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Computable bounds of ℓ2-spectral gap for discrete Markov

chains with band transition matrices

Loïc HERVÉ, and James LEDOUX ∗

Abstract

We analyse the ℓ2(π)-convergence rate of irreducible and aperiodic Markov chains
with N -band transition probability matrix P and with invariant distribution π. This
analysis is heavily based on: first the study of the essential spectral radius ress(P|ℓ2(π)) of
P|ℓ2(π) derived from Hennion’s quasi-compactness criteria; second the connection between
the Spectral Gap property (SG2) of P on ℓ2(π) and the V -geometric ergodicity of P .
Specifically, (SG2) is shown to hold under the condition

α0 :=

N
∑

m=−N

lim sup
i→+∞

√

P (i, i+m)P ∗(i+m, i) < 1.

Moreover ress(P|ℓ2(π)) ≤ α0. Effective bounds on the convergence rate can be provided
from a truncation procedure.

AMS subject classification : 60J10; 47B07

Keywords : V -geometric ergodicity, Essential spectral radius.

1 Introduction

Let P := (P (i, j))(i,j)∈N2 be a Markov kernel on the countable state space N. Throughout the
paper we assume that P is irreducible and aperiodic, that P has a unique invariant probability
measure denoted by π := (π(i))i∈N, and finally that

∃i0 ∈ N, ∃N ∈ N
∗, ∀i ≥ i0 : |i− j| > N =⇒ P (i, j) = 0. (AS1)

We denote by (ℓ2(π), ‖ · ‖2) the Hilbert space of sequences (f(i))i∈N ∈ C
N such that ‖f‖2 :=

[
∑

i≥0 |f(i)|2 π(i) ]1/2 < ∞. Then P defines a linear contraction on ℓ2(π), and its adjoint

operator P ∗ on ℓ2(π) is defined by P ∗(i, j) := π(j)P (j, i)/π(i). If π(f) :=
∑

i≥0 f(i)π(i),

then the kernel P is said to have the spectral gap property on ℓ2(π) if there exists ρ ∈ (0, 1)
and C ∈ (0,+∞) such that

∀n ≥ 1,∀f ∈ ℓ2(π), ‖Pnf −Πf‖2 ≤ C ρn ‖f‖2 with Πf := π(f)1N. (SG2)
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A standard issue is to compute the value (or to find an upper bound) of

̺2 := inf{ρ ∈ (0, 1) : (SG2) holds true}. (1)

In this work the quasi-compactness criteria of [Hen93] is used to study (SG2) and to estimate
̺2. In Section 2 it is proved that (SG2) holds when

α0 :=
N
∑

m=−N

lim sup
i→+∞

√

P (i, i+m)P ∗(i+m, i) < 1. (AS2)

Moreover ress(P|ℓ2(π)) ≤ α0. We refer to [Hen93] for the definition of the essential spectral
radius ress(T ) and for quasi-compactness of a bounded linear operator T on a Banach space.
Under the assumptions

∀m = −N, . . . ,N, P (i, i +m) −−−−−→
i→+∞

am ∈ [0, 1] (AS3)

π(i+ 1)

π(i)
−−−−−→
i→+∞

τ ∈ [0, 1) (AS4)

N
∑

k=−N

k ak < 0, (NERI)

Property (AS2) holds (hence (SG2)) and α0 can be explicitly computed in function of τ and
the am’s. Moreover, using the inequality ress(P|ℓ2(π)) ≤ α0, Property (SG2) is proved to be

connected to the V -geometric ergodicity of P for V := (π(n)−1/2)n∈N. In particular, denoting
the minimal V -geometrical ergodic rate by ̺V , it is proved that, either ̺2 and ̺V are both less
than α0, or ̺2 = ̺V . As a result, an accurate bound of ̺2 can be obtained for random walks
(RW) with i.d. bounded increments using the results of [HL14b]. Actually, any estimation of
̺V , for instance that derived in Section 3 from the truncation procedure of [HL14a], provides
an estimation of ̺2. We point out that all the previous results hold without any reversibility
properties.

The spectral gap property for Markov processes has been widely investigated in the discrete
and continuous-time cases (e.g. see [Ros71, Che04]). There exist different definitions of the
spectral gap property according that we are concerned with discrete or continuous-time case
(e.g. see [Yue00, MS13]). The focus of our paper is on the discrete time case. In the
reversible case, the equivalence between the geometrical ergodicity and (SG2) is proved in
[RR97] and Inequality ̺2 ≤ ̺V is obtained in [Bax05, Th.6.1.]. This equivalence fails in the
non-reversible case (see [KM12]). The link between ̺2 and ̺V stated in our Proposition 1 is
obtained with no reversibility condition. Formulae for ̺2 are provided in [SW11, Wüb12] in
terms of isoperimetric constants which are related to P in reversible case and to P and P ∗

in non-reversible case. However, to the best of our knowledge, no explicit value (or upper
bounds) of ̺2 can be derived from these formulae for discrete Markov chains with band
transition matrices. Our explicit bound ress(P|ℓ2(π)) ≤ α0 in Theorem 1 is the preliminary
key results in this work. Recall that ress(P|ℓ2(π)) is a natural lower bound of ̺2 (apply [HL14b,
Prop. 2.1] with the Banach space ℓ2(π)). The essential spectral radius of Markov operators
on a L

2-type space is investigated for Markov chains with general state space in [Wu04], but
no explicit bound for ress(P|ℓ2(π)) can be derived a priori from these theoretical results for
Markov chains with band transition matrices, except in the reversible case [Wu04, Th. 5.5.].
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2 Property (SG2) and V -geometrical ergodicity

Theorem 1 If Condition (AS2) holds, then P satisfies (SG2). Moreover ress(P|ℓ2(π)) ≤ α0.

Proof. Consider the Banach space ℓ1(π) := {(f(i))i∈N ∈ C
N: ‖f‖1 :=

∑

i≥0 |f(i)|π(i) < ∞}.

Lemma 1 For any α > α0, there exists a positive constant L ≡ L(α) such that

∀f ∈ ℓ2(π), ‖Pf‖2 ≤ α ‖f‖2 + L‖f‖1.

Since the identity map is compact from ℓ2(π) into ℓ1(π) (from the Cantor diagonal proce-
dure), it follows from Lemma 1 and from [Hen93] that P is quasi-compact on ℓ2(π) with
ress(P|ℓ2(π)) ≤ α. Since α can be chosen arbitrarily close to α0, this gives ress(P|ℓ2(π)) ≤ α0.
Then (SG2) is deduced from aperiodicity and irreducibility assumptions. �

Proof. Under Assumption (AS1), define

∀i ≥ i0, ∀m = −N, . . . ,N, βm(i) :=
√

P (i, i +m)P ∗(i+m, i). (2)

Let α > α0, with α0 given in (AS2). Fix ℓ ≡ ℓ(α) ≥ i0 such that
∑N

m=−N supi≥ℓ βm(i) ≤ α.
For f ∈ ℓ2(π) we have from Minkowski’s inequality and the band structure of P for i ≥ ℓ

‖Pf‖2 ≤
[

∑

i<ℓ

∣

∣(Pf)(i)
∣

∣

2
π(i)

]1/2

+

[

∑

i≥ℓ

∣

∣

∣

∣

N
∑

m=−N

P (i, i +m) f(i+m)

∣

∣

∣

∣

2

π(i)

]1/2

≤ L
∑

i<ℓ

|(Pf)(i)|π(i) +

[

∑

i≥ℓ

∣

∣

∣

∣

N
∑

m=−N

P (i, i+m) f(i+m)

∣

∣

∣

∣

2

π(i)

]1/2

(3)

where L ≡ Lℓ > 0 comes from equivalence of norms on C
ℓ. Moreover we have

∑

i<ℓ |(Pf)(i)|π(i) ≤
‖Pf‖1 ≤ ‖f‖1. To control the second term in (3), define Fm = (Fm(i))i∈N ∈ ℓ2(π) by
Fm(i) := P (i, i+m) f(i+m)(1 − 1{0,...,ℓ−1}(i)) for −N ≤ m ≤ N . Then

[

∑

i≥ℓ

∣

∣

∣

∣

N
∑

m=−N

P (i, i+m) f(i+m)

∣

∣

∣

∣

2

π(i)

]1/2

=
∥

∥

N
∑

m=−N

Fm

∥

∥

2
≤

N
∑

m=−N

‖Fm‖2.

and ‖Fm‖22 =
∑

i≥ℓ

P (i, i+m)2 |f(i+m)|2π(i)

=
∑

i≥ℓ

P (i, i+m)
π(i)P (i, i +m)

π(i+m)
|f(i+m)|2π(i+m)

≤ sup
i≥ℓ

βm(i)2 ‖f‖22 (from the definition of P ∗ and from (2)).

The statement in Lemma 1 can be deduced from the previous inequality and from (3). �
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The core of our approach to estimate ̺2 is the relationship between Property (SG2) and the
V−geometric ergodicity. Indeed, specify Theorem 1 in terms of the V−geometric ergodicity
with V := (π(n)−1/2)n∈N. Let (BV , ‖ · ‖V ) denote the space of sequences (g(n))n∈N ∈ C

N such
that ‖g‖V := supn∈N V (n)−1 |g(n)| <∞. Recall that P is said to be V -geometrically ergodic
if P satisfies the spectral gap property on BV , namely: there exist C ∈ (0,+∞) and ρ ∈ (0, 1)
such that

∀n ≥ 1,∀f ∈ BV , ‖Pnf −Πf‖V ≤ C ρn ‖f‖V . (SGV )

When this property holds, we define

̺V := inf{ρ ∈ (0, 1) : (SGV ) holds true}. (4)

Remark 1 Under Assumptions (AS3) and (AS4), we have

α0 :=

N
∑

m=−N

lim sup
i→+∞

√

P (i, i+m)P ∗(i+m, i) =















N
∑

m=−N

am τ
−m/2 if τ ∈ (0, 1)

a0 if τ = 0.

(5)

Indeed, if (AS4) holds with τ ∈ (0, 1), then the claimed formula follows from the definition of
P ∗. If τ = 0 in (AS4), then am = 0 for every m = 1, . . . , N from

∑N
m=−N P (i+m, i)π(i +

m)/π(i) = 1. Thus a−m = 0 when m < 0. Hence α0 = a0.

Proposition 1 If P and π satisfy Assumptions (AS3), (AS4) and (NERI), then P satis-
fies (AS2) (with α0 < 1 given in (5)). Moreover P satisfies both (SG2) and (SGV ) with

V := (π(n)−1/2)n∈N, we have max(ress(P|BV
), ress(P|ℓ2(π))) ≤ α0, and the next assertions

hold:

(a) if ̺V ≤ α0, then ̺2 ≤ α0;

(b) if ̺V > α0, then ̺2 = ̺V .

Proof. If τ = 0 in (AS4), then α0 = a0 < 1 from (5) and (NERI). Now assume that (AS4)
holds with τ ∈ (0, 1). Then α0 =

∑N
m=−N am τ

−m/2 = ψ(
√
τ), where: ∀t > 0, ψ(t) :=

∑N
k=−N ak t

−k. Moreover it easily follows from the invariance of π that ψ(τ) = 1. Inequality
α0 = ψ(

√
τ) < 1 is deduced from the following assertions: ∀t ∈ (τ, 1), ψ(t) < 1 and ∀t ∈

(0, τ) ∪ (1,+∞), ψ(t) > 1. To prove these properties, note that ψ(τ) = ψ(1) = 1 and that ψ
is convex on (0,+∞). Moreover we have limt→+∞ ψ(t) = +∞ since ak > 0 for some k < 0
(use ψ(τ) = ψ(1) = 1 and τ ∈ (0, 1)). Similarly, limt→ 0+ ψ(t) = +∞ since ak > 0 for some
k > 0. This gives the desired properties on ψ since ψ′(1) > 0 from (NERI).

(SG2) and ress(P|ℓ2(π)) ≤ α0 follow from Theorem 1. Next (SGV ) is deduced from the
well-known link between geometric ergodicity and the following drift inequality:

∀α ∈ (α0, 1), ∃L ≡ Lα > 0, PV ≤ αV + L 1N. (6)

This inequality holds from limi(PV )(i)/V (i) = α0.

4



Then (SGV ) is derived from (6) using aperiodicity and irreducibility. It also follows from
(6) that ress(P|BV

) ≤ α (see [HL14b, Prop. 3.1]). Thus ress(P|BV
) ≤ α0.

Now we prove (a) and (b) using the spectral properties of [HL14b, Prop. 2.1] of both
P|ℓ2(π) and P|BV

(due to quasi-compactness, see [Hen93]). We will also use the following
obvious inclusion: ℓ2(π) ⊂ BV . In particular every eigenvalue of P|ℓ2(π) is also an eigenvalue
for P|BV

. First assume that ̺V ≤ α0. Then there is no eigenvalue for P|BV
in the annulus

Γ := {λ ∈ C : α0 < |λ| < 1} since ress(P|BV
) ≤ α0. From ℓ2(π) ⊂ BV it follows that there is

also no eigenvalue for P|ℓ2(π) in this annulus. Hence ̺2 ≤ α0 since ress(P|ℓ2(π)) ≤ α0. Second
assume that ̺V > α0. Then P|BV

admits an eigenvalue λ ∈ C such that |λ| = ̺V . Let f ∈ BV ,
f 6= 0, such that Pf = λf . We know from [HL14b, Prop. 2.2] that there exists some β ≡
βλ ∈ (0, 1) such that |f(n)| = O(V (n)β) = O(π(n)−β/2), so that |f(n)|2π(n) = O(π(n)(1−β)),
thus f ∈ ℓ2(π) from (AS4). We have proved that ̺2 ≥ ̺V . Finally the converse inequality is
true since every eigenvalue of P|ℓ2(π) is an eigenvalue for P|BV

. Thus ̺2 = ̺V . �

From Proposition 1, any estimation of ̺V provides an estimation of ̺2. This is illustrated
in Example 1 and Corollary 1. Markov chains in Example 1 have been studied in details in
[HL14b, Section 3]. Also mention that further technical details are reported in [HL15].

Example 1 (RWs with i.d. bounded increments) Let P be defined as follows. There
exist some positive integers c, g, d ∈ N

∗ such that

∀i ∈ {0, . . . , g − 1},
c

∑

j=0

P (i, j) = 1;

∀i ≥ g,∀j ∈ N, P (i, j) =

{

aj−i if i− g ≤ j ≤ i+ d

0 otherwise.

(a−g, . . . , ad) ∈ [0, 1]g+d+1 : a−g > 0, ad > 0,

d
∑

k=−g

ak = 1.

Assume that P is aperiodic and irreducible, and satisfies (NERI).Then P has a unique in-
variant distribution π. It can be derived from standard results of linear difference equation that
π(n) ∼ c τn when n→+∞, with τ ∈ (0, 1) defined by ψ(τ) = 1, where ψ(t) :=

∑N
k=−N ak t

−k.

Thus, if γ := τ−1/2, then BV = {(g(n))n∈N ∈ C
N, supn∈N γ

−n |g(n)| < ∞}. Then we
know from [HL14b, Prop. 3.2] that ress(P|BV

) = α0 with α0 given in (5), and that ̺V can
be computed from an algebraic polynomial elimination. From this computation, Proposition 1
provides an accurate estimation of ̺2. Property (SG2) was proved in [Wüb12, Th. 2] under
an extra weak reversibility assumption (with no explicit bound on ̺2). However, except in
case g = d = 1 where reversibility is automatic, an RW with i.d. bounded increments is not
reversible or even weak reversible in general. No reversibility condition is required here.

3 Bound for ̺2 via truncation

Let P be any Markov kernel on N, and let us consider the k-th truncated (and augmented
on the last column) matrix Pk associated with P as in [HL14a]. If σ(Pk) denotes the set of
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eigenvalues of Pk, define ρk := max
{

|λ|, λ ∈ σ(Pk), |λ| < 1
}

. The weak perturbation method
in [HL14a] provides the following general result where Condition (AS1) is not required and
V is any unbounded increasing sequence.

Proposition 2 Let P be an irreducible and aperiodic Markov kernel on N satisfying the fol-
lowing drift inequality for some unbounded increasing sequence (V (n))n∈N:

∃δ ∈ [0, 1[, ∃L > 0, PV ≤ δV + L 1N. (8)

Let ̺V be defined in (4). Then, either ̺V ≤ δ and lim supk ρk ≤ δ, or ̺V > δ and ̺V =
limk ρk.

Proof. Condition (8) ensures that the assumptions of [HL14a, Lem. 6.1] are satisfied, so that
ress(P|BV

) ≤ δ. Then, using standard duality arguments, the spectral rank-stability property
[HL14a, Lem. 7.2] applies to P|BV

and Pk. If ̺V ≤ δ, then, for each r such that δ < r < 1,
λ = 1 is the unique eigenvalue of P|BV

in Cr := {λ ∈ C : r < |λ| ≤ 1} (see [Hen93]). From
[HL14a, Lem. 7.2] this property holds for Pk when k is large enough, so that lim supk ρk ≤ r.
Thus lim supk ρk ≤ δ since r is arbitrarily close to δ. Now assume that ̺V > δ, and let r be
such that δ < r < ̺V . Then P|BV

has a finite number of eigenvalues in Cr, say λ0, λ1, . . . , λN ,
with λ0 = 1, |λ1| = ̺V and |λk| ≤ ̺V for k = 2, . . . , N (see [Hen93]). For a ∈ C and ε > 0 we
define D(a, ε) := {z ∈ C : |z − a| < ε}. Now consider any ε > 0 such that the disks D(λk, ε)
for k = 0, . . . , N are disjoint and are contained in Cr pour k ≥ 1. From [HL14a, Lem. 7.2], for
k large enough, 1 is the only eigenvalue of Pk in D(1, ε), the others eigenvalues of Pk in Cr are
contained in ∪N

k=1D(λk, ε), and finally each D(λk, ε) contains at least one eigenvalue of Pk.
Thus each eigenvalue λ 6= 1 of Pk in Cr has modulus less than ̺V + ε, so that ρk ≤ ̺V + ε.
Moreover the disk D(λ1, ε) contains at least an eigenvalue λ of Pk, so that ρk ≥ |λ| ≥ ̺V − ε.
Thus, for k large enough, we have ̺V − ε ≤ ρk ≤ ̺V + ε. �

Under the assumptions of Proposition 1 we deduce the following result from Proposition 2.

Corollary 1 If P satisfies the assumptions of Proposition 1, then the following properties
holds with α0 given in (5):

(a) ̺2 ≤ α0 ⇐⇒ ̺V ≤ α0, and in this case we have lim supk ρk ≤ α0;

(b) ̺2 > α0 ⇐⇒ ̺V > α0, and in this case we have ̺2 = ̺V = limk ρk.

As usual the reversible case is simpler. In particular we can take C = 1 and ρ = ̺2 in (SG2).
Details and numerical illustrations for Metropolis-Hastings kernels are reported in [HL15].
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