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Abstract

In this note, we study the asymptotic behaviour near extinction of (sub-) critical
continuous state branching processes. In particular, we establish an analogue of
Khintchin’s law of the iterated logarithm near extinction time for a continuous state
branching process whose branching mechanism satisfies a given condition and its
reflected process at its infimum.
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1 Introduction and main results.

A continuous-state branching process (or CB-process for short) is a non-negative valued
strong Markov process with probabilities (Px, x ≥ 0) such that for any x, y ≥ 0, Px+y
is equal in law to the convolution of Px and Py. CB-processes may be thought of as the
continuous (in time and space) analogues of classical Bienaymé-Galton-Watson branching
processes. Such classes of processes have been introduced by Jirina [7] and studied by
many authors included Bingham [2], Grey [5], Grimvall [6], Lamperti [10], to name but a
few. More precisely, a CB-process Y = (Yt, t ≥ 0) is a Markov process taking values in
[0,∞], where 0 and ∞ are two absorbing states, and satisfying the branching property;
that is to say, its Laplace transform satisfies

Ex

[
e−λYt

]
= exp{−xut(λ)}, for λ ≥ 0, (1)

∗Centro de Investigación en Matemáticas A.C. Calle Jalisco s/n. 36240 Guanajuato,
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for some function ut(λ). According to Silverstein [14], the function ut(λ) is determined by
the integral equation

∫ λ

ut(λ)

1

ψ(u)
du = t (2)

where ψ satisfies the celebrate Lévy-Khincthine formula

ψ(λ) = aλ+ βλ2 +

∫

(0,∞)

(
e−λx − 1 + λx1{x<1}

)
Π(dx), (3)

where a ∈ R, β ≥ 0 and Π is a σ-finite measure such that
∫
(0,∞)

(
1 ∧ x2

)
Π(dx) is finite.

The function ψ is known as the branching mechanism of Y .
Note that the first moment of Yt can be obtained by differentiating (1) with respect to

λ, i.e. Ex[Yt] = xe−ψ
′(0+)t. Hence, in respective order, a CB-process is called supercritical,

critical or subcritical depending on ψ′(0+) < 0, ψ′(0+) = 0 or ψ′(0+) > 0. Moreover since

Px

(
lim
t→∞

Yt = 0
)
= e−ηx,

where η is the largest root of the branching mechanism ψ, the sign of ψ′(0+) yields the
criterion for a.s. extinction. More precisely a CB-process Y with branching mechanism ψ
has a finite time extinction almost surely if and only if

∫ ∞ du

ψ(u)
<∞ and ψ′(0+) ≥ 0. (4)

We denote by T0 the extinction time of the CB-process Y , i.e. T0 := inf{t ≥ 0 : Yt = 0}.

In this paper, we are interested in a detailed description of how continuous state branch-
ing processes become extinct. Hence, in what follows we always assume that assumption
(4) is satisfied. One of the starting points of this paper are the results of Kyprianou and
Pardo [8] for the CB-process in the self-similar case, i.e. when the branching mechanism
is given by ψ(λ) = c+λ

α, for 1 < α ≤ 2 and c+ > 0. Note that such branching mechanism
clearly satisfies condition (4). The authors in [8] described the upper and lower envelopes
of the self-similar CB-process near extinction via integral test. In particular they obtained
the following laws of the iterated logarithm (LIL for short) for the upper envelope of Y
and its version reflected at its running infimum

lim sup
t→0

Y(T0−t)−

t1/(α−1) log log(1/t)
= c+(α− 1)1/α−1, Px − a.s.,

and

lim sup
t→0

(Y − Y )(T0−t)−

t1/(α−1) log log(1/t)
= c+(α− 1)1/α−1, Px − a.s.,

where Y t denotes the infimum of the CB-process (Y,Px) over [0, t].
In order to state our main results, we first introduce some basic notation. Let us define

the mapping

φ(t) :=

∫ ∞

t

du

ψ(u)
, for t > 0,
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and note that φ : (0,∞) → (0,∞) is a bijection and thus its inverse exist, here denoted
by ϕ. From (2), it is straightforward to get

ut(λ) = ϕ(t+ φ(λ)) λ, t > 0.

Since φ(∞) = 0, we clearly have ut(∞) = ϕ(t), for t > 0. Hence we deduce that for every
x, t > 0,

Px(T0 ≤ t) = Px(Yt = 0) = lim
λ→∞

Ex

[
e−λYt

]
= e−xϕ(t).

Finally, let us introduce the lower and upper exponents of ψ at infinity,

γ := sup

{
c ≥ 0 : lim

λ→∞

ψ(λ)

λc
= ∞

}
and η := inf

{
c ≥ 0 : lim

λ→∞

ψ(λ)

λc
= 0

}
.

Since ψ satisfies (3), we necessarily have 1 ≤ γ ≤ η ≤ 2. Now, we introduce the following
exponent,

δ := sup
{
c ≥ 0 : ∃ Q ∈ (0,∞) s.t. Qψ(u)u−c ≤ ψ(v)v−c, 1 ≤ u ≤ v

}
. (5)

Therefore, we necesarilly have 1 ≤ δ ≤ γ ≤ η ≤ 2. Note that in the case where ψ is
regularly varying at ∞ with index α > 1, then δ = γ = η = α.

Our first result consist in a law of the iterated logarithm (LIL for short) at 0 for the
upper envelope of the time-reversal process (Y(T0−t)− , 0 ≤ t ≤ T0), under Px.

Theorem 1. Assume that δ > 1, then

lim sup
t→0

Y(T0−t)−ϕ(t)

log logϕ(t)
= 1 Px-a.s.,

for every x > 0.

Recall that Y and ((Y − Y )(T0−t)− , 0 ≤ t < T0) denote the running infimum of Y and
the time-reversal process of Y reflected at its running minimum, respectively. We also
introduce the so-called scale function W : [0,∞) 7→ [0,∞) which is the unique absolutely
continuous increasing function whose Laplace transform is 1/ψ. Let us suppose that for
all β < 1, the scale function W satisfies the following hypothesis

(H) lim sup
x→0

W (βx)

W (x)
< 1.

We remark that the above hypothesis is satisfied, in particular, when ψ is regularly varying
at ∞.

Theorem 2. Suppose that δ > 1, then under the hypothesis (H), we have

lim sup
t→0

(Y − Y )(T0−t)−ϕ(t)

log logϕ(t)
= 1 Px-a.s.,

for every x > 0.
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It is important to note that in the self-similar case, i.e. when ψ(λ) = c+λ
α for 1 < α ≤ 2

and c+ > 0, we have

log logϕ(t)

ϕ(t)
=

log log(c+(α− 1)t)−
1

α−1

(c+(α− 1)t)−
1

α−1

for t > 0.

We can replace the above function by

log log 1
t

ϕ(t)
= (c+(α− 1)t)

1

α−1 log log
1

t
for t > 0,

since they are asymptotically equivalent at 0. Similarly, we can take the previous function
in the regularly varying case.

2 Proofs

Let (Px, x ∈ R) be a family of probability measures on the space of càdlàg mappings from
[0,∞) to R, denoted by D, such that for each x ∈ R, the canonical process X is a Lévy
process with no negative jumps issued from x. Set P := P0, so Px is the law ofX+x under
P. The Laplace exponent ψ : [0,∞) → (−∞,∞) of X is specified by E[e−λXt ] = etψ(λ),
for λ ∈ R, and can be expressed in terms of the Lévy-Khintchine formula (3).

Henceforth, we shall assume that (X,P) is not a subordinator (recall that a subordi-
nator is a Lévy process with increasing sample paths). In that case, it is known that the
Laplace exponent ψ is strictly convex and tends to ∞ as λ goes to ∞. In this case, we
define for q ≥ 0

Φ(q) = inf
{
λ ≥ 0 : ψ(λ) > q

}

the right-continuous inverse of ψ and then Φ(0) is the largest root of the equation ψ(λ) = 0.
Theorem VII.1 in [1] implies that condition Φ(0) > 0 holds if and only if the process drifts
to ∞. Moreover, almost surely, the paths of X drift to ∞, oscillate or drift to −∞
accordingly as ψ′(0+) < 0, ψ′(0+) = 0 or ψ′(0+) > 0.

Lamperti [10] observed that continuous state branching processes are connected to
Lévy processes with no negative jumps by a simple time-change. More precisely, consider
a spectrally positive Lévy process (X,Px) started at x > 0 and with Laplace exponent ψ.
Now, we introduce the clock

At =

∫ t

0

ds

Xs
t ∈ [0, τ0),

where τ0 = inf{t ≥ 0 : Xt ≤ 0}, and its right-continuous inverse

θ(t) = inf{s ≥ 0 : As > t}.

Then, the time changed process Y = (Xθ(t), t ≥ 0), under Px, is a continuous state
branching process with initial population of size x. The transformation described above
will henceforth be referred to as the CB-Lamperti representation.
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Now, define X̂ := −X , the dual process of X . Denote by P̂x the law of X̂ when issued
from x so that (X, P̂x) = (X̂,P−x). The dual process conditioned to stay positive is a

Doob h-transform of (X, P̂x) killed when it first exists (0,∞) with the harmonic function
W . In this case, assuming that ψ′(0+) ≥ 0, one has

P̂↑
x(Xt ∈ dy) =

W (y)

W (x)
P̂x(Xt ∈ dy , t < τ0) , t ≥ 0, x, y > 0.

Under P̂↑
x, X is a process taking values in (0,∞). It will be referred to as the dual

Lévy process started at x and conditioned to stay positive. The measure P̂↑
x is always

a probability measure and there is always weak convergence as x ↓ 0 to a probability
measure which we denote by P̂↑.

Let
σx = sup{t > 0 : Xt ≤ x},

be the last passage time of X below x ∈ R. The next proposition, whose proof may be
found in [8], gives us a time-reversal property from extinction for the C.B. process (see

Theorem 1). Recall that, under P̂↑, the canonical process X drifts towards ∞ and also
that Xt > 0 for t > 0.

Proposition 1. If condition (4) holds, then for each x > 0

{
(Y(T0−t)− : 0 ≤ t < T0),Px

}
d
=
{
(Xθ(t), 0 ≤ t < Aσx), P̂

↑
}
.

Recall that ψ is a branching mechanism satisfying conditions (3) and (4); and whose
exponent δ defined by (5) is strictly larger than 1. Therefore, since δ > 1, there exist
c ∈ (1,∞) and C ∈ (0,∞) such that

ψ(λ) ≤ Cψ(λu)u−c, (6)

for any u, λ ∈ [1,∞). Now, we introduce the so-called first and last passage times of the

process {(Xθ(t), t ≥ 0), P̂↑} by

Sy = inf
{
t ≥ 0 : Xθ(t) ≥ y

}
and Uy = sup

{
t ≥ 0 : Xθ(t) ≤ y

}
,

for y ≥ 0. Note that the processes (Sy, y ≥ 0) and (Uy, y ≥ 0) are increasing with

independent increments since the process {(Xθ(t), t ≥ 0), P̂↑} has no positive jumps.

Observe that Aσx and Ux are equal and that the latter, under P̂↑, has the same law as

T0 under Px. This clearly implies that the distribution of Ux, under P̂
↑, satisfies

P̂↑
(
Ux ≤ t

)
= e−xϕ(t), (7)

for every x, t > 0.
Let (Jt, t ≥ 0) be the future infimum process of (Xθ(t), t ≥ 0) which is defined as follows

Jt = inf
s≥t

Xθ(s), for t ≥ 0.
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Proposition 2. Assume that δ > 1, then

lim sup
t→0

Jtϕ(t)

log logϕ(t)
= 1, P̂↑-a.s.

Proof: For simplicity, we let

f(t) =
log logϕ(t)

ϕ(t)
for t > 0.

In order to prove this result, we need the following two technical lemmas. Recall that φ
is the inverse function of ϕ.

Lemma 1. For every integer n ≥ 1 and r > 1, put

tn = φ(rn) and an = f(tn).

(i) The sequence (tn : n ≥ 1) decreases.

(ii) The series
∑

n P̂
↑
(
Jtn > ran

)
converges.

Proof of Lemma 1: The first assertion follows readily from the fact that φ is decreasing.
In order to prove (ii), we note that for n ≥ 1, ϕ(tn) = ϕ(φ(rn)) = rn. This entails

log logϕ(tn) = log log rn. (8)

Now, since the last passage times process is the right continuos inverse of the future
infimum of (Xθ(t), t ≥ 0), we have

P̂↑
(
Jtn > ran

)
= P̂↑

(
Uran < tn

)
.

Hence (7) and (8) imply

∑

n

P̂↑
(
Uran < tn

)
≤

∑

n

(
1

n log r

)r
,

which converges, and our statement follows. ✷

Lemma 2. For every integer n ≥ 2 and r > 1, put

sn = φ(en
r

) and bn = f(sn).

We have that the series
∑

n P̂
↑
(
Ubn/r ≤ sn

)
diverges.

Proof of Lemma 2: First we note that for n ≥ 1, ϕ(sn) = ϕ(φ(en
r

)) = en
r

. This entails
log logϕ(sn) = lognr. Hence, the identity (7) implies

∑

n

P̂↑
(
Ubn/r ≤ sn

)
=

∑

n

1

n
,

6



which diverges, and our claim follows. ✷

We are now able to establish the law of the iterated logarithm. In order to prove the
upper bound, we use Lemma 1. Take any t ∈ [tn+1, tn], so, provided that n is large enough

f(t) ≥
log logϕ(tn)

ϕ(tn+1)
,

since ϕ decreases. Note that the denumerator is equal to rn+1 and the numerator is equal
to log log rn. We thus have

lim sup
t→0

f(tn)

f(t)
≤ r. (9)

On the other hand, an application of the Borel-Cantelli Lemma to Lemma 1 shows that

lim sup
n→∞

Jtn
f(tn)

≤ r, P̂↑-a.s.,

and we deduce that

lim sup
t→0

Jt
f(t)

≤

(
lim sup
n→∞

Jtn
f(tn)

)(
lim sup
t→0

f(tn)

f(t)

)
≤ r2, P̂↑-a.s.

To prove the lower bound, we use Lemma 2 and observe that the sequence (bn, n ≥ 2)
decreases. First, from Lemma 2, we have

∑

n

P̂↑
(
Ubn/r − Ubn+1/r ≤ sn

)
≥
∑

n

P̂↑
(
Ubn/r ≤ sn

)
= ∞,

so by the Borel-Cantelli Lemma for independent events, we obtain

lim inf
n→∞

Ubn/r − Ubn+1/r

sn
≤ 1, P̂↑-a.s.

If we admit for a while that

lim sup
n→∞

Ubn+1/r

sn
= 0, P̂↑-a.s., (10)

we can conclude

lim inf
n→∞

Ubn/r
sn

≤ 1, P̂↑-a.s.

This implies that the set {s : Uf(s)/r ≤ s} is unbounded P̂↑-a.s. Plainly, the same then
holds for {s : Js ≥ f(s)/r}, and as a consequence

lim sup
t→0

Jt
f(t)

≥
1

r
, P̂↑-a.s. (11)

Next we establish the behaviour in (10). First, since δ > 1 we observed from inequality
(6) that there exist c ∈ (1,∞) and C ∈ (0,∞) such that

εφ(t) = ε

∫ ∞

t

du

ψ(u)
≥

(
C

ε

) 1

c−1
∫ ∞

t

du

ψ
( (

C
ε

) 1

c−1 u
) =

∫ ∞

(C
ε
)

1
c−1 t

du

ψ(u)
= φ

(
(C/ε)

1

c−1 t
)
, (12)

7



for any t ≥ 1 and 0 < ε < min(C, 1). On the other hand, we see that for n large enough
and 0 < ε < min(C, 1)

P̂↑
(
Ubn+1/r > εsn

)
= 1− exp

{
−
bn+1

r
ϕ(εsn)

}
≤
bn+1

2
ϕ(εsn).

Hence from inequality (12), we have

P̂↑
(
Ubn+1/r > εsn

)
≤

(
C

ε

) 1

c−1

exp
{
nr − (n+ 1)r

}
log(n+ 1) ≤

(
C

ε

) 1

c−1

e−(r−1)nr+1,

where the las identity follows since (n+1)r− nr ≥ rnr−1. In conclusion, we have that the

series
∑

n P̂
↑
(
Ubn+1/r > sn

)
converges, and according to the Borel-Cantelli lemma,

lim sup
n→∞

Ubn+1/r

sn
≤ ε, P̂↑-a.s.,

which establishes (10) since 0 < ε < min(C, 1) can be chosen arbitrarily small. The proof
of (11) is now complete. The two preceding bounds show that

1

r
≤ lim sup

t→0

Jt
f(t)

≤ r2, P̂↑-a.s.

Hence the result follows taking r close enough to 1. ✷

Proof of Theorem 1: In order to establish our result, we first prove the following law of
the iterated logarithm holds

lim sup
t→0

Xθ(t)

f(t)
= 1, P̂↑ − a.s., (13)

and then use Proposition 1.
The lower bound of (13) is easy to deduce from Proposition 2. More precisely,

1 = lim sup
t→0

Jt
f(t)

≤ lim sup
t→0

Xθ(t)

f(t)
P̂↑ − a.s.

Now, we prove the upper bound. Let r > 1 and denote by Xθ(·) for the supremum process

of {(Xθ(s), s ≥ 0), P̂↑}, which is defined by Xθ(t) = sup0≤s≤tXθ(s) for t ≥ 0.

Lemma 3. Let c′ > 1, 0 < ǫ < 1 − 1/c′ and r > 1. For tn = φ(rn), n ≥ 1, then there
exist a positive real number K such that

P̂↑
(
Jtn > (1− ǫ)c′f(tn)

)
≥ ǫK2P̂↑

(
Xθ(tn) > c′f(tn)

)
.

Proof: From the Markov property, we have

P̂↑

(
Jtn > (1− ǫ)c′f(tn)

)
≥ P̂↑

(
Xθ(tn) > c′f(tn), Jtn > (1− ǫ)c′f(tn)

)

=

∫ tn

0

P̂↑
(
Sc′f(tn) ∈ dt

)
P̂

↑
c′f(tn)

(
Jtn > (1− ǫ)c′f(tn)

)

≥ P̂↑
(
Xθ(tn) > c′f(tn)

)
P̂

↑
c′f(tn)

(
inf
0≤s

Xθ(s) > (1− ǫ)c′f(tn)

)
.
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Now from the Lamperti transform and Lemma VII.12 in [1], we have

P̂
↑
c′f(tn)

(
inf
0≤s

Xθ(s) > (1− ǫ)c′f(tn)

)
= P̂

↑
c′f(tn)

(
τ[0,(1−ǫ)c′f(tn)) = ∞

)
=
W
(
c′ǫf(tn)

)

W
(
c′f(tn)

) ,

where τ[0,z) = inf{t ≥ 0 : Xt ∈ [0, z)}.
On the other hand an application of Proposition III.1 in [1] gives that there exist a

positive real number K such that

K
1

xψ(1/x)
≤W (x) ≤ K−1 1

xψ(1/x)
, for all x > 0, (14)

then it is clear
W
(
c′ǫf(tn)

)

W
(
c′f(tn)

) ≥ K2ǫ−1 ψ
(
1/c′f(tn)

)

ψ
(
ǫ−1/c′f(tn)

) .

From the above inequality and Lemma 3 in [13], we deduce

P̂
↑
c′f(tn)

(
inf
0≤s

Xθ(s) > (1− ǫ)c′f(tn)

)
≥ ǫK2,

which clearly implies our result. ✷

Now, we prove the upper bound for the LIL of ((Xθ(t), t ≥ 0), P̂↑). Let c′ > 1 and fix
0 < ǫ < 1− 1/c′. Recall from (7) that

P̂↑
(
Jtn > (1− ǫ)c′f(tn)

)
= P̂↑

(
U(1−ǫ)c′f(tn) < tn−1

)
= (n log r)−(1−ǫ)c′.

Hence from Lemma 3, we deduce

∑

n≥1

P̂↑
(
Stn > c′f(tn)

)
≤ K−2ǫ−1

∑

n

(n log r)−(1−ǫ)c′ <∞,

since (1− ǫ)c′ > 1. Therefore an application of the Borel-Cantelli Lemma shows

lim sup
n→∞

Xθ(tn)

f(tn)
≤ c′, P̂↑-a.s.

Using (9), we deduce

lim sup
t→0

Xθ(t)

f(t)
≤

(
lim sup
n→∞

Xθ(tn)

f(tn)

)(
lim sup
t→0

f(tn)

f(t)

)
≤ rc′, P̂↑-a.s.

Hence from the first part of the proof and taking r close enought to 1 above, we deduce

lim sup
t→0

Xθ(t)

f(t)
∈ [1, c′], P̂↑-a.s.,

By the Blumenthal zero-one law, it must be a constant number k, P̂↑-a.s.
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Now we prove that the constant k equals 1. Fix ǫ ∈ (0, 1/2) and define

Rn = inf

{
1

n
≤ s :

Js
kf(s)

≥ (1− ǫ)

}
.

Note that for n sufficiently large 1/n < Rn <∞ and that Rn converge to 0, P̂↑-a.s., as n
goes to ∞. From Lemma VII.12 in [1], the strong Markov property and since the process

{(Xθ(t), t ≥ 0), P̂↑} has no positive jumps, we have

P̂↑

(
JRn

kf(Rn)
≥ (1− 2ǫ)

)
= P̂↑

(
JRn

≥
(1− 2ǫ)Xθ(Rn)

(1− ǫ)

)

= Ê↑

(
P̂↑

(
JRn

≥
(1− 2ǫ)Xθ(Rn)

(1− ǫ)

∣∣∣Xθ(Rn)

))

= Ê↑

(
W (ℓ(ǫ)Xθ(Rn))

W (Xθ(Rn))

)
,

where ℓ(ǫ) = ǫ/(1− ǫ). Applying (14) and Lemma 3 in [13], give us

Ê↑

(
W (ℓ(ǫ)Xθ(Rn))

W (Xθ(Rn))

)
≥ K2ℓ(ǫ),

wich implies

lim
n→∞

P̂↑

(
JRn

kf(Rn)
≥ (1− 2ǫ)

)
> 0.

Since Rn ≥ 1/n,

P̂↑

(
Jt

kf(t)
≥ (1− 2ǫ), for some t ≥ 1/n

)
≥ P̂↑

(
JRn

kf(Rn)
≥ (1− 2ǫ)

)
.

Therefore, for all ǫ ∈ (0, 1/2)

P̂↑

(
Jt

kf(t)
≥ (1− 2ǫ), i.o., as t→ 0

)
≥ lim

n→∞
P̂↑

(
JRn

kf(Rn)
≥ (1− 2ǫ)

)
> 0.

The event on the left hand side is in the lower-tail sigma-field of (X, P̂↑) which is trivial
from Bertoin’s contruction (see for instance Section 8.5.2 in [4]). Hence

lim sup
t→0

Jt
f(t)

≥ k(1− 2ǫ), P̂↑-a.s.,

and since ǫ can be chosen arbitraily small, we deduce that 1 ≥ k. ✷

Proof of Theorem 2: Here we follow similar arguments as those used in the last part of
the previous result. Assume that the hypothesis (H) is satisfied. From Theorem 1, it is
clear that

lim sup
t→0

Xθ(t) − Jt
f(t)

≤ lim sup
t→0

Xθ(t)

f(t)
= 1, P̂↑-a.s.
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Fix ε ∈ (0, 1/2) and define

Rn = inf

{
1

n
≤ s :

Xθ(s)

f(s)
≥ (1− ǫ)

}
.

First note that for n sufficiently large 1/n < Rn < ∞ P̂↑-a.s. Moreover, from Theorem 1

we have that Rn converge to 0 as n goes to ∞, P̂↑-a.s.
From Lemma VII.12 in [1], then strong Markov property and since {(Xθ(t), t ≥ 0), P̂↑}

has no positive jumps, we have

P̂↑

(
Xθ(Rn) − JRn

f(Rn)
≥ (1− 2ǫ)

)
= P̂↑

(
JRn

≤
ǫ

1− ǫ
Xθ(Rn)

)

= Ê↑

(
P̂↑

(
JRn

≤
ǫ

1− ǫ
Xθ(Rn)

∣∣∣Xθ(Rn)

))

= 1− Ê↑

(
W (ℓ(ǫ)Xθ(Rn))

W (Xθ(Rn))

)
,

where ℓ(ǫ) = (1 − 2ǫ)/(1 − ǫ). Since the hypothesis (H) is satisfied, an application of
Fatou-Lebesgue Theorem shows that

lim sup
n→+∞

Ê↑

(
W (ℓ(ǫ)Xθ(Rn))

W (Xθ(Rn))

)
≤ Ê↑

(
lim sup
n→∞

W (ℓ(ǫ)Xθ(Rn))

W (Xθ(Rn))

)
< 1,

which implies that

lim
n→∞

P̂↑

(
Xθ(Rn) − JRn

f(Rn)
≥ (1− 2ǫ)

)
> 0.

Next, we note

P̂↑

(
Xθ(Rp) − JRp

f(Rp)
≥ (1− 2ǫ), for some p ≥ n

)
≥ P̂↑

(
Xθ(Rn) − JRn

f(Rn)
≥ (1− 2ǫ)

)
.

Since Rn converges to 0, P̂↑-a.s. as n goes to ∞, it is enough to take limits in both sides.
Therefore for all ǫ ∈ (0, 1/2)

P̂↑

(
Xθ(t) − Jt
f(t)

≥ (1− 2ǫ), i.0., as t→ 0

)
≥ lim

n→+∞
P̂↑

(
Xθ(Rn) − JRn

f(Rn)
≥ (1− 2ǫ)

)
= 1.

Then,

lim sup
t→0

Xθ(t) − Jt

f(t)
≥ 1− 2ǫ, P̂↑ − a.s.,

and since ǫ can be chosen arbitrarily small, we get the result. ✷
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3 Concluding remarks on quasi-stationarity

We conclude this paper a brief remark about a kind of conditioning of CB-process which
result in a so-called quasi-stationary distribution. Specifically we are interested in estab-
lishing the existence of a normalization constant {ct, t ≥ 0} such that the weak limit

lim
t→∞

Px(Yt/ct ∈ dz|T0 > t),

exist for x > 0 and z ≥ 0.
Results of this kind have been established for CB-processes for which the underlying

spectrally positive Lev́y process has a second moment in [9]; see also [11], and for the
α-stable CB-process with α ∈ (1, 2] in [8]. In the more general setting, [12] formulates
conditions for the existence of such a limit and characterizes the resulting quasi-stationary
distribution. The result below shows, when the branching mechanism is regularly varying
at ∞, an explicit formulation of the normalization sequence {ct : t ≥ 0} and the limiting
distribution is possible.

Lemma 4. Suppose that the branching mechanism ψ is regularly varying at ∞ with index
α ∈ (1, 2]. Then, for all x ≥ 0, with ct = 1/ϕ(t)

lim
t→∞

Ex

[
e−λYt/ct

∣∣∣T0 > t
]
= 1−

1

[1 + λ−(α−1)]1/(α−1)
.

Proof: The proof pursues a similar line of reasoning to the the aforementioned references
[8, 9, 11, 12]. From (1) it is straightforward to deduce that

lim
t→∞

Ex

[
1− e−λYt/ct

∣∣∣T0 > t
]
= lim

t→∞

ut(λ/ct)

ut(∞)
= lim

t→∞

ϕ(t+ φ(λ/ct))

ϕ(t)
,

if the limit on the right hand side exists. However, since ψ is regularly varying at ∞ with
index α, we have that 1/ψ is regularly varying at ∞ with index −α. On the other hand
an application of Karamata’s Theorem (see for instance Bingham et al [3]) gives

φ(t) ∼ −
1

1− α

t

ψ(t)
as t→ ∞,

and therefore,

lim
t→∞

φ(λt)

φ(t)
= λ1−α for λ > 0.

In other words φ is regularly varying at ∞ with index 1 − α and then its inverse ϕ is
regularly varying at ∞ with index 1

1−α
, thus for all λ, ǫ > 0, and t sufficiently large, we

have (
λ

1− ǫ

)−(α−1)

t ≤ φ(λϕ(t)) ≤

(
λ

1 + ǫ

)−(α−1)

t.

Therefore since ϕ is decreasing, we deduce

ϕ
((

1 + (λ/(1 + ǫ))−(α−1)
)
t
)

ϕ(t)
≤
ϕ(t+ φ(λ/ct))

ϕ(t)
≤
ϕ
((

1 + (λ/(1− ǫ))−(α−1)
)
t
)

ϕ(t)
,
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for t sufficiently large. On the other hand, since ϕ is regular varying we deduce

1
(
1 +

(
λ

1+ǫ

)−(α−1)
) 1

α−1

≤
ϕ(t + φ(λ/ct))

ϕ(t)
≤

1
(
1 +

(
λ

1−ǫ

)−(α−1)
) 1

α−1

,

for t sufficiently large. Hence the result follows taking the limit in the above inequality as
ǫ goes to 0. ✷
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