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Abstract. We consider a weighted stationary spherical Boolean model in Rd. Assuming that the
radii of the balls in the Boolean model have regularly varying tails, we establish the asymptotic
behaviour of the tail of the contact distribution of the thinned germ-grain model under 4 different
thinning procedures of the original model.

1. Introduction

We consider hard-core global thinning of a stationary spherical Boolean model in Rd, constructed
as follows. Let Φ be a Poisson random measure on Rd × (0,∞)× (0,∞) with mean measure

(1.1) m(dx, dr, dw) = λ dxG(dr, dw) .

Here λ > 0 is the spatial intensity, and G is a probability law on (0,∞)× (0,∞). Let (Xn, Rn,Wn),
n = 1, 2 . . . be a measurable enumeration of the points of Φ. We view Xn ∈ Rd as the center of
the nth ball, and Rn its radius. In the sequel we will use the notation Br(x) for a closed ball of
radius r > 0 centered at x ∈ Rd, so the nth point of Φ corresponds to closed ball BRn(Xn). The
last component, Wn, is the weight of the nth ball, and it will be used below in resolving collisions
between balls. Let F (·) = G(·×(0,∞)) be the law of the radius marking a spatial Poissonian point.
We will assume that

(1.2)

∫ ∞
0

rd F (dr) <∞ .

It is well known that, under this assumption, with probability 1, a realization of the random field
Φ has the property that only finitely many balls of the type BRn(Xn) intersect any compact set in
Rd. This implies that the union

(1.3) D =

∞⋃
n=1

BRn(Xn)

is a random closed subset of Rd. We refer the reader to Stoyan et al. (1995) for this fact, and for a
general reference on Boolean and related models.

It is common to refer to a random configuration of the type we have constructed as a germ-grain
model; such a model does not need to involve a spatial Poisson random measure or spherical shapes.
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In the Boolean model above each Xn is a germ, and the corresponding closed ball BRn(0) is its
grain. The set D in (1.3) is the grain cover of the space.

Some of the balls BRn(Xn) in the Boolean model will overlap. In ordet to obtain a hard-core
germ-grain model, i.e. a configuration in which no two grains overlap, it is possible to thin the
Boolean model, by removing (at least) one ball in each pair of balls involved in an overlap. We will
follow the global thinning procedure introduced by Mansson and Rudemo (2002). This is where the
weight component Wn of the nth ball is used. Informally, for every pair of different balls, BRn(Xn)
and BRm(Xm) with a non-empty intersection, the ball BRn(Xn) gets deleted if Wn ≤ Wm; this
procedure deletes both balls if Wn = Wm. To be a bit more formal, we use the notation borrowed
from Kuronen and Leskelä (2013): let

(1.4) Nx,r,w =
{

(x′, r′, w′) ∈ Rd × R+ × R+\{x, r, w} : Br′(x
′) ∩Br(x) 6= ∅

}
;

we view this set as the collection of centers, radii and weights of balls that could, potentially,
intersect a reference ball Br(x) with weight w. Then the thinned Boolean model we are considering
is given by

(1.5) Φth =
{

(x, r, w) ∈ Φ : w > w′, for all (x′, r′, w′) ∈ Φ ∩Nx,r,w

}
.

By construction, all the remaining grains (balls) in the thinned random field Φth are disjoint. The
corresponding grain cover can be written in the form

(1.6) Dth =
⋃

(x,r,w)∈Φth

Br(x) .

The thinning procedure we are using is sometimes referred to as the Matérn type II construction.
An discussion of different Matérn type constructions and their extensions was given in Nguyen and
Baccelli (2013). This model was studied in Mansson and Rudemo (2002) and Anderson et al. (2006).
Our inspiration for the present work came from the paper of Kuronen and Leskelä (2013), and we
refer the reader to this paper for an illuminating discussion of the importance and applications of
hard-core germ-grain models. Specifically, the latter paper considers the case of power law grain
sizes; in our notation we can describe this setup as follows. Recalling that we denote by F the
marginal distribution of the probability measure G in (1.1) corresponding to the random radius of
a Poisson ball, the power law distribution of the grain sizes in Kuronen and Leskelä (2013) is the
assumption of regular variation of the tail

(1.7) F̄ (r) := 1− F (r) = r−αL(r) ,

where L is a slowly varying function and α > d; the latter restriction assures that the integrability
condition (1.2) holds. We refer the reader to Resnick (2007) for information on regular varying
tails. Under the assumption (1.7) of regular variation, Kuronen and Leskelä (2013) discovered
appearance of power-like decay of the covariance function of the thinned grain cover (1.6), under
three out of four choices of the joint law G in (1.1) they considered; we will return to these choices
in a moment.

In this paper we are interested in the contact distribution for the thinned Boolean model described
above. It is a probability law H on (0,∞) whose complementary c.d.f. is defined by

(1.8) H̄(r) = P
(
Br(0) ∩Dth = ∅

∣∣0 /∈ Dth

)
, r > 0 .

The contact distribution can, of course, be defined for any germ-grain model. It differs only by a
possible atom at zero from the empty space function, a probability law on [0,∞) defined by

(1.9) H̄e(r) = P
(
Br(0) ∩Dth = ∅

)
, r ≥ 0 .
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Contact distributions are important characteristics of germ-grain models; a survey on the topic
is in Hug et al. (2002). Explicit formulas for the contact distributions are mostly available only
for Poisson-based models such as Poisson cluster models. Our goal in this paper is to understand
the tail behaviour of the contact distribution for the thinned Boolean model with a power law
distribution of the grain sizes. Specifically, we are interested in answering the question whether a
power law distribution of the grain sizes results in a power law behaviour of the contact distribution
for the thinned Boolean model. Notice that for the original Boolean model with the grain cover
(1.3) the tail of the contact distribution decays, obviously, exponentially fast regardless of the
distribution of the radius of a ball. It turns out that certain choices of the joint law G of the radius
of a ball and its weight lead to appearance of a power law-like decay of the contact distribution,
while other choices do not.

One possible choice of the the law G in (1.1) is given by setting Wn = Rn a.s. for all n, so that G
is concentrated on the diagonal r = w of (0,∞)× (0,∞). With this choice of G, balls with a larger
radius have a larger weight. We refer to this situation as the case of heavy large balls. Another
possible choice of G is given by setting Wn = 1/Rn a.s. for all n. With this choice of G, balls with
a smaller radius have a larger weight. A third possible choice of the law G is to make it a product
law, and to make the marginal law of the weights continuous (e.g. standard uniform). That is, the
weights are independent of the radii of the balls. Finally, one could make the weights of the balls
constant (e.g. Wn = 1 a.s. for all n). In this case, only isolated balls in the original Boolean model
(i.e. the balls that do not overlap with any other ball) stay in the thinned grain-germ model Φth.
The latter thinning mechanism is known as the Matérn type I construction.

It is interesting that, as it was shown in Kuronen and Leskelä (2013), when the radii of the balls
are regularly varying as in (1.7), the covariance function of the thinned grain cover (1.6) has a
power-like decay under all of the above thinning mechanisms apart from the case of heavy small
balls.

In a certain sense the above situation is preserved when one is interested in the tail of the contact
distribution. In Section 2 we show that this tail has a power-like decay in all cases apart from the
case of heavy small balls. Interestingly, the power of the rate of decay is different for the three
thinning mechanisms considered here. Finally, In Section 3, on the other hand, we show that in
the situation when a ball with a large radius has a smaller weight than a ball with a small radius,
the tail of the contact distribution decays exponentially fast.

2. Power law of the contact distribution

We start this section with showing that, in the case when a ball with a larger radius in a Boolean
model has a larger weight than a ball with a smaller radius, the contact distribution of the thinned
model has a tail with power-like decay.

Theorem 2.1. Assume that the distribution of the radii of the balls in the Boolean model satisfies
(1.7) with α > d. If larger balls have larger weights, then the contact distribution of the thinned
germ-grain model satisfies

(2.1) 0 < lim inf
r→∞

H̄(r)(
rdF̄ (r)

)2 ≤ lim sup
r→∞

H̄(r)(
rdF̄ (r)

)2 <∞ .

Proof. Throughout the proof, we may and will work with the tail of the empty space function (1.9)
instead of the tail of the contact distribution. Further, we denote by c a finite positive constant
whose value is not important and that may change from one appearance to the next. We will also
introduce a notational simplification. The Poisson random measure Φ is a measure in the d + 2-
dimensional space Rd × (0,∞) × (0,∞), but in the present context the “weight” coordinate is a



4 YINGHUA DONG AND GENNADY SAMORODNITSKY

function of the “radius” coordinate, so it is simpler to view Φ as a measure in the d+1-dimensional
space Rd × (0,∞), described by the location of the center of a ball and its radius. We will use the
appropriate notation throughout the proof.

We start with proving the lower bound in (2.1). We will construct a scenario under which the
ball Br(0) does not intersect Φth. The idea of the construction is that a single ball with a large
radius in Φ “eliminates” all the other balls in Φ that intersect Br(0), and then another ball in Φ
of an even larger radius “eliminates” the first ball of a large radius, but does not itself intersect
Br(0). That will leave Br(0) disjoint from Φth. The two large balls will have centers in sets of
sizes proportional to r, and also radii of the size proportional to r, which explains the order of
magnitude of the tail in (2.1).

For r > 0 we consider three disjoint subsets of Rd × (0,∞):

(2.2) A(1)
r =

{
(x, t) : t ≥ ‖x‖+ r

}
,

(2.3) A(2)
r =

{
(x, t) : max(r, ‖x‖ − r) ≤ t < ‖x‖+ r

}
,

(2.4) A(3)
r =

{
(x, t) : ‖x‖ − r ≤ t < r

}
.

Notice that only those balls BRn(Xn) in Φ for which (Xn, Rn) ∈ A(1)
r ∪A(2)

r ∪A(3)
r intersect Br(0).

Furthermore, any ball BRn(Xn) in Φ for which (Xn, Rn) ∈ A(1)
r contains the entire ball Br(0) as a

subset. The set A
(1)
r will be most important for us in proving the lower bound in (2.1). Consider

the event

Br =
{

Φ
(
A(1)
r

)
= 1, Φ

(
A(2)
r

)
= 0
}
.

On the event Br we can define a random vector (X(r), R(r)
)
∈ A(1)

r corresponding to the location

of the center and the radius of the single ball in Φ for which that pair is in the set A
(1)
r . We extend

the definition of (X(r), R(r)
)

to the outside of the event Br in an arbitrary measurable way (e.g.
define it on Bc

r to be the pair (0, 1).) Clearly, this vector has the law

P
(
(X(r), R(r)) ∈ ·

∣∣Br) =
(Leb× F )(·)

(Leb× F )(A
(1)
r )

over A
(1)
r . Here Leb is the d-dimensional Lebesgue measure. Note that

(2.5) H̄e(r) = P
(
Br(0) ∩Dth = ∅

)
≥ P (Br ∩ B̂r) ,

where

B̂r =
{

there is a Φ-ball BRn(Xn) with (Xn, Rn) ∈ (A(1)
r ∪A(2)

r ∪A(3)
r )c

and Rn > R(r) that intersects BR(r)(X(r)).
}

Let vd be the volume of the unit ball in Rd. By switching to the spherical coordinates we see that
for the large r,

E
[
Φ
(
A(1)
r

)]
=λdvd

∫ ∞
0

xd−1F̄ (x+ r) dx(2.6)

=λdvdr
d

∫ ∞
0

td−1F̄ (r(t+ 1)) dt

∼crdF̄ (r)→ 0 .
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On the last step we used the Potter bounds for regularly varying functions; see Resnick (2007).
Therefore, for large r,

P (Br) ∼E
[
Φ
(
A(1)
r

)]
∼ c rdF̄ (r) .(2.7)

Similarly,

E
[
Φ
(
A(2)
r

)]
∼ crdF̄ (r)→ 0,

as r →∞.
Next, for (y, w) ∈ A(1)

r we denote

Ar,(y,w) =
{

(x, t) ∈ (A(1)
r ∪A(2)

r ∪A(3)
r )c : t > w, the ball Bt(x) intersects the ball Bw(y)

}
.

Then, since a Poisson random measure assigns independent values to disjoint sets,

P (B̂r|Br) =
1

(Leb× F )(A
(1)
r )

∫ ∫
(y,w)∈A(1)

r

P
(
Φ(Ar,(y,w)) > 0

)
dyF (dw)

≥ 1

(Leb× F )(A
(1)
r )

∫
B3r(0)\B2r(0)

∫ 5.5r

5r

(
1− exp

{
−m(Ar,(y,w))

})
dyF (dw)

because, obviously, (
B3r(0) \B2r(0)

)
× (5r, 5.5r) ⊂ A(1)

r .

It follows from (2.6) that

(Leb× F )
[
(B3r(0) \B2r(0))× (5r, 5.5r)

]
(Leb× F )(A

(1)
r )

≥ c

for all large r. Therefore, the lower bound in (2.1) will follow from (2.5) and (2.7) once we show
that there is a constant c such that for all r large enough

(2.8) m(Ar,(y,w)) ≥ c rdF̄ (r)

for all (y, w) ∈ (B3r(0) \B2r(0))× (5r, 5.5r). To this end, for such a pair (y, w) consider the point

ỹ =
y

‖y‖
(‖y‖+ w) ∈ Rd ,

and the ball Br(ỹ). Let ‖z‖ ≤ r. Note that the distance from the point ỹ + z ∈ Br(ỹ) to the ball
Bw(y) does not exceed ‖z‖ ≤ r, while the distance from that same point to ball Br(0) is greater
than ‖y‖+ w − r > w + r. Taking into account the bounds on w we have chosen, we see that any
ball centered at a point ỹ + z ∈ Br(ỹ) with a radius t ∈ (5.5r, 6r) will intersect the ball Bw(y) but
not the ball Br(0). We conclude that for a pair (y, w) as above,

Ar,(y,w) ⊃
{

(x, t) : x ∈ Br(ỹ), t ∈ (5.5r, 6r)
}
,

implying that
m
(
Ar,(y,w)

)
≥ c rd

(
F̄ (5.5r)− F̄ (6r)

)
∼ c rdF̄ (r)

as r →∞, by the regular variation. This proves (2.8).
Now we switch to proving the upper bound in (2.1). Let K > 0 be a fixed number to be specified

momentarily. Denote

A(4)
r (K) =

{
(x, t) : max(r/K, ‖x‖ − r) ≤ t < ‖x‖+ r

}
.

The same argument using regular variation and the Potter bounds as in (2.6) shows that for large
r,

(2.9) E
[
Φ
(
A(4)
r (K)

)]
≤ c rdF̄ (r)
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(with a K-dependent constant c). This bound, together with (2.6), tells us that for large r,

P
(
Φ
(
A(1)
r

)
≥ 2
)
≤ c
(
rdF̄ (r)

)2
, P

(
Φ
(
A(4)
r (K)

)
≥ 2
)
≤ c
(
rdF̄ (r)

)2
,

P
(
Φ
(
A(1)
r

)
≥ 1, Φ

(
A(4)
r (K)

)
≥ 1
)
≤ c
(
rdF̄ (r)

)2
.

Therefore, the upper bound in (2.1) will follow once we prove the following 3 statements. For large
r,

(2.10) P
(
Br(0) ∩Dth = ∅, Φ

(
A(1)
r

)
= 1
)
≤ c
(
rdF̄ (r)

)2
,

(2.11) P
(
Br(0) ∩Dth = ∅, Φ

(
A(4)
r (K)

)
= 1
)
≤ c
(
rdF̄ (r)

)2
,

(2.12) P
(
Br(0) ∩Dth = ∅, Φ

(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0
)
≤ c
(
rdF̄ (r)

)2
.

We will see that (2.10) and (2.11) hold for any K > 0. We will specify K when we prove (2.12).

We start with proving (2.10). For the event in that probability to occur, the only Φ-ball in A
(1)
r

must overlap with another Φ-ball, of a larger radius, and lying outside of A
(1)
r . Since restrictions of

a Poisson measure to disjoint sets are independent, and since the only Φ-ball in A
(1)
r has a radius

of at least r, the probability in (2.10) is bounded from above by

P
(
Φ
(
A(1)
r

)
= 1
)

sup
s≥r

P
(
Φ(A(5)

s ) > 0
)
,

where

(2.13) A(5)
s =

{
(x, t) ∈ Rd × (0,∞) : t > s, the ball Bt(x) intersects the ball Bs(0)

}
,

the center of the ball of radius s being irrelevant due to the stationarity. It is elementary that for
large s, by the regular variation of F̄ and Karamata’s theorem on integration of regularly varying
functions (see e.g. Resnick (2007)),

m
(
A(5)
s

)
=c

∫ ∞
0

xd−1F̄
(
s ∨ (x− s)) dx(2.14)

=c(2s)dF̄ (s) + c

∫ ∞
2s

xd−1F̄ (x− s) dx

≤csdF̄ (s) .

Therefore, for large s,

P
(
Φ(A(5)

s ) > 0
)
≤ csdF̄ (s) ,

and (2.10) follows from (2.6). Clearly, all the ingredients involved in the proof of (2.10) are also
available for the proof of (2.11), so we only need to prove (2.12).

Now we explain how to choose K. It will be chosen together with several other constants.
Choose sequentially positive real numbers 0 < θ < d/α and 0 < τ < θ(α − d), a positive integer
I > 2(α− d)/τ − 1 and, finally, K > 2I+1. We start with considering the concentric balls Br2−i(0),
i = 0, 1, . . . , I. For i = 0, 1, . . . , I, let

Mi = sup
{
Rn : BRn(Xn) is an Φ-ball, ‖Xn‖+Rn < r2−i

}
.

Then

P
(
Mi ≤

(
r2−i

)θ)
= exp

{
−m

({
(x, t) : ‖x‖+ t < r2−i, t >

(
r2−i

)θ})}
.
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Further, since θ < 1,

m
({

(x, t) : ‖x‖+ t < r, t > rθ
})

≥m
({

(x, t) : ‖x‖ < r/2, rθ < t ≤ r/2
})

=crd
(
F̄ (rθ)− F̄ (r/2)

)
∼ crdF̄ (rθ)

as r →∞. By the choice of θ we see that

P
(
Mi ≤

(
r2−i

)θ)
= o(

(
rdF̄ (r)

)2
), i = 0, 1, . . . , I ,

and so (2.12) will follow once we prove that

lim sup
r→∞

P
(
Br(0) ∩Dth = ∅, Φ

(
A

(1)
r

)
= Φ

(
A

(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

)
(
rdF̄ (r)

)2 <∞ .

(2.15)

Consider the events

Hi =
{

the Φ-ball fully inside Br2−i(0) of the largest radius,

is eliminated by an Φ-ball not fully inside Br2−i(0)
}
,

i = 0, 1, . . . , I. Note that, on the event Hc
i , the largest Φ-ball fully inside Br2−i(0) stays in the

thinned process, hence Br(0) ∩Dth 6= ∅. Therefore, in order to prove (2.15), it is enough to prove
that

lim sup
r→∞

(
rdF̄ (r)

)−2
P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

}
(2.16)

∩H0 ∩ . . . ∩HI

)
<∞ .

Consider first the probability

P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

}
∩HI

)
≤P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,MI >

(
r2−I

)θ} ∩HI

)
.

On the latter event, we can define a random vector
(
X̃I , R̃I

)
as the center and the radius of the

largest Φ-ball fully within Br2−I (0). Note that R̃I >
(
r2−I

)θ
. The random vector

(
X̃I , R̃I

)
is

determined by the field Φ on the set{
(x, t) : ‖x‖+ t < r2−I

}
,

and the corresponding Φ-ball can only be eliminated by the Φ-balls in the complement of that
set. Since restrictions of a Poisson measure to disjoint sets are independent, we conclude, in the
notation of (2.13) that for large r,

P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,MI >

(
r2−I

)θ} ∩HI

)
≤ sup
s≥(r2−I)θ

P
(
Φ(A(5)

s ) > 0
)

≤c
(
r2−I

)θd
F̄
(
(r2−I)θ

)
≤ cr−τ ,

where on the last two steps we used (2.14), the choice of τ and the regular variation of F̄ .
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Next we consider the probability

P
(

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

}
∩HI−1 ∩HI

)
≤P
(

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = I − 1, I

}
∩HI−1 ∩HI

)
.

Note that the condition Φ
(
A

(1)
r

)
= Φ

(
A

(4)
r (K)

)
= 0 in the above event means that the largest

Φ-ball completely within Br2−I (0) could only be eliminated by a Φ-ball centered at a point whose
norm is in the range r2−I ± r/K, while the largest Φ-ball completely within Br2−(I−1)(0) could

only be eliminated by a Φ-ball centered at a point whose norm is in the range r2−(I−1) ± r/K.
These two ranges are disjoint by the choice of K. We use, once again, the fact that restrictions of
a Poisson measure to disjoint sets are independent, and an argument as above gives us

P
(

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = I − 1, I

}
∩HI−1 ∩HI

)
≤ c
(
r−τ
)2
.

Proceeding in the same manner, we finally obtain

P
({

Φ
(
A(1)
r

)
= Φ

(
A(4)
r (K)

)
= 0,Mi >

(
r2−i

)θ
, i = 0, 1, . . . , I

}
∩H0 ∩ . . . ∩HI

)
≤ c
(
r−τ
)I+1

for large r. By the choice of I, we see that (2.16) follows. �

Now we consider the case of isolated balls remaining. Once again, the contact distribution has
a power-like decaying tail, but the corresponding power is different from the power obtained in
Theorem 2.1. This is, perhaps, not surprising, since keeping only isolated balls results in fewest
balls remaining in the thinned model, hence larger “open space”.

Theorem 2.2. Assume that the distribution of the radii of the balls in the Boolean model satisfies
(1.7) with α > d. If only isolated balls are kept in the thinned model, then the contact distribution
of the thinned germ-grain model satisfies

(2.17) 0 < lim inf
r→∞

H̄(r)

rdF̄ (r)
≤ lim sup

r→∞

H̄(r)

rdF̄ (r)
<∞ .

Proof. We use the same conventions as in the proof of Theorem 2.1. In particular, we work with
the tail of the empty space function, and view the Poisson random measure Φ as a measure in the
d+ 1-dimensional space Rd × (0,∞).

Once again, we start with a lower bound. One scenario under which the ball Br(0) is disjoint
from the grain cover in the thinned model is existence of a Φ-ball that covers the entire ball Br(0)
plus existence of a Φ-ball that is entirely within the ball Br(0). Since

m
({

(x, t) : Bt(x) ⊂ Br(0)
})
→∞

as r →∞, we conclude by (2.6) that

P
(
Br(0) ∩Dth = ∅

)
≥
(
1− o(1)

)
P
(
Φ(A(1)

r ) ≥ 1
)

∼E
(
Φ(A(1)

r )
)
∼ c rdF̄ (r) .

This proves the lower bound in (2.17).
The argument for the upper bound in (2.17) is based on several facts. First of all, since the

thinned random filed Φth is a.s. non-empty, for any ε > 0 and large enough a > 0,

(2.18) P
(

there is Bv(x) ∈ Φth with ‖x‖ ≤ ε and v ≤ a
)
> 0 .
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Secondly, there is a constant c > 0 such that for any 0 < a ≤ r there exist at least [crd/ad]
closed balls of radius a completely within Br(0), such that the Euclidian distance between any two
different balls is at least a. This fact can be easily verified by considering a regular grid of size a
inside Br(0).

Let M(r) be the largest radius of a Φ-ball intersecting Br(0). Clearly, for any t > 0,

P
(
M(r) > t

)
= 1− e−m(A

(6)
r,t ) ,

where

A
(6)
r,t =

{
(x, s) ∈ Rd × (0,∞) : s > t, the ball Bs(x) intersects the ball Br(0)

}
.

An argument similar to the one in (2.14) shows that

(2.19) m
(
A

(6)
r,t

)
≤ c rdF̄ (t) ,

with a similar lower bound, but with a different constant c. Write

P
(
Br(0) ∩Dth = ∅

)
≤ P (M(r) > r) +

∫ r

0
P
(
Br(0) ∩Dth = ∅|M(r) = t

)
FM(r)(dt) ,

where FM(r) is the law of M(r). It follows from (2.19) that we have to prove that

(2.20) lim sup
r→∞

∫ r
0 P
(
Br(0) ∩Dth = ∅|M(r) = t

)
FM(r)(dt)

rdF̄ (r)
<∞ .

The property that restrictions of a Poisson measure to disjoint sets are independent tells us that,

given that M(r) = t, the random measure Φ restricted to the set A
(6)
t = {(x, s) : s < t} is still a

Poisson random measure on that set with the same mean measure m, restricted to that set. Take
a > 0 such that (2.18) holds, and choose ε = a. Let 0 < p < 1 be the corresponding value of
the probability in (2.18). Consider a < t < r. By (2.18), there are [crd/td] closed balls of radius
t completely within Br(0), such that the Euclidian distance between any two different balls is at
least t. For each one of these [crd/td] balls, with probability at least p, there is an isolated Φ-ball
with a center in it, and radius not exceeding t. The events that such Φ-balls exist are independent,
and presence of such a Φ-ball guarantees that Br(0) ∩Dth 6= ∅. Therefore, for any t > a,

P
(
Br(0) ∩Dth = ∅|M(r) = t

)
≤ (1− p)[crd/td] ≤ (1− p)−1(1− p)crd/td .

It is clear that

P
(
M(r) ≤ a

)
≤ e−crd = o

(
rdF̄ (r)

)
.

Furthermore, ∫ r

a
P
(
Br(0) ∩Dth = ∅|M(r) = t

)
FM(r)(dt)

≤c
∫ r

a
e−r

d/ctd FM(r)(dt)

≤crd
∫ r

0
e−r

d/ctd t−(d+1)F̄M(r)(t) dt

≤cr2d

∫ r

0
e−r

d/ctd t−(d+1)F̄ (t) dt

=crd
∫ 1

0
e−1/csd s−(d+1)F̄ (rs) ds
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∼crdF̄ (r)

∫ 1

0
e−1/csd s−(α+d+1) ds

as r →∞ by the regular variation of F̄ and the Potter bounds. This completes the proof of (2.20)
and, hence, of the upper bound in the theorem. �

Finally, we consider the case when the weights are independent of the radii of the balls.

Theorem 2.3. Assume that the distribution of the radii of the balls in the Boolean model satisfies
(1.7) with α > d. If the weight of a ball in the model is independent of its radius and has a
continuous distribution, then the contact distribution of the thinned germ-grain model satisfies

(2.21) 0 < lim inf
r→∞

H̄(r)

F̄ (r)
≤ lim sup

r→∞

H̄(r)

F̄ (r)
<∞ .

Proof. The structure of the argument is similar to that in Theorem 2.1. We also follow the conven-
tions in the proof of Theorem 2.1 by working with the tail of the empty space function. However,
since in this case the weight of a Φ-ball is not a function of its radius, we have to view the Poisson
random measure Φ as a measure in the full d+ 2-dimensional space Rd × (0,∞)× (0,∞).

As before, we start with proving the lower bound in (2.21). The scenario we will use is similar
to the scenario we used to prove the lower bound in Theorem 2.1. Specifically, in this scenario
there is a single ball of a large radius and large weight that “eliminates” all the other Φ-balls that
intersect Br(0), and then another ball in Φ of an even larger weight “eliminates” the first ball, but

does not itself intersect Br(0). Recall the definition of the sets A
(1)
r , A

(2)
r and A

(3)
r in (2.2) - (2.4)

accordingly. As before, on the event

Br =
{

Φ
(
A(1)
r × (0,∞)

)
= 1
}
,

we can define a random vector (X(r), R(r),W (r)
)

corresponding to the location of the center, the

radius and the weight of the single ball in Φ for which the pair (X(r), R(r)
)

is in the set A
(1)
r .

Therefore,
P
(
Br(0) ∩Dth = ∅

)
≥ P (Br ∩ B̂r) ,

where now

B̂r =
{
W (r) > max{w : (x, t, w) ∈ Φ

(
(A(2)

r ∪A(3)
r )× (0,∞)

)
and there is (x, t, w) ∈ Φ

(
(A(1)

r ∪A(2)
r ∪A(3)

r )c
)

and w > W (r) such that Bt(x) intersects BR(r)(X(r))
}
.

A standard computation shows that if (for example) 2r ≤ R(r) ≤ 3r, then the expected number of

the Boolean balls that intersect BR(r)(X(r)) but not Br(0) is at least crd. Similarly,

P
(

Φ
(
A(1)
r × (0,∞)

)
= 1, 2r ≤ R(r) ≤ 3r

)
≥ crdF̄ (r) .

Since
m
(
(A(2)

r ∪A(3)
r )× (0,∞)

)
≤ crd ,

in order to prove the lower bound in (2.21) it is enough to prove the following statement. Let c1, c2

be positive numbers, and let N1, N2 be independent Poisson random variables with means c1r
d and

c2r
d, correspondingly. Let W0, W

(1)
n , n = 1, 2, . . . , W

(2)
n , n = 1, 2, . . . be i.i.d. standard uniform

random variables independent of the Poisson random variables. Then for some positive c,

(2.22) P
(

sup
n≤N2

W (2)
n > W0 > sup

n≤N1

W (1)
n

)
≥ cr−d .
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To this end, note that, by symmetry, for any fixed n1 ≥ 1, n2 ≥ 1,

(2.23) P
(

sup
n≤n2

W (2)
n > W0 > sup

n≤n1

W (1)
n

)
=

n2

n1 + n2 + 1
· 1

n1 + 1
.

Now (2.22) follows from the fact that

P
(
N2 ≥ (c2/2)rd

)
→ 1, P

(
N1 ≤ 2c1r

d
)
→ 1

as r →∞. This completes the proof of the lower bound.
Now we prove the upper bound in (2.21). Let K1 be a large positive number we will specify

below. Denote

A(7)
r (K1) =

{
(x, s, w) ∈ Rd×(0,∞)×(0,∞) : s ≥ r/K1, the ball Bs(x) intersects the ball Br(0)

}
.

As in (2.9) we have

(2.24) E
[
Φ
(
A(7)
r (K1)

)]
≤ c rdF̄ (r)

(with a K1-dependent constant c). Therefore, if l1 ≥ α/(α− d), then

P
(
Φ
(
A(7)
r (K1)

)
> l1

)
= o
(
F̄ (r)

)
as r →∞, and, hence, we need to prove that

(2.25) lim sup
r→∞

P
(
Br(0) ∩Dth = ∅, Φ

(
A

(7)
r (K1)

)
≤ l1

)
F̄ (r)

<∞ .

Fix θ ∈ (d/α, 1), and let

A(8)
r (K1, θ) =

{
(x, s, w) ∈ Rd × (0,∞)× (0,∞) : rθ < s < r/K1,

the ball Bs(x) intersects the ball Br(0)
}
.

As above, we have for large r,

E
[
Φ
(
A(8)
r (K1, θ)

)]
≤ c rdF̄ (rθ) .

By the choice of θ we see that, if l2 ≥ α/(θα− d), then

P
(
Φ
(
A(8)
r (K1, θ)

)
> l2

)
= o
(
F̄ (r)

)
as r →∞. Therefore, in order to establish (2.25), it is enough to prove that for every j = 0, 1, . . . , l1,

(2.26) lim sup
r→∞

P
(
Br(0) ∩Dth = ∅, Φ

(
A

(7)
r (K1)

)
= j, Φ

(
A

(8)
r (K1, θ)

)
≤ l2

)
F̄ (r)

<∞ .

Now we specify K1 by setting K1 > l2. Note that for every choice of l2 and K1 as above, the
complement in Br(0) of the union of at most l2 balls of radii not exceeding r/K1 contains a ball of
a radius γr for some γ = γ(l2,K1) > 0 (we can choose γ = (1/l2 − 1/K1)/2).

We first consider the case j = 0 in (2.26). Let Φr,θ be the restriction of the Poisson random

measure Φ to the set Rd × (0, rθ] × (0,∞). Using, once again, the property of a Poisson measure
that its restrictions to disjoint sets are independent, we see that (2.26) with j = 0 will follow once
we show that

(2.27) lim sup
r→∞

P
(
Bγr(0) ∩Dr,θ,th = ∅

)
F̄ (r)

<∞ ,

where Dr,θ,th is the grain cover corresponding to the thinning of Φr,θ (with the weights still being
independent of the radii). The fact that we are allowed to use the ball centered at the origin in
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(2.27), instead of a randomly centered ball described in the previous paragraph, is a consequence
of translation invariance of Φr,θ.

In order to prove (2.27), we need one more simple estimate. Let t be a large number, t ≤ γr/3.
Consider concentric balls Bt/3(0), Bt(0) and B3t(0). Then there is 0 < q < 1 such that

P
(

sup{w : (x, s, w) ∈ Φr,θ

(
(Bt(0) \Bt/3(0))× (0,∞)

)
}(2.28)

> max
(

sup{w : (x, s, w) ∈ Φr,θ

(
(Bt/3(0) \Bt/9(0))× (0,∞)

)
},

sup{w : (x, s, w) ∈ Φr,θ

(
(B3t(0) \Bt(0))× (0,∞)

)
}
)
≥ q

for all t large enough. Indeed, the Poisson random measure Φr,θ assigns mean measures of the

order ctd to each of the three annuli in question (with c K1-dependent), so (2.28) follows by using
conditioning and a computation analogous to (2.23).

Now it is clear that the probability in the numerator in (2.27) can be bounded from above by

(1 − q)cr1−θ for some c > 0 because we can fit into Bγr(0) triple annuli as above with the radial

separation between neighboring triples exceeding rθ, which makes, by the definition of Φr,θ, the
events whose probabilities are computed in (2.28), independent. Therefore, (2.27) holds, and so we
have proved (2.26) with j = 0.

Next we consider (2.26) with j = 1. It follows from (2.24) that

P
(
Φ
(
A(7)
r (K1)

)
= 1
)

= O
(
rdF̄ (r)

)
as r → ∞. Therefore, we need to prove the following version of (2.27): consider the grain cover
Dr,θ,th and a random variable W independent of it, whose law is the distribution of the weight in

the Boolean model (W is the weight of the single ball in Φ
(
A

(7)
r (K1)

)
. We eliminate all the balls in

Dr,θ,th whose weight is smaller or equal to W , and we call the resulting grain cover D̂r,θ,th. Then
(2.26) with j = 1 will follow once we prove that

(2.29) lim sup
r→∞

rdP
(
Bγr(0) ∩ D̂r,θ,th = ∅

)
<∞ .

In order to see that this is true, we use an argument similar to the one used to prove (2.27).
Consider the triple annuli in (2.28). Since we already know that the probability that fewer than
cr1−θ events in (2.28) occurs is o(r−d), we only need to consider what happens if at least cr1−θ of

the events occur. In the latter case, the only possibility for Bγr(0) ∩ D̂r,θ,th = ∅ is that the weight

of the heaviest Φ-ball in the union of cr1−θ of annuli of radii of order cr and width of order crθ does
not exceed W . Since the mean measure of the Poisson random measure Φr,θ assigns the weight of

the order crd to that union, the latter probability does not exceed cr−d, once again, by conditioning
and a computation analogous to (2.23).

Therefore, (2.29) is true, and so we have proved (2.26) with j = 1. The cases j = 2, . . . , l1, are
similar and easier, since the probabilities

P
(
Φ
(
A(7)
r (K1)

)
= j
)

become asymptotically smaller as j increases.
This completes the proof of the upper bound in (2.21). �

3. Heavy small balls and exponential decay of the contact distribution

In this section we prove that, if the weight of a ball is a strictly decreasing function of its radius,
then the tail of the contact distribution decays exponentially fast. This turns out to be unrelated
to the fact that the tail of the radii of the balls is regularly varying.
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Theorem 3.1. Assume that the distribution of the radii of the balls in the Boolean model satisfies
(1.2). If larger balls have smaller weights, then for some c > 0 the contact distribution of the
thinned germ-grain model satisfies

(3.1) H̄(r) ≤ e−crd

for all r large enough.

Proof. Once again, we work with the tail of the empty space function. Since the weight of a ball
is a function of its radius, we switch, once again, to viewing the Poisson random measure Φ as a
measure in the d+ 1-dimensional space Rd × (0,∞).

Choose a finite number γ > 0 such that

F
(
(0, γ)

)
> 0 .

Let Φγ be the restriction of the Poisson random measure Φ to the set {(x, s) : s ≤ γ}. As in the

proof of Theorem 2.2, for some c > 0 that depends on γ, we can find at least crd disjoint balls of
radius γ within Br(0), such that the distance between any two different balls exceeds 2γ. Let us
call these balls Bi, i = 1, . . . , n, with n ≥ crd. For i = 1, . . . , n consider the event

Hi =
{

Φγ

({
(x, s) : Bs(x) ∩Bi 6= ∅

})
= 1, Φγ

({
(x, s) : Bs(x) ∩

[(
Bi +Bγ(0)

)
\Bi

]
6= ∅
})

= 0
}
.

Here Bi +Bγ(0) is simply the ball concentric with Bi of radius 2γ. Note that, on the event Hi, the
single Φγ-ball in the description on the event cannot be “eliminated” by any other Φ-ball. Indeed,
if another Φγ-ball intersected it, the latter ball would be in the set

[(
Bi + Bγ(0)

)
\ Bi

]
, which is

impossible on the event Hi. Furthermore, any Φ-ball which is not a Φγ-ball has simply too large a
radius. Therefore,

P
(
Br(0) ∩Dth = ∅

)
≤ P

(
∩ni=1H

c
i

)
=
(
1− P (H1)

)n ≤ (1− P (H1)
)crd

.

The equality in this calculation follows from the fact that the balls Bi are sufficiently far away
from each other so that different events Hi are determined by restrictions of the Poisson random
measure Φγ to disjoint sets and, hence, are independent.

In order to prove the theorem we only need to check that P (H1) > 0. Since Φγ is translation
invariant, we replace, in the calculation below, B1 by Bγ(0) and B1 +Bγ(0) by B2γ(0). Note that
the event H1 is defined as the intersection of two independent events, so we only need to check that
each one of these events has a positive probability.

It is clear that

Φγ

(
Bγ(0)× (0, γ]

)
⊂ Φγ

({
(x, s) : Bs(x) ∩Bγ(0) 6= ∅

})
⊂ Φγ

(
B2γ(0)× (0, γ]

)
,

so that

E
[
Φγ

({
(x, s) : Bs(x) ∩Bγ(0) 6= ∅

})]
∈ (0,∞)

and, hence,

P
(

Φγ

({
(x, s) : Bs(x) ∩Bγ(0) 6= ∅

})
= 1
)
> 0 .

Further,

Φγ

({
(x, s) : Bs(x) ∩

(
B2γ(0)

)
\Bγ(0)

)
6= ∅
})
⊂ Φγ

(
B3γ(0)× (0, γ]

)
,

so that

E
[
Φγ

({
(x, s) : Bs(x) ∩

(
B2γ(0)

)
\Bγ(0)

)
6= ∅
}]
<∞
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and, hence,

P
(

Φγ

({
(x, s) : Bs(x) ∩

(
B2γ(0)

)
\Bγ(0)

)
6= ∅
}

= 0
)
> 0 .

This implies that P (H1) > 0, and the proof of the theorem is complete. �

Notice that a lower bound of the type

H̄(r) ≥ e−crd

for large r (with, possibly, a different exponent c than in (3.1)) is trivially true since it holds for
the original spherical Boolean model even before thinning.
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