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Abstract

The unconstrained exponential family of random graphs assumes no prior

knowledge of the graph before sampling, but it is natural to consider situations

where partial information about the graph is known, for example the total

number of edges. What does a typical random graph look like, if drawn from

an exponential model subject to such constraints? Will there be a similar phase

transition phenomenon (as one varies the parameters) as that which occurs in

the unconstrained exponential model? We present some general results for

this constrained model and then apply them to get concrete answers in the

edge-triangle model with fixed density of edges.
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1. Introduction

Consider the set Gn of all simple graphs Gn on n vertices (“simple” means undi-

rected, with no loops or multiple edges). By a k-parameter family of exponential

random graphs we mean a family of probability measures Pβn on Gn defined by, for
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Gn ∈ Gn,

Pβn(Gn) = exp
[
n2
(
β1t(H1, Gn) + · · ·+ βkt(Hk, Gn)− ψβn

)]
, (1.1)

where β = (β1, . . . , βk) are k real parameters, H1, . . . ,Hk are pre-chosen finite sim-

ple graphs (and we take H1 to be a single edge), t(Hi, Gn) is the density of graph

homomorphisms (the probability that a random vertex map V (Hi)→ V (Gn) is edge-

preserving),

t(Hi, Gn) =
|hom(Hi, Gn)|
|V (Gn)||V (Hi)|

, (1.2)

and ψβn is the normalization constant,

ψβn =
1

n2
log

∑
Gn∈Gn

exp
[
n2 (β1t(H1, Gn) + · · ·+ βkt(Hk, Gn))

]
. (1.3)

Sometimes, other than homomorphism densities, we also consider more general bounded

continuous functions on the graph space (a notion to be made precise later), for example

the degree sequence or the eigenvalues of the adjacency matrix.

Exponential random graphs have been used to model real-world networks as they

are able to capture a wide variety of common network tendencies by representing a

complex global structure through a set of tractable local features [11] [12] [17] [24]

[25]. Intuitively, we can think of the k parameters β1, . . . , βk as tuning parameters

that allow one to adjust the influence of different subgraphs H1, . . . ,Hk of Gn on the

probability distribution, whose asymptotics are our main interest since networks are

often very large in size. As flexible as they are, exponential models admittedly have one

shortcoming: they are centered on dense graphs whereas most network data in the real

world are sparse. In this sense, one could argue that exponential random graphs (and

the graphon technology developed by Lovász et al. [5] [6] [7] [14] [15] that is heavily

used in studying them) are of limited relevance in studying real networks. However,

from the point of view of extremal combinatorics and statistical mechanics, exponential

random graphs and constrained graphons represent an important and challenging class

of models, displaying both diverse and novel phase transition behavior [18] [19] [20]

[21].

Our main results are (Theorem 1) a variational principle for the normalization con-

stant (partition function) for graphons with constrained edge density, and an associated
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concentration of measure (Theorem 2) indicating that almost all large constrained

graphs lie near the maximizing set. We then specialize to the edge-triangle model,

and show the existence of first-order phase transitions in the edge-density constrained

models.

2. Background

We begin by reviewing some notation and results concerning the theory of graph

limits and its use in exponential random graph models. Following the earlier work of

Aldous [2] and Hoover [13], Lovász and coauthors (V.T. Sós, B. Szegedy, C. Borgs, J.

Chayes, K. Vesztergombi,...) have constructed an elegant theory of graph limits in a

sequence of papers [5] [6] [7] [15]. See also the recent book [14] for a comprehensive

account and references. This sheds light on various topics such as graph testing and

extremal graph theory, and has found applications in statistics and related areas (see

for instance [9]). Though their theory has been developed for dense graphs (number

of edges comparable to the square of number of vertices), serious attempts have been

made at formulating parallel results for sparse graphs [3] [4].

Here are the basics of this beautiful theory. Any simple graph Gn, irrespective of

the number of vertices, may be represented as an element hGn of a single abstract

space W that consists of all symmetric measurable functions from [0, 1]2 into [0, 1], by

defining

hGn(x, y) =

 1, if (dnxe, dnye) is an edge in Gn;

0, otherwise.
(2.1)

A sequence of graphs {Gn}n≥1 is said to converge to a function h ∈ W (referred to

as a “graph limit” or “graphon”) if for every finite simple graph H with vertex set

V (H) = [k] = {1, ..., k} and edge set E(H),

lim
n→∞

t(H,hGn) = t(H,h), (2.2)

where t(H,hGn) = t(H,Gn), the graph homomorphism density (1.2), by construction,

and

t(H,h) =

∫
[0,1]k

∏
{i,j}∈E(H)

h(xi, xj)dx1 · · · dxk. (2.3)
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Indeed every function in W is the limit of a certain convergent graph sequence [15].

Intuitively, the interval [0, 1] represents a “continuum” of vertices, and h(x, y) denotes

the probability of putting an edge between x and y. For example, for the Erdős-Rényi

random graph G(n, ρ), the “graphon” is represented by the function that is identically

equal to ρ on [0, 1]2. This “graphon” interpretation enables us to capture the notion of

convergence in terms of subgraph densities by an explicit metric on W, the so-called

“cut distance”:

d�(f, h) = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

(f(x, y)− h(x, y)) dx dy

∣∣∣∣ (2.4)

for f, h ∈ W. A non-trivial complication is that the topology induced by the cut metric

is well defined only up to measure preserving transformations of [0, 1] (and up to sets

of Lebesgue measure zero), which in the context of finite graphs may be thought of

as vertex relabeling. To tackle this issue, an equivalence relation ∼ is introduced in

W. We say that f ∼ h if f(x, y) = hσ(x, y) := h(σx, σy) for some measure preserving

bijection σ of [0, 1]. Let h̃ (referred to as a “reduced graphon”) denote the equivalence

class of h in (W, d�). Since d� is invariant under σ, one can then define on the resulting

quotient space W̃ the natural distance δ� by δ�(f̃ , h̃) = infσ1,σ2
d�(fσ1

, hσ2
), where

the infimum ranges over all measure preserving bijections σ1 and σ2, making (W̃, δ�)

into a metric space. With some abuse of notation we also refer to δ� as the “cut

distance”. The space (W̃, δ�) enjoys many important properties that are essential for

the study of exponential random graph models. For example, it is a compact space

and homomorphism densities t(H, ·) are continuous functions on it.

For the purpose of this paper, two theorems from Chatterjee and Diaconis [8] (both

based on a large deviation result established in Chatterjee and Varadhan [10]) merit

some special attention. Together they connect the occurrence of a phase transition

in the exponential model with the solution of a certain maximization problem. Their

results are formulated in terms of general exponential models where the terms in the

exponent defining the probability measure may contain functions on the graph space

other than homomorphism densities, as alluded to at the beginning of this paper. Let

T : W̃ → R be a bounded continuous function. Let the probability measure Pn and

the normalization constant ψn be defined as in (1.1) and (1.3), that is,

Pn(Gn) = exp
(
n2(T (h̃Gn)− ψn)

)
, (2.5)
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ψn =
1

n2
log

∑
Gn∈Gn

exp
(
n2T (h̃Gn)

)
. (2.6)

The first theorem (Theorem 3.1 in [8]) states that the limiting normalization constant

ψ := limn→∞ ψn of the exponential random graph, which is crucial for the computation

of maximum likelihood estimates, always exists and is given by

ψ = sup
h̃∈W̃

(
T (h̃)− I(h̃)

)
, (2.7)

where I is first defined as a function from [0, 1] to R as

I(u) =
1

2
u log u+

1

2
(1− u) log(1− u), (2.8)

and then extended to W̃ in the usual manner:

I(h̃) =

∫
[0,1]2

I(h(x, y)) dx dy, (2.9)

where h is any representative element of the equivalence class h̃. It was shown in [10]

that I is well defined and lower semi-continuous on W̃. Let H̃ be the subset of W̃

where ψ is maximized. By the compactness of W̃, the continuity of T and the lower

semi-continuity of I, H̃ is a nonempty compact set. The set H̃ encodes important

information about the exponential model (2.5) and helps to predict the behavior of a

typical random graph sampled from this model. The second theorem (Theorem 3.2 in

[8]) states that in the large n limit, the quotient image h̃Gn of a random graph Gn

drawn from (2.5) must lie close to H̃ with high probability,

δ�(h̃Gn , H̃)→ 0 in probability as n→∞. (2.10)

Since the limiting normalization constant ψ is the generating function for the limiting

expectations of other random variables on the graph space such as expectations and

correlations of homomorphism densities, a phase transition occurs when ψ is non-

analytic or when H̃ is not a singleton set.

3. Constrained exponential random graphs

The exponential family of random graphs introduced above have popular counter-

parts in statistical physics: a hierarchy of models ranging from the grand canonical
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ensemble, the canonical ensemble, to the microcanonical ensemble, with subgraph

densities in place of particle and energy densities, and tuning parameters in place of

temperature and chemical potentials. In the grand canonical ensemble, the exponential

model (1.1) in this case, no prior knowledge of the graph is assumed. As useful as they

are, for large networks these models are sometimes inappropriate. For example, as

shown by Chatterjee and Diaconis [8], when k = 2 and β2 > 0, all graphs drawn from

(1.1) where H1 is an edge and H2 is any finite simple graph are not appreciably different

from Erdős-Rényi in the large n limit. This somewhat trivial conclusion implies that

sometimes subgraph densities cannot be tuned and exponential random graphs alone

may not capture all desirable features of the networked system, such as interdependency

and clustering. We are thus motivated to study variants of the exponential random

graph model: the canonical ensemble, where some subgraph density is controlled

directly and others are tuned with parameters, and the microcanonical ensemble, where

complete information of the graph is observed beforehand.

One difficulty arises. Unlike standard statistical physics models, the equivalence of

various ensembles in the asymptotic regime does not hold in these models (see [23]

for discussions about non-equivalence of ensembles due to non-concavity of entropy).

A natural question to ask is what would be a typical random graph drawn from an

exponential model subject to certain constraints? Or perhaps more importantly will

there be a similar phase transition phenomenon as in the standard exponential model

(hereby referred to as an “unconstrained model”)? The following Theorems 1 and 2 give

a detailed answer to these questions. Not surprisingly, the proofs follow a similar line of

reasoning as in Theorems 3.1 and 3.2 of [8]. However, there are noted differences in how

we interpret these phase transition results. For example, a typical graph drawn from

the constrained edge-triangle model still exhibits Erdős-Rényi structure for β2 close

to 0, but consists of one big clique and some isolated vertices as β2 gets sufficiently

close to infinity, so the transition is between graphs of different characters. In the

unconstrained model, on the other hand, although there is a curve in the parameter

space across which the graph densities display sudden jumps [8] [21], the transition is

between graphs of similar characters (Erdős-Rényi graphs). This gives one more reason

why the constrained model deserves its own attention. Due to the imposed constraints,

instead of working with probability measure Pn and normalization constant ψn as in
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[8], we are working with conditional probability measure and conditional normalization

constant, so the argument is more involved. The proof of Theorem 1 also incorporates

some ideas from Theorem 3.1 of [19].

For clarity, we assume that the edge density of the graph is approximately known,

though the proof runs through without much modification if the density of some other

more complicated subgraph is approximately described. We make precise the notion of

“approximately” below. We still assign a probability measure Pn as in (2.5) on Gn, but

we will consider a conditional normalization constant and also define a conditional

probability measure. Let e ∈ [0, 1] be a real parameter that signifies an “ideal”

edge density. Take α > 0. The conditional normalization constant ψen,α is defined

analogously to the normalization constant for the unconstrained exponential random

graph model,

ψen,α =
1

n2
log

∑
Gn∈Gn:|e(Gn)−e|<α

exp
(
n2T (h̃Gn)

)
, (3.1)

the difference being that we are only taking into account graphs Gn whose edge density

e(Gn) is within an α neighborhood of e. Correspondingly, the associated conditional

probability measure Pen,α(Gn) is given by

Pen,α(Gn) = exp(−n2ψen,α) exp
(
n2T (h̃Gn)

)
1|e(Gn)−e|<α. (3.2)

We perform two limit operations on ψen,α. First we take n to infinity, then we shrink

the interval around e by letting α go to zero:

ψe = lim
α→0

lim
n→∞

ψen,α. (3.3)

Intuitively, these two operations ensure that we are examining the asymptotics of

exponentially weighted large graphs with edge density sufficiently close to e. Theorem

1 shows that this is indeed the case.

Theorem 1. Let e : 0 ≤ e ≤ 1 be a real parameter and T : W̃ → R be a bounded

continuous function. Let I and ψe be defined as before (see (2.8), (2.9), (3.1) and

(3.3)). Then

ψe = sup
h̃∈W̃:e(h̃)=e

(
T (h̃)− I(h̃)

)
, (3.4)

where

e(h̃) =

∫
[0,1]2

h(x1, x2)dx1dx2, (3.5)
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and h is any function in the equivalence class h̃.

Proof. By definition, lim inf ψen,α and lim supψen,α exist as n → ∞. We will show

that they both approach suph̃:e(h̃)=e(T (h̃) − I(h̃)) as α → 0. For this purpose we

need to define a few sets. Let Ũα be the open strip of reduced graphons h̃ with

e − α < e(h̃) < e + α, and let H̃α be the closed strip e − α ≤ e(h̃) ≤ e + α. Fix

ε > 0. Since T is a bounded function, there is a finite set R such that the intervals

{(c, c + ε) : c ∈ R} cover the range of T . For each c ∈ R, let Ũα,c be the open set of

reduced graphons h̃ with e − α < e(h̃) < e + α and c < T (h̃) < c + ε, and let H̃α,c

be the closed set e − α ≤ e(h̃) ≤ e + α and c ≤ T (h̃) ≤ c + ε. It may be assumed

without loss of generality that Ũα,c and H̃α,c are nonempty for each c ∈ R. Let |Ũnα,c|

and |H̃n
α,c| denote the number of graphs with n vertices whose reduced graphons lie in

Ũα,c or H̃α,c, respectively. The large deviation principle, Theorem 2.3 of [10], implies

that:

lim sup
n→∞

log |H̃n
α,c|

n2
≤ − inf

h̃∈H̃α,c
I(h̃), (3.6)

and that

lim inf
n→∞

log |Ũnα,c|
n2

≥ − inf
h̃∈Ũα,c

I(h̃). (3.7)

We first consider lim supψen,α.

exp(n2ψen,α) ≤
∑
c∈R

exp(n2(c+ ε))|H̃n
α,c| ≤ |R| sup

c∈R
exp(n2(c+ ε))|H̃n

α,c|. (3.8)

This shows that

lim sup
n→∞

ψen,α ≤ sup
c∈R

(
c+ ε− inf

h̃∈H̃α,c
I(h̃)

)
. (3.9)

Each h̃ ∈ H̃α,c satisfies T (h̃) ≥ c. Consequently,

sup
h̃∈H̃α,c

(T (h̃)− I(h̃)) ≥ sup
h̃∈H̃α,c

(c− I(h̃)) = c− inf
h̃∈H̃α,c

I(h̃). (3.10)

Substituting this in (3.9) gives

lim sup
n→∞

ψen,α ≤ ε+ sup
c∈R

sup
h̃∈H̃α,c

(T (h̃)− I(h̃)) (3.11)

= ε+ sup
h̃∈H̃α

(T (h̃)− I(h̃)).

Next we consider lim inf ψen,α.

exp(n2ψen,α) ≥ sup
c∈R

exp(n2c)|Ũnα,c|. (3.12)
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Therefore for each c ∈ R,

lim inf
n→∞

ψen,α ≥ c− inf
h̃∈Ũα,c

I(h̃). (3.13)

Each h̃ ∈ Ũα,c satisfies T (h̃) < c+ ε. Therefore

sup
h̃∈Ũα,c

(T (h̃)− I(h̃)) ≤ sup
h̃∈Ũα,c

(c+ ε− I(h̃)) = c+ ε− inf
h̃∈Ũα,c

I(h̃). (3.14)

Together with (3.13), this shows that

lim inf
n→∞

ψen,α ≥ −ε+ sup
c∈R

sup
h̃∈Ũα,c

(T (h̃)− I(h̃)) (3.15)

= −ε+ sup
h̃∈Ũα

(T (h̃)− I(h̃)).

Since ε is arbitrary, this yields a chain of inequalities

sup
h̃∈H̃α−α2

(T (h̃)− I(h̃)) ≤ sup
h̃∈Ũα

(T (h̃)− I(h̃)) ≤ lim inf
n→∞

ψen,α

≤ lim sup
n→∞

ψen,α ≤ sup
h̃∈H̃α

(T (h̃)− I(h̃)). (3.16)

As α→ 0+, the limits of supH̃α−α2
(T (h̃)−I(h̃)) and supH̃α(T (h̃)−I(h̃)) are the same,

so we have proven that

ψe = lim
α→0

lim
n→∞

ψen,α = lim
α→0

sup
h̃∈H̃α

(T (h̃)− I(h̃)). (3.17)

First we establish that the right-hand side of (3.17) is equal to supH̃0
(T (h̃) − I(h̃)),

where H̃0 = {h̃ : e(h̃) = e}. By the compactness of W̃ and the continuity of e, H̃0 is

a nonempty compact set. By definition, we can find a sequence of reduced graphons

h̃α ∈ H̃α such that limα→0(T (h̃α) − I(h̃α)) = limα→0 supH̃α(T (h̃) − I(h̃)). These

reduced graphons converge to a reduced graphon h̃0 ∈ H̃0. Since T is continuous and

I is lower semi-continuous,

sup
H̃0

(T (h̃)− I(h̃)) ≥ T (h̃0)− I(h̃0) ≥ lim
α→0

(T (h̃α)− I(h̃α)). (3.18)

However, since H̃0 ⊂ H̃α, supH̃0
(T (h̃)−I(h̃)) is at least as small as supH̃α(T (h̃)−I(h̃)).

Our claim thus follows.
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Fix e. Let H̃ be the subset of H̃0 where T (h̃) − I(h̃) is maximized. By the

compactness of H̃0, the continuity of T and the lower semi-continuity of I, H̃ is a

nonempty compact set. Theorem 1 gives an asymptotic formula for ψen,α but says

nothing about the behavior of a typical random graph sampled from the constrained

exponential model (3.2). In the unconstrained case (2.5) however, we know that the

quotient image h̃Gn of a sampled graph must lie close to the corresponding maximizing

set H̃ for ψ with probability vanishing in n. We expect that a similar phenomenon

should occur in the constrained model as well, and this is confirmed by Theorem 2.

Theorem 2. Take e ∈ [0, 1]. Let H̃ be defined as above. Let Pen,α(Gn) (3.2) be the

conditional probability measure on Gn. Then for any η > 0 and α sufficiently small

there exist C, γ > 0 such that for all n large enough,

Pen,α
(
δ�(h̃Gn , H̃) ≥ η

)
≤ Ce−n

2γ . (3.19)

Proof. We check that the conditional probability measure Pen,α is well defined for

all large enough n. It suffices to show that ψen,α is finite. But from (3.16), ψen,α is

trapped between suph̃∈Ũα(T (h̃) − I(h̃)) and suph̃∈H̃α(T (h̃) − I(h̃)), which are clearly

both finite.

Recall that H̃α is the set of reduced graphons h̃ with e − α ≤ e(h̃) ≤ e + α. Take

any η > 0. Let Ãα be the subset of H̃α consisting of reduced graphons that are at least

η-distance away from H̃,

Ãα = {h̃ ∈ H̃α : δ�(h̃, H̃) ≥ η}. (3.20)

It is easy to see that Ãα is a closed set. Without loss of generality we assume that

Ãα is nonempty for every α > 0, since otherwise our claim trivially follows. Under

this nonemptiness assumption we can find a sequence of reduced graphons h̃α ∈ Ãα
converging to a reduced graphon h̃0 ∈ Ã0, which shows that Ã0 is nonempty as well.

By the compactness of H̃0 and H̃, and the upper semi-continuity of T − I, it follows

that

max
h̃∈H̃0

(T (h̃)− I(h̃))− max
h̃∈Ã0

(T (h̃)− I(h̃)) > 0. (3.21)

From the proof of Theorem 1 we see that

lim sup
H̃α

(T (h̃)− I(h̃)) = max
H̃0

(T (h̃)− I(h̃)). (3.22)
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Similarly, we have

lim sup
Ãα

(T (h̃)− I(h̃)) = max
Ã0

(T (h̃)− I(h̃)). (3.23)

This implies that for α sufficiently small,

2γ := sup
h̃∈H̃α−α2

(T (h̃)− I(h̃))− sup
h̃∈Ãα

(T (h̃)− I(h̃)) > 0. (3.24)

Choose ε = γ and define H̃α,c and R as in the proof of Theorem 1. Let Ãα,c =

Ãα ∩ H̃α,c. Then

Pen,α(h̃Gn ∈ Ãα) ≤ exp(−n2ψen,α)|R| sup
c∈R

exp(n2(c+ γ))|Ãnα,c|. (3.25)

While bounding the last term above, it may be assumed without loss of generality that

Ãα,c is nonempty for each c ∈ R. Similarly as in the proof of Theorem 1, the above

inequality gives

lim sup
n→∞

logPen,α(h̃Gn ∈ Ãα)

n2
≤ sup
c∈R

(
c+ γ − inf

h̃∈Ãα,c
I(h)

)
− sup
h̃∈H̃α−α2

(
T (h̃)− I(h̃)

)
.

(3.26)

Each h̃ ∈ Ãα,c satisfies T (h̃) ≥ c. Consequently,

sup
h̃∈Ãα,c

(T (h̃)− I(h̃)) ≥ c− inf
h̃∈Ãα,c

I(h̃). (3.27)

Substituting this in (3.26) gives

lim sup
n→∞

logPen,α(h̃Gn ∈ Ãα)

n2
≤ γ + sup

h̃∈Ãα
(T (h̃)− I(h̃))− sup

h̃∈H̃α−α2

(T (h̃)− I(h̃)) = −γ.

(3.28)

This completes the proof.

4. An application

Theorems 1 and 2 in the previous section illustrate the importance of finding the

maximizing graphons for T − I subject to certain constraints. Similar optimization

problems have also been studied in the context of upper tails of random graphs

by Lubetzky and Zhao [16]. The optimizers aid us in understanding the limiting

conditional probability distribution and the global structure of a random graph Gn
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drawn from the constrained exponential model. Indeed, knowledge of such graphons

would help us understand the limiting probability distribution and the global structure

of a random graph Gn drawn from the unconstrained exponential model as well, since

we can always carry out the unconstrained optimization in steps: first consider a

constrained optimization (referred to as “micro analysis”), then take into consideration

of all possible constraints (referred to as “macro analysis”). However, as straight-

forward as it sounds, due to the myriad of structural possibilities of graphons, both

the unconstrained (2.7) and constrained (3.4) optimization problems are not always

explicitly solvable. So far major simplification has only been achieved in the “attrac-

tive” case where the parameters β2, . . . , βk are all nonnegative [8] [21] [26] and for k-star

models [8], whereas a complete analysis of either (2.7) or (3.4) in the “repulsive” region

where the parameters β2, . . . , βk are all negative has proved to be very difficult. This

section will provide some phase transition results on the constrained “repulsive” edge-

triangle exponential random graph model and discuss their possible generalizations.

Using the same arguments, it is also possible to establish the phase transition in the

“attractive” region of the parameter space. We make these notions precise in the

following.

The unconstrained edge-triangle model is a 2-parameter exponential random graph

model obtained by taking H1 to be a single edge and H2 to be a triangle in (1.1). More

explicitly, in the edge-triangle model, the probability measure Pβn is

Pβn(Gn) = exp
(
n2(β1e(Gn) + β2t(Gn)− ψβn)

)
, (4.1)

where β = (β1, β2) are 2 real parameters, e(Gn) and t(Gn) are the edge and triangle

densities of Gn, and ψβn is the normalization constant. As before, we assume that the

ideal edge density e is fixed. The limiting construction described at the beginning of

Section 3 will then yield the asymptotic conditional normalization constant ψe. From

(3.4) we see that ψe depends on both parameters β1 and β2, however the β1 dependence

is linear: ψe is equal to β1e plus a function independent of β1. In particular β1 plays

no role in the maximization problem, so we can consider it fixed at value β1 = 0. The

only relevant parameters then are e and β2.

To highlight this parameter dependence, in the following we will write ψe as ψe,β2

instead. We are particularly interested in the asymptotics of ψe,β2 when β2 is negative,



On the asymptotics of constrained exponential random graphs 13

the so-called repulsive region. Naturally, varying β2 allows one to adjust the influence

of the triangle density of the graph on the probability distribution. The more negative

the β2, the more unlikely that graphs with a large number of triangles will be observed.

When β2 approaches negative infinity, the most probable graph would likely be triangle

free. At the other extreme, when β2 is zero, the edge-triangle model reduces to

the well-studied Erdős-Rényi model, where edges between different vertex pairs are

independently included. The structure of triangle free graphs and disordered Erdős-

Rényi graphs are apparently quite different, and thus a phase transition is expected

as β2 decays from 0 to −∞. In fact, it is believed that, quite generally, repulsive

models exhibit a transition qualitatively like the solid/fluid transition, in that a region

of parameter space depicting emergent multipartite structure, which is in imitation of

the structure of solids, is separated by a phase transition from a region of disordered

graphs, which resemble fluids. The existence of such a transition in unconstrained 2-

parameter models whose subgraph H2 has chromatic number at least 3 has been proved

by Aristoff and Radin [1] based on a symmetry breaking result from [8]. Theorem 3

below gives a corresponding result in the constrained edge-triangle model. Its proof

though is quite different from the parallel result in [1] and relies instead on some

analysis arguments.

Theorem 3. Consider the constrained repulsive edge-triangle exponential random graph

model as described above. Let e be arbitrary but fixed. Let β2 vary from 0 to −∞. Then

ψe,β2 is not analytic at at least one value of β2.

Proof. We first consider the case e ≤ 1/2; the case e > 1/2 is similar, see the

comments at the end of the proof.

Let e(h̃) ≤ 1/2 be the edge density of a reduced graphon h̃ and t(h̃) be the triangle

density, obtained by taking H to be a triangle in (2.3). By (3.4),

ψe,β2 = sup
h̃∈W̃:e(h̃)=e

(
β2t(h̃)− I(h̃)

)
(4.2)

= sup
t

sup
h̃∈W̃:e(h̃)=e,t(h̃)=t

(
β2t− I(h̃)

)
= sup

t
(β2t+ s(e, t)) ,

where for notational convenience, we denote by s(e, t) the maximum value of −I(h̃)
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over all reduced graphons with e(h̃) = e and t(h̃) = t. We examine (4.2) at the two

extreme values of β2 first. Since I is convex, when β2 = 0,

ψe,0 = sup
h̃∈W̃:e(h̃)=e

(
−I(h̃)

)
≤ −I(e) (4.3)

by Jensen’s inequality, and the equality is attained only when h ≡ e, the associated

graphon for an Erdős-Rényi graph with edge formation probability e. This also ensures

that when we take β2 ≤ 0, any maximizing graphon h for (4.2) will satisfy t(h̃) ≤

e3. For the other extreme, take an arbitrary sequence β
(i)
2 → −∞, and let h̃i be a

maximizing reduced graphon for each ψe,β
(i)
2 . Let h̃ be a limit point of h̃i in W̃ (its

existence is guaranteed by the compactness of W̃). We say that a graphon h : [0, 1]2 →

[0, 1] is symmetric bipodal if it is of the form

h(x, y) =

 p if x < 1/2 < y or x > 1/2 > y;

q if x, y < 1/2 or x, y > 1/2,
(4.4)

where p and q are constants taking values between 0 and 1. Suppose t(h̃) > 0. Then

by the continuity of t and the boundedness of I, limi→∞ ψe,β
(i)
2 = −∞. But this is

impossible since ψe,β
(i)
2 is uniformly bounded below, as can be seen by considering

the symmetric bipodal graphon h with p = 2e and q = 0 as a test function, which

corresponds to a complete bipartite graph with 1 − 2e fraction of edges randomly

deleted. Thus t(h̃) = 0. The rest of the proof will utilize the following useful features

of s(e, t) derived in Radin and Sadun [19] [20]. From the convexity of I, Theorem 4.1

in [19] finds that for e ≤ 1/2, s(e, 0) = −I(2e)/2 and this maximum is achieved only at

the reduced symmetric bipodal graphon h̃ depicted above. Further utilizing properties

of the Hermitian trace class operator, Theorem 1.1 in [20] states that for any e ∈ [0, 1]

and for t ≤ e3,

s(e, e3)− s(e, t) ≥ c(e3 − t)2/3 (4.5)

for some c = c(e) > 0. Thus we have

lim
β2→−∞

ψe,β2 = −I(2e)/2; (4.6)

while (4.5) implies that for β2 > −c(e) and t < e3,

−β2(e3 − t) < s(e, e3)− s(e, t). (4.7)
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In other words, the constant graphon h ≡ e still yields the maximum value for (4.2) for

these small values of β2. Thus regarded as a function of β2, ψe,β2 is constant on the

interval (−c(e), 0) and ψe,β2 = −I(e). This shows that ψe,β2 must lose its analyticity

at at least one β2 as β2 varies from 0 to −∞, since otherwise we would have

lim
β2→−∞

ψe,β2 = −I(e), (4.8)

in contradiction with (4.6).

For e > 1/2, the lower boundary of attainable t(h̃) is nonzero; see Figure 1. However

the graphons attaining the minimum t values for each e are known, see [19], and their

rate functions are strictly less than −I(e), so the proof above goes through without

change.

0.2 0.4 0.6 0.8 1.0 e

0.2

0.4

0.6

0.8

1.0

t

Figure 1: Region of attainable edge (e) and triangle (t) densities for graphons. The upper

boundary is the curve t = e3/2 and the lower boundary is a piecewise algebraic curve with

infinitely many concave pieces; see [22]. The red curve is the Erdős-Renyi curve t = e3.

The proof of Theorem 3 does not rely heavily on the definition of the edge-triangle

model, except for the non-differentiability of s(e, t) at t = e3 and the structure of the

maximizing graphons at the two extreme values of β2. The following extension of this

theorem may not come as a surprise.
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Theorem 4. Take H1 a single edge and H2 a different, arbitrary simple graph with

chromatic number χ(H2) at least 3. Consider the constrained repulsive 2-parameter

exponential random graph model where the probability measure Pe,β2
n is given by

Pe,β2
n (Gn) = exp

(
n2(β2t(H2, Gn)− ψe,β2

n )
)
. (4.9)

Let the edge density e be fixed. Let the second parameter β2 vary from 0 to −∞. Then

ψe,β2 loses its analyticity at at least one value of β2.

Proof. The proof of Theorem 3 carries over almost word-for-word when we incor-

porate the disordered Erdős-Rényi structure of the maximizing graphon at β2 = 0,

the non-differentiability of s(e, t) for a general H2 [20], and the emergent multipartite

structure of the maximizing graphon as β2 → −∞ [8] [27].

Now that we know about the occurrence of a phase transition in the constrained

repulsive exponential model, we probe deeper into this phenomenon and ask: how

smooth is this transition? Theorem 5 shows what happens when the ideal edge density

of the edge-triangle model is fixed at 1/2 while the influence of the triangle densities

is tuned through the parameter β2.

Theorem 5. Consider the constrained repulsive edge-triangle exponential random graph

model as described at the beginning of Section 4. Fix e = 1/2. Let β2 vary from 0

to −∞. Then ψ
1
2 ,β2 is analytic everywhere except at a certain point βc2, where the

derivative ∂
∂β2

ψ
1
2 ,β2 displays jump discontinuity.

Proof. Setting e = 1/2 in (4.2) gives

ψ
1
2 ,β2 = sup

t
(β2t+ s(

1

2
, t)). (4.10)

Since β2 ≤ 0, by the convexity of I, any maximizing graphon h for (4.10) must satisfy

t(h̃) ≤ 1/8, i.e., it must lie below the Erdős-Rényi curve t = e3. Radin and Sadun [20]

showed that on the line segment e = 1
2 and t ≤ e3, the symmetric bipodal graphon

h(x, y) =

 1
2 + ε, if x < 1

2 < y or x > 1
2 > y;

1
2 − ε, if x, y < 1

2 or x, y > 1
2 ,

(4.11)

where 0 ≤ ε = ( 1
8 − t)

1
3 ≤ 1

2 , maximizes s( 1
2 , t), and that every maximizing graphon is

of the form hσ for some measure preserving bijection σ. Equivalently, the maximum
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Figure 2: The graph of s(1/2, t) below the ER line for the edge-triangle model (blue). The

convex hull of the region below the graph is delimited by the black line segment and the portion

of the graph to its left; this segment is the support line at the right endpoint (t = 1/8, s = log 2
2

)

of maximal slope −βc
2. The other point at which the line segment meets the curve is the point

(tc, s(1/2, tc)).

value for (4.10) is achieved only at the reduced bipodal graphon h̃. See Figure 2 for

the graph of s(1/2, t).

Geometrically, the maximization problem in (4.10) involves finding the lowest half-

plane with bounding line of slope −β2 lying above the graph of s(1/2, t). For β2 > βc2

the boundary of this half-plane passes only through the graph of s(1/2, t) at the right

endpoint ( 1
8 ,

log 2
2 ). The critical value βc2 is defined (as in Figure 2) as the first slope

at which this half-plane intersects the curve at a different point. We let (tc, s(1/2, tc))

be this second point. At more negative values of β2, the half-plane will hit the curve

at points with t values below tc.

In particular this shows the non-analyticity of ψ
1
2 ,β2 as a function of β2 at β2 = βc2.

The analyticity of ψ
1
2 ,β2 elsewhere follows from concavity (and analyticity) of s(1/2, t)

below tc. By Theorem 2, at β2 = βc2, the maximizing reduced graphon h̃ for (4.10)

transitions from being Erdős-Rényi with edge formation probability 1
2 to symmetric

bipodal with εc = ( 1
8 − tc)

1/3. The jump discontinuity in the derivative follows when
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Figure 3: The (conjectural) graph of βc
2 as a function of e for the edge-triangle model, in the

range e ≤ 1/2. The computation is based on the conjecture that the maximizing graphons in

this region are symmetric and bipodal, see [18].

we realize that ∂
∂β2

ψ
1
2 ,β2 = t(h̃).

Numerical computations yield that βc2 is approximately −2.7 and εc is approximately

0.47. By Theorem 2, this shows that as β2 decreases from 0 to −∞, a typical graph

Gn drawn from the constrained repulsive edge-triangle model jumps from being Erdős-

Rényi to almost complete bipartite, skipping a large portion of the e = 1
2 line. This

“jump behavior” (also called first-order phase transition) is intrinsically tied to the

convexity of s(e, t) just below the Erdős-Rényi curve t = e3, thus we expect similar

phase transition phenomena for general e 6= 1
2 as well; see Figures 3, 4. However, unlike

in the e = 1
2 case, where the symmetry of I (2.8) about u = 1

2 contributes to a precise

knowledge of the structure of the maximizing graphon, in general cases, there is only

empirical evidence concerning the structure of the maximizing graphons. See also [8]

for related results in the unconstrained repulsive edge-triangle model.

5. Euler-Lagrange equations

We return to the constrained 2-parameter family of exponential random graphs

(4.9). For notational convenience and with some abuse of notation, denote by T (h) =∑2
i=1 βit(Hi, h). As seen in Section 4, the “micro analysis” helps with the “macro

analysis”. Explicitly, if we can find the maximizing graphon for −I subject to two
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Figure 4: The (conjectural) graph of entropy −I as a function of edge and triangle densities

e, t in the region e ≤ 1
2
, t ≤ e3. The critical curve (black) defines tc as a function of e.

The computation is based on the conjecture that the maximizing graphons in this region are

symmetric and bipodal, see [18].

constraints t(H1, ·) = t1 and t(H2, ·) = t2, where t1 and t2 are arbitrary but fixed

homomorphism densities, then we can find the maximizing graphon for T − I subject

to fewer or even no constraints. This in turn will aid us in understanding the limiting

conditional probability distribution and the structure of a typical graph Gn sampled

from either the constrained or the unconstrained exponential model. In the uncon-

strained case, Chatterjee and Diaconis derived the Euler-Lagrange equation for the

maximizing graphon h for T (h)− I(h) when the tuning parameters are arbitrary but

fixed (Theorem 6.1 in [8]). When applied to the 2-parameter model, they showed that

h must be bounded away from 0 and 1 and for almost all (x, y) ∈ [0, 1]2,

h(x, y) =
e2

∑2
i=1 βi∆Hi

h(x,y)

1 + e2
∑2
i=1 βi∆Hi

h(x,y)
, (5.1)

where for a finite simple graph H with vertex set V (H) and edge set E(H),

∆Hh(x, y) =
∑

(r,s)∈E(H)

∆H,r,sh(x, y), (5.2)
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and for each (r, s) ∈ E(H) and each pair of points xr, xs ∈ [0, 1],

∆H,r,sh(xr, xs) =∫
[0,1]|V (H)\{r,s}|

∏
(r′,s′)∈E(H):(r′,s′)6=(r,s)

h(xr′ , xs′)
∏

v∈V (H):v 6=r,s

dxv. (5.3)

For example, in the edge-triangle model where H1 is an edge and H2 is a triangle,

∆H1h(x, y) ≡ 1 and ∆H2h(x, y) = 3
∫ 1

0
h(x, z)h(y, z)dz. In the constrained case, we

could likewise derive the Euler-Lagrange equation by resorting to the method of La-

grange multipliers, which will turn the constrained maximization into an unconstrained

one, but we provide an alternative bare-hands approach here. The following theorem

may also be formulated in terms of reduced graphons.

Theorem 6. Consider the constrained 2-parameter exponential random graph model

(4.9). Let t1 and t2 be arbitrary but fixed homomorphism densities. Suppose the

graphon h maximizes −I(h) subject to t(H1, h) = t1 and t(H2, h) = t2. If h is bounded

away from 0 and 1, then there must exist constants β1 and β2 such that h satisfies

(5.1) for almost all (x, y) ∈ [0, 1]2.

Proof. Graphons are bounded integrable functions on [0, 1]2 so they are continuous

outside a set of arbitrarily small measure. Let (xi, yi) for i = 1, 2, 3 be three points of

[0, 1]2. Inside a very small ball near (xi, yi), write h = hi + h̄ where hi is the average

of h in that ball. We infinitesimally perturb the values of h around (xi, yi), sending

hi → hi + dhi. Since h̄ averages to 0 and is pointwise small, in computing t1, t2,

and −I, terms involving h̄ only contribute to second order and may be ignored in the

computation below. Then (t1, t2,−I)→ (t1, t2,−I) + (dt1, dt2,−dI) where
dt1

dt2

−dI

 =


∆H1

h1 ∆H1
h2 ∆H1

h3

∆H2h1 ∆H2h2 ∆H2h3

1
2 log( 1

h1
− 1) 1

2 log( 1
h2
− 1) 1

2 log( 1
h3
− 1)




dh1

dh2

dh3

 . (5.4)

If the determinant of the above matrix is nonzero, then there is a nontrivial deformation

(dh1, dh2, dh3) which increases −I while leaving t1 and t2 fixed. So the maximizing

graphon h must satisfy the condition that the determinant is zero. Recall that H1 is a

single edge and ∆H1hi ≡ 1. Without loss of generality we assume that h1 6= h2, since

otherwise h is a constant graphon and our claim trivially follows. Thus the first and
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third rows of the matrix are linearly independent and there must exist constants β1

and β2 such that

∆H2
hi = β1 +

β2

2
log(

1

hi
− 1). (5.5)

Moreover, since β1 and β2 are determined by h1 and h2, we must have (5.5) for all

points (x3, y3) ∈ [0, 1]2. We recognize this requirement is equivalent to (5.1).

Suppose we are looking for a graphon h that maximizes −I(h) subject to t(H1, h) =

t1 only. Then following the same “perturbation” idea, we should examine dt1

−dI

 =

 ∆H1
h1 ∆H1

h2

1
2 log( 1

h1
− 1) 1

2 log( 1
h2
− 1)

 dh1

dh2

 . (5.6)

Since the determinant is zero, h must be a constant. This is the same conclusion

obtained by applying Jensen’s inequality to the convex function I. On the other

hand, we may also consider maximizing −I(h) subject to k (instead of 2) constraints

t(Hi, h) = ti for i = 1, . . . , k, in which case we would perturb the values of the graphon

at k + 1 points and form a (k + 1)× (k + 1) matrix.
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