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Abstract. Let r and d be positive integers with r < d. Consider a random d-ary tree

constructed as follows. Start with a single vertex, and in each time-step choose a uniformly

random leaf and give it d newly created offspring. Let Tt be the tree produced after t steps.

We show that there exists a fixed δ < 1 depending on d and r such that almost surely for

all large t, every r-ary subtree of Tt has less than tδ vertices.

The proof involves analysis that also yields a related result. Consider the following iterative

construction of a random planar triangulation. Start with a triangle embedded in the plane.

In each step, choose a bounded face uniformly at random, add a vertex inside that face and

join it to the vertices of the face. In this way, one face is destroyed and three new faces

are created. After t steps, we obtain a random triangulated plane graph with t+ 3 vertices,

which is called a random Apollonian network. We prove that there exists a fixed δ < 1, such

that eventually every path in this graph has length less than tδ, which verifies a conjecture

of Cooper and Frieze.
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1 Introduction

In this paper we study two important random graph models. The first one is a so-called

random d-ary recursive tree, defined as follows. Let d > 1 be a positive integer. Consider

a random d-ary tree evolving as follows. At time 0 it consists of exactly one vertex, ̺. In

the first step ̺ gives birth to d offspring. In each subsequent step we pick, uniformly at

random, a vertex with no offspring and connect it with exactly d offspring. At time t this

random tree is denoted by Tt. See Drmota [3] for more on random d-ary recursive trees. Let

r be a fixed positive integer smaller than d and let St denote the size of the largest (possibly

non-unique) r-ary subtree of Tt.

We say that a sequence of events {Ak, k ∈ N} occurs eventually (for large k) if there

exists an almost surely (a.s.) finite random variable N such that Ak occurs for all k ≥ N .

In this paper all logarithms are natural.

Theorem 1.1. There exists a fixed δ < 1 such that St < tδ eventually.

In Section 5.1 we show we can take

δ = 1− d− r

ed2d log (11d log d)

in this theorem.

The second object we study is a popular random graph model for generating planar graphs

with power law properties, which is defined as follows. Start with a triangle embedded in

the plane. At each step, choose a bounded face uniformly at random, add a vertex inside

that face and join it to the vertices on the face. In this way, one face is destroyed and three

new faces are created. We call this operation subdividing the face. After t steps, we have a

(random) triangulated plane graph RANt with t+3 vertices, 3t+3 edges, 2t+1 bounded faces,

and 1 unbounded face. The random graph RANt is called a random Apollonian network.

Random Apollonian networks were defined by Zhou, Yan, and Wang [12] (see Zhang,

Comellas, Fertin, and Rong [11] for a generalization to higher dimensions), where it was

proved that the diameter of RANt is probabilistically bounded above by a constant times

log t. It was shown in [12, 9] that RANt exhibits a power law degree distribution for large t.

The average distance between two vertices in a typical RANt was shown to be Θ(log t) by

Albenque and Marckert [1], and a central limit theorem was proved by Kolossváry, Komjáty,

and Vágó [6]. The degree distribution, k largest degrees, k largest eigenvalues (for fixed

k), and diameter were studied by Frieze and Tsourakakis [5]. The asymptotic value of the

diameter of a typical RANt was determined in [4]. We continue this line of research by

studying the asymptotic properties of the longest (simple) paths in RANt.

Let Lt be a random variable denoting the number of vertices in a longest path in RANt.

All the limits in this paragraph are as t → ∞. Frieze and Tsourakakis [5] conjectured

there exists a fixed δ > 0 such that P (δt ≤ Lt < t) → 1. Ebrahimzadeh, Farczadi, Gao,

Mehrabian, Sato, Wormald, and Zung [4] refuted this conjecture and showed there exists a
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fixed δ > 0 such that P
(

Lt < t/(log t)δ
)

→ 1. Cooper and Frieze [2] improved this result

by showing that for every constant c < 2/3, we have P (Lt ≤ t exp(− logc t)) → 1, and

conjectured there exists a fixed δ < 1 such that P
(

Lt ≤ tδ
)

→ 1. The second main result of

this paper is the following, which in particular confirms this conjecture.

Theorem 1.2. There exists a fixed δ < 1 such that Lt < tδ eventually.

We can take δ = 1− 4× 10−8, as shown in Section 5.2.

Regarding lower bounds, it was proved in [4] that Lt > (2t + 1)log 2/ log 3 deterministically,

and that E [Lt] = Ω (t0.88).

We prove the two main theorems by studying a third object, an infinite tree with weighted

vertices, which is introduced in Section 2. Then we prove Theorems 1.1 and 1.2 in Sections 3

and 4, respectively. Note that both of these theorems are existential. In Section 5 we give

explicit bounds for the values of δ in these theorems.

2 Subtrees of an infinite d-ary tree

Fix positive integers r, d with r < d. Let T be an infinite rooted d-ary tree. Denote the

root by ̺. We denote by [ν, µ] the vertices in the path connecting ν to µ, including these

two vertices. For a vertex ν, denote its distance from ̺ by |ν|, and its offspring by νi, with

i ∈ {1, 2, . . . , d}. For ν 6= ̺, denote by ν− the parent of ν, i.e. the neighbour µ of ν with

|µ| = |ν| − 1.

To each vertex ν assign a random variable Xν ∈ (0, 1], satisfying the following properties.

We have X̺ = 1. The random variables Xν , for ν ∈ V (T ) \ {̺}, are identically distributed.

Moreover we assume that the vectors (Xν1, Xν2, . . . , Xνd) are identically distributed and

independent, and that
∑d

i=1Xνi = 1. For any vertex ν, define the random variable

Υν = min{Xνi1 +Xνi2 + . . .+Xνid−r
: 1 ≤ i1 < i2 < . . . < id−r ≤ d} , (2.1)

and let Υ = Υν for an arbitrary ν.

For each vertex ν ∈ V (T ), define

Mass(ν) =
∏

σ∈[̺,ν]

Xσ,

and for any set of vertices A ⊂ V (T ), let Mass(A) =
∑

ν∈A Mass(ν).

Given non-negative integer n, consider level n of T , i.e. the set of vertices at distance n

from ̺. Denote by Gn,r the collection of subsets of at most rn vertices at level n, with the

additional property that they belong to the same r-ary subtree.
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The main result of this section is the following.

Lemma 2.1. Let λ, κ be positive constants satisfying

d κλ E
[

(1−Υ)λ
]

< 1 . (2.2)

Then eventually for large n,

max
C∈Gn,r

Mass(C) ≤ κ−n.

For a given positive integer n and a positive number κ, define the event

Cn,κ =
⋂

ν : |ν|=n







∏

σ∈[̺,ν−]

(

1−Υσ

)−1 ≥ κn







,

and define the random variable

N1 = N1(κ) = min{n : Cj,κ holds for all j ≥ n}. (2.3)

We set N1 = ∞ if the set on the right-hand side is empty.

Lemma 2.2. If λ, κ > 0 satisfy (2.2), then N1(κ) is a.s. finite.

Proof. By the first Borel-Cantelli lemma, it is enough to show that

∞
∑

n=1

dnP





∏

σ∈[̺,ν−]

(

1−Υσ

)−1
< κn



 < ∞ , (2.4)

where ν = ν(n) denotes an arbitrary vertex with |ν| = n. Since the Υσ are independent and

λ > 0, the above probability is by Markov’s inequality

P





∏

σ∈[̺,ν−]

(

1−Υσ

)λ
> κ−λn



 ≤ E





∏

σ∈[̺,ν−]

(

1−Υσ

)λ



κλn

=
(

E
[

(

1−Υ
)λ
]

κλ
)n

.

The inequality (2.4) now follows from (2.2). �

For each vertex ν, we define its adjusted mass, denoted by AM(ν), as follows. For the

root, AM(̺) = 1, and for all other vertices ν,

AM(ν) =
∏

σ∈[̺,ν−]

Xσ

(

1

1−Υσ

)

.

For any A ⊂ V (T ), let AM(A) =
∑

ν∈A AM(ν).
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Lemma 2.3. For every positive integer n and every C ∈ Gn,r we have AM(C) ≤ 1.

Proof. Let C ∈ Gn,r. Define Treer(C) to be the r-ary subtree of T whose leaves are the

vertices of C. For each vertex ν of Treer(C), denote its set of offspring in Treer(C) by νoff .

Then by the definition of Υ in (2.1),

Mass(νoff) ≤ (1−Υν)Mass(ν).

Thus AM(νoff) ≤ AM(ν). Hence, for any 1 ≤ k ≤ n, we have
∑

µ∈Treer(C)
|µ|=k

AM(µ) ≤
∑

ν∈Treer(C)
|ν|=k−1

AM(ν).

Iterating this, we get

AM(C) =
∑

ν∈C

AM(ν) ≤ AM(̺) = 1. �

Proof of Lemma 2.1. Recall the definition of N1 from (2.3). Lemma 2.2 implies that N1 is

a.s. finite. If n ≥ N1, then for any C ∈ Gn,r we have

Mass(C) ≤ κ−nAM(C) ≤ κ−n,

where the last inequality is a consequence of Lemma 2.3. �

3 Largest r-ary subtrees of random d-ary trees

As the Beta and Dirichlet distributions play an important role in this paper, we recall their

definitions.

Definition (Beta and Dirichlet distributions). Let Γ(t) =
∫∞

0
xt−1e−xdx. For positive num-

bers α, β, a random variable is said to be distributed as Beta(α, β) if it has density

Γ(α + β)

Γ(α)Γ(β)
xα−1 (1− x)β−1 for x ∈ (0, 1) .

The multivariate generalization of the Beta distribution is called the Dirichlet distribution.

Let α1, α2, . . . , αn be positive numbers. The Dirichlet(α1, α2, . . . αn) distribution has support

on the set
{

(x1, x2, . . . , xn) : xi ≥ 0 for 1 ≤ i ≤ n, and
n
∑

i=1

xi = 1
}

,

and its density at point (x1, x2, . . . , xn) equals

Γ
(

∑n
i=1 αi

)

∏n
i=1 Γ(αi)

n
∏

j=1

x
αj−1
j .

Note that if the vector (X1, X2, . . . , Xn) is distributed as Dirichlet(α1, α2, . . . , αn), then the

marginal distribution of Xi is Beta(αi,
∑

j 6=i αj).

5



Let r and d be fixed positive integers with r < d. Let (B1, B2, . . . , Bd) be a random vector

distributed as Dirichlet(1/(d− 1), 1/(d− 1), . . . , 1/(d− 1)), and define the random variable

Υ as

Υ = min{Bi1 +Bi2 . . .+Bid−r
: 1 ≤ i1 < i2 < . . . < id−r ≤ d} . (3.1)

The main theorem of this section is the following.

Theorem 3.1. Let r and d be fixed positive integers with r < d, and let St denote the size

of the largest r-ary subtree of a random d-ary recursive tree at time t. Let τ, κ, λ be positive

constants satisfying

e d log τ < (d− 1)τ 1/(d−1) , (3.2)

d κλ E
[

(1−Υ)λ
]

< 1 , (3.3)

and let n = ⌊log t/ log τ⌋. There exists a constant K such that eventually (for large t)

St ≤ K
(

rn + tκ−n
)

.

Before proving this theorem, we show it implies Theorem 1.1.

Proof of Theorem 1.1. We show there exist positive constants τ, κ, λ satisfying (3.2), (3.3),

and κ > 1; then we would have τ > ed−1 > r, and the theorem follows from Theorem 3.1 by

choosing any δ ∈
(

max{1− log κ/ log τ, log r/ log τ}, 1
)

. As (3.2) holds for all large enough

τ , it suffices to show there exist κ > 1 and λ > 0 satisfying (3.3). Since limε→0 P (Υ < ε) =

0, we have E
[

(1−Υ)λ
]

→ 0 as λ → ∞. In particular, there exists λ > 0 such that

E
[

(1−Υ)λ
]

< 1/d. Then, we can let

κ =
(

dE
[

(1−Υ)λ
])−1/(2λ)

,

which is strictly larger than 1. �

In the rest of this section, T denotes an infinite d-tree rooted at ̺. We view the random

recursive d-ary tree Tt as a subtree of T . At each time step, we assign a weight to each

vertex. For each t and each vertex ν of Tt, define ℵ(ν, t) to be the number of vertices µ of

Tt such that ν ∈ [̺, µ]. This is the number of vertices in the “branch” of Tt containing ν,

including ν. Set

Weight(ν, t) =
ℵ(ν, t)− 1

d
if ν ∈ V (Tt), and Weight(ν, t) = 0 if ν /∈ V (Tt). Note that this is the number of non-leaf

vertices in this branch at time t.

Lemma 3.2. There exist random variables {Bν}ν∈V (T ), with B̺ = 1, such that for

any positive integer t and any ν ∈ V (T ), Weight(ν, t) is stochastically dominated by a

Binomial
(

t,
∏

σ∈[̺,ν]Bσ

)

random variable. Moreover, the vectors (Bν1, Bν2, . . . , Bνd) are in-

dependent for ν ∈ V (T ), and are distributed as Dirichlet(1/(d−1), 1/(d−1), . . . , 1/(d−1)).
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Proof. Consider a vertex ν 6= ̺ and a positive integer t such that ν ∈ V (Tt). Note that at

time t, the number of leaves in the branch at v is (d− 1)Weight(ν, t) + 1. Hence, given that

at time t + 1 the weight of ν− increases, the probability, conditional on the past, that the

weight of ν increases at the same time, is equal to

(d− 1)Weight(ν, t) + 1

(d− 1)Weight(ν−, t) + 1
.

Each time a weight increases, its increment is exactly 1. By identifying ν with one colour

and its siblings with another colour, the evolution of the numerator of the above expression

over time can be modelled using an Eggenberger-Pólya urn, with initial conditions (1, d− 1)

and reinforcement equal to d− 1. Moreover, the urns corresponding to distinct vertices are

mutually independent.

The limiting distribution describing the Eggenberger-Pólya urn is well known, but we

require bounds applying for all t. To this end, we can express the number of times a

given colour is chosen by time t in an Eggenberger-Pólya urn as a mixture of binomials

with respect to a Beta distribution. See, for example, Pemantle [10, Lemma 1]. In this

case, given the initial conditions (1, d − 1) and reinforcement d − 1, the mixture is with

respect to Beta(1/(d − 1), 1). This means that to each vertex ν we can assign a random

variable Bν distributed as Beta(1/(d − 1), 1), such that Weight(ν, t) conditional on Bν is

binomially distributed with parameters Weight(ν−, t)− 1 and Bν . Set B̺ = 1 and note that

Weight(̺, t) = t. By induction, Weight(ν, t), conditional on {Bσ}σ∈[̺,ν], is stochastically

smaller than a Binomial
(

t,
∏

σ∈[̺,ν] Bσ

)

.

By the Eggenberger-Pólya urn representation we also infer that the joint distribution

of (Bν1, Bν2, . . . , Bνd) is Dirichlet(1/(d − 1), 1/(d − 1), . . . , 1/(d − 1)) for all ν. See, for

example, [10, Lemma 1]. �

Lemma 3.3. Let B1, . . . , Bn be independent Beta(1/(d − 1), 1) random variables. For all

positive β we have

P

(

n
∏

i=1

Bi ≤ βn

)

≤
(

e log(1/β)β1/(d−1)

d− 1

)n

.

Proof. If β ≥ e1−d then the right-hand side is at least 1, so we may assume that 0 < β < e1−d.

We use Chernoff’s technique. Let λ ∈ (−1/(d− 1), 0) be a parameter which will be specified

later. We have

E[Bλ
1 ] =

Γ(d/(d− 1))

Γ(1/(d− 1))Γ(1)

∫ 1

0

xλx−1+1/(d−1)dx =
1

(d− 1)λ+ 1
.

Hence by Markov’s inequality and since the Bi are independent,

P

(

n
∏

i=1

Bi ≤ βn

)

= P

(

n
∏

i=1

Bλ
i ≥ βλn

)

≤
n
∏

i=1

E
[

Bλ
1

]

βλ
=

(

1

βλ((d− 1)λ+ 1)

)n

.
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To minimize the right-hand side we choose λ = −1/(d−1)−1/ log β, which is in the correct

range since 0 < β < e1−d. This gives

P

(

n
∏

i=1

Bi ≤ βn

)

≤
(

e log(1/β)β1/(d−1)

d− 1

)n

. �

We now prove Theorem 3.1.

Proof of Theorem 3.1. Let {Bν}ν∈V (T ) be as given by Lemma 3.2. Denote by Gn,r the col-

lection of subsets of the vertices of T at level n, with the property that they belong to the

same r-ary subtree. We apply Lemma 2.1 with Mass defined using Xσ = Bσ. Since (3.3)

holds, we conclude that eventually for large n,

max
C∈Gn,r

Mass(C) ≤ κ−n. (3.4)

By Lemma 3.2, Weight(ν, t) is stochastically dominated by a Binomial(t,Mass(ν)). Cher-

noff’s bound for binomials implies (see, e.g., [8, Theorem 2.3(b)])

P (Weight(ν, t) ≥ 2tMass(ν) |Mass(ν) ≥ q) ≤ exp(−tq) ,

for every positive q.

Since τ satisfies (3.2), there exists τ1 < τ satisfying

ed log τ1 < (d− 1)τ
1/(d−1)
1 . (3.5)

Let β = 1/τ1. By Lemma 3.3, for any vertex ν at level n

P(Mass(ν) < βn) ≤
(

e log(1/β)β1/(d−1)

d− 1

)n

.

Note that (3.5) implies that the term in brackets is a constant smaller than 1/d.

We have

P

(

⋃

µ : |µ|=n

{

Weight(µ, t) ≥ 2tMass(µ)
}

)

≤ dnP
(

Weight(ν, t) ≥ 2tMass(ν))

≤ dnP(Mass(ν) < βn) + dn exp (−tβn) .

The last expression is summable in n, as t1/nβ ≥ τβ, and τβ is a constant larger than 1. By

the first Borel-Cantelli lemma and (3.4), there exists a constant K such that eventually for

large t we have St ≤ K (rn + tκ−n). �
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4 Longest paths in random Apollonian networks

We define a tree Tt, called the △-tree of RANt, as follows. There is a one to one correspon-

dence between the triangles in RANt and the vertices of Tt. For every triangle △ in RANt,

we denote its corresponding vertex in Tt by v△. To build Tt, start with a single root vertex ̺,

which corresponds to the initial triangle of RANt. Wherever a triangle △ is subdivided into

triangles △1, △2, and △3, generate three offspring v△1, v△2, and v△3 for v△, and extend

the correspondence in the natural manner. Note that Tt is a random 3-ary recursive tree as

defined in the introduction and Tt has 3t + 1 vertices and 2t + 1 leaves. The leaves of Tt

correspond to the bounded faces of RANt. Let T denote an infinite 3-ary tree rooted at ̺.

We view Tt as a subtree of T . For each vertex ν ∈ V (T ), the grand-offspring of ν are its

descendants at level |ν| + 2. For a triangle △ in RANt, I(△) denotes the set of vertices of

RANt that are strictly inside △.

The following lemma was proved in [4, Lemma 3.1], and introduces the connection with

the setup in Section 3.

Lemma 4.1. Let Tt be the △-tree of RANt. Let v△ be a vertex of Tt with nine grand-

offspring v△1,v△2, . . . ,v△9 in V (Tt). Then the vertex set of a path in RANt intersects at

most eight of the I(△i)’s.

We say that a finite subtree J of T is buono if each vertex of J has at most eight

grand-offspring in J .

Assume the four vectors (A1, A2, A3), (B1, B2, B3), (B4, B5, B6) and (B7, B8, B9) are i.i.d

random vectors distributed as Dirichlet(1/2, 1/2, 1/2). Define the random variable

Υ = min{AiBj : 1 ≤ i ≤ 3, 1 ≤ j ≤ 9} . (4.1)

The main theorem of this section is the following.

Theorem 4.2. Let τ, κ, λ be positive constants satisfying

3e log τ < 2
√
τ , (4.2)

9 κλ E
[

(1−Υ)λ
]

< 1 , (4.3)

and let n be the largest even integer smaller than log t/ log τ . Then, there exists a constant K,

such that eventually for large t, the largest buono subtree of Tt has at most K
(

8n/2 + tκ−n/2
)

vertices.

We show how this theorem implies Theorem 1.2.

Proof of Theorem 1.2. Following the proof of Theorem 1.1, we can find positive constants

τ, κ, λ satisfying the conditions of Theorem 4.2, with κ > 1 and τ > 8. Choose any δ ∈
(max{1− log(κ)/(2 log τ), log(8)/2 log τ}, 1).

9



Let P be a path in RANt and let R(P ) denote the set of vertices v△ of Tt such that I(△)

contains some vertex of P . By Lemma 4.1, R(P ) induces a buono subtree of Tt. Hence,

using Theorem 4.2 for the second inequality, eventually for large t we have

|V (P )| ≤ 3 + |R(P )| ≤ 3 +K
(

8n/2 + tκ−n/2
)

< tδ ,

as required. �

The rest of this section is devoted to the proof of Theorem 4.2. For each time t and vertex

ν of Tt, let ℵ(ν, t) denote the number of vertices µ of Tt such that ν ∈ [̺, µ]. Let

Weight(ν, t) =
ℵ(ν, t)− 1

3

if ν ∈ V (Tt), and Weight(ν, t) = 0 if ν /∈ V (Tt).

By Lemma 3.2, there exist random variables {Bν}ν∈V (T ), such that for any positive integer

t and any ν ∈ V (T ), Weight(ν, t) is stochastically dominated by a Binomial
(

t,
∏

σ∈[̺,ν]Bσ

)

.

Moreover, B̺ = 1 and for all ν ∈ V (T ), the joint vectors (Bν1, Bν2, Bν3) are independent

and distributed as Dirichlet (1/2, 1/2, 1/2). Define Mass(ν) =
∏

σ∈[̺,ν]Bσ.

Denote by Bn the collection of subsets of V (T ) at level n, with the property that they

belong to the same buono subtree. Note that each element of B2n has at most 8n vertices.

Lemma 4.3. Let λ, κ be positive constants satisfying (4.3). Eventually, for large n,

max
C∈B2n

Mass(C) ≤ κ−n.

Proof. Let T ′ be an infinite rooted 9-ary tree obtained from T as follows. The vertices

of T ′ are the vertices of T at even levels. A vertex µ is an offspring of ν in T ′ if µ is

a grand-offspring of ν in T . To each vertex µ assign the random variable Xµ = BµBµ− .

Buono subtrees of T are translated into 8-ary subtrees of T ′. Using Lemma 2.1 concludes

the proof. �

We now prove Theorem 4.2. The proof is similar to that of Theorem 3.1.

Proof of Theorem 4.2. Recall that Weight(ν, t) is stochastically dominated by a Binomial

(t,Mass(ν)). Chernoff bound for binomials implies (see, e.g., [8, Theorem 2.3(b)])

P (Weight(ν, t) ≥ 2tMass(ν) |Mass(ν) ≥ q) ≤ exp(−tq)

for every positive q.

Since τ satisfies (4.2), there exists τ1 < τ satisfying

3e log τ1 < 2
√
τ1 . (4.4)

10



Let β = 1/τ1. By Lemma 3.3, for any vertex ν at level n we have

P(Mass(ν) < βn) ≤
(

e log(1/β)
√
β

2

)n

.

Note that (4.4) implies that the term in brackets is a constant smaller than 1/3.

We have

P

(

⋃

µ : |µ|=n

{

Weight(µ, t) ≥ 2tMass(µ)
}

)

≤ 3nP
(

Weight(ν, t) ≥ 2tMass(ν))

≤ 3nP(Mass(ν) < βn) + 3n exp (−tβn) .

The last expression is summable in n, as t1/nβ ≥ τβ, and τβ is a constant larger than 1. By

the first Borel-Cantelli lemma and Lemma 4.3, there exists a constant K such that eventually

for large t, the largest buono subtree of Tt has at most K
(

8n/2 + tκ−n/2
)

vertices. �

5 Appendix: Explicit bounds

5.1 Explicit bound for Theorem 1.1

In this section we prove an explicit version of Theorem 1.1. For the proof we will need the

following inequalities (see, e.g., Laforgia [7, Equations (2.2) and (2.3)]), valid for all p, q > 0

and 0 < σ < 1 < ι < 2:

(p+ ι/2)ι−1 <
Γ(p+ ι)

Γ(p+ 1)
, and

Γ(q + σ)

Γ(q + 1)
< (q + σ/2)σ−1 . (5.1)

Theorem 5.1. Let r and d be fixed positive integers with r < d, and let St denote the size

of the largest r-ary subtree of a random d-ary recursive tree at time t. Let

δ = 1− d− r

ed2d log (11d log d)
.

Then eventually St < tδ.

Proof. In view of the proof of Theorem 1.1, it suffices to show there exist positive constants

τ, κ, λ satisfying the following inequalities:

e d log τ < (d− 1)τ 1/(d−1) , (5.2)

d κλ E
[

(1−Υ)λ
]

< 1 , (5.3)

log r/ log τ < 1− log κ/ log τ < δ , (5.4)

where Υ is defined in (3.1).
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Set

λ = ed2d−2/(d− r), and κ = exp

(

1

λ(d− 1)

)

.

Let B be a Beta(1/(d− 1), 1) random variable.

We have

P (Υ ≤ ε) ≤ dP

(

B ≤ ε

d− r

)

= d

(

ε

d− r

)1/(d−1)

.

Therefore,

E
[

(1−Υ)λ
]

=

∫ 1

0

P

(

(1−Υ)λ ≥ x
)

dx

=

∫ 1

0

P
(

Υ ≤ 1− x1/λ
)

dx

≤
∫ 1

0

d

(

1− x1/λ

d− r

)1/(d−1)

dx .

Using the change of variables y = x1/λ, we find
∫ 1

0

(

1− x1/λ
)1/(d−1)

dx =
Γ(d/(d− 1))Γ(λ+ 1)

Γ(λ+ d/(d− 1))
< λ−1/(d−1) ,

where we have used the inequalities in (5.1) with p = λ, ι = d/(d−1), q = 1, and σ = 1/(d−1).

Thus,

d κλ E
[

(1−Υ(r))λ
]

<
d2κλ

(λ(d− r))1/(d−1)
= 1 ,

so (5.3) holds.

Let τ0 = (11d log d)d−1 and notice that e d log τ0 < (d− 1)τ
1/(d−1)
0 since d ≥ 2. Moreover,

log κ

log τ0
=

d− r

(d− 1)2e log (11d log d) d2(d−1)
>

d− r

ed2d log (11d log d)
.

Choose τ larger than τ0 such that

log κ

log τ
>

d− r

ed2d log (11d log d)
.

We also have log r + log κ < log τ . Thus (5.2) and (5.4) hold as well, and the proof is

complete. �

5.2 Explicit bound for Theorem 1.2

In this section we provide an explicit value for δ in Theorem 1.2. For λ > 1, define

g(λ) =
9λ

2(λ− 1)3/2

(√
π +

√
π log (λ− 1) /2 + 4/9

)

.
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Lemma 5.2. Let Υ be defined as (4.1), and let λ > 1. Then E
[

(1−Υ)λ
]

< g(λ).

Proof. Let B1 and B2 be independent Beta(1/2, 1) random variables. The density function

of each of B1 and B2 is 1/(2
√
x) if x ∈ (0, 1) and 0 elsewhere, hence we have

P (B1B2 ≤ ε) =

∫ 1

0

(

∫ min{1,ε/x}

0

1

2
√
y
dy

)

1

2
√
x
dx =

√
ε(1 + log(1/ε)/2) .

Thus

E
[

(1−Υ)λ
]

=

∫ 1

0

P

(

(1−Υ)λ ≥ x
)

dx

=

∫ 1

0

P
(

Υ ≤ 1− x1/λ
)

dx

≤ 9

∫ 1

0

P
(

B1B2 ≤ 1− x1/λ
)

dx

=
9

2

∫ 1

0

√

1− x1/λ log

(

e2

1− x1/λ

)

dx .

With y = (λ− 1)(1− x1/λ), we find

E
[

(1−Υ)λ
]

≤ 9λ

2(λ− 1)3/2

∫ λ−1

0

√
y log

(

e2(λ− 1)

y

)(

1− y

λ− 1

)λ−1

dy

<
9λ

2(λ− 1)3/2

∫ λ−1

0

√
y log

(

e2(λ− 1)

y

)

e−ydy .

We have
∫ ∞

0

√
y log

(

e2(λ− 1)
)

e−ydy = log
(

e2(λ− 1)
)√

π/2 ,

and
∫ λ−1

0

√
y log (1/y) e−ydy ≤

∫ 1

0

√
y log (1/y) e−ydy ≤

∫ 1

0

√
y log (1/y)dy = 4/9 ,

concluding the proof. �

Set λ = 106, κ = (9g(λ))−1/λ, τ = 720, and δ = 1 − 4 × 10−8. It is easily verified that

3e log τ < 2
√
τ and δ > max{1−log(κ)/2 log τ, log(8)/2 log τ}. Moreover, Lemma 5.2 implies

that 9 κλ E
[

(1−Υ)λ
]

< 1. As in the proof of Theorem 1.2, we get that Lt < tδ eventually.
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[6] I. Kolossváry, J. Komjáty, and L. Vágó. Degrees and distances in random and evolving

Apollonian networks. arXiv, arXiv:1310.3864v1 [math.PR], 2013.

[7] A. Laforgia. Further inequalities for the gamma function. Mathematics of Computation,

42(166):597–600, 1984.

[8] C. McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete math-

ematics, volume 16 of Algorithms Combin., pages 195–248. Springer, Berlin, 1998.

[9] M. Mungan. Comment on “apollonian networks: Simultaneously scale-free, small world,

euclidean, space filling, and with matching graphs”. Phys. Rev. Lett., 106:029802, Jan

2011.

[10] R. Pemantle. Phase transitions for reinforced random walk and RWRE on trees. Annals

of Probability, 16(3):1229–1241, 1988.

[11] Z. Zhang, F. Comellas, G. Fertin, and L. Rong. High-dimensional Apollonian networks.

J. Phys. A, 39(8):1811–1818, 2006.

[12] T. Zhou, G. Yan, and B.-H. Wang. Maximal planar networks with large clustering

coefficient and power-law degree distribution. Phys. Rev. E, 71:046141, Apr 2005.

14


