent manner. A depiction of this construction is given in Figure 1. For
what follows, say that x is active at time t if ηt(x) 6= 0. Letting C0 denote the set of configurations having only
finitely many active sites, if η0 ∈ C0 then bounding the number of active sites by a branching process in which
each particle produces offspring at rate λ it follows that ηt ∈ C0 for t > 0, and ηt behaves like a continuous
time Markov chain on C0 in the sense of [16], with transition rates as specified in the description of the model.

The above graphical representation supplies a natural coupling of the process for all choices of η0, namely
the one in which, for each η0, ηt is determined from η0 for t > 0 via the substructure. With respect to this
coupling, the reader may verify that the contact process, which is the case τ = 0, is monotone in the partial
order η ≤ η′ ⇔ ∀x, η(x) ≤ η′(x) in the sense that η0 ≤ η′0 implies ηt ≤ η′t for t > 0. In fact, the process is
also monotone with respect to λ: if λ < λ′ then we can couple processes ηt with parameter λ and η′t with
parameter λ′ so that η0 ≤ η′0 implies ηt ≤ η′t for t > 0. To do so, for transmission events place independent
p.p.p.’s along each edge

• with intensity λ and label ↔

• with intensity λ′ − λ and label ↔′
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with recovery events as before, and for transmission events, for ηt use only the labels ↔, while for η′t use
both the labels ↔ and ↔′. Using this fact, and the fact that any configuration with a positive and finite
number of active sites can reach any other such configuration, it follows directly that there is a critical value
of the transmission parameter that we denote λ0c (which may a priori be equal to 0 or ∞) such that the
infection survives with positive probability when λ > λ0c and |η0| ≥ 1 (|η| denotes the number of active sites
in η) and dies out with probability 1 when λ < λ0c and |η0| <∞, where survival means |ηt| > 0 ∀t and dying
out means |ηt| = 0 for t large enough. Whenever we refer to critical values in what follows, they will have
this property; the only exceptions are the upper and lower critical values for the SEIS process defined below,
for which the above property is split between the two.

Given that τ = 0 gives the contact process it is natural to ask whether we obtain something as τ →∞.
The answer is yes, if we rescale time so that onset occurs at rate 1. We first describe the limit process, then
state the sense in which the SEIS process converges to it. The limit process has the state space {0, 1}V
where 1 can be thought of as occupied and 0 as vacant. It is defined using the dispersal distributions p(x, ·)
given by letting p(x,A) be equal to the probability that for the contact process with the single infectious
site x, transmission from x to every site in A occurs, followed by recovery at x, without transmission to
any sites in Ac, and ignoring subsequent transmissions from other newly infected sites. Each occupied site
x becomes vacant at rate 1, at which point, with probability p(x,A) all the vacant sites in A become occupied.

There is an obvious graphical representation of the limit process: at each site place a p.p.p. with intensity
1 and label ?, and at each occurrence of ? at site x sample the dispersal distribution p(x, ·), placing a→ label
from x to y for each y to which x disperses, and let the samples be independent. The rest of the construction
follows the same pattern so we omit the details. It is easy to see the limit process is monotone, and is
also monotone in λ; to see the latter property, for λ < λ′ make a joint construction by coupling dispersal
distributions in the obvious way. Thus the limit process has a critical value that we denote λ∞c such that
the same dichotomy holds as for the contact process above. The following result describes convergence of
the SEIS process to the limit process.

Theorem 2.1. For fixed λ, let ηt denote the SEIS process on a countable graph with bounded degree, under
the rescaling t 7→ t/τ , and let ζt denote the limit process. Let S = {t : ηt(x) = 2 for some x} denote the
set of times when the rescaled SEIS process has an infectious site. Fix T > 0 and an initial state with no
infectious sites and finitely many exposed sites, then for each τ there is a coupling of ηt and ζt so that with
probability tending to 1 as τ →∞,

• ζt = ηt for t ∈ [0, T ] \ S and

• `(S ∩ [0, T ])→ 0 where ` is Lebesgue measure on the line.

The main idea of the proof is that with probability tending to 1 as τ →∞ in the SEIS process, between
any two onset events a recovery event occurs, and when this happens the SEIS process behaves like the limit
process. The assumption of finitely many initially active sites is necessary.

Unfortunately, unlike the contact process or the limit process, with respect to the graphical representation
given above, for τ > 0 the SEIS process is not monotone in the partial order induced by the order 0 < 1 < 2
on types (or, it can be checked, for any other order, though 0 < 2 < 1 is the only other real possibility),
since if we take configurations η ≤ η′ with η(x) = 1 and η′(x) = 2 the 2 can flip to a 0 before the 1 becomes
a 2, since type 1 ignores the × labels. Intuitively, this makes sense because although type 2 can spread
the infection while type 1 cannot, type 1 is not vulnerable to recovery events while type 2 is. Of course, it
is possible to search for other graphical representations, or even more general types of coupling, to try to
show monotonicity. After a long search, we have found no such coupling, but the reader is encouraged to try!

So, lacking monotonicity, we define the following two critical values for the SEIS process; note Pλ,τ
denotes the law of the process with parameters λ, τ .

λ−c (τ) = sup{λ′ : Pλ,τ (ηt dies out ||η0| <∞) = 1 if λ < λ′}
λ+c (τ) = inf{λ′ : Pλ,τ (ηt survives ||η0| > 0) > 0 if λ > λ′}
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Table 1: Lower bounds on λ−c (τ)
τ 104 103 100 10 1 0.58 1/10 1/100 10−3 10−4

λ−c (τ) > 1.57 1.57 1.56 1.45 1.15 1.13 1.24 1.32 1.34 1.34

Clearly, λ−c (τ) ≤ λ+c (τ) for each τ . The next result gives quantitative estimates on critical values, both
for the SEIS process and for the limit process, on Z, i.e., on the graph G = (V,E) with V = Z and
E = {xy : |x− y| = 1}.

Theorem 2.2. For the SEIS process on Z, λ+c (τ) < 6.875 when τ ≤ 1/10, and λ−c (τ) has the lower bounds
given in Table 1. For the limit process on Z, 1.944 < λ∞c < 8.563.

Lower bounds on λ− are obtained using the method of [17] applied to a monotone process that upper-
bounds the SEIS process, and the upper bound on λ+ for small τ is obtained with the method of [4] applied
to a monotone process that lowerbounds the SEIS process. In both cases the estimates are achieved with
the assistance of a computer and are rigorous up to the rounding error on computations. Unfortunately,
in this case each lower bound on λ− is computed for a single value of τ ; it is possible to make guesses by
interpolating, but these are not a priori rigorous. Note also that the lower bounds suggest, but again do not
prove, that the critical value of the upperbound process has a unique minimum near τ = 0.58 and is oth-
erwise increasing/decreasing. Numerical simulations of the SEIS process on Z suggest that λ−c (τ) = λ+c (τ)
and that this value increases monotonically from about 1.6 at τ = 0 to about 2.4 as τ →∞.

For the limit process, the lower bound is obtained using the method of [17] and the upper bound, using
the method of [4]. Note that for the contact process, 1.539 ≤ λc ≤ 1.942 (lower bound from [17] and upper
bound from [13]), and from the upper bound together with our estimate we note that the strict inequality
λ∞c > λ0c holds.

Using different methods, we obtain some “qualitative” estimates on critical values.

Theorem 2.3. For the SEIS process on Z,

• there exists λ0 <∞ such that λ+c (τ) < λ0 for all τ ,

• λ+(τ), λ−(τ)→ λ0c as τ → 0 and

• λ+(τ), λ−(τ)→ λ∞c as τ →∞.

Here we show only that λ0 < ∞ exists, as it appears difficult to get any sort of realistic estimate. The
proof uses the block construction idea of [4] with a bit of extra work to get around the lack of monotonicity.
Convergence of λ+, λ− as τ → 0 is proved with the help of the results of [6] and [17], in both cases by passing
to a sequence of finite systems and using continuity with respect to parameters. Convergence of λ+, λ− as
τ →∞ is proved in the same way, with a couple of technical points that first need to be proved for the limit
process.

The paper is laid out as follows. In Section 3 we prove Theorem 2.1. In Section 4 we prove Theorem 2.2.
In Section 5 we prove Theorem 2.3.

3 Theorem 2.1: Convergence to the Limit Process

Here we prove Theorem 2.1. We begin with a useful lemma. Using the graphical representation given in
Section 1, construct the SEIS process ηt rescaled by t 7→ t/τ , so that onset occurs at rate 1, recovery at rate
τ and transmission at rate λτ . Recall that S = G× [0,∞) denotes the spacetime set.
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Lemma 3.1. Let G = (V,E) be a finite graph. In the rescaled SEIS process, for each T > 0 with probability
tending to 1 as τ →∞, for each onset label ? at a point (x, t) ∈ S there is a t′ > t and a recovery label × at
(x, t′) such that there are no onset labels in V × (t, t′].

Proof. Let {(xi, ti) : i = 1, 2, ...} be the set of points (x, t) ∈ S such that there is a ? label at (x, t), with
t1 < t2 < ...; since the total intensity of ? labels is finite, with probability 1 the times can be ordered in this
way. Say a discrepancy occurs at time ti+1 if in the interval {xi} × (ti, ti+1) there are no × labels, then the
desired event holds if the first discrepancy occurs after time T . The intensity of × labels at each site is τ
and the intensity of ? labels is |V |, so for each N , with probability [τ/(|V |+ τ)]N which ↑ 1 as τ →∞, there
are no discrepancies up to time tN+1. Since P(tN+1 > T ) ↑ 1 as N →∞, the result follows.

Proof of Theorem 2.1. We prove the result when G is a finite graph. The result for infinite graphs is implied
by the following fact that can be seen from the construction of the process. Fix T > 0 and let η0 be an
initial condition for the SEIS process with no infectious site and finitely many exposed sites. Define the
graph distance d(x, y) to be the least number of edges in any path between x and y with d(x, y) = ∞ if
there is no path from x to y. For k ≥ 0 let Gk be the graph induced by the set of vertices y ∈ V such that
d(x, y) < k for some x such that η0(x) = 1 and let Sk = Gk × [0,∞), then define ηkt for 0 < t ≤ T using
the restriction of the substructure to Sk. Then, ηkt = ηt for 0 < t ≤ T with probability tending to 1 as k →∞.

First use the graphical representation to build two independent substructures U
(1)
t and U

(2)
t with respec-

tive filtrations F (1)(t) and F (2)(t), one as for the rescaled SEIS process and another as for the limit process.

Construct the rescaled SEIS process ηt from η0 using U
(1)
t and let {(xi, ti); i = 1, ...,m} with t1 < t2 < ... < tm

denote the points (x, t) at which ηt(x) goes from 1 to 2. For i = 1, ...,m let si = min{t > ti : ηt(x) = 0} be
the first recovery time of xi after ti. Say that a discrepancy occurs if ti+1 < si for some i ∈ {1, ...,m − 1}.
So long as no discrepancy has occurred we will use U

(1)
t to construct the limit process ζt; U

(2)
t will help to

construct ζt in the event of a discrepancy.

For i = 1, ...,m − 1 define the stopping times ri = max si, ti+1, and let ζt = ηt for t ∈ [0, t1]. For
t ∈ [0, t1] let ζt = ηt. Then, working inductively, suppose ηt is determined for t ∈ [0, rj−1], is measurable
with respect to F (1)(rj−1), and no discrepancy has occurred up to time rj−1 i.e., ri = ti+1 for i = 1, ..., j−1.
To determine ζt for t ∈ [rj−1, tj+1], use the ↔ labels in {xj ·} × (tj , sj) and the × label at (xj , sj) to obtain
the propagation distribution at (xj , tj) and use the ? label at (xj+1, tj+1) to obtain the next onset transition;
note these transitions depend only on ζrj−1

and E(Ut+rj−1
|F(rj−1)) so have the correct distribution, and are

measurable with respect to F(rj). If rj = tj+1 then ζt is determined for t ∈ [0, rj ] and no discrepancy has
occurred up to time rj . If rj = sj a discrepancy has occurred; in this case, use the second substructure to
determine ζt for t ∈ [tj+1, T ], noting that the second substructure is independent of the first. Proceeding in
this way determines ζt for t ∈ [0, T ], and by Lemma 3.1, with probability tending to 1 as τ →∞, there are
no discrepancies in the time interval [0, T ] and so ηt = ζt, 0 ≤ t ≤ T . It is left to the reader to show that for
S = {t : ηt(x) = 2 for some x}, `(S ∩ [0, T ])→ 0 with probability tending to 1 as τ →∞; to do so it suffices
to prove a slight refinement of Lemma 3.1.

4 Theorem 2.2: Quantitative Estimates

In this section we prove Theorem 2.2, in three parts: estimate of λ+, estimates of λ−, estimate of λ∞c . First
we define the lowerbound and upperbound processes, which we denote ηt and ηt. The idea is to modify
some transitions in the SEIS process so that we end up with a monotone process that either lowerbounds or
upperbounds the original process. The definition is only relevant for τ > 0, since if τ = 0, in both cases it
coincides with the contact process.

4.1 Lowerbound Process

Starting from the graphical representation for the SEIS process, to obtain ηt, construct the process as if it
was the SEIS process, except that whenever an exposed site sees a recovery label ×, it becomes healthy. As
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it turns out, this gives a particular case of what is called the two-stage contact process [11], [7], which is
known to be monotone, as well as monotone increasing in λ and monotone decreasing in τ , with respect to
the partial order on configurations induced by the order 0 < 1 < 2 on types; given what was shown for the
contact process in Section 1, this is not hard to check. Intuitively, the reason why the stated monotonicity
holds is because now the exposed type is in every sense weaker, in its ability to spread the infection, than
the infectious type. Monotonicity in λ is intuitively clear, and monotonicity in τ can be explained by saying
that the longer an exposed site has to wait to become infectious, the less it will spread the infection. This
gives the existence of a critical value λc(τ) that is non-decreasing in τ . It is also not hard to check that η0
is a genuine lower bound, that is, if η0 ≤ η0 then ηt ≤ ηt for t > 0, with respect to the partial order just
described. This implies in particular that λc(τ) ≥ λ+(τ) for each τ . As shown in [7], for a graph of bounded
degree, λc(τ)→∞ at a finite value of τ , so this upper bound is only useful for small values of τ .

4.2 Upperbound Proces

To get ηt we first picture ηt as follows. Recall that S = G× [0,∞) is the spacetime set, which we picture as a
copy of G extruded upward in the increasing time direction. Given η0, and determining the process on each
realization for all time, if ηt(x) = 1 for t ∈ [t1, t2), draw a thick dashed line on the line segment {x}× [t1, t2)
in S, and if ηt(x) = 2 draw a thick solid line; if ηt(x) = 0 leave it blank. If the infection is transmitted along
an edge e ∈ E then draw a thick solid line with an arrow pointing in the direction it was transmitted.

Now, modify the graphical representation so that transmission labels are directed. That is, for xy ∈ E,
with intensity λ place transmission labels → from x to y and with intensity λ, place independent trans-
mission labels ← from y to x. Clearly, this does not change the law of ηt. Then, to define ηt we simply
allow both a dashed line and a solid line to exist at the same site, at the same time; that is, if both x
and y are infectious and there is a transmission label from x to y, then y becomes “both” infectious and
exposed; with respect to the above visualization, along y there is both a dashed line and a solid line, each
behaving as it would in the SEIS process. This is why we make labels directed; if both x and y have a solid
line and a↔ appears along edge xy there is no way to tell which of the two sites x, y will receive a dashed line.

So, if y has both a dashed and solid line and the next event is

• an onset label ?, the dashed line coalesces with the solid line, and only a solid line remains, and if it is

• a recovery label ×, the solid line is knocked out and only the dashed line persists

Then, as in the SEIS process, only a solid line is able to use the transmission labels. Also, at most one line
of each type is allowed at a single site, so if x already has a dashed line and there is a transmission event to
x, it still has only one dashed line. In order to refer to it, we denote by type 3 the presence of both a dashed
and solid line. It is not hard to check that ηt is monotone, and is monotone increasing in λ, with respect to
the partial order on configurations induced by the order 0 < 1, 2 < 3 on types; it is not, however, monotone
in τ , effectively because in this process, as in the SEIS process, types 1 and 2 are not comparable. Thus for
each τ , ηt has a critical value λc(τ) whose variation in τ is not known a priori. Clearly, ηt is an upper bound
for ηt in the sense that η0 ≥ η0 implies ηt ≥ ηt for t > 0, with respect to the partial order just described,
which implies that λc(τ) ≤ λ−(τ), for each τ .

4.3 Some Definitions

We introduce a couple of definitions that will be useful in this section and the next section. Notice that,
given a finite state space S and transition rates qij for i, j ∈ S, we can construct a continuous time Markov
chain on S as follows. Given that Xt = i, then corresponding to the set of k such that qik > 0 we have
an independent collection of exponential random variables sk with rate qik, and setting s = min sk and
j = argmin sk, we let Xt+s = j. Note this is the same Markov chain as the one in which each i to j
transition is generated by a Poisson point process with intensity qij . It can be checked by a calculation that
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pij = P(Xt+s = j|Xt = i) = qij/qi if qi 6= 0, where qi =
∑
k 6=i qik; if qi = 0 the chain remains at i once it has

arrived there.

Definition 4.1. The discrete time Markov chain on S determined by the transition probabilities pij defined
above is called the embedded jump chain.

Note that the embedded jump chain encodes the changes of state in the continuous time chain. In fact,
the continuous time chain can be reconstructed from the embedded jump chain by waiting an independent
exponential time of rate qi at each state i before making a transition; see [16] for details.

Our next task is to define a notion of path for the infection in spacetime.

Definition 4.2. A path in spacetime is a list of alternating vertical and horizontal line segments

(v1, h1, ..., vm−1, hm−1, vm)

in S with each vi = {xi}× (ti−1, ti), ti−1 < ti and each hi = {xixi+1}×{ti}. The base of a path is the point
(x1, t0), and the end is the point (xm, tm).

The notion of active path is here defined only for the contact, lowerbound, and limit processes. Although
it is easy to define for the upperbound process we will have no need for it, and for the SEIS process the
definition will be a bit different.

Definition 4.3. For the contact process, a path is active if for i = 1, ...,m− 1 there is a ↔ label at hi and
for i = 1, ..,m there are no × labels on vi. For the lowerbound process, a path is active if in addition, for
i = 1, ...,m − 1 there is a ? label on vi. For the limit process, a path is active if instead of a ↔ label at hi,
xi+1 belongs to the offspring of (xi, ti).

Say a point (x, t) is active for a process ηt if ηt(x) 6= 0. It is easy to check for the contact process, the
lowerbound process and the limit process that if (x, t) is active and there is an active path with base (x, t)
and end (y, s) then (y, s) is active; one way to express this is that active paths take active points to active
points. It is also true that (y, s) is active if and only if there is an active point (x, 0) and an active path with
base (x, 0) and end (y, s). This implies a useful property called additivity which is discussed in the proof of
Lemma 5.2 in Section 5.4.

4.4 Estimate of λ+

We will use the method described in [4], applied to the lowerbound process on Z, to obtain upper bounds
on λc(τ). Our first task is to describe the method and to justify its usage in this setting. Recall that
S = G × [0,∞) is the spacetime set, for R ⊂ S, F(R) is the σ-algebra generated by the restriction of the
substructure of R. In what follows, we say an event holds “on R” if it is F(R)-measurable.

Letting L := {(m,n) ∈ Z2 : n ≥ 0,m+ n is even}, define oriented site percolation on L to be the process
in which sites in L are independently open with probability p and closed with probability 1 − p, and there
is a path from (k, l) to (m,n) or (k, l) → (m,n) if there is a list (k, l) = (k1, l1), (k2, l2), ..., (kj , lj) = (m,n)
such that li+1 = li + 1 and ki+1 = ki ± 1 for i = 1, ..., j − 1, and (ki, li) is open for i = 1, ..., j − 1; note the
last site is not required to be open. The cluster of (m,n) is the set C(m,n) = {(k, l) ∈ L : (m,n)→ (k, l)}.
We say that percolation occurs from (m,n) if |C(m,n)| =∞. If p < 1 is close enough to 1, then percolation
occurs from (0, 0) with positive probability; as shown in [4], p ≥ 0.819 suffices.

The idea of the method of [4] is to use the above result for oriented percolation to prove survival of the
infection in the process of interest. In our case the discussion applies to the lowerbound process, the contact
process, the limit process, and any process whose active paths take active points to active points as described
above. Embed the spacetime set (Z, {xy : |x − y| = 1}) × [0,∞) into the half-space {(x, y) ∈ R2 : y ≥ 0}
then draw the rectangles {Rm,n : (m,n) ∈ L} defined by

Rm,n = R0,0 + (mK,nT )

8
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Figure 2: Depiction of rectangles Rm,n for −2 ≤ m ≤ 2 and 0 ≤ n ≤ 2, as well as the event A0,0(η0) in R0,0,
with i = 2.

for some K,T to be determined, where R0,0 = [0, J ]× [0, T ] for some integer K ≤ J < 2K and for a set S and
a point r, S + r := {s+ r : s ∈ S}; the range of J ensures that Rm,n does not intersect Rm−2,n or Rm+2,n,
but does intersect Rm−1,n+1 and Rm+1,n+1 along its top edge; let j denote the number of sites along which
Rm,n intersects Rm−1,n+1, which is also the number of sites along which Rm,n intersects Rm+1,n+1.

Fix a parameter i ∈ {1, ..., j}. Say that a configuration η is good for Rm,n if among either the leftmost
or rightmost j sites in Rm,n there are at least i distinct sites x1, ..., xi such that η(xk) 6= 0 for k = 1, ..., i.
For (m,n) ∈ L, and for η that is good for Rm,n, define Am,n(η) as follows: Am,n(η) occurs if for at least i of
the j leftmost sites y1, ..., yi and at least i of the j rightmost sites yi+1, ..., y2i in Rm,n at time (n+ 1)T , for
p = 1, ..., 2i there is an q ∈ {1, ..., i} such that there is an active path lying in Rm,n with base (xq, nT ) and
end (yp, (n+ 1)T ). See Figure 2 for a picture.

If ηnT is good for Rm,n and Am,n(ηnT ) occurs, then η(n+1)T is good for both Rm−1,n+1 and Rm+1,n+1.
Moreover, given ηnT that is good for Rm1,n, Rm2,n, ..., the events Am1,n(ηnT ), Am2,n(ηnT ), ... are indepen-
dent. It is then straightforward to show that if for each (m,n) ∈ L, P(Am,n) ≥ p for every configuration that
is good for Rm,n then if η0 is good for R0,0, the set {(m,n) ∈ L : there is an active point for ηt in Rm,n}
stochastically dominates the cluster C(0, 0) of oriented site percolation with parameter p. Moreover, taking
η at time 0 that is good for R0,0 together with the set of labellings of R0,0 belonging to the event A0,0

given η and translating both by (mK,nT ) gives η′ that is good for Rm,n together with the set of labellings
belonging to Am,n given η′. Thus, by translation invariance of the law of the substructure, to show the
lowerbound process survives with positive probability starting from η0 that is good for R0,0, it suffices to
show that P(A0,0) ≥ 0.819 for each η0 that is good for R0,0.

Using blocks with J = 7 and K = 6 and setting T so that there are an average of 650 labels in R (650
just chosen to match the choice in [4]), following [4] we estimate numerically the transition matrix P for
the embedded jump chain corresponding to the lowerbound process restricted to the sites in R, counting
redundant transitions (i.e. points in the Poisson process that have no effect) so that the rate of transitions is
fixed and is equal to the total intensity of p.p.p.’s, that we denote γ, and then by computing the first couple
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of thousand terms in the sum
∞∑
i=1

e−γT
γi

i!
P i

by monotonicity we obtain a lower bound on the entries of the transition matrix at time T in the continuous
time chain. If λ = 6.875 and τ = 1/10, then letting i = 1, with respect to the estimated transition matrix
we find that for each configuration favourable for R0,0, A0,0 has probability at least 0.819, which implies
λc(1/10) ≤ 6.875 and by monotonicity in τ , that λc(τ) < 6.875 when τ ≤ 1/10, so that for the SEIS process
λ+c (τ) < 6.875 when τ ≤ 1/10.

4.5 Estimates of λ−

For the upperbound process we use the method of [17]. Starting with the upperbound process on Z with
τ > 0 and initial configuration η0(x) = 3 for x ≥ 0 and η0(x) = 0 for x < 0, for integer m ≥ 0 we define the
modified process ηmt (x) by evolving like the upperbound process but with the added constraint ηmt (x) = 3 for
x > lmt +m, where lmt = inf{x : ηmt (x) 6= 0}. The vector v(t) = (ηmt (lmt ), ..., ηmt (lmt +m) evolves like a finite
state continuous time homogenous Markov chain on the state space S = {η ∈ {0, 1, 2, 3}m+1 : η(0) 6= 0},
so we let Xn denote the embedded jump chain, which evolves on the same space. For this chain each state
communicates with the state defined by X(x) = 3, x = 0, ...,m, so the chain is irreducible on S with a unique
invariant measure that we denote µ. Letting k(i, j) denote the number of distinct transitions in ηmt that
take v(t) from i to j, and letting ∆(i, j, r) be the increment in lmt and p(i, j, r) be the transition probability
for the rth transition, 1 ≤ r ≤ k(i, j), we define λm as sup{λ : Eµ∆ > 0}, where

Eµ∆ =
∑
i,j∈S

µ(i)

k(i,j)∑
r=1

p(i, j, r)∆(i, j, r) (4.1)

is the average increment in lmt at each transition. Since ηmt ≥ ηt and Eµ∆ > 0 implies lmt → ∞, if λ < λm
then lt → ∞. A simple coupling argument as in [2] then shows that the upperbound process on Z started
from a finite number of active sites dies out with probability 1 when lt → ∞, which implies λm ≤ λc. To
estimate λm we construct the embedded jump chain, compute µ, and iterate to find λ such that Eµ∆ ≈ 0.
With m = 3 we obtain the table of values given in Theorem 2.2.

4.6 Estimate of λ∞c

Defining an active path for the limit process as in Definition 4.3, we have that active paths take active points
to active points, so we can use the method of [4] as described. Doing so with L = 10, j = 4 and i = 2 and T
chosen to give an average of 650 labels gives the upper bound on λ∞c .

To get a lower bound we use again the method of [17]. From the limit process ζt, for m ≥ 0 the
modified process ζmt is defined by evolving like the limit process but with the added constraint ζmt (x) = 1
for x > lmt + m, with lmt as defined above. The definition of λm, µ and Eµ∆ are as above, with µ now
supported on the state space {η ∈ {0, 1}m+1 : η(0) 6= 0}. We give the coupling argument that shows
lt → ∞ implies the limit process started from a finite number of active sites dies out with probability
1: letting 1 denote the indicator function define ζ−t , ζ

0
t and ζ+t by ζ−0 = 1(x ≤ 0), ζ00 = 1(x = 0) and

ζ+0 = 1(x ≥ 0), then by monotonicity ζ0t ≤ min ζ−t , ζ
+
t . If l+t = inf{x : ζ+t (x) 6= 0} → ∞ then by symmetry

r−t = sup{x : ζ−t (x) 6= 0} → −∞, moreover r−t < l+t implies ζ0t ≡ 0, so there is almost surely finite
time s so that ζ0t ≡ 0 for t > s. An analogous argument works when ζ0t is replaced with ζNt defined by
ζN0 = 1(x ∈ [−N,N ]). Computing λm for m = 8 in the same way as above gives the lower bound on λ∞c .

5 Theorem 2.3: Qualitative Estimates

In this section we prove Theorem 2.3, in five parts: existence of λ0, upper bound on λ+ as τ → 0, lower
bound on λ− as τ → 0, upper bound on λ+ as τ →∞, lower bound on λ− as τ →∞.

10



5.1 Existence of λ0

To show the existence of λ0 we use a comparison to oriented site percolation, in the spirit of [4]. As in the
previous section, let L := {(m,n) ∈ Z2 : n ≥ 0,m+ n is even} and for T to be determined, define the set of
rectangles {Rm,n : (m,n) ∈ L} by R0,0 = R = [0, 3]× [0, T ] and

Rm,n = R+ (2m,nT )

where for a set S and a point r, S + r := {s + r : s ∈ S}. For the SEIS process on Z, the graphical
representation embeds in a natural way into the set {(x, y) ∈ R2 : y ≥ 0}, as do the rectangles Rm,n. In
light of the upper bound on λ+(τ) given for τ ≤ 1/10 in Theorem 2.2, it is enough to show that survival
occurs with positive probability when λ > λ0 and τ ≥ τ0 > 0 for some τ0 ≤ 1/10; we phrase it in this way
because we will be able to take τ0 > 0 as small as we choose.

For each m, let xm denote the site such that Rm,n = [xm, xm + 3]× [nT, (n+ 1)T ], when m+ n is even.
To show survival we define, for each p < 1, a value λ0 such that for each λ and τ there is a time T and
a collection of events Am,n each one depending only on the corresponding F(Rm,n), the restriction of the
substructure to Rm,n, with the property that if ηnT (y) 6= 0 for some y ∈ [xm, xm + 3] and Am,n occurs,
then η(n+1)T (y) 6= 0 for some y ∈ [xm, xm + 1] and some y ∈ [xm + 2, xm + 3], and such that if λ > λ0,
then P(Am,n) ≥ p. Then, provided η0(0) 6= 0, if λ > λ0 the set of (m,n) such that ηt(x) 6= 0 for some
(x, t) ∈ Rm,n dominates the cluster C(0, 0) of oriented percolation with parameter p, so if p is chosen close
enough to 1 we conclude that survival in the SEIS process occurs with positive probability uniformly in τ ,
for any value λ > λ0.

For simplicity we define Am,n to have the property that if ηnT (y) 6= 0 for some y ∈ [xm, xm + 1] then
η(n+1)T (y) 6= 0 for some y ∈ [xm, xm + 1] and some y ∈ [xm + 2, xm + 3]. By reflection symmetry of the
substructure, if P(Am,n) ≥ 1 − ε/2 then the probability that the same conclusion holds with the weaker
hypothesis ηnT (y) 6= 0 for some y ∈ [xm, xm + 3] is at least 1 − ε. By translation-invariance it is enough
to define A0,0, for which xm = 0. Letting B(t) = (ηt(0), ηt(1)) and C(t) = (ηt(2), ηt(3)), say that either
is active at time t if at least one of its two coordinates is not zero. Then, it is enough that A0,0 have the
following two properties:

1. if B(s) is active for some s ∈ [0, T ) then B(t) is active for s < t ≤ T , and the same is true for C(t),
and

2. if B(0) is active (which it is by the assumption η0(0) 6= 0) then for some s ∈ [0, T ), C(s) is active

Before choosing T it is convenient to rescale the model in time so that ? labels occur at rate 1, × labels at
rate τ and ↔ labels at rate λτ ; this is ok since T is allowed to depend on τ , and is convenient since after
rescaling, it won’t have to.

To get property 1 for both B(t) and C(t) (and a bit more besides) it is enough that the following event
depending on a fixed parameter h > 0, that we denote E1, hold: in the time interval [0, h] there is a ↔ label
on each of the edges 01, 12, 23 before there is a × label on any of the sites {0, 1, 2, 3} and everywhere on
the set [0, 3]× [0, T ], after any ? label on {0, 1, 2, 3} and within at most h amount of time, there is a ↔ on
each of the edges 01, 12, 23 before there is a × label on any of the sites {0, 1, 2, 3}. Since after rescaling, ?
labels occur at rate 1, × labels at rate τ and ↔ labels at rate λτ , it is a simple exercise to show that given
h, τ0 > 0, for each ε, T > 0 we can choose λ0 so that P(E1) ≥ 1− ε if λ > λ0 and τ > τ0.

To get property 2, it is enough to show that t ≤ T where t is the first time such that ηt(1) = 2 and a ↔
on 12 occurs at time t. If E1 holds, it is enough to have one of the following:

• η0(1) = 2 and T ≥ h,

• η0(1) = 1 and there is a ? label at (1, t) for some t ≤ T − h,

• η0(0) = 2 and there is a ? label at (1, t) for some h < t ≤ T − h, and

11



• η0(0) = 1 and there is a ? label at (0, t1) for some t1 ≤ T − 2h and a ? label at (1, t2) for some
t2 ∈ (t1 + h, T − h]

Since we can choose T ≥ h and since one of the four conditions on B(0) holds by assumption, we denote by
E2 the intersection of the label events just described, so that E2 depends only on F(R0,0) as desired. Given
ε > 0, it is not hard to check that for T large enough, P(E2) ≥ 1 − ε/2. Then, we can choose λ0 so that if
τ > τ0 and λ > λ0, P(E1) ≥ 1− ε/2, so that P(E1 ∩ E2) ≥ 1− ε, and this completes the proof.

5.2 Upper bound on λ+ as τ → 0

We now show that λ+(τ), λ−(τ) → λ0c , the critical value of the contact process, as τ → 0. We first use the
lowerbound process to show that lim supτ→0 λ

+(τ) ≤ λ0c . In the proof we mention a 1-dependent oriented
site percolation process with parameter p; this is a model in which each site is open with probability p, and
sites (m1, n1), ..., (mk, nk) are independent provided |mi −mj | + |ni − nj | > 2 for i 6= j. The definition of
paths, clusters and percolation is the same as before. As shown in [6], for a 1-dependent oriented site perco-
lation process, if p = 1−ε for ε > 0 small enough, then percolation from (0, 0) occurs with positive probability.

In [6] it is shown for the contact process that if λ > λ0c then for each ε > 0, for a suitable choice of rect-
angles Rm,n ∈ S and F(Rm,n)-measurable events Am,n with indicator Im,n, the set {(m,n) ∈ L : Im,n = 1}
dominates a 1-dependent oriented site percolation process with parameter p = 1 − ε. The 1-dependence
arises from the fact that Rm,n overlaps with each of Rm±1,n±1 on a set of positive measure in S; see Fig. 1
in [6] for a picture. The events Am,n are such that for appropriate choice of initial configuration with finitely
many active sites, the set of (m,n) ∈ L such that there is an active point in Rm,n stochastically dominates
C(0, 0), so to show survival it is sufficient to have P(Am,n) ≥ 1− ε for ε > 0 small enough.

Now, since each rectangle Rm,n is bounded, if Pλ(Am,n) > p then for small enough δ > 0, Pλ−δ(Am,n) > p.
To see this, proceed as in Section 1: first generate transmission labels ↔ and ↔′ using independent p.p.p’s
with intensity λ− δ and δ respectively, then let the process with transmission parameter λ use both types of
labels, and let the process with transmission parameter λ− δ use only the labels ↔. Since R is a bounded
region in spacetime, with probability tending to 1 as δ → 0 there are no ↔′ labels in R, and on this event
the p.p.p.’s for the two processes agree on R. Viewing the contact process as the lowerbound process with
τ = 0, a similar argument shows that if Pλ,0(Am,n) > p then for small enough δ and τ , Pλ−δ,τ (Am,n) > p;
for a detailed argument see [7], but the main idea is that for a bounded region in spacetime, with probability
tending to 1 as τ → 0, between any two consecutive labels of type ↔ or × in time there is a ? label at
every site. Therefore if λ > λ0c then taking p = 1 − ε where ε > 0 is such that percolation occurs with
positive probability in a 1-dependent oriented site percolation model with parameter p, for small enough
δ, τ > 0, started from some initial configuration with finitely many active sites the lowerbound process with
parameters λ − δ, τ survives with positive probability. In other words, λ > λ0c implies λ > λc(τ) for small
enough τ > 0, and noting that λ+(τ) ≤ λc(τ) the desired result follows.

5.3 Lower bound on λ− as τ → 0

Next we show that lim infτ→0 λ
−(τ) ≥ λ0c , using the upperbound process and a comparison. In Section 4 we

described the method of [17] that gives, for each τ > 0, a sequence of lower bounds λ0(τ) ≤ λ1(τ) ≤ λ2(τ) ≤
... ≤ λc(τ), each is which is determined by a process ηmt that approximates the upperbound process; we did
not show that the λm are increasing but this follows from the observation ηmt ≥ ηm+k

t for k ≥ 0. For τ = 0
which is the contact process, starting from the process with initial configuration η0(x) = 2 for x ≥ 0 and
η0(x) = 0 for x < 0, then for integer m ≥ 0 define ηmt by evolving like the contact process but with the
added constraint ηmt (x) = 2 for x > lmt + m, with again lmt = inf{x : ηmt (x) 6= 0}. The definition of λm,
µ and Eµ∆ are as before. Since ηmt ≥ ηm+k

t we have again λ0(0) ≤ λ1(0) ≤ ...λ0c . It is shown in [17] that
λm(0) ↑ λ0c ; the proof relies on the fact, proved as Theorem 4 in [8], that λ0c = sup{λ : α > 0}, where for
lt = inf{x : ηt(x) 6= 0}, α = limt→∞ lt/t was shown to exist in [2].

For τ > 0, µ is supported on S = {η ∈ {0, 1, 2, 3}m+1 : η(0) 6= 0} and for τ = 0, µ is supported on
S0 = {η ∈ {0, 2}m+1 : η(0) 6= 0} ⊂ S. Define S1 = {η ∈ S : η(x) ∈ {1, 3} for some x and η(y) ∈ {0, 2}, y 6=
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x}, the set of states with exactly one exposed site. Modify the embedded jump chain Xn when τ = 0
to include intermediate transitions to configurations with an exposed i.e. type 1 or type 3 site; µ is then
supported on S0 ∪ S1 and from any state in S1 there is a unique transition with probability 1 to the corre-
sponding state in S0 in which onset of the exposed site has occurred. Since this modification preserves the
sign of Eµ∆ the value of λm is unchanged. Writing Eµ∆(m,λ, τ) to emphasize the dependence and noting
that λm(τ) = sup{λ : Eµ∆(m,λ, τ) > 0}, to prove the result it suffices to show that for each m and λ,
Eµ∆(m,λ, τ) is continuous in τ at τ = 0, since if λ < λ0c then λ < λm(0) for some m and Eµ∆(m,λ, 0) > 0
and then by continuity Eµ∆(m,λ, τ) > 0 and thus λ < λm(τ) for small enough τ > 0 and the result follows
from the inequalities λm(τ) ≤ λc(τ) ≤ λ−(τ).

Recall equation (4.1):

Eµ∆ =
∑
i,j∈S

µ(i)

k(i,j)∑
r=1

p(i, j, r)∆(i, j, r)

Thus to show Eµ∆(m,λ, τ)→ E∆(m,λ, 0) as τ → 0 it suffices to show µ(i)(m,λ, τ)→ µ(i)(m,λ, 0) for i ∈ S
and p(i, j, r)(m,λ, τ) → p(i, j, r)(m,λ, 0) as τ → 0 for i, j ∈ S and r = 1, ..., k(i, j). In fact, we can make a
further reduction.

Lemma 5.1. Let p(i, j)(s), 0 ≤ s ≤ 1, be a family of transition probabilities on a finite state space S such
that for each s, p(i, j)(s) has a unique invariant measure µ(i)(s). If p(i, j)(s)→ p(i, j)(0) as s→ 0 for each
i, j ∈ S then µ(i)(s)→ µ(i)(0) as s→ 0 for i ∈ S.

Proof. Let n = |S| and define the simplex Λ = {x ∈ Rn : xi ≥ 0, i = 1, ..., n,
∑
i xi = 1} that corresponds

to probability measures on S. Suppose by way of contradiction that there is a sequence (sk) tending to 0
and an ε > 0 such that maxi |µ(i)(sk)− µ(i)(0)| > ε for each k. By compactness of Λ there is a subsequence
(skm) tending to 0 and an element µ∗ ∈ Λ with µ∗ 6= µ(0) such that µ(i)(skm)→ µ∗(i) for each i. However,
since p(i, j)(skm)→ p(i, j)(0) for each (i, j) and each µ(skm) is invariant for p(i, j)(skm), µ∗ is invariant for
p(i, j)(0), and by assumption of uniqueness, µ∗ = µ(0), a contradiction.

By the lemma above, since for Xn, p(i, j) =
∑k(i,j)
r=1 p(i, j, r), and µ is determined from p(i, j) it suffices

to show p(i, j, r)(m,λ, τ)→ p(i, j, r)(m,λ, 0) as τ → 0. For each i, j ∈ S and r ∈ {1, ..., k(i, j)} the transition
rate qijr for ηmt is of the form 1/τ , λ, 2λ or 1. Using the formula pijr = qijr/

∑
(k,s) 6=(i,r) qiks and writing

pijr(m,λ, τ) to emphasize the dependence, fix m and λ. For i ∈ S0, pijr(m,λ, τ) does not depend on τ
and agrees with p(i, j, r)(m,λ, 0) provided we include intermediate transitions in Xn as discussed above,
and for i ∈ S1 there is a unique j ∈ S0 and r ∈ {1, ..., k(i, j)} such that pijr(m,λ, τ) ↑ 1 as τ ↓ 0; j and
r are determined by forcing onset to occur, which again agrees with Xn. Defining S2 = S \ (S0 ∪ S1), for
i ∈ S2 each p(i, j, r) converges to some number a(i, j, r) such that

∑
j∈S,r=1,...,k(i,j) a(i, j, r) = 1 and such

that with respect to a(i, j, r), S0 ∪ S1 is accessible from S2; since for τ = 0, S0 ∪ S1 is invariant, we can de-
fine p(i, j, r)(m,λ, 0) = a(i, j, r) without affecting Xn, so convergence of the p(i, j, r) is proved, & we are done.

5.4 Upper bound on λ+ as τ →∞
We use the same approach as in the case τ → 0, and begin by describing the construction of [6] in somewhat
better detail.

As mentioned in Section 5.2, the idea of [6] is that given p < 1, we can choose rectangles Rm,n and initial
data for the process so that the set of (m,n) ∈ L such that there is an active point in Rm,n dominates the
cluster C(0, 0) in a 1-dependent oriented percolation model with parameter p. The specific event on Rm,n
that allows this is the existence of active paths going from the bottom centre of Rm,n to the top left and
top right, with the property that if, say, Rm,n and Rm−1,n+1 both have these paths, then said paths can be
concatenated to form a longer active path through both rectangles.

13



Our strategy is first to show that the construction of [6] applies to the limit process, so that if λ > λ∞c
then for any p < 1 we can choose Rm,n for the limit process that have the desired active paths, in a 1-
dependent way, with probability ≥ p for each (m,n). Then, by defining a condition for initial data at the
base of Rm,n, and an event on each rectangle Rm,n, that allow us to deal with the possibility of discrepancies
as encountered in the proof of Theorem 2.1 in Section 3, we can show that with nearly the same probability,
for τ large enough the SEIS process has the same active paths, and these paths can be concatenated. First
we address applicability of the construction of [6] to the limit process.

Lemma 5.2. The comparison to oriented percolation given in [6] is valid for the limit process on Z, i.e., if
λ > λ∞c and ε > 0 then suitably rescaled, the limit process dominates oriented site percolation with parameter
p > 1− ε.

Proof. First note that our definition of the critical value is the same as theirs, namely of survival with
positive probability starting from a single infectious site. As mentioned at the end of Section 2 of [6], their
construction is valid for a broader class of models they call “nearest neighbour additive growth models”
that includes the limit process. The key properties required are additivity, described in Section 4 of [2],
and the coupling property described in Lemmas 3.1 and 3.4 of [2], both of which are easily verified to
hold for the limit process. Additivity means that for configurations ζ and ζ ′, defining ζ ∨ ζ ′ for each x
by (ζ ∨ ζ)(x) = max(ζ(x), ζ ′(x)), then with respect to the coupling given by the graphical construction,
if ζ ′′0 = ζ0 ∨ ζ ′0 then ζ ′′t = ζt ∨ ζ ′t for t > 0. The desired coupling property is that, if we let ζ10 (x) ≡ 1,
ζ+0 (x) = 1(x ≥ 0) and ζ00 (x) = 1(x = 0) then for l+t = inf{x : ζ+t (x) 6= 0, l0t = inf{x : ζ0t (x) 6= 0} or
= ∞ if ζ0t (x) = 0 for all x, and r0t = inf{x : ζ0t (x) 6= 0} or = −∞ if that set is empty, it holds that
ζ0t = ζ+t ∩ [l0t , r

0
t ] = ζ1t ∩ [lt, rt] i.e., on the interval [lt, rt], ζ

0
t agrees with ζ+t and with ζ1t , and if r0t > −∞

then l0t = l+t . The coupling property can be checked by examining transitions occurring near the endpoints
l0t , r

0
t .

Next we introduce two slightly different definitions of active path for the SEIS process that will be helpful.
An active path literally implies that all points along that path are active, while a potentially active path
will, under some additional conditions on the state of the process near the base of the path and on the
surrounding substructure, also be active.

Definition 5.1. For the SEIS process ηt, given η0 and τ > 0, a path as defined in Definition 4.2 is active
if for i = 1, ...,m− 1, ηti(xi) = 2, ηti(xi+1) = 1, there is a ↔ label at hi, and for i = 1, ...,m, ηt(xi) 6= 0 for
t ∈ (ti−1, ti).

Definition 5.2. For the SEIS process and a path γ = (v1, h1, ..., vm−1, hm−1, vm) as defined in Definition
4.2 say that γ is potentially active if

1. for i = 1, ...,m− 1, there is a ↔ label at hi,

2. for i = 1, ...,m− 1 there is a ? label at a point (xi, t) ∈ vi = {xi}× (ti−1, ti) called the activating label,
which is such that there are no ? labels in {xi} × (ti−1, t) and no × labels in {xi} × (t, ti), and

3. for any ? label at a point (xm, t) ∈ vm = {xm} × (tm−1, tm) there are no × labels in {xm} × (t, tm).

Next we generalize the condition on the initial configuration given in Theorem 2.1, and the event described
in Lemma 3.1, to a larger class of spacetime sets. Together these are probably the simplest conditions under
which the SEIS process is well behaved.

Definition 5.3. Let R ⊂ S be a set in spacetime which is the closure of an open set, and define the base of
R as

base(R) = {(x, t) ∈ R : (x, t− ε) /∈ R for all small enough ε > 0}

For the rescaled SEIS process, say that R is onset-ordered if the event described in Lemma 3.1 holds on R
i.e. if there is a ? label at (x, t) ∈ R and {x} × (t, t′) ⊂ R for t < t′ then for any ? label at a point (y, s),
s ∈ (t, t′) there is a × label at {x} × s′ for some s′ ∈ (t, s). Say that ηt is good for R if ηt(x) 6= 2 for
(x, t) ∈ base(R).
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The following result allows us to promote a potentially active path to an active path, when the above-
stated conditions hold.

Lemma 5.3. Let R be as in Definition 5.3. If R is onset-ordered and ηt is good for R then

1. for each t ≥ 0, ηt(x) = 2 for at most one x in the set {x ∈ V : (x, t) ∈ R}, and

2. a potentially active path γ with base (y, s) satisfying ηs(y) = 1 is active in the sense of Definition 5.1.

Proof. If ηt(x) = 2 for (x, t) ∈ R then by tracing back in time along the fiber {x} × R+, there is a point
(x, s), s ≤ t such that if s < t then {x} × (s, t) ∈ R and there are no × labels in {x} × (s, t), and such that
either

1. (x, s) ∈ int(R), the interior of R, ηs−ε(x) = 1 for all small enough ε > 0 and there is a ? label at (x, s)
or

2. (x, s) ∈ base(R) and ηs(x) = 2

If ηt is good for R then the second case does not occur. Suppose ηt(x) = ηt(y) = 2 for some x 6= y, and
let sx, sy be the times such that (x, sx) and (y, sy) have the property stated above; we may assume that
sx ≤ sy, and since labels almost surely do not occur simultaneously, that sx < sy. But then there is an
interval {x}× (sx, t) ∈ R and a ? label at a point (y, sy) ∈ R, sx < sy < t, such that there are no × labels in
the interval {x}× (sx, sy), so R is not onset-ordered. The second statement follows from the first statement,
the definition of potentially active path, and the transition rules.

The next result allows us, under fairly mild conditions, to concatenate a collection of potentially active
paths into a longer potentially active path. The words before, after, starts, etc. are with respect to the order
of events in time.

Lemma 5.4. Let R be as in Definition 5.3 and suppose γ1, ..., γk are potentially active paths on R with
respective bases (x1, t1), ..., (xk, tk) satisfying

1. ti < ti+1, i = 1, ..., k − 1 i.e., γi starts before γi+1, and

2. (xi+1, ti+1) does not intersect γi, i = 1, ..., k − 1 i.e., γi+1 does not start somewhere on γi,

and with intersection points (yi, si) ∈ γi ∩ γi+1, i = 1, ..., k − 1, yi ∈ V , satisfying

1. si < si+1, i = 1, ..., k − 2,

2. yi 6= yi+1, i = 1, ..., k − 2, and

3. yk−1 is not on the last vertical segment of γk.

If R is onset-ordered then the path γ obtained by concatenating γ1, ..., γk through the points (yi, si), i =
1, .., k − 1 is a potentially active path.

Proof. For i ∈ 1, .., k−1 let ui, vi be the vertical segments in γi, γi+1 respectively that satisfy (yi, si) ∈ ui∩vi
and let wi be the vertical segment in γ containing (yi, si). For i = 1, ..., k − 1, wi is not the last vertical
segment in γ, wi ⊂ ui ∪ vi and more precisely, wi = {yi} × [minui,max vi] where minui is the lowest point
(in time) on ui and max vi is the highest point on vi; for i = 1, ..., k − 2 this follows from the assumption
yi 6= yi+1 and for i = k − 1 it follows from the assumption yk−1 is not on the last verical segment of γk.
Except for the segments wi, i = 1, ..., k− 1, the segments of γ correspond to segments in the paths γ1, ..., γk,
so it suffices to check for i = 1, .., k−1 that on wi there is an activating label i.e. a ? label with no × labels on
wi after it and no ? labels on wi before it; we consider separately the cases min vi < minui, minui = min vi
and minui < min vi.

If min vi < minui then since the base of γi comes before the base of γi+1 there is a vertical segment ui−1 in
γi that precedes ui. Since neither ui−1 nor vi are the last vertical segments on their respective paths, there is
a ? label on ui−1 with no × labels on ui−1 after it, and a ? label ` on vi with the analogous property. Since R
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is onset-ordered, it follows that there are no ? labels between the time ` occurs and max vi, so ` cannot occur
before minui. Thus ` occurs after minui and lies on wi. It is easy to check that ` is an activating label for wi.

If minui = min vi then wi = vi and wi inherits the activating label from vi. If minui < min vi, then since
γi+1 does not start on γi, there is a vertical segment vi−1 preceding vi. Any ? label on ui has no × labels on
ui after it. From the same argument as in the previous paragraph with vi−1 playing the role of ui−1 and ui
playing the role of vi, it follows that there are no ? labels on ui \ vi, and so wi inherits the activating label
from vi.

After assembling the above ideas, we can prove in a straightforward way the domination of a 1-dependent
oriented percolation process. Once we have shown this is true, the rest of the proof of the upper bound on
λ+ proceeds in the same way as when τ → 0, which we leave to the reader.

Lemma 5.5. For fixed λ > λ∞c and ε > 0, for τ large enough the SEIS process with parameters λ, τ
dominates a 1-dependent oriented percolation process with parameter p ≥ 1− ε.

Proof. First, construct the limit process ζt and apply the construction of [6] to obtain rectangles Rm,n =
(mK,nT )+[−J, J ]× [0, 1.2T ] such that the corresponding events Am,n have P(Am,n) ≥ 1− ε/3. As specified
more precisely in [6], each event Am,n corresponds to the existence of some active paths in Rm,n going from
the base of Rm,n to some locations in the top of Rm,n, such that if Ami,ni

= 1 for each (mi, ni) in a path
(0, 0) = (m1, n1), ..., (mk, nk), then the resulting paths intersect to produce an active path from some point
(y, 0), y ∈ [−J, J ] to a point (x, t) in Rmk,nk

.

Independently, construct the rescaled SEIS process ηt and superimpose onto it the rectangles Rm,n from
the last paragraph. For δ > 0, define the region Pm,n = (mK,NT ) + [−J, J ] × [−δ, 0] that lies just below
Rm,n in spacetime, and say that Pm,n is good for Rm,n if, depending only on the labelling on Pm,n, for all
possible configurations ηnT−δ, ηnT is good for Rm,n. It is easy to check that for τ large enough and δ > 0
small enough, with probability ≥ 1− ε/3, Pm,n is good for Rm,n, due to the resulting plenitude of × labels

and lack of ? labels on Pm,n. Suppose ηt is good for Rm,n, then construct a new copy ζ
(m,n)
t of the limit

process only on Rm,n using the method of Section 3 with initial configuration {ηnT (x) : (x, nT ) ∈ Rm,n},
and note that when Rm,n is onset-ordered, to each active path in ζ

(m,n)
t corresponds a potentially active

path for ηt on Rm,n in the obvious way. Let Qm,n = Rm,n ∪ Pm,n and define new events Bm,n on Qm,n by

Bm,n = {Pm,n is good for Rm,n, Rm,n is onset-ordered and Am,n holds for ζ
(m,n)
t }

If τ is large enough then P(Rm,n is onset-ordered ) ≥ 1− ε/3, and if δ > 0 is small enough then the oriented
percolation model defined by the events A′m,n is 1-dependent, so for τ large enough and δ > 0 small enough,
A′m,n is 1-dependent and P (A′m,n) ≥ 1− ε.

If ηt is good for a finite collection of sets then it is good for the union of those sets. Moreover, if
(m1, n1), ..., (mk, nk) is a lattice path, Rm1,n1 , ..., Rmk,nk

are onset-ordered and Am1,n1 , ..., Amk,nk
holds for

ζ
(m1,n1)
t , ..., ζ

(mk,nk)
t , then it is easy to see from the geometry of the construction in [6] that the poten-

tially active paths for ηt in the rectangles Rm1,n1
, ..., Rmk,nk

corresponding to the relevant active paths

for ζ
(m1,n1)
t , ..., ζ

(mk,nk)
t satisfy the conditions of Lemma 5.4. Thus if Bm1,n1

∩ ... ∩ Bmk,nk
holds for a path

(m1, n1), ..., (mk, nk) then in each of the rectangles Rm1,n1
, ..., Rmk,nk

there is a potentially active path for ηt,
such that the concatenation of those paths is a potentially active path through the union Rm1,n1

∪....∪Rmk,nk

which, since ηt is good for the union, is an active path for ηt, and the desired stochastic domination fol-
lows.

5.5 Lower bound on λ− as τ →∞
An argument given in [8] shows that the coupling property described in the proof of Lemma 5.2 implies that
λ∞c = sup{λ : α > 0}, where α = limt→∞ l+t /t; note that our definition of critical value agrees with the one in
[8], namely as survival with positive probability, started from a single infectious site. With this fact, the proof
given in [17] that λm ↑ λc applies without modification to the limit process. We then proceed in the same way
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as when τ → 0. In this case we shall have S as before, S0 = {η ∈ {0, 1, 2, 3} : η(x) ∈ {0, 1}, x = 1, ...,m+ 1}
and S1 = {η ∈ {0, 1, 2, 3} : η(x) = 2 for some x and η(y) /∈ {2, 3}, y 6= x}, and modify Xn when τ = ∞
to include intermediate transitions through the infectious state and propagation before recovery. Since the
proof is analogous, the details are omitted.
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