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Stability with respect to initial conditions

in V-norm for nonlinear filters with

ergodic observations

Mathieu Gerber Nick Whiteley

Harvard University and University of Bristol

We establish conditions for an exponential rate of forgetting of the ini-
tial distribution of nonlinear filters in V -norm, path-wise along almost all
observation sequences. In contrast to previous works, our results allow for
unbounded test functions. The analysis is conducted in an general setup in-
volving nonnegative kernels in a random environment which allows treatment
of filters and prediction filters in a single framework. The main result is illus-
trated on two examples, the first showing that a total variation norm stability
result obtained by Douc et al. (2009) can be extended to V -norm without any
additional assumptions, the second concerning a situation in which forgetting
of the initial condition holds in V -norm for the filters, but the V -norm of each
prediction filter is infinite.

Keywords: Nonlinear filtering, Hidden Markov models, random environ-
ment, V -norm

1 Introduction

For Polish spaces X, Y equipped with their Borel σ-algebras X , Y, let µ be a probability
measure on X and let f : X × X → [0, 1] and g : X × Y → [0, 1] be probability kernels.
A hidden Markov model (HMM) is a bi-variate process (X,Y ) where the signal process
X = (Xn)n∈N is a Markov chain with initial distribution µ and transition kernel f ,
and the observations Y = (Yn)n∈N are conditionally independent given X, with the
conditional distribution of Yn givenX being g(Xn, ·). The filtering problem is to compute,
for each n, the conditional distribution of Xn given Y0, . . . , Yn.

Suppose that for each x ∈ X, g(x, ·) admits a density denoted g(x, y) w.r.t. some
σ-finite measure. Then for a probability measure λ on X , under mild conditions on the
density g the following recursion defines a sequence of probability kernels Πλ

n : YN×X →
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[0, 1], n ≥ 0,

Πλ
n(y,A) :=

´

1A(x)g(x, yn)f(x
′,dx)Πλ

n−1(y,dx
′)

´

g(x, y0)f(x′,dx)Π
λ
n−1(y,dx

′)
, n ≥ 1,

Πλ
0(y,A) :=

´

1A(x)g(x, y0)λ(dx)
´

g(x, y0)λ(dx)
,

(1)

where y = (y0, y1, . . .) ∈ Y
N. In particular, Πµ

n(Y, ·) is a version of the conditional distri-
bution ofXn given Y0, . . . , Yn under the probability model described in the first paragraph
of this section. A distribution of the form Πλ

n(y, ·) is called a filtering distribution, or
simply a filter.

The question of stability w.r.t. initial conditions of the filter addresses whether or not
Πλ

n is, in some sense, insensitive to λ as n→ +∞. This question has been made precise
in a number of ways and answered using a variety of techniques. A full survey of existing
results is beyond the scope of this article, the reader is directed to Crisan and Rozovskii
(2011, Chapter 4) for a collection of recent perspectives. However, what unifies much
of the literature on filter stability is that the insensitivity of Πλ

n to λ is described in
terms of integrals w.r.t. Πλ

n(y, ·) of bounded test functions, typically through decay as

n → +∞ of the total variation ‖Πλ
n(Y, ·) − Πλ̃

n(y, ·)‖tv, where for a signed measure m,
‖m‖tv := sup|ϕ|≤1 |m(ϕ)|, m(ϕ) :=

´

ϕ(x)m(dx). Studies using the total variation norm
include e.g., Kleptsyna and Veretennikov (2008); Douc et al. (2009, 2010); Van Handel
(2009) and several older and influential works deal with bounded continuous test functions
e.g., Ocone and Pardoux (1996) for filtering in continuous time.

In many applications X is R
d or some other unbounded domain and the motive for

computing Πλ
n is statistical inference for the signal process, e.g. by calculating moments

of Πλ
n(y, ·). This situation leads naturally to the question of filter stability for unbounded

test functions, which to the knowledge of the authors has gone largely unanswered. The
main aim of the present article is to address this gap.

One situation in which unbounded test functions are implicitly considered is the
linear-Gaussian case, in which X, Y are Cartesian products of R, x is a vector and
f(x, ·) = N (Ax,C), g(x, ·) = N (Bx,D) for suitable matrices A,B,C,D. If λ is also
Gaussian, then Πλ

n(y, ·) is too. In this situation the stability of the mean and covariance
of Πλ

n(y, ·) w.r.t. initial conditions has been well studied, see Ocone and Pardoux (1996)
for continuous time and references therein for discrete time, but the proof techniques
involved seem very much specific to the linear-Gaussian model structure.

Our aim is to accommodate unbounded test functions whilst allowing more general
assumptions on λ, f and g. Our approach builds very directly upon that of Douc et al.
(2009), in turn drawing on techniques of Kleptsyna and Veretennikov (2008). Under
a collection of assumptions which we discuss in more detail later, Douc et al. (2009,
Theorem 1) established path-wise exponential stability of the form: there exists a strictly
positive constant c such that for any two probability measures λ, λ̃:

lim sup
n→+∞

1

n
log ‖Πλ

n(Y, ·)−Πλ̃
n(Y, ·)‖tv < −c, P− a.s., (2)
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where P is a probability measure on Y⊗N. The conditions of Douc et al. (2009, Theorem
1) accommodate Y being a stationary ergodic process under P, and allow for model mis-
specification, in the sense that P need not be the measure on Y⊗N induced by the HMM
specified by µ, f, g, or indeed any HMM.

Our main contribution is to establish that under conditions similar to those of Douc et al.
(2009), path-wise exponential convergence as in (2) holds, but with ‖ · ‖tv replaced
by a norm which allows for unbounded test functions. For V an R

+-valued function
on X such that supx∈X V (x) ≤ +∞, we consider the norm on signed measures m,
‖m‖V := sup|ϕ|≤V |m(ϕ)|, as is popular in studies of the ergodic properties of general
state-space Markov chains (Meyn and Tweedie, 2009, Chapter 16). Stability w.r.t. ini-

tial conditions of the prediction filters Π
λ
n(y, ·) :=

´

f(x, ·)Πλ
n−1(y,dx) in V -norm was

considered by the second author of the present paper in (Whiteley, 2013), but under a
restrictive condition on the observation sequence y which we discuss in more detail later,
after introducing notation and definitions.

The rest of the paper is structured as follows. Our general setup is introduced in Section
2.1, where we take a slightly abstract perspective on HMM’s and filtering, in that our
main results concern certain sequences of measures which arise from the composition of
nonnegative kernels driven by an ergodic measure-preserving transform, along the lines
considered by Kifer (1996) in his Perron-Frobenius theorem in random environments.
The utility of this general formulation is that it allows us to treat stability of the filters

Πλ
n and the prediction filters Π

λ
n in a single framework, as described in Section 2.2.

The statements of our main results are given in Section 2.3, with comparisons to the
assumptions of Douc et al. (2009) and a result of Whiteley (2013). Verification of the
assumptions is illustrated through examples in Section 3 and we point to potential other
applications in Section 3.3. The proofs are in Section 4.

2 Nonnegative kernels in a random environment

2.1 Definitions and assumptions

We consider a complete probability space (Ω,F ,P) and a measurable space (X,X ), where
X is Polish and X is the Borel σ-algebra on X. For an integral kernel R : Ω× X× X →
[0,+∞], i.e. for (ω, x) ∈ Ω × X, R(ω, x, ·) is a measure on X , and for A ∈ X , R(·, ·, A)
is measurable w.r.t. F ⊗ X , we shall write interchangeably R(ω, x,A) ≡ Rω(x,A).
Similarly for ν : Ω × X → [0,+∞], ν(ω,A) ≡ νω(A); for ϕ : Ω × X → R, ϕ(ω, x) ≡
ϕω(x); and Rωϕω(x) :=

´

X
ϕω(x′)Rω(x,dx′), νωRω(·) :=

´

X
νω(dx)Rω(x, ·), νω(ϕω) :=

´

X
ϕω(x)νω(dx).
By virtue of our completeness assumption about (Ω,F ,P) and Polish assumption about

X, for any measurable ϕ : Ω × X → R and A ∈ X , the mappings ω 7→ supx∈A ϕ(ω, x)
and ω 7→ infx∈A ϕ(ω, x) are each measurable w.r.t. F (Crauel, 2003, Corollary 2.13).

We fix a function V : X → [1,+∞) possibly unbounded (in the sense that we allow
supx∈X ≤ +∞), with which we associate the following norms. For ϕ : X → R, ‖ϕ‖V :=
supx∈X |ϕ(x)|/V (x); for any signed measure m on X , ‖m‖V := supϕ:|ϕ|≤V |m(ϕ)|; and
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for any two nonnegative integral kernels R, R̃ on (X,X ), 9R− R̃9V := supx∈X ‖R(x, ·)−

R̃(x, ·)‖V /V (x).
Let θ : Ω → Ω be a measurable mapping and with n ∈ N, let θn denote the n-fold

iterate of θ. Then denote:

Rω
0 := Id, Rω

n := RωRθω · · ·Rθn−1ω, n ≥ 1.

Define a ∨ b := max{a, b}, a ∧ b := min{a, b}, log+(x) := log(1 ∨ x) and log−(x) :=
− log(1 ∧ x). The indicator function on a set A is denoted by 1A. The set of non-
negative integers is denoted N. We adopt the conventions 0/0 = +∞/+∞ = 1.

From henceforth we fix a distinguished nonnegative kernel Q : Ω× X× X → [0,+∞],
such that Qω(x,X) > 0 for all x ∈ X, P-a.s.

Definition 1. A set C ∈ X is a local Doeblin (LD) set for Q if there exist nonnegative
random variables ǫ−C , ǫ

+
C on (Ω,F), such that ǫ−C(ω) ≤ ǫ+C(ω) for all ω and both ǫ+C and

ǫ−C are valued in (0,+∞) P-a.s.; and a probability kernel µC : Ω × X → [0, 1] such that
µωC(C) = 1 for all ω and, for any (A, x, ω) ∈ X × C × Ω,

ǫ−C(ω)µ
ω
C(A ∩ C) ≤ Qω(x,A ∩ C) ≤ ǫ+C(ω)µ

ω
C(A ∩ C).

We shall consider the following assumptions.

(A1) θ preserves P and is ergodic;

(A2) E
[
log+ Υ

]
< +∞, where Υ(ω) := 9Qω9V , ω ∈ Ω;

(A3) There exists a setD ∈ X such that E
[
log− Ψ

]
< +∞, where Ψ(ω) := infx∈DQ

ω(x,D),
ω ∈ Ω;

(A4) There exist a set K ∈ F , a constant d ≥ 0, and a measurable, unbounded function
W : X → [0,+∞) such that for any d ∈ [d,+∞),

a) Cd := {x ∈ X : W (x) ≤ d} is a LD set for Q, with

inf
ω∈K

ǫ−Cd
(ω)/ǫ+Cd

(ω) ∈ (0, 1], E
[
log−

(
ǫ−Cd

µCd
(Cd ∩D)

)]
< +∞,

where D is as in (A3);

b) Vd := supx∈Cd
V (x) < +∞ and

Qω(V )(x)

V (x)
≤ exp [−W (x)] , ∀(ω, x) ∈ K × Cc

d;

(A5) P(K) > 2/3, where K is as in (A4).

Let M(D,V ) be the collection of integral kernels ν : Ω × X → [0,+∞], such that
for any A ∈ X , the mapping ω 7→ νω(A) is measurable; for P-almost all ω, νω(·) is a
probability measure on X , νω(V ) < +∞ and νωQω(D) > 0, where D is as in (A3).
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For any integral kernel ν : Ω× X → [0,+∞] and n ∈ N, denote:

ηων,n(A) :=
νωQω

n(A)

νωQω
n(X)

, (ω,A) ∈ Ω× X . (3)

The following preliminary lemma addresses some basic regularity properties of Q and
ην,n.

Lemma 1. Assume (A1), (A2), (A3) and let ν ∈ M(D,V ). Then there exists Ω̄ ∈ F
with P(Ω̄) = 1 such that the following hold for all ω ∈ Ω̄. For all n ∈ N, 9Qω

n9V < +∞,∏n
k=0Υ(θkω) < +∞,

∏n
k=0Ψ(θkω) > 0, and for all x ∈ X, Qω

n(x,X) > 0. Also ηων,n(·)
is a probability measure on X and ηων,n(V ) < +∞ for all n ∈ N, and ηων,n(D) > 0 for all
n ≥ 1.

Proof. By the sub-multiplicative property of 9·9V , we have 9Qω
n9V ≤

∏n−1
k=0 9Qθkω9V =∏n−1

k=0 Υ(θkω). For P-almost all ω, Υ(ω) < +∞ by (A2), Ψ(ω) > 0 by (A3), and
Qω(x,X) > 0 for all x ∈ X by definition. Combining these observations with the measure
preservation part of (A1) gives the first four inequalities in the statement. For n ∈ N,
‖νωQω

n‖V ≤ ‖νω‖V 9 Qω
n9V < +∞ and for n ≥ 1, νωQω

n(X) ≥ νωQω(D)
∏n−1

k=0 1 ∧
Ψ(θkω) > 0, P-a.s. Putting these facts together with (3) completes the proof.

2.2 Instances of the general setup

Let (Y,Y), f , g, λ, Πλ
n and Π

λ
n be as in Section 1 and let P be some probability measure

on Y⊗N. Take Ω = Y
N. We note that the requirement of Section 2.1 to have a complete

probability space can always be satisfied by taking (Ω,F ,P) to be the unique completion
of (Ω,Y⊗N,P) in the sense of Billingsley (1986, p.39 and problem 3.5, p.43), where here
and in the examples of Section 3 we abuse notation slightly in using the symbol P to
represent both the original probability measure on Y⊗N and its extension to F .

Regard Y (ω) = (Y0(ω), Y1(ω), . . .) as the coordinate process on (Ω,F). Take θ as the
shift operator, Y (θω) = (Y1(ω), Y2(ω), . . .). We then observe the following from (1) and
(3).

Filters If one takes

νω(dx) =
g(x, Y0(ω))λ(dx)
´

g(x′, Y0(ω))λ(dx′)
, Qω(x,dx′) = f(x,dx′)g(x′, Y1(ω)), (4)

then ηων,n(·) ≡ Πλ
n(Y (ω), ·).

Prediction filters If one takes

νω(·) = λ(·), Qω(x,dx′) = g(x, Y0(ω))f(x,dx
′), (5)

then ηων,n(·) ≡ Π
λ
n(Y (ω), ·).
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2.3 Statements of the main results

Theorem 1. Assume (A1)-(A5). Then there exists a ρ ∈ (0, 1) such that, for all ν, ν̃ ∈
M(D,V ),

lim
n→+∞

ρ−n‖ηων,n − ηων̃,n‖V = 0, P-a.s.

The main ingredients in the proof of Theorem 1 are the following two propositions.
Proof of Proposition 1 is the main technical contribution of the paper and is given
in Section 4.2 through a sequence of lemmas. The proof of Proposition 2, given in
Section 4.3, follows quite closely some arguments of Douc and Moulines (2012, Proof of
Proposition 5), with suitable modifications to accommodate the V -norm. Lastly, we note
although we are primarily interested in the case supx V (x) = +∞, none of our results
actually require that condition to hold, and when e.g., V (x) = 1 the V -norm on measures
reduces to the tv-norm and the claim of Proposition 1 is trivial.

Proposition 1. Assume (A1)-(A4), P(K) > 0, with K as in (A4). Then, for any
β ∈ (0, 1) and ν ∈ M(D,V ),

lim
n→+∞

βn‖ηων,n‖V = 0, P-a.s.

Proposition 2. Assume (A1)-(A4), let ν, ν̃ be two members of M(D,V ), and let γ−, γ+, β
be constants such that 0 ≤ γ− < γ+ ≤ 1 and β ∈ (γ−, γ+). Fix any d ∈ [d,+∞). Then
for P-almost any ω, if n−1Iω0,n−1 ≥ (1− γ−) ∨ (1 + γ+)/2, then:

‖ηων,n − ηων̃,n‖V

≤ 2ρ
⌊n(β−γ−)⌋
Cd

‖ηων,n‖V ‖η
ω
ν̃,n‖V + 2

νω(V )

νωQω(D)

ν̃ω(V )

ν̃ωQω(D)
e−d⌊n(γ+−β)⌋/2

n−1∏

i=0

Z(θiω)2 (6)

where ρCd
:= supω∈K

{
1−

(
ǫ−Cd

(ω)/ǫ+Cd
(ω)
)2}

∈ [0, 1) and Z(ω) :=
1 ∨Υ(ω)

1 ∧Ψ(ω)
.

We next describe how our assumptions compare to those of Douc et al. (2009, Theorem
1), who established a result in t.v.-norm of the form (2), and how our Theorem 1 differs
to a result of Whiteley (2013) which places restrictive conditions on the observation
sequence. Due to the technical nature of the assumptions and variations in notation, an
exhaustive comparison would be very lengthy and tedious, so we just focus on some key
issues.

Comparison with Douc et al. (2009)

Although Douc et al. (2009) addressed stability of the filtering distributions, compar-
ison of assumptions is most notationally direct in the setting (5); all assertions in the
remainder of Section 2.3 are to be understood in that context.

The main feature of our assumptions which is stronger than those of Douc et al. (2009,
Theorem 1), is that in (A4)a) we require Cd to be an LD set satisfying the integrability
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condition E
[
log−

(
ǫ−Cd

µCd
(Cd ∩ D)

)]
< +∞ for all d ∈ [d,+∞). This is in contrast

to Douc et al. (2009, Theorem 1, eq. (14)), which requires that a similar condition is
satisfied for only some LD set. The key place in which we use this integrability condition
is in the proof of Proposition 1, in particular see equation (30) below, where ultimately it
helps us establish that for P-almost all ω, ηων,n(V ) cannot grow “too-quickly” as n→ +∞.

Otherwise, our assumptions are very similar to those of Douc et al. (2009, Theorem 1).
We note that we have taken Qω(x,X) > 0 for all x, P-a.s. by definition i.e. g(x, Y0(ω)) >
0 for all x, P-a.s., which is essentially the same as Douc et al. (2009, p.139, condition
(H1)). Part b) of (A4) is very similar to Douc et al. (2009, p.139, condition (H2)). We
note in passing that similar conditions have appeared outside of the context of filtering,
in the spectral theory of nonnegative kernels, see Whiteley et al. (2012) and references
therein.

We note that (A1) amounts to saying that the observation process (Yn)n∈N is stationary
and ergodic. Combined with the conditions E[log+Υ] < ∞ in (A2), E[log

−Ψ] < ∞ in
(A3), and P(K) > 2/3 in (A5), this implies that lim supn→∞ n−1

∑n−1
k=0 logΥ(θkω) < +∞,

lim infn→∞ n−1
∑n−1

k=0 logΨ(θkω) > −∞ and limn→∞ n−1
∑n−1

k=0 1K(θkω) > 2/3, which
are very similar to Douc et al. (2009, Theorem 1, conditions (12)-(14)). Motivation for
the technical condition P(K) > 2/3 is given in Douc et al. (2014, Remark 5).

Comparison with Whiteley (2013)

A form of forgetting of the initial condition in V -norm for the prediction filters was
established by the second author of the present work in Whiteley (2013), but under
restrictive assumptions on the observation sequence. In the notation of the present work,
Whiteley (2013, Corollary 1) establishes under certain conditions that there exist Y ⊆ Y

and constants c < +∞, ρ < 1 depending on Y such that

y ∈ Y
N

⇒ ‖Π
λ
n(y, ·) −Π

λ̃
n(y, ·)‖V ≤ Cρn, ∀n ∈ N. (7)

Whiteley (2013, Section 3.1.1.) provides an example for which one can take Y = Y , but

in other cases one must resort to strict inclusion Y ⊂ Y and the condition y ∈ Y
N

becomes
very restrictive. For instance in the setting of Whiteley (2013, Section 3.1.2.), Y = R

dy ,

Y is a compact set and one can easily construct situations in which P(Y ∈ Y
N
) = 0

when P is the law of Y = (Yn)n∈N under the correctly-specified HMM. Thus (7) does not
satisfactorily extend (2). Theorem 1 overcomes this deficiency.

3 Discussion

The examples below serve two main purposes. Firstly, we show that for one of the
models treated by Douc et al. (2009), the tv-norm convergence as in (2) can be extended
to convergence in V -norm with no further assumptions. Secondly, we provide a simple
example to illustrate that under certain conditions on g, the filters can forget their initial
condition in V -norm for some V such that the V -norm of each prediction filter is infinite.
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3.1 A nonlinear state-space model

Throughout Section 3.1 we take X = R
dx , Y = R

dy and we focus on the following
nonlinear model, for n ≥ 0:

Xn+1 = Xn + b(Xn) + Σ(Xn)Vn (8)

Yn = h(Xn) + βWn (9)

where b : Rdx → R
dx and h : Rdx → R

dy are vectors of functions, Σ is a dx × dx matrix
of continuous functions, β > 0 is a constant and (Vn)n∈N and (Wn)n∈N are sequences of
i.i.d. standard Gaussian vectors of appropriate dimension. The following conditions are
considered by Douc et al. (2009, p.1245):

(E1) b is locally bounded and limr→+∞ sup|x|≥r

∣∣x+ b(x)| − |x| = −∞;

(E2) With σ(τ, x) := τTΣ(x)Σ(x)T τ ,

0 < inf
(x,τ)∈R2dx , |τ |=1

σ(τ, x) ≤ sup
(x,τ)∈R2dx , |τ |=1

σ(τ, x) < +∞; (10)

(E3) h is locally bounded and lim sup|x|→+∞ |x|−1 log |h(x)| < +∞.

Remark 1. For an arbitrarily chosen c > 0, set V (x) = exp(c|x|). Let f be the Markov
transition kernel corresponding to the signal model (8). The following facts are gathered
together from Douc et al. (2009, p.1246). Under (E1)-(E2): there exists a constant M <
+∞ such that

f(V )(x)

V (x)
≤M exp[c(|x + b(x)| − |x|)], ∀x ∈ X, (11)

and for any bounded Borel set C ∈ X of strictly positive Lebesgue measure, there are
constants 0 < ǫ̃−C ≤ ǫ̃+C < +∞ such that:

ǫ̃−C µ̃C(A ∩ C) ≤ f(x,A ∩ C) ≤ ǫ̃+C µ̃C(A ∩C), ∀(x,A) ∈ C × X , (12)

where µ̃C is the normalized restriction of Lebesgue measure to C. The Markov chain
(Xn)n∈N with transition kernel f is aperiodic and positive Harris recurrent with unique in-
variant distribution, say π, such that π(V ) < +∞, and the bi-variate process (Xn, Yn)n∈N
given by (8)-(9) is also aperiodic and positive Harris recurrent, with invariant distribution
π(dx)g(x, y)dy where dy is Lebesgue measure on R

dy and

g(x, y) ∝ exp(−[y − h(x)]T [y − h(x)]/2β2). (13)

The following proposition is an application of Theorem 1.

Proposition 3. Assume (E1)-(E3) hold for the nonlinear state-space model. Let P be
the probability measure on Y⊗N which is the law of (Yn)n∈N when the bi-variate process
(Xn, Yn)n∈N satisfies (8)-(9) and X0 ∼ π. Then for any constant c > 0 there exists a
constant ρ ∈ (0, 1) such that, with V (x) = exp(c|x|),

lim
n→+∞

ρ−n‖Πλ
n(Y, ·)−Πλ̃

n(Y, ·)‖V = 0, P− a.s.

for any two probability measures λ, λ̃ such that λ(V ) < +∞ and λ̃(V ) < +∞.
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Proof. Let V (x) = exp(c|x|) with some arbitrary c > 0. Fix any two probability measures
λ, λ̃ on X such that λ(V ) ∨ λ̃(V ) < +∞. Consider the scenario (4), let ν, ν̃ be the
probability kernels associated with λ, λ̃ as per (4), so ηων,n(·) ≡ Πλ

n(Y (ω), ·), ηων̃,n(·) ≡

Πλ̃
n(Y (ω), ·). To apply Theorem 1 we need to verify (A1)-(A5) and check that ν, ν̃ are

members of M(D,V ).
For (A1), the measure preservation part holds since (Yn)n∈N is by assumption a sta-

tionary process under P. For the ergodicity part, by Remark 1, the (Xn, Yn)n∈N chain
is aperiodic and positive Harris recurrent, so by Revuz (1975, Theorem 2.6, Chapter 6,
p.167) the tail σ-algebra for the process (Xn, Yn)n∈N is a.s. trivial, from which it fol-
lows that the σ-algebra of events which are invariant w.r.t. the shift operator θ, i.e.,
{A ∈ F : θ−1(A) = A}, is P-trivial.

(A2) readily holds, since it follows from (E1), (11) and (13) that

sup
ω

Υ(ω) = sup
ω,x

Qω(V )(x)/V (x) ≤ sup
x,y

g(x, y) sup
x
f(V )(x)/V (x) < +∞.

Consider now (A3) and (A4). For brevity, write

ψ(x) := c(|x+ b(x)| − |x|) + logM + log sup
x′,y

g(x′, y), x ∈ X

and then set W (x) = 0∨−ψ(x). It follows from (E1) that limr→∞ inf |x|≥rW (x) = +∞,
therefore for any d ∈ [0,+∞), the set Cd = {x :W (x) ≤ d} is bounded. There must exist
d ∈ [0,+∞) such that {x : |x| ≤ 1} ⊆ Cd, otherwise W would not be locally bounded,
which would contradict the local boundedness of b in (E1). Thus for each d ∈ [d,+∞),
Cd is a bounded Borel set of strictly positive Lebesgue measure. Set D = Cd.

Let Y ∈ Y be any compact set and take K = {ω : Y1(ω) ∈ Y}. For part a) of (A4),
using (12), we find that Cd is a LD-set for Q with:

ǫ−Cd
(ω) = ǫ̃−Cd

inf
x∈Cd

g(x, Y1(ω)), ǫ+Cd
(ω) = ǫ̃+Cd

sup
x∈Cd

g(x, Y1(ω)),

and µωCd
(·) = µ̃Cd

(·). Since ǫ̃−C ≤ ǫ̃+C , we have ǫ−Cd
(ω) ≤ ǫ+Cd

(ω) for all ω ∈ Ω, as required.

We also have infω∈K
(
ǫ−Cd

(ω)/ǫ+Cd
(ω)
)
∈ (0, 1] since Y is compact, Cd is bounded and h

is locally bounded under (E3).
To complete the verification of part a) of (A4), it remains to check that for any d ≥ d,

E

[
log−

(
ǫ̃−Cd

µ̃Cd
(D) inf

x∈Cd

g(x, Y1)
)]
< +∞, (14)

where we note that ǫ̃−Cd
, µ̃Cd

(D) are strictly positive constants by construction. Using

the facts that: for any a, b > 0, log−(ab) ≤ log−(a) + log−(b); [y − h(x)]T [y − h(x)] ≤
2(|y|2+ |h(x)|2); and, since h is locally bounded, supx∈Cd

|h(x)|2 < +∞; to establish (14)
it suffices to show that E

[
|Y1|

2
]
< +∞, or equivalently,

ˆ

X

ˆ

Y

g(x, y)|y|2 dy π(dx) < +∞. (15)

9



To establish (15) we follow Douc et al. (2009, p.1246). Let c∗ > 0 and V ∗(x) =
exp(c∗|x|). Then, elementary manipulations give

´

Y
g(x, y)|y|2 dy = |h(x)|2 + const.,

and supx(|h(x)|
2/V ∗(x)) < +∞ by (E3) as long as c∗ > 2 lim sup|x|→+∞ |x|−1 log |h(x)|,

which we may assume since c∗ > 0 was arbitrary. By Remark 1, π(V ∗) < +∞, so (15)
holds, and then (14) does too, completing the verification of part a) of (A4). It is easily
checked that the conditions of (A4)b) hold by construction of V , W , and Cd and by (E1).

To verify (A3), recall we have taken D = Cd and apply (14) with d = d. (A5) is easily
achieved since Y ∈ Y was an arbitrary compact set.

Finally, we need to check ν, ν̃ ∈ M(D,V ). Since supx,y g(x, y) < +∞ and g(x, y) > 0,
´

X
g(x, Y0(ω))λ(dx) ∈ (0,+∞), hence νω(·) is a probability measure on X for all ω.

The measurability of ω 7→ νω(A) is immediate. By assumption λ(V ) < +∞, hence
νω(V ) ≤ supx,y g(x, y)λ(V )/

´

X
g(x, Y0(ω))λ(dx) < +∞ for all ω, and νωQω(D) > 0 for

all ω since g(x, y) > 0 and f(x, ·) has a strictly positive density w.r.t. Lebesgue measure.
The same arguments apply to ν̃.

3.2 Stability for filters but not for prediction filters

It can be shown by arguments almost identical to those in the proof of Proposition 3 that

the claim of that proposition also holds with the prediction filters Π
λ
n,Π

λ̃
n in place of the

filters Πλ
n,Π

λ̃
n. We omit the details to avoid repetition. However, as we shall illustrate

next, if V (x) grows suitably quickly as |x| → ∞, it can occur that the filters are stable in
V -norm where as the prediction filters are not, in the sense of the following proposition.
To demonstrate this phenomenon with a simple and short proof, we consider a specific
linear state-space model. The result could easily generalized to a broader class of models,
at the expense of a proof which involves lengthier technical manipulations.

Proposition 4. Consider the model of Section 3.1 in the specific case dx = dy = 1, and

Xn+1 = αXn + Vn (16)

Yn = Xn +Wn (17)

where |α| < 1. Let P be the probability measure on Y⊗N which is the law of (Yn)n∈N
when the bi-variate process (Xn, Yn)n∈N satisfies (8)-(9) and X0 ∼ π. Then there exist
constants c ∈ (1, 2) and ρ ∈ (0, 1) such that, with V (x) = exp(c x2/2),

‖Π
λ
n(y, ·)‖V = +∞, ∀(n, y) ∈ N× Y

N,

for any probability measure λ, whereas

lim
n→+∞

ρ−n‖Πλ
n(Y, ·)−Πλ̃

n(Y, ·)‖V = 0, P− a.s.

for any two probability measures λ, λ̃ such that λ(V ) < +∞ and λ̃(V ) < +∞.
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Proof. First note that for any c ∈ (1, 2) and x ∈ X,

ˆ

X

f(x,dz)V (z) ∝

ˆ

X

exp

[
z2

2
(c− 1) + αzx−

α2x2

2

]
dz = +∞,

where in the middle expression, dz denotes Lebesgue measure on R, hence ‖Π
λ
n(y, ·)‖V =

+∞ as claimed.
The proof is completed by applying Theorem 1 in the scenario (4). In verifying (A1)-

(A5) and checking that ν, ν̃ are members of M(D,V ), where ν, ν̃ are the probability
kernels associated with λ, λ̃ as per (4), we can re-use some but not all of the arguments
in the proof of Proposition 3.

Condition (A1) is verified exactly as in the proof of Proposition 3. For the condition
(A2), it follows by elementary manipulations that

V (x)−1

ˆ

f(x,dz)g(z, y)V (z) = exp [ψ(x, y)] ,

where

ψ(x, y) := −κ
α2x2

2
+

αxy

2− c
+
y2

2

(
1

2− c
− 1

)
−

log 2π + log(2− c)

2
,

and we assume c ∈ (1, 2) is such that 0 < 1+ c/α2 − 1/(2− c) =: κ; note that it is easily
checked that such a c ∈ (1, 2) indeed exists for any α ∈ (−1, 1). Also,

Υ(ω) ∝ exp
[
c̃ Y1(ω)

2
]
,

where c̃ is a finite constant depending on c and α. It is easily seen from (16) that
π is Gaussian, and hence from (17) that the law of Y1 under P is also Gaussian, so
E[log+ Υ] < +∞, as required for (A2).

Take Y ⊂ Y as any compact set and set W (x) = 0 ∨ − supy∈Y ψ(x, y). Then W is
locally bounded and limr→∞ inf |x|≥rW (x) = +∞. The definitions and arguments used
in verifying conditions (A3)-(A5) then follow exactly as in the proof of Proposition 3, as
does the verification that ν, ν̃ are members of M(D,V ).

3.3 Concluding remarks

We close with an outline of possible further applications and extensions of our results. For
some HMM’s, such as the linear-Gaussian state-space model with low-dimensional noise
in Douc et al. (2014, Section 4.1), the Markov transition kernel f may have a singular
component, so that the LD part of (A4)a) cannot be satisfied in the scenarios (4) or (5),
but for some m > 1 the m-fold iterate of f admits a density w.r.t. a σ-finite measure. In
such a situations, one may consider as an alternative to (5), the scenario in which again
Ω = Y

N, but θ is the m-step shift Y (θω) = (Ym(ω), Ym+1(ω), . . .) and

νω = λ, Qω(x,A) = g(x, Y0(ω))

ˆ

Xm

1A(xm)f(x, dx1)
m∏

k=2

f(xk−1, dxk)g(xk−1, Yk−1(ω)),

11



so then ηων,n coincides with Π
λ
mn(Y (ω), ·). Should the appropriate assumptions be sat-

isfied, Theorem 1 would establish stability w.r.t. initial conditions for the subsequence

{Π
λ
n(Y, ·);n = km, k ∈ N}. Further investigation of this matter is left as a potential topic

of future research.
Another possible avenue of investigation is to extend analysis to a two-sided time

horizon, Ω = Y
Z, so then θ the shift operator on Ω is invertible, and leverage our res-

ults to address the existence and uniqueness of a limiting probability kernel, ηω⋆ (·) =
limn→+∞ ηθ

−nω
ν,n (·), which in e.g. the scenario (4) may be regarded as a conditional distri-

bution of X0 given (Y−n)n∈N. Probability kernels of this form arise in the study of max-
imum likelihood estimators for HMM’s, see (Douc and Moulines, 2012) and references
therein. More abstractly, probability kernels of this form arise as generalizations of the
Perron-Frobenius eigen-measure in the works of Kifer (1996) concerning large deviations
for Markov chains in random environments, and Whiteley and Lee (2014) concerning
variance growth behaviour of sequential Monte Carlo approximations of marginal likeli-
hoods for HMM’s. Future research may address extension of the results of Kifer (1996)
and Whiteley and Lee (2014) under conditions similar to those in the present paper.

4 Proofs and auxiliary results

4.1 Preliminaries

We proceed with some further definitions. Define

Gω(x) := Qω(x,X), Mω(x,A) =
Qω(x,A)

Qω(x,X)
, (ω, x,A) ∈ Ω× X× X . (18)

Throughout Sections 4.1 and 4.2, we fix some ν ∈ M(D,V ) and define for n ∈ N,

λωn := ηων,n(G
θnω), ω ∈ Ω (19)

and for 0 ≤ k ≤ n, functions hk,n : Ω× X → R according to

hωn,n(x) := 1, hωk,n(x) :=
Qθkω

n−k(x,X)∏n−1
i=k λ

ω
i

, (ω, x, k) ∈ Ω× X× {0, . . . , n− 1}. (20)

Also for 1 ≤ k ≤ n, define vk,n : Ω× X → R,

vωk,n(x) :=
V (x)

hωk,n(x)
, (ω, x) ∈ Ω× X,

with V is as in (A4), and

Sω
k,n(x,A) :=

Qθk−1ω(1Ah
ω
k,n)(x)

λωk−1h
ω
k−1,n(x)

, (ω, x,A) ∈ Ω×X× X . (21)

12



Lemma 2. Assume (A1), (A2), (A3) and let ν ∈ M(D,V ). Then there exists Ω̄ ∈ F with
P(Ω̄) = 1 such that the following hold for all ω ∈ Ω̄. For all 0 ≤ k ≤ n, λωn ∈ (0,+∞),
‖hωk,n‖V < +∞ and for all x ∈ X, hωk,n(x) > 0. For all 1 ≤ k ≤ n and x ∈ X,
vωk,n(x) ∈ (0,+∞), Sω

k,n(x, ·) is a probability measure on X , and

ηων,n(A) =

ˆ

X

(Sω
1,n · · ·S

ω
n,n)(x,A)h

ω
0,n(x)ν

ω(dx), ∀A ∈ X . (22)

Proof. Let Ω̄ ∈ F be the event of probability 1 in Lemma 1. Pick any ω ∈ Ω̄. Then
for any n ∈ N, Gθnω(x) = Qθnω(x,X) > 0 for all x ∈ X, and infx∈DG

θnω(x) =
infx∈DQ

θnω(x,X) ≥ Ψ(θnω) > 0, hence λωn > 0. Also λωn = ηων,nQ
θnω(X) ≤ ‖ηων,n‖V 9

Qθnω9V < +∞.

Then, again using Lemma 1, ‖hωk,n‖V = 9Qθkω
n−k9V /

∏n−1
i=k λ

ω
i < +∞ and the inequality

hωk,n(x) > 0 holds since Qω(x,X) > 0 for all x ∈ X. By definition, V (x) ∈ [1,+∞), so
‖hωk,n‖V < +∞ implies hωk,n(x) < +∞ for all x, and we have already established hωk,n(x) >

0, hence vωk,n(x) ∈ (0,+∞). It follows from (20) that Qθk−1ω(hωk,n) = λωk−1h
ω
k−1,n, so

Sω
k,n(x, ·) is a probability measure.

It is easily checked using (21) that (Sω
1,n · · ·S

ω
n,n)(x,A) = Qω

n(x,A)/[h
ω
0,n(x)

∏n−1
i=0 λ

ω
i ]

and from (3) and (19) that
∏n−1

i=0 λ
ω
i = νωQω

n(X), from which (22) follows.

4.2 Proof of Proposition 1

Lemma 3. Assume (A1)-(A4) and set:

Td(ω) := 1 ∧ ǫ−Cd
(ω)µωCd

(Cd ∩D), ω ∈ Ω.

Then there exists Ω̄ ∈ F such that P(Ω̄) = 1 and for all (ω, x, d) ∈ Ω̄×X× [d,+∞) and
any 1 ≤ k ≤ n,

Sω
k,n(v

ω
k,n)(x) ≤ ρωk,nv

ω
k−1,n(x) +Bω

k,n,

where

ρωk,n :=
1 ∨Υ(θk−1ω)

λωk−1

e−d1(θk−1ω∈K) < +∞,

Bω
k,n := Vd

1 ∨Υ(θk−1ω)

Td(θk−1ω)

n−1∏

i=k

λωi
1 ∧Ψ(θiω)

< +∞,

with the convention that the product is unity when k = n, and with the dependence of
ρωk,n and Bω

k,n on d suppressed in the notation.

Proof. Let Ω̄ be the intersection between: i) a set of P-probability 1 on which all the
inequalities in the statement of Lemma 1 hold and ii) the set of P-probability 1 in the
statement of Lemma 2. Pick any ω ∈ Ω̄. Let d ≥ d, x ∈ X, 1 ≤ k ≤ n and note that

Sω
k,n(v

ω
k,n)(x) =

Qθk−1ω(V )(x)

λωk−1h
ω
k−1,n(x)

.
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If x 6∈ Cd, we have under (A4),

Sω
k,n(v

ω
k,n)(x) =

V (x)

λωk−1h
ω
k−1,n(x)

Qθk−1ω(V )(x)/V (x)

= vωk−1,n(x)
Qθk−1ω(V )(x)/V (x)

λωk−1

≤ vωk−1,n(x)ρ
ω
k,n,

where ρωk,n is finite by Lemma’s 1 and 2.

Now replace Ω̄ by its intersection with the set of ω′ such that ǫ−Cd
(θkω′)µθ

kω′

Cd
(Cd∩D) >

0 for all k, the latter being a set of probability 1 by (A1) and (A4). Then let ω be any
point in this new Ω̄.

If x ∈ Cd,

λωk−1h
ω
k−1,n(x) = Qθk−1ω(hωk,n)(x) ≥

ǫ−Cd
(θk−1ω)µθ

k−1ω
Cd

(1Cd
Qθkω

n−k(X))∏n−1
i=k λ

ω
i

≥ ǫ−Cd
(θk−1ω)µθ

k−1ω
Cd

(Cd ∩D)

n−1∏

i=k

Ψ(θiω)

λωi

> 0,

with the convention here and in the remainder of the proof that the products are unity
when k = n, and when k < n,

∏n−1
i=k Ψ(θiω) > 0 by Lemma 1 and

∏n−1
i=k λ

ω
i < +∞ by

Lemma 2.
Consequently, for x ∈ Cd,

Sω
k,n(v

ω
k,n)(x) ≤

Qθk−1ω(V )(x)

Td(θk−1ω)

n−1∏

i=k

λωi
Ψ(θiω)

≤ V (x)
Υ(θk−1ω)

Td(θk−1ω)

n−1∏

i=k

λωi
Ψ(θiω)

< +∞.

To conclude the proof, note that Vd < +∞ under (A4) and so for all x ∈ X,

Sω
k,n(v

ω
k,n)(x) ≤ ρωk,nv

ω
k−1,n(x) +Bω

k,n < +∞.

Lemma 4. Assume (A1)-(A4) and let

Z(ω) :=
1 ∨Υ(ω)

1 ∧Ψ(ω)
, ω ∈ Ω.

Then, for any d ≥ d, n ≥ 1, we have, P-a.s.,

ηων,n(V ) ≤
νω(V )

νωQω(D)
e−dIω

0,n−1

n−1∏

i=0

Z(θiω) + Vd e
d

n∑

k=1

e−dIω
k−1,n−1

Td(θk−1ω)

n−1∏

i=k−1

Z(θiω) < +∞.

where for p ≤ q, Iωp,q :=
∑p

i=q 1K(θiω), Td is as in Lemma 3.
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Proof. Noting that vωn,n = V and using Lemma 3 with Ω̄ as therein, elementary manip-
ulations show that for any (ω, x) ∈ Ω̄× X,

(Sω
1,n · · ·S

ω
n,n)(V )(x) ≤ v0,n(x)

n∏

k=1

ρωk,n +
n∑

k=1

Bω
k,n

n∏

i=k+1

ρωi,n < +∞, (23)

with the convention that the right-most product equals 1 when k = n.
For 0 ≤ k < n and still with ω ∈ Ω̄,

n∏

i=k+1

ρωi,n = e−dIω
k,n−1

n−1∏

i=k

1 ∨Υ(θiω)

λωi
< +∞,

n−1∏

i=0

λωi = νωQω
n(X) ≥ νωQω(D)

n−1∏

i=0

1 ∧Ψ(θiω) > 0,

and for 1 ≤ k < n,

Bω
k,n

n∏

i=k+1

ρωi,n = Vd e
−dIω

k,n−1
1 ∨Υ(θk−1ω)

Td(θk−1ω)

n−1∏

i=k

Z(θiω)

≤ Vd e
d e

−dIω
k−1,n−1

Td(θk−1ω)

n−1∏

i=k−1

Z(θiω) < +∞,

plugging these into (23), multiplying by hω0,n, integrating w.r.t. νω, and noting (22) and
the fact that νω(hω0,n) = 1 completes the proof.

Lemma 5. Let (Yn)n≥0 be a sequence of nonnegative, equi-distributed random variables
defined on a common probability space. If the expected value of log− Y0 is finite, then for
any β ∈ (0, 1), infn≥0 β

−nYn > 0, a.s.

Proof. See Douc and Moulines (2012, Lemma 7).

Proof of Proposition 1. Let

Uω
d,n :=

n∑

k=1

e−dIω
k−1,n−1

Td(θk−1ω)

n−1∏

i=k−1

Z(θiω), (d, ω, n) ∈ [d,+∞)× Ω× N
+

with Td as in Lemma 3 and Z as in Lemma 4. Note that Lemma 4 implies that for any
d ≥ d,

Uω
d,n < +∞, ∀n ∈ N

+, P-a.s. (24)

We shall show that there exists a d∗ ≥ d such that, for any β ∈ (0, 1) and d > d∗,

lim
n→+∞

βnUω
d,n = 0, P-a.s. (25)
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and

lim
n→+∞

βne−dIω0,n−1

n−1∏

i=0

Z(θiω) = 0, P-a.s., (26)

which, combined with Lemma 4, are enough to establish limn→+∞ βn‖ηων,n‖V = 0, P-a.s.
Under (A2) and (A3),

0 ≤ E
[
logZ

]
= E

[
| logZ|

]
= E

[
log+ Υ

]
+ E

[
log− Ψ

]
< +∞,

so with l := E
[
logZ

]
and γ := P(K), by (A1) and by Birkhoff’s ergodic theorem,

ξωn := n−1
n−1∑

k=0

logZ(θkω)− l → 0, P-a.s. (27)

ξ̃ωn := n−1Iω0,n−1 − γ → 0, P-a.s. (28)

both as n→ +∞, where we note that γ > 0 by hypothesis of the proposition.
Now define d∗ := l/γ ∨ d and set arbitrarily d > d∗; the main ideas of the proof are to

show that under this condition and the assumptions of the proposition, with probability
1, the terms e−dIω

k−1,n−1
∏n−1

i=k−1Z(θ
iω) and 1/Td(θ

k−1ω) appearing in Uω
d,n cannot grow

“too fast” as n− k → +∞ and k → +∞, respectively.
Let β ∈ (0, 1) be as in the statement of the lemma, and pick c ∈ (0, dγ − l) and

β̃ ∈ (β, 1) such that
β

β̃
exp(2c) < 1. (29)

Note that E
[
| log Td|

]
= E

[
log−

(
ǫ−Cd

µCd
(Cd ∩D)

)]
< +∞ under (A4), so by Lemma

5 and under (A1) we have

Tω
d,β̃

:= inf
n∈N

β̃−nTd(θ
nω) > 0, P-a.s. (30)

and by (27)-(28), there exists Nω
c,d ∈ N such that

n ≥ Nω
c,d ⇒ |ξωn − dξ̃ωn | ≤ c, P-a.s. (31)

Now let ω be any point in a set of probability 1 on which (24), (27), (28), (30) and
(31) all hold. Since we are interested in the limit as n→ +∞, we assume for the rest of
the proof that n > Nω

c,d + 1.
Consider the decomposition

Uω
d,n = Uω

d,n,1 + Uω
d,n,2,

Uω
d,n,1 :=

Nω
c,d∑

k=1

e−dIω
k−1,n−1

Td(θk−1ω)

n−1∏

i=k−1

Z(θiω), (32)

Uω
d,n,2 :=

n∑

k=Nω
c,d

+1

e−dIω
k−1,n−1

Td(θk−1ω)

n−1∏

i=k−1

Z(θiω). (33)
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To prepare to bound (32) and (33), note that

e−dIω
k−1,n−1

n−1∏

i=k−1

Z(θiω) = e−(n−k+1)(dγ−l)en(ξn−dξ̃n)+(k−1)(dξ̃k−1−ξk−1) (34)

≤ e−(n−k+1)(dγ−l−c)e2nc, (35)

where the equality holds for any k ≤ n and the inequality holds if additionally k > Nω
c,d.

To bound Uω
d,n,1,

Uω
d,n,1 =


e

−dIω
Nω
c,d

,n−1

n−1∏

i=Nω
c,d

Z(θiω)




Nω
c,d∑

k=1

e
−dIω

k−1,Nω
c,d

−1

Td(θk−1ω)

Nω
c,d

−1∏

i=k−1

Z(θiω)

≤ e−(n−Nω
c,d

)(dγ−l−c)e2nc Uω
d,Nω

c,d

≤ e2ncUω
d,Nω

c,d

where (35) has been used and where Uω
d,Nω

c,d
does not depend on n and is finite by (24).

For Uω
d,n,2, applying (35) gives,

Uω
d,n,2 ≤

n∑

k=Nω
c,d

+1

β̃−(k−1)

Tω
d,β̃

e−(n−k+1)(dγ−l−c)e2nc

≤
e2ncβ̃−n

Tω
d,β̃

1

1− e−(dγ−l−c)
.

Combining these upper bounds for Ud,n,1 and Ud,n,2, and recalling (29),

βnUω
n,d ≤ βne2nc

(
Uω
d,Nω

c,d
+
β̃−n

Tω
d,β̃

1

1− e−(dγ−l−c)

)

→ 0, as n→ +∞,

which completes the proof of (25).
In order to establish (26) and thus complete the proof of the proposition, (34) applied

with k − 1 = 0 gives:

βne−dIω
0,n−1

n−1∏

i=0

Z(θiω) ≤ βne−n(dγ−l−c),

→ 0, as n→ +∞.
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4.3 Proof of Proposition 2

Proof of Proposition 2. We first introduce some additional notation. For x̄ := (x, x′) ∈
X
2 =: X̄, let V̄ (x̄) := V (x)V (x′), for functions ψ1, ψ2 : X → R, let ψ1 ⊗ ψ2(x̄) :=

ψ1(x)ψ2(x
′), and for any two measures µ1, µ2 let µ1 ⊗ µ2 denote their direct product.

Then let Q̄ω(x̄, ·) := Qω(x, ·) ⊗Qω(x′, ·).
Let ω be any point in a set of probability 1 one which all the inequalities in the state-

ment of Lemma 1 hold and ν, ν̃ satisfy the properties associated with their memberships
of M(D,V ). We keep this ω fixed throughout the proof, so to slightly economise on
notation we suppress the dependence of ν and ν̃ on ω.

Independently of ω, fix d ≥ d and ϕ : X → R a measurable function such that |ϕ| ≤ V .
Then, with ϕ+ ≥ 0 and ϕ− ≥ 0 being respectively the positive and negative parts of ϕ,
i.e. ϕ = ϕ+ − ϕ−,

|ηων,n(ϕ)− ηων̃,n(ϕ)| ≤ |ηων,n(ϕ
+)− ηων̃,n(ϕ

+)|+ |ηων,n(ϕ
−)− ηων̃,n(ϕ

−)|

≤
|∆ω

ν,ν̃,n(ϕ
+,1X)|+ |∆ω

ν,ν̃,n(ϕ
−,1X)|

ν ⊗ ν̃Q̄ω
n(X̄)

where, for measurable functions ψ1, ψ2 : X → R
+,

∆ω
ν,ν̃,n(ψ1, ψ2) := νQω

n(ψ1)ν̃Q
ω
n(ψ2)− νQω

n(ψ2)ν̃Q
ω
n(ψ1).

Let ψ : X → R
+ be any measurable function such that ψ ≤ V . Then, following very

similar arguments to Douc and Moulines (2012, Proof of Proposition 5, pp.2712-2713),
one obtains

∣∣∣∆ω
ν,ν̃,n(ψ,1X)

∣∣∣

≤

ˆ

X̄n+1

|ψ ⊗ 1X(x̄n)− 1X ⊗ ψ(x̄n)|ρ

∑n−1

j=0
1C̄d×C̄d

(x̄j ,x̄j+1)1K(θjω)

Cd

× ν ⊗ ν̃(dx̄0)

n−1∏

i=0

Q̄θiω(x̄i,dx̄i+1).

Now since, V ≥ 1 and 0 ≤ ψ ≤ V ,

|ψ ⊗ 1X(x̄)− 1X ⊗ ψ(x̄)| ≤ ψ ⊗ 1X(x̄) ∨ 1X ⊗ ψ(x̄) ≤ V̄ (x̄), ∀x̄ ∈ X̄.

Both 0 ≤ ϕ− ≤ V and 0 ≤ ϕ+ ≤ V , so we may apply the above bounds to obtain:

|ηων,n(ϕ) − ηων̃,n(ϕ)|ν ⊗ ν̃Q̄ω
n(X̄)

≤ 2

ˆ

X̄n+1

V̄ (x̄n)ρ

∑n−1

j=0
1C̄d×C̄d

(x̄j ,x̄j+1)1K(θjω)

Cd
ν ⊗ ν̃(dx̄0)

n−1∏

i=0

Q̄θiω(x̄i,dx̄i+1). (36)

Then, for any set Ā ∈ X⊗2 writing MĀ,n(x̄0:n−1) :=
∑n−1

i=0 1Ā(x̄i) and following
very similar arguments to those of of Douc and Moulines (2012, Proof of Proposition
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5, p.2714), we have under the hypothesis of the proposition on Iω0,n−1, that for any
β ∈ (γ−, 1],

ρ

∑n−1

j=0
1C̄d×C̄d

(x̄j ,x̄j+1)1K(θjω)

Cd
≤ ρ

⌊n(β−γ−)⌋
Cd

+ 1

{
MC̄c

d
,n(x̄0:n−1) ≥ (n− ⌊nβ⌋)/2

}
. (37)

Substituting (37) into (36) and noticing ν⊗ν̃Q̄ω
n(X̄) ≥ νQω(D)ν̃Qω(D)

∏n−1
i=0 1∧Ψ(θkω)2,

|ηων,n(ϕ) − ηων̃,n(ϕ)|

≤ 2ρ
⌊n(β−γ−)⌋
Cd

‖ηων,n‖V ‖η
ω
ν̃,n‖V +

2Γω
ν,ν̃,n

νQω(D)ν̃Qω(D)
∏n−1

i=0 1 ∧Ψ(θkω)2
, (38)

where

Γω
ν,ν̃,n :=

ˆ

X̄n+1

V̄ (x̄n)1
{
MC̄c

d
,n(x̄0:n−1) ≥ (n− ⌊nβ⌋)/2

}
ν ⊗ ν̃(dx̄0)

n−1∏

i=0

Q̄θiω(x̄i,dx̄i+1).

Re-writing Γω
ν,ν̃,n,

Γω
ν,ν̃,n =

(
n−1∏

i=0

1 ∨Υ(θiω)2

)
ˆ

X̄n+1

V̄ (x̄0)ν ⊗ ν̃(dx̄0)1
{
MC̄c

d
,n(x̄0:n−1) ≥ (n− ⌊nβ⌋)/2

}

×

(
e
−d

∑n−1

i=0
1C̄c

d
(x̄i)1K(θiω)

) n−1∏

i=0

Q̄θiω(x̄i,dx̄i+1)V̄ (x̄i+1)

V̄ (x̄i)e
−d1C̄c

d
(x̄i)1K(θiω)

1 ∨Υ(θiω)2
.

Following very similar arguments to those of Douc and Moulines (2012, Proof of Pro-
position 5, p.2715), under the hypothesis of the proposition on Iω0,n−1 we have for any
β ∈ (0, γ+),

(
e
−d

∑n−1

i=0
1C̄c

d
(x̄i)1K(θiω)

)
1

{
MC̄c

d
,n(x̄0:n−1) ≥ (n− ⌊nβ⌋)/2

}
≤ e−dn⌊(γ+−β)⌋/2,

and it follows from (A4) that

sup
x̄i∈X̄

´

X̄
Q̄θiω(x̄i,dx̄i+1)V̄ (x̄i+1)

V̄ (x̄i)e
−d1C̄c

d
(x̄i)1K(θiω)

1 ∨Υ(θiω)2
≤ 1.

The proof is completed upon applying these last two inequalities to bound Γω
ν,ν̃,n in (38).

4.4 Proof of Theorem 1

Proof of Theorem 1. By (A5), P(K) > 2/3, implying that there exist 0 < γ− < γ+ < 1
such that P(K) > (1−γ−)∨(1+γ+)/2 (see Douc et al., 2014, Remark 5). Consequently,
under (A1) and by Birkhoff’s ergodic theorem, there exists Nω ∈ N such that

n ≥ Nω ⇒ n−1|Iω0,n−1| ≥ (1− γ−) ∨ (1 + γ+)/2, P-a.s.
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With Z(ω) as in Lemma 4, and under (A1), (A2), (A3), there exists l ≥ 0 such that

ξωn :=
1

n

n−1∑

k=0

logZ(θkω)− l → 0, as n→ +∞, P-a.s. (39)

Now fix any β ∈ (γ−, γ+) and d ≥ d such that

d(γ+ − β)/2 > 2l, (40)

and with ρCd
:= supω∈K

{
1 −

(
ǫ−Cd

(ω)/ǫ+Cd
(ω)
)2}

∈ [0, 1) as in Proposition 2, then also
fix ρ ∈ (0, 1) such that

ρ > ρβ−γ−

Cd
∨ e−d(γ+−β)/2+2l. (41)

By Proposition 2, for P-almost any ω and n ≥ Nω,

ρ−n‖ηων,n − ηων̃,n‖V

≤ 2ρ−nρ
⌊n(β−γ−)⌋
Cd

‖ηων,n‖V ‖η
ω
ν̃,n‖V (42)

+ 2
νω(V )

νωQω(D)

ν̃ω(V )

ν̃ωQω(D)
ρ−ne−d⌊n(γ+−β)⌋/2

n−1∏

i=0

Z(θiω)2, (43)

where νω(V )/νωQω(D) < +∞ and ν̃ωQω(V )/ν̃ω(D) < +∞, P-a.s., since ν, ν̃ ∈ M(D,V ).
For the term in (42),

ρ−nρ
⌊n(β−γ−)⌋
Cd

‖ηων,n‖V ‖η
ω
ν̃,n‖V

≤ ρ−1
Cd


ρ

β−γ−

Cd

ρ




n/2

‖ηων,n‖V


ρ

β−γ−

Cd

ρ




n/2

‖ηων̃,n‖V

→ 0, as n→ +∞, P-a.s.,

where the convergence is due to (41) and Proposition 1.
For the term in (43),

ρ−ne−d⌊n(γ+−β)⌋/2
n−1∏

i=0

Z(θiω)2 ≤ ed/2ρ−ne−dn(γ+−β)/2
n−1∏

i=0

Z(θiω)2

= ed/2ρ−ne−n(d(γ+−β)/2−2l)e2nξn

→ 0, as n→ +∞, P-a.s.,

where the convergence is due to (39), (40) and (41). The proof is complete.
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