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Abstract

Let (Wn(θ))n∈N0 be the Biggins martingale associated with a supercritical

branching random walk and denote by W∞(θ) its limit. Assuming essentially

that the martingale (Wn(2θ))n∈N0 is uniformly integrable and that VarW1(θ)

is finite, we prove a functional central limit theorem for the tail process

(W∞(θ)−Wn+r(θ))r∈N0 and a law of the iterated logarithm for W∞(θ)−Wn(θ),

as n → ∞.
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1. Introduction and main results

1.1. Introduction

For several models of spin glasses it is known that the log-partition function has

asymptotically Gaussian fluctuations in the high temperature regime. This was shown

for the Sherrington–Kirkpatrick model in [2], for the Random Energy Model and the

p-spin model in [12], and for the Generalized Random Energy Model in [22], to give

just an incomplete list of examples. We are interested in the Biggins martingale
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Wn(θ) associated with a supercritical branching random walk (BRW), to be defined

below. With regard to the strength of its correlations, the branching random walk is

located between the Random Energy Model and the Sherrington–Kirkpatrick model.

Also, it can be thought of as a limiting case of the Generalized Random Energy

Model. Since in all the three aforementioned models the log-partition function exhibits

asymptotically Gaussian fluctuations at high temperatures, it is natural to expect

that the branching random walk behaves similarly. However, in the high-temperature

regime (meaning that θ is small), the Biggins martingale Wn(θ) is, under appropriate

conditions, uniformly integrable and converges almost surely (a.s.) to a limit W∞(θ)

which is non-Gaussian. It follows that we cannot obtain a Gaussian limit distribution

whatever deterministic affine normalization we apply to Wn(θ).

In the present paper we prove a functional central limit theorem (functional CLT)

for the Biggins martingale Wn(θ) and its logarithm under a natural random centering.

We also derive a law of the iterated logarithm which complements the central limit

theorem.

Let us recall the definition of the branching random walk. At time n = 0 consider

an individual, the ancestor, located at the origin of the real line. At time n = 1

the ancestor produces offspring (the first generation) according to a point process

Z =
∑J

i=1 δXi on R. The number of offspring, J = Z(R), is a random variable

which is explicitly allowed to be infinite with positive probability. The first generation

produces the second generation whose displacements with respect to their mothers are

distributed according to independent copies of the same point process Z. The second

generation produces the third one, and so on. All individuals act independently of each

other.

More formally, let V = ∪n∈N0N
n be the set of all possible individuals. The ancestor

is identified with the empty word ∅ and its position is S(∅) = 0. On some probability

space (Ω,F ,P) let (Z(u))u∈V be a family of independent identically distributed (i.i.d.)

copies of the point process Z. An individual u = u1 . . . un of the nth generation whose

position on the real line is denoted by S(u) produces at time n+ 1 a random number

J(u) of offspring which are placed at random locations on R given by the positions of

the point process
∑J(u)

i=1 δS(u)+Xi(u) where Z(u) =
∑J(u)

i=1 δXi(u) and J(u) is the number

of points in Z(u). The offspring of the individual u are enumerated by ui = u1 . . . uni,
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where i = 1, . . . , J(u) (if J(u) < ∞) or i = 1, 2, . . . (if J(u) = ∞), and the positions

of the offspring are denoted by S(ui). Note that no assumptions are imposed on the

dependence structure of the random variables J(u), X1(u), X2(u), . . . for fixed u ∈ V.

The point process of the positions of the nth generation individuals will be denoted by

Zn so that Z0 = δ0 and

Zn+1 =
∑

|u|=n

J(u)
∑

i=1

δS(u)+Xi(u),

where, by convention, |u| = n means that the sum is taken over all individuals of the

nth generation rather than over all u ∈ N
n. The sequence of point processes (Zn)n∈N0

is then called a branching random walk (BRW).

Throughout the paper, we assume that the BRW is supercritical, that is EJ > 1. In

this case, the event S that the population survives has positive probability: P[S] > 0.

Note that, provided that J < ∞ a.s., the sequence (Zn(R))n∈N0 of generation sizes in

the BRW forms a Galton–Watson process.

An important tool in the analysis of the BRW is the Laplace transform of the

intensity measure µ := EZ of the point process Z,

m : R → [0,∞], θ 7→
∫

R

e−θx µ(dx) = E

[

∫

R

e−θxZ(dx)

]

.

We make the standing assumption that m(γ) < ∞ for at least one γ ∈ R, that is

D(m) := {θ ∈ R : m(θ) < ∞} 6= ∅.

For γ ∈ D(m) define

Wn(γ) :=
1

(m(γ))n

∫

R

e−γxZn(dx) =
1

(m(γ))n

∑

|u|=n

(Yu)
γ , n ∈ N0,

where Yu := e−S(u), and we recall that S(u) is the position of the individual u ∈ V.

Let Fn be the σ-field generated by the first n generations of the BRW, i.e. Fn =

σ{Z(u) : |u| < n}, where |u| < n means that u ∈ N
k for some k < n. It is well-known

and easy to check that, for every γ ∈ D(m), the sequence (Wn(γ))n∈N0 forms a non-

negative martingale with respect to the filtration (Fn)n∈N0 and thus converges a.s.

to a random variable which is denoted by W∞(γ) and satisfies EW∞(γ) ≤ 1. This

martingale is called the Biggins martingale or the intrinsic martingale in the BRW.
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Possibly after the transformation Xi 7→ γXi + logm(γ) it is no loss of generality to

assume that γ = 1 and that

m(1) = E

[

∫

R

e−xZ(dx)

]

= E

[

J
∑

i=1

e−Xi

]

= 1.

1.2. Central limit theorem

Let R
∞ be the space of infinite sequences x = (x0, x1, x2, . . .) with xj ∈ R for all

j ∈ N0. Endow R
∞ with a complete, separable metric

ρ(x, y) =
∞
∑

j=0

2−j |xj − yj |
1 + |xj − yj |

, x, y ∈ R
∞

which metrizes the pointwise convergence.

Theorem 1.1. Suppose that m(1) = 1, σ2 := VarW1(1) < ∞ and m(2) < 1. Then,

(

W∞(1)−Wn+r(1)

(m(2))(n+r)/2

)

r∈N0

w−→
n→∞

(

√

v2W∞(2)Ur

)

r∈N0

(1.1)

weakly on R
∞, where v2 := VarW∞(1) = σ2(1−m(2))−1, and (Ur)r∈N0 is a stationary

zero-mean Gaussian sequence which is independent of W∞(2) and has the covariance

function

Cov(Ur, Us) = (m(2))|r−s|/2, r, s ∈ N0.

Note that (Ur)r∈N0 can be viewed as an AR(1)-process or as an Ornstein–Uhlenbeck

process sampled at nonnegative integer times. In the case when the martingale (Wn(2))n∈N0

is not uniformly integrable (and hence, W∞(2) = 0), Theorem 1.1 is still valid, but

the limiting process in (1.1) is trivial. Specifying Theorem 1.1 to r = 0, we obtain the

following central limit theorem for the tail of the Biggins martingale.

Corollary 1.1. Suppose that m(1) = 1, VarW1(1) < ∞ and m(2) < 1. Then,

W∞(1)−Wn(1)

(m(2))n/2
d−→

n→∞
N(0, v2W∞(2)),

where the limiting distribution is a scale mixture of normals with randomized variance

v2W∞(2).

In fact, we shall prove a result with a mode of convergence stronger than in Theo-

rem 1.1. Let ξ : Ω → E be a random variable on (Ω,F ,P) with values in a Polish space
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E, and let G ⊂ F be a σ-field. Denote by M(E) the space of probability measures

on E endowed with the topology of weak convergence. A random variable of the

form L : Ω → M(E) is called a Markov kernel or a probability transition kernel. The

conditional law of ξ given G is defined as a G-measurable mapping L : Ω → M(E) such

that for every random event A ∈ G and every bounded Borel function f : E → R, we

have

E[f(ξ)1A] =

∫

A

(∫

E

f(x)L(ω; dx)

)

P(dω).

It is known that L is defined uniquely up to sets of probability 0. A sequence of Markov

kernels Ln : Ω → M(E) converges to a Markov kernel L∞ : Ω → M(E) in the almost

surely weak (a.s.w.) sense if the set of ω ∈ Ω for which the probability measure Ln(ω)

converges to L∞(ω) weakly on E has probability 1. We refer to [14] for the basic

properties of the a.s.w. convergence and its relations to other modes of convergence

(including the weak and the stable convergence).

Theorem 1.2. Suppose that m(1) = 1, VarW1(1) < ∞ and m(2) < 1. Denote by

Ln : Ω → M(R∞) the conditional law of the process
(

W∞(1)−Wn+r(1)

(m(2))(n+r)/2

)

r∈N0

given the σ-field Fn and viewed as a random variable on (Ω,F ,P) with values in

M(R∞). Then, Ln converges almost surely weakly to the Markov kernel

L∞ : Ω → M(R∞), ω 7→ L
{

(

√

v2W∞(2;ω)Ur

)

r∈N0

}

,

where L{·} denotes the probability law of a process, and (Ur)r∈N0 is a discrete-time

Ornstein–Uhlenbeck process as in Theorem 1.1 but defined on some probability space

other than (Ω,F ,P).

It follows from Proposition 4.6 and Remark 4.7 of [14] that the weak convergence in

Theorem 1.1 is a consequence of the a.s.w. convergence in Theorem 1.2. Hence, we only

need to prove Theorem 1.2. This will be done in Section 2. Specifying Theorem 1.2 to

r = 0 we obtain the following almost surely weak version of Corollary 1.1.

Corollary 1.2. Suppose that m(1) = 1, VarW1(1) < ∞ and m(2) < 1. Then, we

have the following almost surely weak convergence of Markov kernels from Ω to M(R):

L
{

W∞(1)−Wn(1)

(m(2))n/2

∣

∣

∣Fn

}

a.s.w.−→
n→∞

{

ω 7→ N
(

0, v2W∞(2;ω)
)}

. (1.2)
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We can also derive a central limit theorem for the “log-partition function” logWn(1).

Corollary 1.3. Suppose that m(1) = 1, σ2 = VarW1(1) < ∞, m(2) < 1, and that

the survival event S has probability 1. Then, we have the following almost surely weak

convergence of Markov kernels from Ω to M(R):

L
{

logW∞(1)− logWn(1)

(m(2))n/2

∣

∣

∣Fn

}

a.s.w.−→
n→∞

{

ω 7→ N

(

0, v2
W∞(2;ω)

W 2
∞(1;ω)

)}

. (1.3)

Proof. Dividing the Markov kernels on both sides of (1.2) by Wn(1) (which is Fn-

measurable) and using the fact that limn→∞ Wn(1) = W∞(1) > 0 a.s. on S (for the

positivity, see the implication (ii) ⇒ (i) on p. 218 in [24]) together with the Slutsky

lemma, we obtain that

L
{

1

(m(2))n/2

(

W∞(1)

Wn(1)
− 1

)

∣

∣

∣Fn

}

a.s.w.−→
n→∞

{

ω 7→ N

(

0, v2
W∞(2;ω)

W 2
∞(1;ω)

)}

. (1.4)

It is easy to check that if (ξn)n∈N0 is a sequence of random variables such that a−1
n ξn

converges in distribution to some ξ as n → ∞, where an → 0 is a deterministic

sequence, then a−1
n log(1 + ξn) converges in distribution to the same limit ξ. Applying

this to (1.4) pointwise yields (1.3).

A central limit theorem for the tail martingale of a Galton–Watson process was

obtained by Athreya [7] (who considered multitype branching processes) and Heyde [16]

(who also treated the case when the limit is α-stable in [17]). This CLT can also be

found on page 55 of the book [8]. In the more general setting of multitype branching

processes, related CLT’s were obtained in [6, 7, 23]. A functional CLT for the tail

martingale was obtained by Heyde and Brown [18]. By considering BRW with trivial

displacements (see the proof of Corollary 1.4 for more details), the results of Section 1.2

can be used to recover most of the results obtained in [13, 16, 18]. Linear statistics of

branching diffusion processes and superprocesses are objects of current active studies;

see, e.g., [1] and [26]. Although the Biggins martingale is a special case of linear

statistics, the conditions imposed in [1, 26] exclude test functions of the form x 7→ e−x.

In the setting of weighted branching processes (which includes BRW as a special case),

a CLT was obtained in [27], however the moment conditions of [27] are slightly more

restrictive than ours. Also, we provide a functional CLT and a stronger (a.s.w.) mode
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of convergence. Recently, CLT’s for tail martingales associated with random trees (and

related to the derivative of the Biggins martingale at 0) were proved in [14, 25, 28].

1.3. Law of the iterated logarithm

The law of the iterated logarithm given next complements the central limit theorem

given in Corollary 1.1.

Theorem 1.3. Assume that m(1) = 1, σ2 = VarW1(1) < ∞, EW1(2) log
+ W1(2) <

∞, and that the function r → (m(r))1/r is finite and decreasing on [1, 2] with

− logm(2)

2
< −m′(2)

m(2)
, (1.5)

where m′ denotes the left derivative. Then, W∞(1) and W∞(2) are positive almost

surely on the survival set S, and

lim sup
n→∞

W∞(1)−Wn(1)
√

(m(2))n logn
=
√

2v2W∞(2), (1.6)

lim inf
n→∞

W∞(1)−Wn(1)
√

(m(2))n logn
= −

√

2v2W∞(2) (1.7)

almost surely, where v2 = VarW∞(1) = σ2(1−m(2))−1 < ∞.

Remark 1.1. It is well-known (see Theorem A in [9], p. 218 in [24] or Theorem 1.3 in

[3]) that conditions EW1(2) log
+ W1(2) < ∞ and (1.5) ensure the uniform integrability

of (Wn(2))n∈N0 which particularly implies that W∞(2) is a.s. positive on S.

Remark 1.2. Actually, under the assumptions m(1) = 1 and m(2) < +∞, the

conditions EW1(2) log
+ W1(2) < ∞ and (1.5) are also necessary for the uniform

integrability of (Wn(2))n∈N0 . Indeed, the function m(θ) is convex on the interval

[1, 2], hence it has left derivative m′(2) ∈ (−∞,+∞]. With this at hand the uniform

integrability implies (1.5) by Theorem 1.3 in [3]. It is not possible that m′(2) = +∞
because, together with m(2) < ∞, this would contradict (1.5). Hence, m′(2) is

finite. Under this condition, the uniform integrability of (Wn(2))n∈N0 implies that

EW1(2) log
+ W1(2) < ∞ by Theorem 1.3 in [3].

Remark 1.3. It will be shown in (2.5) that

Var[W∞(1)−Wn(1)] = v2(m(2))n.
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In (1.6) and (1.7) it is possible to replace logn by the asymptotically equivalent

expression log log(v2(m(2))n), thereby justifying the use of the term “law of the iterated

logarithm”. Therefore, the normalization in (1.6) and (1.7) is very similar to that in

the classical law of the iterated logarithm, but it should be stressed that unlike in the

classical case, the limits in (1.6) and (1.7) are random.

As an immediate consequence of Theorem 1.3 we derive a previously known result

(see [19] and Theorem 3.1 (ii) on p. 28 in [5]) concerning the Galton–Watson process.

Corollary 1.4. Consider a Galton–Watson process (Yn)n∈N0 with m := EY1 ∈ (1,∞)

and s2 := VarY1 < ∞. Then, for the martingale Wn := Yn/m
n and its almost sure

limit W∞ we have

lim sup
n→∞

mn/2(W∞ −Wn)√
logn

=
√

2v2W∞,

lim inf
n→∞

mn/2(W∞ −Wn)√
logn

= −
√

2v2W∞

almost surely, where v2 := VarW∞ = s2(m(m− 1))−1.

Proof. Consider a BRW in which the genealogical structure is the same as in (Yn)n∈N0 ,

and the displacements of all individuals are deterministic and equal to logm. That is,

e−Xi = m−1 for i = 1, . . . , Y1 and we have, for γ > 0,

m(γ) = m1−γ and Wn(γ) = Yn/m
n = Wn, n ∈ N0.

Hence m(1) = 1, W∞ = W∞(2), VarW1 = m−2s2 and VarW∞ = (m(m − 1))−1s2.

The assumptions of Theorem 1.3 are easy to verify, whence the result.

Plainly, Theorem 1.3 is a result on the rate of the a.s. convergence of Wn(1) to

its limit. There have already been several works that investigated how fast Wn(1)

approaches W∞(1) in various senses, see [20, 21] for the rate of a.s. convergence, [4]

for the rate of Lp-convergence. Laws of the iterated logarithm for martingales related

to path length of random trees were obtained in [28]. We also refer to [15] for general

central limit theorems and laws of the iterated logarithm for martingales not necessarily

related to branching processes.
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2. Proof of Theorem 1.2

Throughout the rest of the paper, we shall use Wn and W∞ as shorthands for Wn(1)

and W∞(1). Note that Wn(2) and W∞(2) retain their meaning.

For any u ∈ V let W
(u)
r and W

(u)
∞ , r ∈ N0, be the analogues of Wr and W∞, r ∈ N0,

but based on the progeny of the individual u rather than the progeny of the initial

ancestor ∅. That is,

W (u)
r =

∑

|v|=r

e−(S(uv)−S(u)), r ∈ N0, and W (u)
∞ = lim

r→∞
W (u)

r a.s.

Recall the notation Yu = e−S(u). We shall frequently use the decomposition

Wn+r =
∑

|u|=n

YuW
(u)
r , r ∈ N0 ∪ {∞}.

Observe that for |u| = n, the Yu’s are Fn-measurable, whereas the W
(u)
r ’s are inde-

pendent of Fn. We need two results on the covariance structure of the martingale

(Wn)n∈N0 .

Proposition 2.1. Under the assumptions m(2) < 1 and σ2 = VarW1 < ∞ we have

VarWr = σ2(1 +m(2) + . . .+ (m(2))r−1), r ∈ N. (2.1)

Furthermore, the martingale (Wn)n∈N0 converges in L2 (and a.s.) to W∞ which satis-

fies

VarW∞ =
σ2

1−m(2)
.

In particular, (Wn)n∈N0 is uniformly integrable and W∞ > 0 a.s. on S.

Proof. We shall check (2.1) by using mathematical induction. The formula holds

for r = 1 because VarW1 = σ2. Suppose (2.1) holds for some r ∈ N. Then

VarWr+1 = E

[

(

∑

|u|=r

YuW
(u)
1

)2
]

− 1

= E

[

∑

|u|=r

Y 2
u (W

(u)
1 )2

]

+ E

[

E

[

∑

|u|=|v|=r
u6=v

YuYvW
(u)
1 W

(v)
1

∣

∣

∣

∣

Fr

]]

− 1

= (m(2))r(σ2 + 1) + E

[

∑

|u|=|v|=r
u6=v

YuYv

]

− 1

= σ2(m(2))r +VarWr
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because

E

[

∑

|u|=|v|=r
u6=v

YuYv

]

− 1 = E

[

(

∑

|u|=r

Yu

)2
]

− 1− E

[

∑

|u|=r

Y 2
u

]

= VarWr − (m(2))r.

This completes the induction and proves (2.1). Since m(2) < 1, the martingale

(Wn)n∈N0 is bounded in L2 and hence, converges in L2 to W∞. In particular, (Wn)n∈N0

is uniformly integrable and W∞ > 0 a.s. on S. Letting r in (2.1) tend to ∞ we infer

VarW∞ = σ2(1−m(2))−1.

Corollary 2.1. The random variables Wr+1 −Wr, r ∈ N0, are uncorrelated and

Var[Wr+1 −Wr] = σ2(m(2))r. (2.2)

Proof. The increments Wr+1−Wr, r ∈ N0, are uncorrelated just because (Wn)n∈N0

is a martingale. We thank the referee for this observation that enabled us to simplify

our original argument. Further, we have, for r < s,

E[(Ws −Wr)
2] = E

[

(

∑

|u|=r

Yu(W
(u)
s−r − 1)

)2
]

= (m(2))r VarWs−r = σ2
s−1
∑

k=r

(m(2))k.

This proves (2.2) by taking s = r + 1.

Proof of Theorem 1.2. The conditional law Ln can be explicitly described as follows.

On some probability space (Ω̃, F̃ , P̃) (which is different from the probability space

(Ω,F ,P) on which the BRW is defined) we construct a family (W̃
(u)
n )n∈N0∪{∞}, u ∈

V, of independent (for different u’s) distributional copies of the stochastic process

(Wn(1))n∈N0∪{∞}. For every ω ∈ Ω let Un,r(ω) be random variables on the space

(Ω̃, F̃ , P̃) defined by

Un,r(ω) :=

∑

|u|=n Yu(ω)(W̃
(u)
∞ − W̃

(u)
r )

(m(2))(n+r)/2
, n, r ∈ N0. (2.3)

With this notation, the conditional law Ln : Ω → M(R∞) is the Markov kernel

Ln(ω) = L{(Un,r(ω))r∈N0} ,

where L is the law taken with respect to the probability distribution P̃. Recall also

that the Markov kernel L∞ : Ω → M(R∞) is defined by

L∞(ω) = L
{

(

√

v2W∞(2;ω)Ur

)

r∈N0

}

.
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Weak convergence of probability measures on R
∞ is equivalent to the weak conver-

gence of their finite-dimensional distributions. So, we need to prove that for P–a.e.

ω ∈ Ω we have Ln(ω) → L∞(ω) in the sense of finite-dimensional distributions. We

take any r1, . . . , rd ∈ N0 and show that for P–a.e. ω ∈ Ω,

(Un,r1(ω), . . . , Un,rd(ω))
d−→

n→∞

√

v2W∞(2;ω)(Ur1 , . . . , Urd). (2.4)

This is done by verifying the conditions of the d-dimensional Lindeberg central limit

theorem. Clearly, (2.3) provides a representation of the vector (Un,r1(ω), . . . , Un,rd(ω))

as a sum of independent but not identically distributed random vectors. (Note that

Yu(ω) are treated as constants). For every r, n ∈ N0 and ω ∈ Ω we have E[Un,r(ω)] = 0

and

E[Un,r(ω)Un,s(ω)]

=
1

(m(2))n+(r+s)/2

∑

|u|=|v|=n

Yu(ω)Yv(ω)Cov(W̃
(u)
∞ − W̃ (u)

r , W̃ (v)
∞ − W̃ (v)

s )

=
1

(m(2))n+(r+s)/2

∑

|u|=n

Y 2
u (ω)Cov(W∞ −Wr,W∞ −Ws)

=
v2

(m(2))n





∑

|u|=n

Y 2
u (ω)



 (m(2))|r−s|/2,

where we used that W̃
(u)
r and W̃

(v)
s are independent for u 6= v and the formula

Cov(W∞ −Wr,W∞ −Ws) =
σ2

1−m(2)
(m(2))max{r,s} (2.5)

which follows from Corollary 2.2. By letting n → ∞ it follows that for P-a.e. ω ∈ Ω,

lim
n→∞

E [Un,r(ω)Un,s(ω)] = v2W∞(2;ω)(m(2))|r−s|/2 = v2W∞(2;ω)Cov(Ur, Us).

This verifies the convergence of covariances in (2.4). It remains to check the Lindeberg

condition for P-a.e. ω ∈ Ω. This can be done individually for each component of the
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vectors in (2.4). For every ε > 0, we have

Ln(ε) :=
∑

|u|=n

E





Y 2
u (ω)(W̃

(u)
∞ − W̃

(u)
∞ )2

(m(2))n+r
1

{

Y 2
u (ω)(W̃

(u)
∞ −W̃

(u)
∞ )2

(m(2))n+r >ε2
}





=
1

(m(2))n+r

∑

|u|=n

Y 2
u (ω)E

[

(W∞ −Wr)
2
1

{

(W∞−Wr)2

(m(2))r
> ε2

Y 2
u (ω)/(m(2))n

}

]

≤ 1

(m(2))n+r





∑

|u|=n

Y 2
u (ω)



Gr

(

ε2

sup|u|=n Y
2
u (ω)/(m(2))n

)

,

where

Gr(A) = E

[

(W∞ −Wr)
2
1

{

(W∞−Wr)2

(m(2))r
>A

}

]

, A > 0.

Since the second moment of W∞ − Wr is finite, we have limA→+∞ Gr(A) = 0. By

Theorem 3 in [10], the assumption m(2) < ∞ ensures that

lim
n→∞

1

(m(2))n
sup
|u|=n

Y 2
u (ω) = 0 for P-a.e. ω ∈ Ω.

Also, for P-a.e. ω ∈ Ω,

lim
n→∞

1

(m(2))n+r

∑

|u|=n

Y 2
u (ω) =

1

(m(2))r
W∞(2;ω).

It follows that

lim
n→∞

Ln(ε) = 0 for P-a.e. ω ∈ Ω.

An application of the multidimensional Lindeberg CLT completes the proof of (2.4).

3. Proof of Theorem 1.3

Since relations (1.6) and (1.7) trivially hold on Sc, we have to prove that these hold

a.s. on S.
We start by recalling that, according to Remark 1.1, W∞(2) > 0 a.s. on S. The

proof follows the pattern of the proof of Theorem 3.1 on p. 28 in [5]. Recall the

notation Wn = Wn(1) and W∞ = W∞(1). We only treat the upper limit. Investigating

Wn−W∞ rather than W∞−Wn immediately gives the result for the lower limit. Also,

without loss of generality we assume in what follows that P[S] = 1 (otherwise we have

to use Lemma 3.2 below with the probability measure P replaced with P(·|S) and write
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“a.s. on the survival set S” rather than “a.s.” throughout). This assumption ensures

that W∞ and W∞(2) are positive a.s. rather than with positive probability.

We shall use the following representations

W∞ −Wn =
∑

|u|=n

Yu(W
(u)
∞ − 1) and Wn+r −Wn =

∑

|u|=n

Yu(W
(u)
r − 1) (3.1)

for r ∈ N. By the reasons that will become clear in a while we first consider the sums

as above with truncated summands. It will be convenient to write ea for m(2)−1/2.

For u ∈ V with |u| = n ∈ N0 and r ∈ N∞ := N ∪ {∞}, put

Z(u)
n,r := Yu(W

(u)
r − 1)1{eanYu|W (u)

r −1|≤1}

and then

Vn,r =
∑

|u|=n

(Z(u)
n,r − E[Z(u)

n,r |Fn]). (3.2)

Lemma 3.1. For r ∈ N∞,

lim
n→∞

e2an Var[Vn,r|Fn] = W∞(2)VarWr a.s. (3.3)

Proof. Conditionally on Fn, the random variables Z
(u)
n,r , |u| = n, are independent

(but not identically distributed). By definition of Vn,r we have

Var[Vn,r|Fn] =
∑

|u|=n

E
[

(Z(u)
n,r)

2| Fn

]

−
∑

|u|=n

(

E
[

Z(u)
n,r | Fn

])2
=: T ′

n,r − T ′′
n,r.

To verify (3.3), we are going to show that

lim
n→∞

e2anT ′
n,r = W∞(2)VarWr a.s., (3.4)

lim
n→∞

e2anT ′′
n,r = 0 a.s. (3.5)

Proof of (3.4). Let Fr(x) := P{|Wr − 1| ≤ x}, x ≥ 0, be the distribution function of

|Wr − 1|. With this notation, we have

T ′
n,r :=

∑

|u|=n

E
[

(Z(u)
n,r)

2| Fn

]

=
∑

|u|=n

(

Y 2
u

∫

[0, e−anY −1
u ]

x2dFr(x)

)

and thereupon




∑

|u|=n

Y 2
u





∫

[0, (ean sup
|u|=n

Yu)−1]

x2dFr(x) ≤ T ′
n,r ≤





∑

|u|=n

Y 2
u



VarWr . (3.6)
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By Theorem 3 in [10], the assumption m(2) < ∞ alone ensures that

lim
n→∞

ean sup
|u|=n

Yu = 0 a.s. (3.7)

Thus, the integral in the lower estimate in (3.6) converges a.s. to VarWr . To complete

the proof of (3.4) we recall that

lim
n→∞

e2an
∑

|u|=n

Y 2
u = W∞(2) a.s. (3.8)

Proof of (3.5). Since E[W
(u)
r − 1] = 0,

T ′′
n,r =

∑

|u|=n

Y 2
u

(

E
[

(W (u)
r − 1)1{eanYu|W (u)

r −1|≤1}
])2

=
∑

|u|=n

Y 2
u

(

E
[

(W (u)
r − 1)1{eanYu|W (u)

r −1|>1}
])2

.

Using W
(u)
r − 1 ≤ |W (u)

r − 1| gives

T ′′
n,r ≤

∑

|u|=n

(

Y 2
u

(

∫ ∞

e−anY −1
u

xdFr(x)

)2)

≤
(

∑

|u|=n

Y 2
u

)(

∫ ∞

(ean sup
|u|=n

Yu)−1

xdFr(x)

)2

.

Since
∫∞
0 xdFr(x) is finite, the integral on the right-hand side converges a.s. to 0 as

n → ∞ by (3.7). Recalling (3.8), we arrive at (3.5). Taken together, (3.4) and (3.5)

yield (3.3).

The main tool in the proof of Theorem 1.3 is the following lemma, see Proposition

7.2 on p. 436 in [5].

Lemma 3.2. Let (Gn)n∈N0 be an increasing sequence of σ-fields and (Tn)n∈N0 be a

sequence of random variables such that

∑

n≥0

sup
y∈R

|P[Tn ≤ y|Gn]− Φ(y)| < ∞ a.s., (3.9)

where Φ(y) = 1√
2π

∫ y

−∞ e−x2/2dx, y ∈ R. Then,

lim sup
n→∞

Tn√
2 logn

≤ 1 a.s.
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If, further, there is a k ∈ N such that Tn is Gn+k-measurable for each n ∈ N0, then

lim sup
n→∞

Tn√
2 logn

= 1 a.s.

Let r ∈ N∞ be fixed. We are going to verify condition (3.9) for the random variables

Tn := Vn,r/
√

Var[Vn,r|Fn].

Conditionally given Fn, Vn,r is a weighted sum of i.i.d. random variables to which the

Berry–Esseen inequality (see Lemma 4.2 below) applies:

∆n,r := sup
y∈R

∣

∣

∣

∣

∣

P

[

Vn,r
√

Var[Vn,r|Fn]
≤ y

∣

∣

∣

∣

∣

Fn

]

− Φ(y)

∣

∣

∣

∣

∣

≤ C

∑

|u|=n E

[

∣

∣

∣Z
(u)
n,r − E[Z

(u)
n,r |Fn]

∣

∣

∣

3

|Fn

]

(Var[Vn,r|Fn])3/2

≤ 8C

∑

|u|=n E[|Z
(u)
n,r |3|Fn]

(Var[Vn,r|Fn])3/2
,

where C > 0 is a finite absolute constant. Now we work towards proving that

∑

n≥0

∆n,r < ∞ a.s. (3.10)

which would verify condition (3.9). Equation (3.3) reveals that (3.10) would hold

provided we could prove that B < ∞ a.s., where

B :=
∑

n≥0

e3an
∑

|u|=n

E[|Z(u)
n,r |3|Fn] (3.11)

=
∑

n≥0

e3an
∑

|u|=n

Y 3
u

∫

[0,∞)

x3
1{e−anY −1

u ≥x} dFr(x).

To proceed, we need to define the random walk associated with the BRW. Consider

the following probability measures on R:

Σn := E

[

∑

|u|=n

Yu δS(u)

]

, n ∈ N.

The associated random walk (Sn)n∈N0 is a zero-delayed random walk with increment

distribution Σ1. It is clear that, for any measurable f : R → [0,∞),

E f(Sn) = E

[

∑

|u|=n

Yuf(S(u))

]

, n ∈ N. (3.12)
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Passing to expectations in (3.11) and using (3.12) we obtain

EB =

∫

[0,∞)

x3





∑

n≥0

ean E
[

e−2(Sn−an)
1{eSn−an>x}

]



 dFr(x)

=

∫

[0,∞)

x3

(
∫ ∞

x

y−2dV (y)

)

dFr(x),

where

V (x) :=
∑

n≥0

ean P{Sn − an ≤ log x}, x > 0. (3.13)

By Lemma 4.1, V (x) < ∞ for all x > 0. Since the function x 7→
∫∞
x y−2dV (y) is

nonincreasing we conclude, again by Lemma 4.1, that
∫∞
x

y−2dV (y) ≤ c/x for some

constant c > 0 and large enough x. Hence
∫

(b,∞) x
3
∫∞
x y−2dV (y)dFr(x) < ∞ for any

b > 0 in view of

VarWr =

∫

[0,∞)

x2dFr(x) < ∞. (3.14)

We also have
∫

[0,b] x
3
∫∞
x y−2dV (y)dFr(x) < ∞ because lim

x→0+
x3
∫∞
x y−2dV (y) = 0. To

verify the latter relation, integrate by parts and apply L’Hôspital’s rule. This proves

that B < ∞ a.s. and thereupon (3.10).

An appeal to Lemma 3.2 with Tn = Vn,r/
√

Var[Vn,r|Fn] in combination with (3.3)

leads to the conclusion: for fixed r ∈ N,

lim sup
n→∞

eanVn,r√
2 logn

=
√

W∞(2)VarWr a.s. (3.15)

because Vn,r is Fn+r-measurable; whereas

lim sup
n→∞

eanVn,∞√
2 logn

≤
√

W∞(2)VarW∞ a.s. (3.16)

Comparing formulae (3.1) and (3.2) we conclude that in order to show that (3.15) and

(3.16) imply

lim sup
n→∞

ean(Wn+r −Wn)√
2 logn

=
√

W∞(2)VarWr a.s. (3.17)

and

lim sup
n→∞

ean(W∞ −Wn)√
2 logn

≤
√

W∞(2)VarW∞ a.s. (3.18)

it suffices to prove that, for r ∈ N∞,

lim
n→∞

ean
∑

|u|=n

Yu|W (u)
r − 1|1{eanYu|W (u)

r −1|>1} = 0 a.s. (3.19)
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and

lim
n→∞

ean
∑

|u|=n

|E[Z(u)
n,r |Fn]| = 0 a.s. (3.20)

Since E[W
(u)
r − 1] = 0 and Yu is Fn-measurable for |u| = n, we have

∣

∣E[Z(u)
n,r |Fn]

∣

∣ =
∣

∣

∣E

[

Yu(W
(u)
r − 1)1{eanYu|W (u)

r −1|≤1}

∣

∣

∣Fn

]∣

∣

∣

=
∣

∣

∣E

[

Yu(W
(u)
r − 1)1{eanYu|W (u)

r −1|>1}

∣

∣

∣Fn

]∣

∣

∣

≤ E

[

Yu|W (u)
r − 1|1{eanYu|W (u)

r −1|>1}

∣

∣

∣Fn

]

.

Hence both relations (3.19) and (3.20) follow if we can show that

I := E

[

∑

n≥0

ean
∑

|u|=n

Yu|W (u)
r − 1|1{eanYu|W (u)

r −1|>1}

]

< ∞.

Since V is nondecreasing, an application of Lemma 4.1 yields V (x) ≤ cx for some

constant c > 0 and large enough x. Using this we infer

I = E

[

∑

n≥0

ean
∑

|u|=n

Yu

∫

[0,∞)

x1{e−anY −1
u ≤x} dFr(x)

]

=

∫

[0,∞)

xV (x)dFr(x) < ∞

in view of (3.14). The proof of (3.17) and (3.18) is complete.

It remains to show that “≤” can be replaced by “=” in (3.18). As has already been

remarked at the beginning of the proof, once we have proved (3.18) we also have

lim inf
n→∞

ean(W∞ −Wn)√
2 logn

≥ −
√

W∞(2)VarW∞ a.s. (3.21)

For any r ∈ N, the following equality holds

ean(W∞ −Wn)√
logn

=
ea(n+r)(W∞ −Wn+r)

√

log(n+ r)

√

log(n+ r)√
log n

e−ar +
ean(Wn+r −Wn)√

logn
.

Using now (3.17) and (3.21) we infer

lim sup
n→∞

ean(W∞ −Wn)√
logn

≥ lim inf
n→∞

ea(n+r)(W∞ −Wn+r)
√

log(n+ r)

√

log(n+ r)√
logn

e−ar + lim sup
n→∞

ean(Wn+r −Wn)√
logn

≥ −
√

2W∞(2)VarW∞e−ar +
√

2W∞(2)VarWr.

Letting r → ∞ we arrive at

lim sup
n→∞

ean(W∞ −Wn)√
logn

≥
√

2W∞(2)VarW∞.

This completes the proof of Theorem 1.3.



18 Alexander Iksanov and Zakhar Kabluchko

4. Appendix

The following result is concerned with the asymptotics of V (x) defined in (3.13).

This is a slightly extended specialization of Lemma 3.1 in [21].

Lemma 4.1. Suppose that the function r → (m(r))1/r decreases on [1, 2] and that (1.5)

holds. Then V (x) < ∞ for all x > 0. If, furthermore, the associated random walk

(Sn)n∈N0 is non-arithmetic, then as x → ∞,

V (x) ∼ cax, (4.1)

where ca := (e2a(−m′(2))− a)−1 ∈ (0,∞), and
∫

(x,∞)

y−2 dV (y) ∼ cax
−1. (4.2)

If (Sn − an)n∈N0 is arithmetic with span λa > 0, then, analogously, as n → ∞

V (eλan) ∼ dae
λan, (4.3)

where da := λa((1 − e−λa)(e2a(−m′(2))− a))−1 ∈ (0,∞), and
∫

[eλan,∞)

y−2dV (y) ∼ dae
−λan. (4.4)

Proof. Formulae (4.1) and (4.3) are borrowed from Lemma 3.1 in [21]. Relation (4.2)

follows from (4.1) by integration by parts and subsequent application of Proposition

1.5.10 of [11]. Relation (4.4) can be obtained with the help of elementary calculations

in combination with V (eλan)−V (eλa(n−1)) ∼ da(1−e−λa)eλan which is a consequence

of (4.3).

Since we consider BRW in which particles are allowed to have infinite number of

offspring with positive probability, we need a version of the Berry–Esseen inequality

for sums with possibly infinite number of summands.

Lemma 4.2. Let X1, X2, . . . be independent (but not identically distributed) random

variables with EXi = 0, σ2
i := VarXi and ρi := E |Xi|3, i ∈ N. If

∑

i≥1 σ
2
i < ∞, then,

for an absolute constant C,

sup
y∈R

∣

∣

∣

∣

∣

∣

∣

P







∑

i≥1 Xi

(

∑

i≥1 σ
2
i

)1/2
≤ y






− 1√

2π

∫ y

−∞
e−x2/2dx

∣

∣

∣

∣

∣

∣

∣

≤ C

∑

i≥1 ρi
(

∑

i≥1 σ
2
i

)3/2
. (4.5)
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Proof. According to the classical Berry–Esseen inequality, (4.5) is valid if all infinite

sums are replaced by finite sums over i = 1, . . . , n with arbitrary n ∈ N. By letting in

the classical inequality n → ∞ and noting that ηn :=
∑n

i=1 Xi/(
∑n

i=1 σ
2
i )

1/2 converges

to its infinite version η∞ a.s. (and hence in distribution), we obtain that (4.5) holds

for all y which are continuity points of η∞. Since any y ∈ R can be approximated by

continuity points from the right and since the distribution function is right-continuous,

we obtain that (4.5) holds for all y ∈ R.
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