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ON GENERALIZED MAX-LINEAR MODELS IN MAX-STABLE

RANDOM FIELDS

MICHAEL FALK, MAXIMILIAN ZOTT

Abstract. In practice, it is not possible to observe a whole max-stable ran-

dom field. Therefore, a way how to reconstruct a max-stable random field in

C
(

[0, 1]k
)

by interpolating its realizations at finitely many points is proposed.

The resulting interpolating process is again a max-stable random field. This

approach uses a generalized max-linear model. Promising results have been

established in the case k = 1 in a previous paper. However, the extension to

higher dimensions is not straightforward since we lose the natural order of the

index space.

1. Introduction and Preliminaries

Dombry et al. (2013) derive an algorithm to sample from the regular conditional

distribution of a max-stable random field η, say, given the marginal observations

ηs1 = z1, . . . , ηsk = zk for some z1, . . . , zd from the state space and k locations

s1, . . . , sd. This, clearly, concerns the distribution of η and derived distributional

parameters.

Different to that, we try to reconstruct η from the observations ηs1 , . . . , ηsk . This

is done by a generalized max-linear model in such a way, that the interpolating

process η̂ is again a (standard) max-stable random field.

As our approach is deterministic, once the observations ηs1 = z1, . . . , ηsk = zk

are given, a proper way to measure the performance of our approach is the mean

squared error (MSE). Convergence of the pointwise MSE as well as of the integrated
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MSE (IMSE) is established if the set of grid points s1, . . . , sd gets dense in the index

space.

A max-stable random process with index set T is a family of random variables

ξ = (ξt)t∈T with the property that there are functions an : T → R
+
0 and bn : T → R,

n ∈ N, such that
(

max
i=1,...,n

(

ξ
(i)
t − bn(t)

an(t)

))

t∈T

=d ξ,

where ξ(i) = (ξ
(i)
t )t∈T , i = 1, . . . , n, are independent copies of ξ and ’=d’ denotes

equality in distribution. We get a max-stable random vector (rv) on R
d by putting

T = {1, . . . , d}. Different to that, we obtain a max-stable process with continuous

sample paths on some compact metric space S, if we set T = S and require that the

sample paths ξ(ω) : S → R realize in C(S) = {g ∈ R
S : g continuous}, and that the

norming functions an, bn are continuous as well. Max-stable random vectors, and

processes, respectively, have been investigated intensely over the last decades. For

detailed reviews of max-stable rv and processes, see for instance the monographies

of Beirlant et al. (2004), de Haan and Ferreira (2006), Resnick (2008), Falk et al.

(2011) and Davison et al. (2012b) among others. Max-stable rv and processes are

of enormous interest in extreme value theory since they are the only possible limit

of linearly standardized maxima of independent and identically distributed rv or

processes.

Clearly, the univariate margins of a max-stable random process are max-stable

distributions on the real line. A max-stable random object ξ = (ξt)t∈T is commonly

called simple max-stable in the literature if each univariate margin is unit Fréchet

distributed, i. e. P (ξt ≤ x) = exp
(

−x−1
)

, x > 0, t ∈ T . Different to that, we

call a random process η = (ηt)t∈T standard max-stable if all univariate marginal

distributions are standard negative exponential, i. e. P (ηt ≤ x) = exp (x), x ≤

0, t ∈ T . The transformation to simple/standard margins does not cause any

problems, neither in the case of rv (see e. g. de Haan and Resnick (1977) or Resnick

(2008)), nor in the case of rf with continuous sample paths (see e. g. Giné et al.

(1990)).
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It is well known (e.g. de Haan and Resnick (1977), Pickands (1981), Falk et al.

(2011)) that a rv (η1, . . . , ηd) is a standard max-stable rv iff there exists a rv

(Z1, . . . , Zd) and some number c ≥ 1 with Zi ∈ [0, c] almost surely (a. s.) and

E(Zi) = 1, i = 1, . . . , d, such that for all x = (x1, . . . , xd) ≤ 0 ∈ R
d

P (η1 ≤ x1, . . . , ηd ≤ xd) = exp (−‖x‖D) := exp

(

−E

(

max
i=1,...,d

(|xi|Zi)

))

.

The condition Zi ∈ [0, c] a. s. can be weakened to P (Zi ≥ 0) = 1. Note that

‖·‖D defines a norm on R
d, called D-norm, with generator Z. The D means

dependence: We have independence of the margins of X iff ‖·‖D equals the norm

‖x‖1 =
∑d

i=1 |xi|, which is generated by (Z1, . . . , Zd) being a random permutation

of the vector (d, 0 . . . , 0). We have complete dependence of the margins ofX iff ‖·‖D

is the maximum-norm ‖x‖∞ = max1≤i≤d |xi|, which is generated by the constant

vector (Z1, . . . , Zd) = (1, . . . , 1). We refer to Falk et al. (2011, Section 4.4) for

further details of D-norms.

Let S be a compact metric space. A standard max-stable process η = (ηt)t∈S

with sample paths in C̄−(S) := {g ∈ C(S) : g ≤ 0} is, in what follows, shortly

called a standard max-stable process (SMSP). Denote further by E(S) the set of

those bounded functions f ∈ R
S that have only a finite number of discontinuities

and define Ē−(S) := {f ∈ E(S) : f ≤ 0}. We know from Giné et al. (1990) that

a process η = (ηt)t∈S with sample paths in C(S) is an SMSP iff there exists a

stochastic process Z = (Zt)t∈S realizing in C̄+(S) := {g ∈ C(S) : g ≥ 0} and

some c ≥ 1, such that Zt ≤ c a. s., E(Zt) = 1, t ∈ S, and

P (η ≤ f) = exp (−‖f‖D) := exp

(

−E

(

sup
t∈S

(|f(t)|Zt)

))

, f ∈ Ē−(S).

Note that ‖·‖D defines a norm on the function space E(S), again called D-norm

with generator process Z. The functional D-norm is topologically equivalent to the

sup-norm ‖f‖∞ = supt∈S |f(t)|, which is itself a D-norm by putting Zt = 1, t ∈ S,

see Aulbach et al. (2013) for details.
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At first it might seem unusual to consider the function space E(S). The reason

for that is that a suitable choice of the function f ∈ Ē−(S) allows the incorporation

of the finite dimensional marginal distributions by the relation P (η ≤ f) = P (ηti ≤

xi, 1 ≤ i ≤ d).

The condition P (supt∈S Zt ≤ c) = 1 can be weakened to

(1) E

(

sup
t∈S

Zt

)

< ∞,

see de Haan and Ferreira (2006, Corollary 9.4.5).

2. Generalized max-linear models

The model and some examples. In this section we will approximate a given

SMSP with sample paths in C̄−
(

[0, 1]k
)

, where k is some integer, by using a gen-

eralized max-linear model for the interpolation of a finite dimensional marginal

distribution. The parameter space [0, 1]k is chosen for convenience and could be

replaced by any compact metric space S.

Let in what follows η = (ηt)t∈[0,1]k be an SMSP with generator Z = (Zt)t∈[0,1]k

and D-norm ‖·‖D. Choose pairwise different points s1, . . . , sd ∈ [0, 1]k and obtain

a standard max-stable rv (ηs1 , . . . , ηsd) with generator (Zs1 , . . . , Zsd) and D-norm

‖·‖D1,...,d
, i. e.,

P (ηs1 ≤ x1, . . . , ηsd ≤ xd) = exp

(

−E

(

max
i=1,...,d

(|xi|Zsi)

))

=: exp
(

−‖x‖D1,...,d

)

,

x = (x1, . . . , xd) ≤ 0. Our aim is to find another SMSP that interpolates the above

rv.

Take functions gi ∈ C̄+
(

[0, 1]k
)

, i = 1, . . . , d, with the property

(2) ‖(g1(t), . . . , gd(t))‖D1,...,d
= 1 for all t ∈ [0, 1]k.
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Then the stochastic process η̂ = (η̂t)t∈[0,1]k that is generated by the generalized

max-linear model

(3) η̂t := max
i=1,...,d

ηsi
gi(t)

, t ∈ [0, 1]k,

defines an SMSP with generator

(4) Ẑt = max
i=1,...,d

(gi(t)Zsi) , t ∈ [0, 1]k,

due to property (2), see Falk et al. (2015) for details. The case ‖·‖D1,...,d
= ‖·‖1

leads to the regular max-linear model, cf. Wang and Stoev (2011).

If we want η̂ to interpolate (ηs1 , . . . , ηsd), then we only have to demand

(5) gi(sj) = δij :=















1, i = j,

0, i 6= j,

1 ≤ i, j ≤ d.

Recall that ηsi is negative with probability one. We call η̂ the discretized version of

η with grid {s1, . . . , sd} and weight functions g1, . . . , gd, when the weight functions

satisfy both (2) and (5).

Example 2.1. In the one-dimensional case k = 1 the weight functions gi can be

chosen as follows. Take a grid 0 := s1 < s2 < · · · < sd−1 < sd =: 1 of the interval

[0, 1] and denote by ‖·‖Di−1,i
the D-norm pertaining to (ηsi−1 , ηsi), i = 2, . . . , d.

Put

g1(t) :=















s2 − t

‖(s2 − t, t)‖D1,2

, t ∈ [0, s2],

0, else,

gi(t) :=



































t− si−1

‖(si − t, t− si−1)‖Di−1,i

, t ∈ [si−1, si],

si+1 − t

‖(si+1 − t, t− si)‖Di,i+1

, t ∈ [si, si+1],

0, else,

i = 2, . . . , d− 1,
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gd(t) :=















t− sd−1

‖(sd − t, t− sd−1)‖Dd−1,d

, t ∈ [sd−1, 1],

0, else.

This model has been studied intensely in Falk et al. (2015). The functions g1, . . . , gd

are continuous and satisfy conditions (2) and (5), so they provide an interpolating

generalized max-linear model on C[0, 1].

Example 2.2. Choose pairwise different points s1, . . . , sd ∈ [0, 1]k and an arbitrary

norm ‖·‖ on R
k. Define

g̃i(t) := min
j 6=i

(‖t− sj‖) , t ∈ [0, 1]k, i = 1, . . . , d.

In order to normalize, put

gi(t) :=
g̃i(t)

‖(g̃1(t), . . . , g̃d(t))‖D1,...,d

, t ∈ [0, 1]k, i = 1, . . . , d.

These functions gi are well-defined since the denominator never vanishes: Suppose

there is t ∈ [0, 1]k with g̃1(t) = · · · = g̃d(t) = 0. Then minj 6=i (‖t− sj‖) = 0 for all

i = 1, . . . , d. Now fix i ∈ {1, . . . , d}. There is j 6= i with t = sj . But on the other

hand, we have also mink 6=j (‖t− sk‖) = 0 which implies that there is k 6= j with

t = sk = sj which is a contradiction.

The functions gi, i = 1, . . . , d, are clearly functions in C̄+
(

[0, 1]k
)

that also

satisfy condition (2) and (5) as can be seen as follows. We have for t ∈ [0, 1]k

∥

∥

(

g1(t), . . . , gd(t)
)∥

∥

D1,...,d

=

∥

∥

∥

∥

∥

(

g̃1(t)

‖(g̃1(t), . . . , g̃d(t))‖D1,...,d

, . . . ,
g̃d(t)

‖(g̃1(t), . . . , g̃d(t))‖D1,...,d

)
∥

∥

∥

∥

∥

D1,...,d

=

∥

∥

(

g̃1(t), . . . , g̃d(t)
)
∥

∥

D1,...,d
∥

∥

(

g̃1(t), . . . , g̃d(t)
)
∥

∥

D1,...,d

= 1,
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which is condition (2). Note, moreover, that g̃i(sj) = 0 if i 6= j. But this implies

condition (5):

gi(sj) =
g̃i(sj)

∥

∥

(

g̃1(sj), . . . , g̃d(sj)
)∥

∥

D1,...,d

=
g̃i(sj)

∥

∥

(

0, . . . , 0, g̃j(sj), 0, . . . , 0
)∥

∥

D1,...,d

=
g̃i(sj)

g̃j(sj)
∥

∥

(

0, . . . , 0, 1, 0, . . . , 0
)∥

∥

D1,...,d

=
g̃i(sj)

g̃j(sj)
= δij

by the fact that a D-norm of each unit vector in R
d is one. Thus, we have found

an interpolating generalized max-linear model on C
(

[0, 1]k
)

.

The mean squared error of the discretized version. We start this section

with a result that applies to bivariate standard max-stable rv in general.

Lemma 2.3. Let (X1, X2) be standard max-stable with generator (Z1, Z2) and D-

norm ‖·‖D.

(i)

E(X1X2) =

∫ ∞

0

1

‖(1, u)‖
2
D

du.

(ii)

E(|Z1 − Z2|) = 2 (‖(1, 1)‖D − 1) .

Proof. (i) See Falk et al. (2015, Lemma 3.6).

(ii) The assertion follows from the general identity max(a, b) = 1
2 (a+ b+ |a− b|).

�

Let η̂ = (η̂t)t∈[0,1]k be the discretized version of η = (ηt)t∈[0,1]k with grid

{s1, . . . , sd} and weight functions g1, . . . , gd. In order to calculate the mean squared

error of η̂t, we need the following lemma.

Lemma 2.4. Let Ẑ = (Ẑt)t∈[0,1]k be the generator of η̂ that is defined in (4). For

each t ∈ [0, 1]k, the rv (ηt, η̂t) is standard max-stable with generator (Zt, Ẑt) and
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D-norm

‖(x, y)‖Dt
= E

(

max
(

|x|Zt, |y| Ẑt

))

= ‖(x, g1(t)y, . . . , gd(t)y)‖Dt,s1,...,sd

,

where ‖·‖Dt,s1,...,sd

is the D-norm pertaining to (ηt, ηs1 , . . . , ηsd).

Proof. As Z = (Zt)t∈[0,1]k is a generator of η, we have for x, y ≤ 0

P (ηt ≤ x, η̂t ≤ y) = P (ηt ≤ x, ηs1 ≤ g1(t)y, . . . , ηsd ≤ gd(t)y)

= exp (−E (max (|x|Zt, |y|max (g1(t)Zs1 , . . . , gd(t)Zsd))))

= exp
(

−E
(

max
(

|x|Zt, |y| Ẑt

)))

.

Then the assertion follows from the fact that Ẑt ≥ 0 and E(Ẑt) = 1. �

We can now use the preceding Lemmas to compute the mean squared error.

Proposition 2.5. The mean squared error of η̂t is given by

MSE (η̂t) := E
(

(ηt − η̂t)
2
)

= 2

(

2−

∫ ∞

0

1

‖(1, u)‖
2
Dt

du

)

, t ∈ [0, 1]k.

Proof. Due to Lemma 2.4, (ηt, η̂t) is standard max-stable. Therefore, Lemma 2.3

(i) and the fact that E(ηt) = E(η̂t) = −1 and Var(ηt) = Var(η̂t) = 1 yield

MSE (η̂t) = E
(

η2t
)

− 2E (ηtη̂t) + E
(

η̂2t
)

= 4− 2

∫ ∞

0

1

‖(1, u)‖
2
Dt

du.

�

Lemma 2.6. The mean squared error of η̂t satisfies

MSE (η̂t) ≤ 6E
(
∣

∣

∣
Zt − Ẑt

∣

∣

∣

)

, t ∈ [0, 1]k.

Proof. We have

2−

∫ ∞

0

1

‖(1, u)‖
2
Dt

du

=

∫ ∞

0

1

‖(1, u)‖
2
∞

du−

∫ ∞

0

1

‖(1, u)‖
2
Dt

du
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=

∫ ∞

0

(

‖(1, u)‖Dt
− ‖(1, u)‖∞

) ‖(1, u)‖Dt
+ ‖(1, u)‖∞

‖(1, u)‖
2
Dt

‖(1, u)‖
2
∞

du

=

∫ 1

0

(

‖(1, u)‖Dt
− 1
) ‖(1, u)‖Dt

+ 1

‖(1, u)‖
2
Dt

du+

∫ ∞

1

(

‖(1, u)‖Dt
− u
) ‖(1, u)‖Dt

+ u

u2 ‖(1, u)‖
2
Dt

du

≤ 3

∫ 1

0

(

‖(1, u)‖Dt
− 1
)

du+ 2

∫ ∞

1

‖(1/u, 1)‖Dt
− 1

u2
du

=: 3I1 + 2I2.

Since every D-norm is monotone, we have

‖(1, u)‖Dt
≤ ‖(1, 1)‖Dt

, u ∈ [0, 1], and ‖(1/u, 1)‖Dt
≤ ‖(1, 1)‖Dt

, u > 1,

and, thus, by Lemma 2.3 (ii)

I1 + I2 ≤ ‖(1, 1)‖Dt
− 1 +

(

‖(1, 1)‖Dt
− 1
)

∫ ∞

1

u−2 du = E
(∣

∣

∣
Zt − Ẑt

∣

∣

∣

)

.

�

Remark 2.7. The upper bound E
(∣

∣

∣
Zt − Ẑt

∣

∣

∣

)

in Lemma 2.6 gets small if the

distance between t and its nearest neighbor sj, say, in the grid {s1, . . . , sd} gets

small, which can be seen as follows. The triangle inequality implies

∣

∣

∣
Zt − Ẑt

∣

∣

∣
≤
∣

∣Zt − Zsj

∣

∣+

∣

∣

∣

∣

Zsj − max
i=1,...,d

(gi(t)Zsi)

∣

∣

∣

∣

.

From the condition gi(sj) = δij we obtain the representation

Zsj = max
i=1,...,d

(gi(sj)Zsi)

and, thus,

∣

∣

∣

∣

Zsj − max
i=1,...,d

(gi(t)Zsi)

∣

∣

∣

∣

=

∣

∣

∣

∣

max
i=1,...,d

(gi(sj)Zsi)− max
i=1,...,d

(gi(t)Zsi)

∣

∣

∣

∣

≤ max
i=1,...,d

(|gi(t)− gi(sj)|Zsi)
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by elementary arguments. As a consequence we obtain

E
(∣

∣

∣
Zt − Ẑt

∣

∣

∣

)

≤ E
(∣

∣Zt − Zsj

∣

∣

)

+ E

(

max
i=1,...,d

(|gi(t)− gi(sj)|Zsi)

)

= E
(
∣

∣Zt − Zsj

∣

∣

)

+
∥

∥

(

|g1(t)− g1(sj)| , . . . , |gd(t)− gd(sj)|
)
∥

∥

D1,...,d

≤ E
(∣

∣Zt − Zsj

∣

∣

)

+ max
i=1,...,d

|gi(t)− gi(sj)| ‖(1, . . . , 1)‖D1,...,d

→|t−sj |→0 0

by the fact that each D-norm ‖·‖D is monotone, i.e., ‖x‖D ≤ ‖y‖D if 0 ≤ x ≤ y ∈

R
d, and by the continuity of the functions g1, . . . , gd and Z.

Example 2.8. Choose as a generator process Z = (Zt)t∈[0,1]k of a D-norm

Zt := exp

(

Xt −
σ2(t)

2

)

, t ∈ [0, 1]k,

where (Xt)t∈Rk is a continuous zero mean Gaussian process with stationary in-

crements, σ2(t) := E
(

X2
t

)

and X0 = 0. This model was originally created by

Brown and Resnick (1977), and developed by Kabluchko et al. (2009) for max-

stable random fields ϑ = (ϑt)t∈[0,1]k with Gumbel margins, i.e., P (ϑt ≤ x) =

exp(−e−x), x ∈ R. The transformation to a SMSP (ηt)t∈[0,1]k is straightforward by

putting ηt := − exp(−ϑt), t ∈ [0, 1]k.

Explicit formulae for the corresponding D-norm

‖f‖D = E

(

sup
t∈[0,1]k

(|f(t)|Zt)

)

, f ∈ E([0, 1]k),

are only available for bivariate ‖·‖Dt1,t2
and trivariate ‖·‖Dt1 ,t2,t3

D-norms pertain-

ing to the random vectors (ηt1 , ηt2) and (ηt1 , ηt2 , ηt3), respectively, see ?. In the

bivariate case we have for (x1, x2) ∈ R
2

‖(x1, x2)‖Dt1,t2
= |x1|Φ

(

σ(|t1 − t2|)

2
+

1

σ(|t1 − t2|)
log

(

|x1|

|x2|

))

+ |x2|Φ

(

σ(|t1 − t2|)

2
+

1

σ(|t1 − t2|)
log

(

|x2|

|x1|

))

,
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where Φ denotes the standard normal distribution function and the absolute value

|t1 − t2| is meant component wise, see Kabluchko (2009, Remark 24).

This Brown-Resnick model could in particular be used for the generalized max-

linear model in dimension k = 1 as in Example 2.1, since in this case the approxi-

mation η̂ of η only uses bivariate D-norms ‖·‖t1,t2 .

3. A generalized max-linear model based on kernels

The model. There is the need for the definition of d functions g1, . . . , gd satisfying

certain constraints in the ordinary generalized max-linear model with d = d(n)

tending to infinity as the grid s1, . . . , sd gets dense in the index set. For the kernel

approach introduced in this section, this is reduced to the choice of just one kernel

and a bandwidth. And in this case we can establish convergence to zero of MSE and

IMSE as the grid gets dance, essentially without further conditions. This approach

was briefly mentioned in Falk et al. (2015) and is evaluated here.

The disadvantages are: The interpolation is not an exact one at the grid points,

i.e., η̂sj 6= ηsj . This is due to the fact that the generated functions do not satisfy

the condition gi(sj) = δij exactly, but only in the limit as h tends to zero, see

Lemma 3.1. The choice of an optimal bandwidth, which is statistical folklore in

kernel density estimation, is still an open problem here.

Again, throughout the whole section, let η = (ηt)t∈[0,1]k be an SMSP with

generator Z = (Zt)t∈[0,1]k and denote by ‖·‖s1,...,sd the D-norm pertaining to

(ηs1 , . . . , ηsd).

Let K : [0,∞) → [0, 1] be a continuous and strictly monotonically decreasing

function (kernel) with the two properties

(6) K(0) = 1, lim
x→∞

K(ax)

K(bx)
= 0, 0 ≤ b < a.

The exponential kernel Ke(x) = exp(−x), x ≥ 0, is a typical example. Choose

an arbitrary norm ‖·‖ on R
k and a grid of pairwise different points {s1, . . . , sd} in
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[0, 1]k. Put for i = 1, . . . , d and the bandwidth h > 0

gi,h(t) :=
K(‖t− si‖ /h)

‖(K(‖t− s1‖ /h), . . . ,K(‖t− sd‖ /h))‖Ds1,...,sd

, t ∈ [0, 1]k.

Define for i = 1, . . . , d

(7) N(si) :=
{

t ∈ [0, 1]k : ‖t− si‖ ≤ ‖t− sj‖ , j 6= i
}

,

which is the set of those points t ∈ [0, 1]k that are closest to the grid point si.

Lemma 3.1. We have for arbitrary t ∈ [0, 1]k and 1 ≤ i ≤ d

gi,h(t) →h↓0















1 , if t = si

0 , if t 6∈ N(si)

as well as gi,h(t) ≤ 1.

Proof. The convergence gi,h(si) →h↓0 1 follows from the fact that K(0) = 1 and

that theD-norm of a unit vector is 1. The fact that an arbitraryD-norm is bounded

below by the sup-norm together with the monotonicity of K implies for t ∈ [0, 1]k

gi,h(t) ≤
K (‖t− si‖ /h)

max1≤j≤d K (‖t− sj‖ /h)
=

K
(

‖t−si‖
h

)

K
(

min1≤j≤d‖t−sj‖

h

) ≤ 1.

Note that K (‖t− si‖ /h) /K (min1≤j≤d ‖t− sj‖ /h) →h↓0 0 if t 6∈ N(si) by the

required growth condition on the kernel K in (6). �

The above Lemma shows in particular gi,h(sj) →h↓0 δij which is close to condi-

tion (5). Obviously, the functions gi,h are constructed in such a way that condition

(2) holds exactly. Therefore, we obtain the generalized max-linear model

η̂t,h = max
i=1,...,d

ηsi
gi,h(t)

, t ∈ [0, 1]k,

which does not interpolate (ηs1 , . . . , ηsd) exactly, but η̂si,h converges to ηsi as h ↓

0. Note that the limit functions limh↓0 gi,h are not necessarily continuous: For

instance, there may be t0 ∈ [0, 1]k with ‖t0 − s1‖ = · · · = ‖t0 − sd‖. Then t0 ∈
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∂N(s1) and limh↓0 g1,h(t0) = 1/ ‖(1, . . . , 1)‖D1,...,d
, but limh↓0 g1,h(t) = 0 for all

t /∈ N(s1) due to Lemma 3.1.

Convergence of the mean squared error. In this section we investigate a

sequence of kernel-based generalized max-linear models, where the diameter of the

grids decreases. We analyze under which conditions the integrated mean squared

error of (η̂t,h)t∈[0,1]k converges to zero. We start with a general result on generator

processes.

Lemma 3.2. Let (Zt)t∈[0,1]k be a generator of an SMSP and εn, n ∈ N, be a null

sequence. Then

E

(

sup
‖t−s‖≤εn

|Zt − Zs|

)

→n→∞ 0,

where ‖·‖ is an arbitrary norm on R
k.

Proof. The paths of (Zt)t∈[0,1]k are continuous, so they are also uniformly contin-

uous. Therefore, sup‖t−s‖≤εn
|Zt − Zs| →n→∞ 0. Furthermore,

sup
‖t−s‖≤εn

|Zt − Zs| ≤ 2 sup
t∈[0,1]k

Zt

with E
(

supt∈[0,1]k Zt

)

< ∞ due to property (1) of a generator. The assertion now

follows from the dominated convergence theorem. �

Let Gn :=
{

s1,n, . . . , sd(n),n
}

, n ∈ N, be a set of distinct points in [0, 1]k with the

property

∀n ∈ N ∀t ∈ [0, 1]k ∃si,n ∈ Gn : ‖t− si,n‖ ≤ εn,

where εn →n→∞ 0. Define, for instance, Gn in such a way that

εn := max
i=1,...,d

sup
s,t∈N(si,n)

‖s− t‖ →n→∞ 0,

with N(si,n) as defined in (7). Clearly, d := d(n) →n→∞ ∞. Denote by ‖·‖
D

(n)
s1,...,sd

the D-norm pertaining to ηs1,n , . . . , ηsd,n . Let further η̂n = (η̂t,n)t∈[0,1]k be the
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kernel-based discretized version of η with grid Gn, that is,

η̂t,n = max
i=1,...,d

ηsi,n
gi,n(t)

, t ∈ [0, 1]k,

where for i = 1, . . . , d

gi,n(t) =
K(‖t− si,n‖ /hn)

‖(K(‖t− s1,n‖ /hn), . . . ,K(‖t− sd,n‖ /hn))‖D(n)
s1,...,sd

, t ∈ [0, 1]k,

K : [0,∞) → [0, 1] is the continuous and strictly decreasing kernel function sat-

isfying condition (6) and hn, n ∈ N, is some positive sequence. We have already

seen in Lemma 3.1 that gi,n(t) ∈ [0, 1], t ∈ [0, 1]k, n ∈ N. Furthermore we have the

following result.

Lemma 3.3. Choose t ∈ [0, 1]k. There is a sequence i(n), n ∈ N, such that

t ∈
⋂

n∈N
N(si(n),n). Define gi(n),n and εn as above, n ∈ N. Then

lim
n→∞

gi(n),n(t) = 1,

if εn →n→∞ 0, hn →n→∞ 0, εn/hn →n→∞ ∞.

Proof. Let t ∈ [0, 1]k and choose a sequence i(n), n ∈ N, as above. Put for simplicity

si(n),n =: si,n and gi(n),n =: gi,n. We have

1 ≥ gi,n(t) =
K (‖t− si,n‖ /hn)

E
(

maxj=1,...,d K (‖t− sj,n‖ /hn)Zsj,n

)

≥

(

E
(

maxj:‖sj,n−t‖≥2εn K (‖t− sj,n‖ /hn)Zsj,n

)

K (‖t− si,n‖ /hn)

+
E
(

maxj:‖sj,n−t‖<2εn K (‖t− sj,n‖ /hn)Zsj,n

)

K (‖t− si,n‖ /hn)

)−1

=: (Ai,n(t) +Bi,n(t))
−1.

From t ∈ N(si,n) we conclude ‖t− si,n‖ ≤ εn. Hence, we have due to (1) and the

properties of the kernel function K

0 ≤ Ai,n(t) ≤
K(2εn/hn)

K(εn/hn)
E

(

sup
t∈[0,1]k

Zt

)

→n→∞ 0,
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since εn/hn →n→∞ ∞ by assumption. Furthermore, t ∈ N(si,n) and the fact that

K is decreasing implies

max
j:‖sj,n−t‖<2εn

K (‖t− sj,n‖ /hn) = K (‖t− si,n‖ /hn) .

Thus,

1 ≤ Bi,n(t) =
1

K (‖t− si,n‖ /hn)

(

E

(

max
j:‖sj,n−t‖<2εn

K (‖t− sj,n‖ /hn)Zsj,n

− max
j:‖sj,n−t‖<2εn

K (‖t− sj,n‖ /hn)Zsi,n

))

+ 1

≤
E
(

maxj:‖sj,n−t‖<2εn K (‖t− sj,n‖ /hn)
∣

∣Zsj,n − Zsi,n

∣

∣

)

K (‖t− si,n‖ /hn)
+ 1

≤ E

(

max
j:‖sj,n−t‖<2εn

∣

∣Zsj,n − Zsi,n

∣

∣

)

+ 1

≤ E

(

sup
‖r−s‖<3εn

|Zr − Zs|

)

+ 1

→n→∞ 1,

because of Lemma 3.2. Note that ‖sj,n − t‖ < 2εn and t ∈ N(si,n) imply

‖sj,n − si,n‖ < 3εn. �

We have now gathered the tools to prove convergence of the mean squared error

to zero.

Theorem 3.4. Define η̂n and εn as above, n ∈ N. Then for every t ∈ [0, 1]k

MSE (η̂t,n) →n→∞ 0,

and

IMSE (η̂t,n) :=

∫

[0,1]k
MSE(η̂t,n) dt →n→∞ 0,

if εn →n→∞ 0, hn →n→∞ 0, εn/hn →n→∞ ∞.

Proof. Denote by

Ẑt,n = max
j=1,...,d

(

gj,n(t)Zsj,n

)

, t ∈ [0, 1]k,
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the generator of η̂n. Choose t ∈ [0, 1]k and a sequence i := i(n), n ∈ N, such that

t ∈
⋂

n∈N
N (si,n). We have by Lemma 2.6, Lemma 3.3 and the continuity of Z

MSE (η̂t,n) ≤ 6E
(∣

∣

∣
Zt − Ẑt,n

∣

∣

∣

)

≤ 6E
(
∣

∣Zt − Zsi,n

∣

∣

)

+ 6E
(
∣

∣Zsi,n − gi,n(t)Zsi,n

∣

∣

)

+ 6E
(∣

∣

∣
gi,n(t)Zsi,n − Ẑt,n

∣

∣

∣

)

= 6E
(
∣

∣Zt − Zsi,n

∣

∣

)

+ 12 (1− gi,n(t))

→n→∞ 0;

recall that gi,n(t)Zsi,n ≤ Ẑt,n.

Next we establish convergence of the integrated mean squared error. The sets

N(si,n), as defined in (7), are typically not disjoint, but the intersections N(si,n)∩

N(sj,n), i 6= j, have Lebesgue measure zero on [0, 1]k. Clearly,
⋃d

i=1 N(si,n) =

[0, 1]k. Therefore, applying Lemma 2.6 yields

IMSE (η̂t,n) =

d
∑

i=1

∫

N(si,n)

MSE(η̂t,n) dt

≤ 6

d
∑

i=1

∫

N(si,n)

E
(
∣

∣

∣
Zt − Ẑt,n

∣

∣

∣

)

dt

≤ 6

( d
∑

i=1

∫

N(si,n)

E (|Zt − Zsi,n|) dt

+

d
∑

i=1

∫

N(si,n)

|1− gi,n(t)|E (Zsi,n) dt

+
d
∑

i=1

∫

N(si,n)

E
(∣

∣

∣
gi,n(t)Zsi,n − Ẑt,n

∣

∣

∣

)

dt

)

=: 6 (S1,n + S2,n + S3,n)

due to Lemma 2.6. From Lemma 3.2 we conclude

S1,n =

d
∑

i=1

∫

N(si,n)

E
(∣

∣Zt − Zsi,n

∣

∣

)

dt
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≤

d
∑

i=1

∫

N(si,n)

E

(

sup
‖r−s‖≤εn

|Zr − Zs|

)

dt

=

∫

[0,1]k
E

(

sup
‖r−s‖≤εn

|Zr − Zs|

)

dt

= E

(

sup
‖r−s‖≤εn

|Zr − Zs|

)

→n→∞ 0.

Define

An :=
K(2εn/hn)

K(εn/hn)
E

(

sup
t∈[0,1]k

Zt

)

, Bn := E

(

sup
‖r−s‖<3εn

|Zr − Zs|

)

+ 1.

As we have seen in the proof of Lemma 3.3, we have for t ∈ N(si,n)

1 ≥ gi,n(t) ≥ (An +Bn)
−1 → 1,

and therefore

S2,n =
d
∑

i=1

∫

N(si,n)

(1− gi,n(t)) dt

≤

d
∑

i=1

∫

N(si,n)

1− (An +Bn)
−1 dt

=

∫

[0,1]k
1− (An +Bn)

−1 dt

= 1− (An +Bn)
−1

→n→∞ 0.

Lastly, we have by the same argument as above

S3,n =

d
∑

i=1

∫

N(si,n)

E
(

Ẑt,n − gi,n(t)Zsi,n

)

dt = S2,n →n→∞ 0,

which completes the proof. �

Remark 3.5. Given a grid s1, . . . , sd(n) with pertaining εn, the bandwidth hn := ε2n

would, for example, satisfy the required growth conditions entailing convergence of



18 MICHAEL FALK, MAXIMILIAN ZOTT

MSE and IMSE to zero. But, it would clearly be desirable to provide some details

on how to choose the bandwidth in an optimal way, which is, for example, statistical

folklore in kernel density estimation. In our setup, however, this is an open problem,

which requires future work.

4. Discretized versions of copula processes

Next we transfer the model we have established in Section 2 to copula processes

that are in a sense close to max-stable processes. A copula process U = (Ut)t∈[0,1]k

is a stochastic process with continuous sample paths, such that each rv Ut is uni-

formly distributed on the interval [0, 1]. We say that U is in the functional domain

of attraction of an SMSP η = (ηt)t∈[0,1]k , if

(8) lim
n→∞

P (n (U − 1) ≤ f)
n
= P (η ≤ f) = exp (−‖f‖D) , f ∈ Ē−

(

[0, 1]k
)

.

Define for any t ∈ [0, 1]k and n ∈ N

Y
(n)
t := n

(

max
i=1,...,n

U
(i)
t − 1

)

,

with U (1),U (2), . . . being independent copies of U . Now choose again pairwise

different points s1, . . . , sd ∈ [0, 1]k and functions g1, . . . , gd ∈ C̄+
(

[0, 1]k
)

with the

properties (2) and (5). Condition (8) implies weak convergence of the finitedimen-

sional distributions of Y (n) = (Y
(n)
t )t∈[0,1]k , i. e.

(

Y (n)
s1

, . . . , Y (n)
sd

)

→D (ηs1 , . . . , ηsd) ,

where ’→D’ denotes convergence in distribution. Just like before, we can define the

discretized version Ŷ (n) = (Ŷ
(n)
t )t∈[0,1]k of Y (n) with grid {s1, . . . , sd} and weight

functions g1, . . . , gd to be

Ŷ
(n)
t := max

i=1,...,d

Y
(n)
si

gi(t)
, t ∈ [0, 1]k.
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Elementary calculations show that (8) implies

lim
n→∞

P
(

Ŷ (n) ≤ f
)

= P (η̂ ≤ f) , f ∈ Ē−
(

[0, 1]k
)

,

where η̂ is the discretized version of η as defined in (3). Also, it is not difficult to

see that for each t ∈ [0, 1]k,

(

Y
(n)
t , Ŷ

(n)
t

)

→D (ηt, η̂t)

where (ηt, η̂t) is the standard max-stable rv from Lemma 2.4. Now applying the

continuous mapping theorem, we obtain

(

Y
(n)
t − Ŷ

(n)
t

)2

→D (ηt − η̂t)
2.

It remains to prove uniform integrability of the sequence on the left hand side in

order to obtain the next result.

Proposition 4.1. Let t ∈ [0, 1]k. Then

MSE
(

Ŷ
(n)
t

)

= E

(

(

Y
(n)
t − Ŷ

(n)
t

)2
)

→n→∞ MSE(η̂t) .

Proof. Fix t ∈ [0, 1]k. It remains to show that the sequenceX
(n)
t :=

(

Y
(n)
t − Ŷ

(n)
t

)2

is uniformly integrable. A sufficient condition for uniform integrability is

sup
n∈N

E

(

(

X
(n)
t

)2
)

< ∞,

see Billingsley (1999, Section 3). Clearly, for every n ∈ N,

E

(

(

X
(n)
t

)2
)

≤ E

(

(

Y
(n)
t

)4
)

+ E

(

(

Ŷ
(n)
t

)4
)

.

It is easy to verify that the rv Y
(n)
t has the density (1+x/n)n−1 on [−n, 0]. There-

fore,

E

(

(

Y
(n)
t

)4
)

=

∫ 0

−n

x4
(

1 +
x

n

)n−1

dx =
24n5(n− 1)!

(n+ 4)!
≤ 24.
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Moreover, putting c := mini=1,...,d gi(t) > 0,

∣

∣

∣
Ŷ

(n)
t

∣

∣

∣
= min

i=1,...,d

∣

∣

∣
Y

(n)
si

∣

∣

∣

gi(t)
≤

∣

∣

∣
Y

(n)
s1

∣

∣

∣

c
,

and hence

E

(

(

Ŷ
(n)
t

)4
)

≤
24

c4
,

which completes the proof. �
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