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1 Introduction

The studies on the Gumbel limit law for Gaussian processes have a long history and can date back to Pickands (1969).

Suppose that {X(t) : t ∈ [0,∞)} is a stationary Gaussian process with the covariance function r(t) satisfying the

following condition:

r(t) = 1− |t|α + o(|t|α), t → 0, and r(t) < 1, t > 0 (1)

with α ∈ (0, 2]. It is well-known (see e.g. Pickands (1969), Leadbetter et al. (1983)) that if further the so-called

Berman’s condition holds as follows

r(t) ln t → 0, as t → ∞

then the Gumbel limit law

P

(
aT

(
sup

0≤t≤T
X(t)− bT

)
≤ x

)
→ exp(−e−x) (2)

holds for any x ∈ R, as T → ∞, where

aT =
√
2 lnT , bT =

√
2 lnT +

ln[(2π)−1/2Hα(2 lnT )
−1/2+1/α]√

2 lnT
.

Here Hα denotes the Pickands constant given by

Hα = lim
λ→∞

Hα[0, λ]/λ ∈ (0,∞)

with

Hα[0, λ] = E exp

(
max
t∈[0,λ]

√
2Bα(t)− tα

)
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and Bα a fractional Brownian motion (fBm) with Hurst parameter α/2 ∈ (0, 1], that is, a zero mean Gaussian process

with stationary increments such that EB2
α(t) = |t|α. To derive the Gumbel limit law (2), the following well-known

Pickands asymptotics (see e.g. Pickands (1969), Berman (1974), Leadbetter et al. (1983)) plays a crucial role, i.e.,

P

(
sup

t∈[0,T ]

X(t) > u

)
= THαu

2/αΨ(u)(1 + o(1)), (3)

as u → ∞ for some fixed T ∈ (0,∞), where Ψ(·) denotes the tail distribution of a standard normal random variable.

For some recent work on the tail asymptotics for extremes, we refer to Chan and Lai (2006), Dȩbicki, Hashorva, Ji

and Tabís (2015), Cheng and Xiao (2016,2017) and the references therein.

The investigation of (2) for Gaussian processes and general stochastic processes has received a lot of attention.

Mittal and Ylvisaker (1975) extended (2) to the strongly dependent Gaussian case; Hülser (1990) investigated (2)

for locally stationary Gaussian case, which is recently further extended to Gaussian random fields on manifolds by

Qiao and Polonic (2017). We refer to McCormick (1980), Konstant and Piterbarg (1993) and Piterbarg (1996) for

further extensions to Gaussian processes and fields; Leadbetter and Rootzén (1982) and Albin (1990) for stationary

non-Gaussian processes. For more related extensions, we refer to Dȩbicki, Hashorva, Ji and Ling (2015) and the

reference therein.

In many applied fields, the Gumbel limit laws for extremes of Gaussian processes play a very important role. In

approximation theory, Seleznjev (1991, 1996), Hülser (1999) and Hülser et al. (2003) applied the Gumbel limit

law for Gaussian processes to investigate the deviation processes of some piecewise linear interpolation problems;

In nonparametric statistics, the absolute deviations of many types of density estimators obey the Gumbel limit

law, see e.g. Bickel and Rosenblatt (1973) and Giné et al. (2003). In applied statistics, there are also many

confidence intervals and bands, which are constructed based on the Gumbel limit law of the estimators, since

extremes themselves are also type of very important estimators, see e.g. Giné and Nickl (2010). For some recent

studies on applications of Gumbel limit laws, we refer to Sharpnack and Arias-Castro (2016) and Qiao and Polonik

(2016).

Define

X(s, t) = Y (s+ t)− Y (s), (4)

where {Y (t), t ≥ 0} is a Gaussian process. The process ξS(t) = sup0≤s≤S X(s, t) is referred to as the Shepp statistics

in many recent works. Zholud (2008) studied the maximum of the process ξS(t) and established the Gumbel limit

law when Y (t) is a Brownian motion. Hashorva and Tan (2013) and Tan and Yang (2014) extended the result to

fractional Brownian motion. We refer to Piterbarg (2001), Hülser and Piterbarg (2004a) and Hashorva et al. (2013)

for related work on the fractional Brownian motion.

In this paper, we generalize model (4) and impose directly some restrictions on the Gaussian random fields. We

first consider the Gumbel limit law for the process ςT (s) = sup0≤t≤T X(s, t) for some fixed T > 0, where X(s, t) is

a type of non-homogeneous Gaussian random field. Then we use the obtained results to derive the Gumbel limit

law for Shepp statistics. Noting that ςT (t) is no longer Gaussian process, we can not derive the Gumbel limit laws

from the Gaussian case directly. However, ςT (t) also doesn’t satisfy the conditions imposed on general stochastic

processes, such as those given by Leadbetter and Rootzén (1982) and Albin (1990). We will follow the method used

in Chapter 12 in Leadbetter et al. (1983). The tail asymptotic result of extremes of the field X(s, t) is a key tool,

which has been derived by Dȩbicki et al. (2016).

The rest of the paper is organized as follows. In Section 2, we give some tail asymptotic results from Dȩbicki et al.

(2016). In Section 3, we state the main results of the paper, and in Section 4, we present two applications. The

technical proofs are gathered in Section 5, while in Section 6 we give two auxiliary results.
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2 Preliminaries

In this section, we present the tail asymptotic result provided by Dȩbicki et al. (2016). Suppose that {X(s, t), (s, t) ∈
[0,∞) × [0, T ]} with fixed T is a centered Gaussian random field with variance function and correlation function

σ2(s, t) and r(s, t, s′, t′), respectively. Suppose the following assumptions hold.

Assumption A1: there exists some positive function σ(t) which attains its unique maximum on [0, T ] at fixed T ,

and further

σ(s, t) = σ(t), ∀(s, t) ∈ [0,∞)× [0, T ], σ(t) = 1− b(T − t)β(1 + o(1)), t ↑ T

holds for some β, b > 0.

Assumption A2: there exist constants a1 > 0, a2 > 0, a3 6= 0 and α1, α2 ∈ (0, 2] such that

r(s, t, s′, t′) = 1− (|a1(s− s′)|α1 + |a2(t− t′) + a3(s− s′)|α2)(1 + o(1))

holds uniformly with respect to s, s′ ∈ [0, L] with some constant L > 0 as |s − s′| → 0, min(t, t′) ↑ T and further,

there exists some constant δ0 ∈ (0, T ) such that

r(s, t, s′, t′) < 1

for any s, s′ ∈ [0, L] satisfying s 6= s′ and t, t′ ∈ [δ0, T ].

Assumption A3: There exist positive constants γ1, γ2, γ and C such that

E(X(s, t)−X(s′, t′))2 ≤ C(|t− t′|γ + |s− s′|γ)

holds for all t, t′ ∈ [γ1, T ], s, s
′ ∈ [0, L] satisfying |s− s′| < γ2.

To state the tail asymptotics for the maximum of the field X(s, t) under assumptions A1-A3, we need the so-called

Piterbarg constants and Pickands-Piterbarg constants, respectively. The Piterbarg constant Pb
α with constant b > 0

is defined as

Pb
α = lim

λ→∞
E exp

(
max
t∈[0,λ]

√
2Bα(t)− (1 + b)|t|α

)
∈ (0,∞).

For some constants a1 > 0, a2 > 0, a3 6= 0, b > 0, let

Y (s, t) = B̃α(a1s) +Bα(a2t− a3s), σ2
Y (s, t) = V ar(Y (s, t))

and

Hb
Y [λ1, λ2] = E exp

(
max

(s,t)∈[0,λ1]×[0,λ2]

√
2Y (s, t)− σ2

Y (s, t)− b|t|α
)
,

where B̃α and Bα are two independent fractional Brownian motions (fBms). The Pickands-Piterbarg constant is

defined as

Mb
Y,α = lim

λ1→∞
lim

λ2→∞

1

λ1
Hb

Y [λ1, λ2].

Under the above assumptions, Dȩbicki et al. (2016) derived the following result.

Theorem 2.1. Let {X(s, t), (s, t) ∈ [0,∞) × [0, T ]} with fixed T be a centered Gaussian random field with a.s.

continuous sample paths. Suppose that assumptions A1-A3 are satisfied with the parameters mentioned therein, we

have as u → ∞,

P

(
sup

(s,t)∈[0,L]×[0,T ]

X(s, t) > u

)
= Lµ(u)(1 + o(1)),

where for β > max{α1, α2}

µ(u) = Γ(1/β + 1)

2∏

k=1

(akHαk
)b−

1
β u

2
α1

+ 2
α2

− 2
β Ψ(u);
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for β = α2 = α1

µ(u) = Mb
Y,α1

u
2

α1 Ψ(u);

for β = α2 > α1

µ(u) = a1a2Pba
−α2
2

α2 Hα1u
2

α1 Ψ(u);

for β < α2 = α1

µ(u) = (aα1
1 + |a3|α1)

1
α1 Hα1u

2
α1 Ψ(u);

for β < α2 and α1 < α2

µ(u) = a1Hα1u
2

α1 Ψ(u);

for β = α1 > α2

µ(u) = a1P
b(

|a3|
a1a2

)α1

α1 Hα2u
2

α2 Ψ(u);

for β < α1 and α2 < α1

µ(u) = |a3|Hα2u
2

α2 Ψ(u).

This result is very powerful since it can be used to derive the exact tail asymptotics for many type of statistics,

such as Shepp statistics for Gaussian processes, Brownian bridge and fBm, maximum loss and span of Gaussian

processes, see Dȩbicki et al. (2016) for details.

3 Main Result

Note that the assumptions A1 and A2 are local conditions. To derive the Gumbel limit law, we need to impose the

following Berman-type weak dependence condition, which is a global condition.

Assumption A4: Assume that for c = 1 + εI(β ≥ max{α1, α2}) with some constant ε > 0 the function

δ(v) := sup{|r(s, t, s′, t′)|, |s− s′| ≥ v, s, s′ ∈ [0,∞), t, t′ ∈ [0, T ]}

is such that

lim
v→∞

δ(v)(ln v)c = 0, (5)

where I(·) denotes the indicator function.

We state now the main result.

Theorem 3.1. Let {X(s, t), (s, t) ∈ [0,∞) × [0, T ]} with fixed T be a centered Gaussian random field with a.s.

continuous sample paths. Suppose that assumptions A1-A4 are satisfied with the parameters mentioned therein. In

addition, assume that {X(s, t), (s, t) ∈ [0,∞)× [0, T ]} is homogeneous with respect to the first factor s. Then

lim
S→∞

sup
x∈R

∣∣∣∣P
(
aS

(
sup

(s,t)∈[0,S]×[0,T ]

X(s, t)− bS

)
≤ x

)
− exp(−e−x)

∣∣∣∣ = 0,

where aS =
√
2 lnS

bS = aS + a−1
S ωS

with, for β > max{α1, α2}

ωS = ln

(
(2π)−1/2Γ(1/β + 1)

2∏

k=1

(akHαk
)b−

1
β a

2
α1

+ 2
α2

− 2
β
−1

S

)
;

for β = α2 = α1

ωS = ln

(
(2π)−1/2Mb

Y,α1
a

2
α1

−1

S

)
;
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for β = α2 > α1

ωS = ln

(
(2π)−1/2a1a2Pba

−α2
2

α2 Hα1a
2

α1
−1

S

)
;

for β < α2 = α1

ωS = ln

(
(2π)−1/2(aα1

1 + |a3|α1)
1

α1 Hα1a
2

α1
−1

S

)
;

for β < α2 and α1 < α2

ωS = ln

(
(2π)−1/2a1Hα1a

2
α1

−1

S

)
;

for β = α1 > α2

ωS = ln

(
(2π)−1/2a1P

b(
|a3|
a1a2

)α1

α1 Hα2a
2

α2
−1

S

)
;

for β < α1 and α2 < α1

ωS = ln

(
(2π)−1/2|a3|Hα2a

2
α2

−1

S

)
.

Remark 3.1: Assumption A4 is a weakly dependent condition. If limv→∞ δ(v)(ln v)c = d > 0, then the field X(s, t)

will possess some strongly dependent property with respect to the first parameter. In this case, the limit distribution

will be no longer Gumbel distribution, see Mittal and Ylvisaker (1975) and Tan et al. (2012) for some related results

about strongly dependent Gaussian processes.

4 Applications

In this section, we give two applications of our main results. We derive the exact tail asymptotics and Gumbel limit

laws for Shepp statistics. The obtained results are of independent interest.

Throughout this section, let {X(t), t ≥ 0} be a centered Gaussian process and define

Z(s, t) = X(s+ t)−X(s), (s, t) ∈ [0,∞)× [0, T ],

for some fixed T > 0. The Shepp statistic sup0≤s≤S Z(s, t) which was introduced by Shepp (see Shepp 1966,1971)

play a vary important role in statistics. Other important results for the Shepp statistics can be found in Cressie

(1980), Deheuvels and Devroye (1987), Siegmund and Venkatraman (1995), Dumbgen and Spokoiny (2001) and

Kabluchko (2011). The limit properties of extremes of Shepp statistics when X(t) is a fBm have been studied by

Zholud (2008) and Hashorva and Tan (2013), Tan and Yang (2015) and Tan and Chen (2016). Applying Theorem

3.1, we study the limit properties of extremes of Shepp statistics for a more general Gaussian process X(t), which

is a stationary Gaussian process or non-stationary Gaussian process with stationary increments.

4.1 Stationary case

Let {X(t), t ≥ 0} be a centered stationary Gaussian process. Suppose the covariance function rX of {X(t), t ≥ 0}
satisfies the following conditions:

Assumption B1: rX(t) attains its minimum on [0, T ] at the unique point T ;

Assumption B2: there exist positive constants α1, a1, a2 and α2 ∈ (0, 2) such that

rX(t) = rX(T ) + a1|t− T |α1(1 + o(1)), t → T, and rX(t) = 1− a2t
α2(1 + o(1)), t → 0;

Assumption B3: rX(s) < 1 for s > 0.

For simplicity, write ρT =
√
2(1− rX(T )) and bi = ai/ρ

2
T , i = 1, 2.
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Proposition 4.1. Let Z(s, t) be defined as above. Suppose that rX(t) satisfies conditions B1−B3. In addition,

suppose that rX(t) is twice continuously differentiable on [τ,∞) for some τ > 0 and the limit of twice derivative

limt→T |r̈X(t)| ∈ (0,∞). Furthermore, if r̈X(t)(ln t)c = o(1) with c = 1 + εI(α1 ≥ α2) and some constant ε > 0 as

t → ∞, then

lim
S→∞

sup
x∈R

∣∣∣∣P
(
aS

(
sup

(s,t)∈[0,S]×[0,T ]

Z(s, t)− bS

)
≤ x

)
− exp{−e−x}

∣∣∣∣ = 0, (6)

where aS = ρT
√
2 lnS,

bS = aS + a−1
S ωS

with, for α1 > α2

ωS = ln(Γ(
1

α1
+ 1)H2

α2
b

2
α2

2 b
− 1

α1

1 (2π)−1/2a
4

α2
− 2

α1
−1

S );

for α1 = α2

ωS = ln(Mb1
Y,α1

(2π)−1/2a
2

α2
−1

S )

with Y = Y (s, t) = B̃α2(b
1

α2
2 s) +Bα2(b

1
α2
2 t− b

1
α2
2 s); for α1 < α2

ωS = ln((2b2)
1

α2 Hα2(2π)
−1/2a

2
α2

−1

S ).

Example 4.1: The Ornstein-Uhlenbeck process with covariance function rX(t) = e−|t|α and the generalized Cauchy

model with covariance function rX(t) = (1 + |t|α)−β with α ∈ (0, 2) and β > 0 satisfy the conditions of Proposition

4.1.

4.2 Non-Stationary case

Let {X(t), t ≥ 0} be a centered non-stationary Gaussian process with stationary increment and variance function

σ2
X(t), a.s. continuous sample paths. Recall that X(t) is said to have stationary increments if the law of the process

{X(t+ t0)−X(t0), t ∈ R} does not depend on the choice of t0. To study the maximum of Z(s, t), we only need to

impose some conditions on the variogram γ(t) = E(X(t) − X(0))2 of X . Note that for this case the variogram is

γX(t) = σ2
X(t). Suppose that the variance function σ2

X(t) of {X(t), t ≥ 0} satisfies the following conditions:

Assumption C1: σX(t) attains its maximum on [0, T ] at the unique point T , and further

σX(t) = 1− b(T − t)β(1 + o(1)), t ↑ T

holds for some β, b > 0.

Assumption C2: σ2
X(t) is twice continuously differentiable on [τ,∞) for τ > 0 with limit of twice derivative

limt→T |σ̈2
X(t)| ∈ (0,∞) and further

σ2
X(t) = (at)α(1 + o(1)), t → 0

holds for some α ∈ (0, 2], a > 0.

Assumption C3: σ̈2
X(t)(ln t)c → 0 with c = 1 + εI(β ≥ α) and some constant ε > 0 as t → ∞.

Proposition 4.2. Let Z(s, t) be defined as above. Suppose that σX(t) satisfies conditions C1,C2. We have for

some constant L > 0

P

(
sup

(s,t)∈[0,L]×[0,T ]

Z(s, t) > u

)
= Lµ(u)(1 + o(1)),

where for α < β

µ(u) = 2−
2
αΓ(1/β + 1)a2H2

αb
− 1

β u
4
α
− 2

β Ψ(u);
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for α = β

µ(u) = Mb
Y u

2
αΨ(u)

with Y = Y (s, t) = B̃α(2
−1/αas) +Bα(2

−1/αat− 2−1/αas); for α > β

µ(u) = aHαu
2
αΨ(u).

Furthermore, if condition C3 holds, then

lim
S→∞

sup
x∈R

∣∣∣∣P
(
aS

(
sup

(s,t)∈[0,S]×[0,T ]

Z(s, t)− bS

)
≤ x

)
− exp{−e−x}

∣∣∣∣ = 0, (7)

where aS =
√
2 lnS, and

bS = aS + a−1
S ωS

with for α < β

ωS = ln(2−
2
αΓ(1/β + 1)a2H2

αb
− 1

β (2π)−1/2a
4
α
− 2

β
−1

S );

for α = β

ωS = ln(Mb
Y (2π)

−1/2a
2
α
−1

S );

for α > β

ωS = ln(aHα(2π)
−1/2a

2
α
−1

S ).

We illustrate Proposition 4.2 by the following two examples on the fBm and Gaussian integrated process.

Example 4.2: Let BHi
(t), i = 1, 2, . . . , n be a sequence of independent fBms with Hurst index Hi ∈ (0, 1) and

λi be a positive sequence satisfying
∑n

i=1 λ
2
i = 1. Since given H = H1 = H2 we have λ1BH1(t) + λ2BH2(t) =d

√
λ2
1 + λ2

2BH(t), we suppose that

H := H1 < H2 < · · · < Hn.

Let X(t) =
∑n

i=1 λiT
−1/2BHi

(t) and Z(s, t) be defined as above. We have for some constant L > 0

P

(
sup

(s,t)∈[0,L]×[0,T ]

Z(s, t) > u

)
= Lµ(u)(1 + o(1)),

as u → ∞, where for H ∈ (0, 1/2)

µ(u) = 2−
1
H H2

2Hλ
2
H

1 (

n∑

i=1

λ2
iHi)

−1u
2
H

−2Ψ(u);

for H = 1/2

µ(u) = M
1
2

Y,1u
2Ψ(u)

with Y = Y (s, t) = B̃1(2
−1s) +B1(2

−1(t− s)); for H ∈ (1/2, 1)

µ(u) = λ
1
H

1 H2Hu
1
H Ψ(u)

and

lim
S→∞

sup
x∈R

∣∣∣∣P
(
aS

(
sup

(s,t)∈[0,S]×[0,T ]

Z(s, t)− bS

)
≤ x

)
− exp{−e−x}

∣∣∣∣ = 0, (8)

where aS =
√
2 lnS, and

bS = aS + a−1
S ωS

7



with for H ∈ (0, 1/2)

ωS = ln
(
(2π)−1/22−

1
H H2

2Hλ
2
H

1 (

n∑

i=1

λ2
iHi)

−1a
2
H

−3

S

)

for any H = 1/2

ωS = ln
(
2π−1/2)M

1
2

Y,1aS

)

and for H ∈ (1/2, 1)

ωS = ln
(
(2π)−1/2)λ

1
H

1 H2Ha
1
H

−1

S

)
.

Next, we consider the Gaussian integrated process. For related studies, we refer to Dȩbicki (2002) and Hüsler and

Piterbarg (2004b).

Example 4.3: Let {ζ(t), t ≥ 0} be a centered stationary Gaussian process with variance one and suppose the

covariance function rζ(t) of {ζ(t), t ≥ 0} satisfying the following conditions:

Assumption D1: rζ(t) ∈ C([0,∞)) and
∫ t

0
rζ(s)ds > 0 for t ∈ (0, T ];

Assumption D2: rζ(t) = 1− tθ(1 + o(1)) as t → 0+ with θ ∈ (0, 2];

Assumption D3: rζ(t) ln t = o(1) as t → ∞.

Define Gaussian integrated processes as X(t) =
∫ t

0 ζ(s)ds and let Z(s, t) be defined as above.

If conditions D1,D2 are satisfied, we have for some constant L > 0

P

(
sup

(s,t)∈[0,L]×[0,T ]

Z(s, t) > u

)
= L

1√
π
uΨ(u)(1 + o(1)),

as u → ∞. If further condition D3 holds, we have

lim
S→∞

sup
x∈R

∣∣∣∣P
(
aS

(
sup

(s,t)∈[0,S]×[0,T ]

Z(s, t)− bS

)
≤ x

)
− exp{−e−x}

∣∣∣∣ = 0, (9)

where aS =
√
2 lnS, and

bS = aS + a−1
S ln

(
(2)−1/2π−1

)
.

5 Proofs

We need the following lemmas to prove Theorem 3.1. For simplicity, write u = uS(x) = a−1
S x + bS in the following

part.

Lemma 5.1. Let δu = u−2/β(lnu)2/β. Under the conditions of Theorem 3.1, we have for some constant S0 > 0

∣∣∣∣P
(

sup
(s,t)∈[0,S0]×[0,T ]

X(s, t) ≤ u

)
− P

(
sup

(s,t)∈[0,S0]×[T−δu,T ]

X(s, t) ≤ u

)∣∣∣∣
/

P

(
sup

(s,t)∈[0,S0]×[0,T ]

X(s, t) > u

)
→ 0

as u → ∞.

Proof: It can be found in the proof of Theorem 2.2 of Dȩbicki et al. (2016). �

For given ǫ > 0, we divide interval [0, S] into intervals of length 1, and split each of them onto subintervals Iǫj , Ij of

length ǫ, 1 − ǫ, j = 1, 2, · · · , ⌊S⌋, respectively, where ⌊x⌋ denotes the integral part of x. It can be easily seen that

a possible remaining interval with length smaller than 1 plays no role in our consideration. We denote this interval

by J .

Lemma 5.2. Under the conditions of Theorem 3.1, we have

∣∣∣∣P
(

sup
(s,t)∈[0,S]×[T−δu,T ]

X(s, t) ≤ u

)
− P

(
sup

(s,t)∈∪Ij×[T−δu,T ]

X(s, t) ≤ u

)∣∣∣∣→ 0,

as u → ∞ and ǫ → 0.
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Proof: By applying Theorem 2.1 and Lemma 5.1, we have

∣∣∣∣P
(

sup
(s,t)∈[0,S]×[T−δu,T ]

X(s, t) ≤ u

)
− P

(
sup

(s,t)∈∪Ij×[T−δu,T ]

X(s, t) ≤ u

)∣∣∣∣

≤ P

(
sup

(s,t)∈(∪Iǫ
j∪J)×[T−δu,T ]

X(s, t) > u

)

≤
⌊S⌋∑

j=1

P

(
sup

(s,t)∈Iǫ
j×[T−δu,T ]

X(s, t) > u

)
+ P

(
sup

(s,t)∈J×[T−δu,T ]

X(s, t) > u

)

∼

⌊S⌋∑

j=1

P

(
sup

(s,t)∈Iǫ
j×[0,T ]

X(s, t) > u

)
+ P

(
sup

(s,t)∈J×[0,T ]

X(s, t) > u

)

≤ (⌊S⌋ǫ+ 1)µ(u).

Noting that by the definitions of aS and bS , we have Sµ(u) = O(1) as u → ∞, thus the result follows by letting

ǫ → 0. �

Let in the following qi = du−2/αi for some d > 0.

Lemma 5.3. Under the conditions of Theorem 3.1, we have for any j = 1, 2, · · · , ⌊S⌋
∣∣∣∣P
(

sup
(s,t)∈Ij×[T−δu,T ]

X(s, t) ≤ u

)
− P

(
sup

(kq1,lq2)∈Ij×[T−δu,T ]

X(kq1, lq2) ≤ u

)∣∣∣∣ ≤ Kρ(d)µ(u)

as u → ∞, where ρ(d) → 0 as d → 0.

Proof: Without loss of generality, we only show the case j = 1.

Case β > max(α1, α2): For simplicity, we only consider the case that α1 = α2 =: α. Choose first a constant

α0 ∈ (α, β) and denote that

∆ij = ∆i ×∆j , ∆T
ij = ∆i × (T −∆j), with ∆i = [iu− 2

α0 , (i+ 1)u− 2
α0 ].

Set further

N1(u) = ⌊(1− ǫ)u
2

α0 ⌋+ 1, N2(u) = ⌊(lnu) 2
β u

2
α0

− 2
β ⌋+ 1.

For any ε ∈ (0, 1), let {η±ε(s, t), (s, t) ∈ [0,∞)2} be centered homogeneous Gaussian random fields with covariance

functions

r±ε(s, t) = exp
(
−(1± ε)α

(
|a1s|α + |a2t+ a3s|α

))
, (s, t) ∈ [0,∞)2

From the proof of case i) of Dȩbicki et al. (2016), it is easy to show that (letting q = du− 2
α )

N1(u)∑

i=0

N2(u)∑

j=0

P

(
sup

(s,t)∈∆ij

η+ε(s, T − t) > uj−

)

≥
N1(u)∑

i=0

N2(u)∑

j=0

P

(
sup

(s,t)∈∆ij

X(s, T − t)

σ(s, T − t)
> uj−

)

≥
N1(u)∑

i=0

N2(u)∑

j=0

P

(
sup

(s,t)∈∆T
ij

X(s, t) > u

)

≥ P

(
sup

(s,t)∈I1×[T−δu,T ]

X(s, t) > u

)

≥ P

(
sup

(kq,lq)∈I1×[T−δu,T ]

X(kq, lq) > u

)
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≥
N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(kq,lq)∈∆T
ij

X(kq, lq) > u

)
− Σ1(u)

≥
N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(kq,lq)∈∆ij

X(kq, T − lq)

σ(kq, T − lq)
> uj+

)
− Σ1(u)

≥
N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(kq,lq)∈∆ij

η−ε(kq, T − lq) > uj+

)
− Σ1(u), (10)

where

uj− = u(1 + b(1− ε)(ju− 2
α0 )β), uj+ = u(1 + b(1 + ε)((j + 1)u− 2

α0 )β),

and

Σ1(u) =
∑

0≤i,i′≤N1(u)−1,

∑

0≤j,j′≤N2(u)−1

P


 sup

(s,t)∈∆T
ij

X(s, t) > u, sup
(s,t)∈∆T

i′j′

X(s, t) > u


 .

We also can get the following results from the above mentioned paper

Σ1(u) = o(µ(u)) (11)

as u → ∞ and

N1(u)∑

i=0

N2(u)∑

j=0

P

(
sup

(s,t)∈∆ij

η+ε(s, T − t) > uj−

)

∼
N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(s,t)∈∆ij

η−ε(s, T − t) > uj+

)
∼ µ(u), (12)

as u → ∞ and ε → 0. For the homogeneous Gaussian random fields η±ε(s, t), by Lemma 6.2 in the Appendix, we

use the following estimate

∣∣∣∣P
(

sup
(s,t)∈∆ij

η±ε(s, T − t) > u

)
− P

(
sup

(kq,lq)∈∆ij

η±ε(kq, T − lq) > u

)∣∣∣∣

≤ ρ(d)a1a2u
4
α
− 4

α0 Ψ(u)(1 + g(u)),

where ρ(d) → 0 as d → 0 and g(u) → 0 as u → ∞. Denote by G(u) = 1 + supv≥u |g(u)| → 1 as u → ∞. Then

u/uj± → 1 as u → ∞ uniformly in j and also

∣∣∣∣P
(

sup
(s,t)∈∆ij

η±ε(s, T − t) > uj±

)
− P

(
sup

(kq,lq)∈∆ij

η±ε(kq, T − lq) > uj±

)∣∣∣∣

≤ ρ(d)a1a2u
4
α
− 4

α0

j± Ψ(uj±)G(u).

Thus, there exists K > 0 such that

∣∣∣∣
N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(s,t)∈∆ij

η−ε(s, T − t) > uj+

)
−

N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(kq,lq)∈∆ij

η−ε(kq, T − lq) > uj+

) ∣∣∣∣

≤ Kρ(d)u
4
α
− 2

β Ψ(u). (13)

Now it follows from (10-13) that

∣∣∣∣P
(

sup
(s,t)∈I1×[T−δu,T ]

X(s, t) > u

)
− P

(
sup

(kq,lq)∈I1×[T−δu,T ]

X(kq, lq) > u

)∣∣∣∣

≤
N1(u)∑

i=0

N2(u)∑

j=0

P

(
sup

(s,t)∈∆ij

η+ε(s, T − t) > uj−

)
−

N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(kq,lq)∈∆ij

η−ε(kq, T − lq) > uj+

)
+Σ1(u)
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∼
N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(s,t)∈∆ij

η−ε(s, T − t) > uj+

)
−

N1(u)−1∑

i=0

N2(u)−1∑

j=0

P

(
sup

(kq,lq)∈∆ij

η−ε(kq, T − lq) > uj+

)

≤ Kρ(d)u
4
α
− 2

β Ψ(u).

Case β = α1 = α2: For simplicity, set α = α1 = α2. Let S0, T0 be two positive constants and define

∆̂i = [iS0u
− 2

α , (i + 1)S0u
− 2

α ], i = 0, 1, · · · , N̂1(u), ∆̃j = [jT0u
− 2

α , (j + 1)T0u
− 2

α ], j = 0, 1, · · · , Ñ2(u),

∆ij = ∆̂i × ∆̃j , ∆
T

ij = ∆̂i × (T − ∆̃j),

where

N̂1(u) = ⌊1− ǫ

S0
u

2
α ⌋+ 1, Ñ2(u) = ⌊ (lnu)

2
β

T0
u

2
α ⌋+ 1.

From the proof of case ii) of Dȩbicki et al. (2016) again, it is easy to show that (letting q = du− 2
α )

Σ2(u) +

N̂1(u)∑

i=0

P

(
sup

(s,t)∈∆
T

i0

X(s, t) > u

)

≥ P

(
sup

(s,t)∈I1×[T−δu,T ]

X(s, t) > u

)

≥ P

(
sup

(kq,lq)∈I1×[T−δu,T ]

X(kq, lq) > u

)

≥
N̂1(u)−1∑

i=0

P

(
sup

(kq,lq)∈∆
T

i0

X(kq, lq) > u

)
− Σ3(u), (14)

where

Σ2(u) =

N̂1(u)∑

i=0

Ñ2(u)∑

j=1

P


 sup

(s,t)∈∆
T

ij

X(s, t) > u


 = o(µ(u)),

Σ3(u) =
∑

0<i<i′<N̂1(u)−1

P

(
sup

(s,t)∈∆
T

i0

X(s, t) > u, sup
(s,t)∈∆

T

i′0

X(s, t) > u

)
= o(µ(u)),

as u → ∞. We can also get the following results by Lemma 2.1 of Dȩbicki et al. (2016)

P

(
sup

(s,t)∈∆
T

i0

X(s, t) > u

)
∼ P

(
sup

(s,t)∈∆i0

η̃(s, t)

1 + btβ
> u

)
∼ Hb

Y1
[S0, T0]Ψ(u)

and
N̂1(u)∑

i=0

P

(
sup

(s,t)∈∆
T

i0

X(s, t) > u

)
∼

N̂1(u)−1∑

i=0

P

(
sup

(s,t)∈∆
T

i0

X(s, t) > u

)
∼

(1− ǫ)

S0
u

2
αHb

Y1
[S0, T0]Ψ(u)

as u → ∞, where {η̃(s, t), (s, t) ∈ [0,∞)2} is a centered homogeneous Gaussian random fields with covariance

functions

r(s, t) = exp
(
−
(
|a1s|α + |a2t− a3s|α

))
, (s, t) ∈ [0,∞)2.

Since X(s, t) is homogeneous with respect to s, we have

0 ≤ P

(
sup

(s,t)∈I1×[T−δu,T ]

X(s, t) > u

)
− P

(
sup

(kq,lq)∈I1×[T−δu,T ]

X(kq, lq) > u

)

≤ Σ2(u) +

N̂1(u)∑

i=0

P

(
sup

(s,t)∈∆
T

i0

X(s, t) > u

)
−

N̂1(u)−1∑

i=0

P

(
sup

(kq,lq)∈∆
T

i0

X(kq, lq) > u

)
+Σ3(u)
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= Σ2(u) + N̂1(u)P

(
sup

(s,t)∈∆
T

00

X(s, t) > u

)
− (N̂1(u)− 1)P

(
sup

(kq,lq)∈∆
T

00

X(kq, lq) > u

)
+Σ3(u)

≤ (N̂1(u)− 1)P

(
sup

(s,t)∈∆00

η̃(s, t)

1 + btβ
> u, sup

(kq,lq)∈∆00

η̃(kq, lq)

1 + b(lq)β
≤ u

)
+Hb

Y1
[S0, T0]Ψ(u) + o(µ(u)). (15)

For the constants a1 > 0, a2 > 0, a3 6= 0, b > 0, let (as in Section 2)

Y (s, t) = B̃α(a1s) +Bα(a2t− a3s), σ2
Y (s, t) = V ar(Y (s, t))

and

Hb
Y [λ1, λ2](d) = E exp

(
max

(kd,ld)∈[0,dλ1]×[0,dλ2]

√
2Y (kd, ld)− σ2

Y (kd, ld)− b|ld|β
)

∈ (0,∞),

where B̃α and Bα are two independent fBms. By the same arguments as in the proof of Lemma 6.1 of Dȩbicki et

al. (2016), we can show

Mb
Y,α(d) = lim

λ1→∞
lim

λ2→∞

1

dλ1
Hb

Y [λ1, λ2](d) ∈ (0,∞).

Following the arguments of Lemma 12.2.7 of Leadbetter et al. (1983), we can show that limd→0 Mb
Y,α(d) = Mb

Y,α.

Now, following the arguments of Lemma 6.1 of Dȩbicki et al. (2016) (see also the proof of Lemma 6.1 of Piterbarg

(1996)), we have

P

(
sup

(s,t)∈∆00

η̃(s, t)

1 + btβ
> u, sup

(kq,lq)∈∆00

η̃(kq, lq)

1 + b(lq)β
≤ u

)

= Ψ(u)

∫ +∞

0

ewP

(
sup

(s,t)∈[0,S0]×[0,T0]

[
√
2Y (s, t)− σ2

Y (s, t)− b|t|β ] > w,

sup
(kq,lq)∈[0,S0]×[0,T0]

[
√
2Y (kq, lq)− σ2

Y (kd, ld)− b|lq|β] ≤ w

)
dw(1 + o(1))

= Ψ(u)
(
Hb

Y [S0/d, T0/d](d)−Hb
Y [S0, T0]

)
(1 + o(1)), (16)

as u → ∞. Now, we can conclude that

0 ≤ P

(
sup

(s,t)∈I1×[T−δu,T ]

X(s, t) > u

)
− P

(
sup

(kq,lq)∈I1×[T−δu,T ]

X(kq, lq) > u

)

≤ (1− ǫ)u2/αΨ(u)

(Hb
Y [S0/d, T0/d](d)

S0
− Hb

Y [S0, T0]

S0

)
+Hb

Y1
[S0, T0]Ψ(u) + o(µ(u))

≤ K
(
Mb

Y,α(d)−Mb
Y,α

)
µ(u)

=: Kρ(d)µ(u), (17)

where ρ(d) → 0 as d → 0.

Case β = α2 > α1: This case can be proved as case ii) by some obvious changes as follows. Let S0, T0 be two positive

constants and define

∆̂i = [iS0u
− 2

α1 , (i+ 1)S0u
− 2

α1 ], i = 0, 1, · · · , N̂1(u), ∆̃j = [jT0u
− 2

α2 , (j + 1)T0u
− 2

α2 ], j = 0, 1, · · · , Ñ2(u),

∆ij = ∆̂i × ∆̃j , ∆
T

ij = ∆̂i × (T − ∆̃j),

where

N̂1(u) = ⌊1− ǫ

S0
u

2
α1 ⌋+ 1, Ñ2(u) = ⌊ (lnu)

2
β

T0
u

2
α2 ⌋+ 1.

Let q1 = du
− 2

α1 , q2 = du
− 2

α2 , then repeating the proof of case ii) by replacing kq and lq by kq1 and lq2, we get the

desired result.
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Case β < α2 = α1: For simplicity let α := α2 = α1 and q = du− 2
α . Let’s consider the Gaussian processX(s, T ), s ≥ 0.

It is easy to check that X(s, T ), s ≥ 0 is standard stationary Gaussian process, i.e., with mean 0, variance 1. For

the covariance function of X(s, T ), s ≥ 0, it holds that

r(s, T, s′, T ) = 1− (aα1 + |a3|α)|s− s′|α(1 + o(1))

uniformly with respect to s, s′ ∈ [0, S0], as |s− s′| → 0. For some constant a > 0, let

Ha
α[0, λ] = E exp

(
max

ak∈[0,aλ]

√
2Bα(ak)− (ak)α

)

and define

Hα(a) = lim
λ→∞

Ha
α[0, λ]

aλ
∈ (0,+∞).

Note that lima→0 Hα(a) = Hα, see e.g. Leadbetter et al. (1983). So by Lemmas 6.1 and 6.2 in the Appendix (for

the one dimensional case), we have

P

(
sup
s∈I1

X(s, T ) > u

)
= (1− ǫ)(aα1 + |a3|α)

1
αHαu

2
αΨ(u)(1 + o(1)), (18)

P

(
sup
kq∈I1

X(kq, T ) > u

)
= (1− ǫ)(aα1 + |a3|α)

1
αHα(d)u

2
αΨ(u)(1 + o(1)) (19)

and
∣∣∣∣P
(
sup
s∈I1

X(s, T ) > u

)
− P

(
sup
kq∈I1

X(kq, T ) > u

)∣∣∣∣ ≤ Kρ(d)u
2
αΨ(u), (20)

as u → ∞, where ρ(d) = Hα(d)−Hα. By repeating the proof of iv) of Dȩbicki et al. (2016), it is easy to show that

P

(
sup

(kq,lq)∈I1×[T−δu,T ]

X(kq, lq) > u

)
= (1− ǫ)(aα1 + |a3|α)

1
αHα(d)u

2
αΨ(u)(1 + o(1)). (21)

Write
∣∣∣∣P
(

sup
(s,t)∈I1×[T−δu,T ]

X(s, t) > u

)
− P

(
sup

(kq,lq)∈I1×[T−δu,T ]

X(kq, lq) > u

)∣∣∣∣

≤
∣∣∣∣P
(

sup
(s,t)∈I1×[T−δu,T ]

X(s, t) > u

)
− P

(
sup
s∈I1

X(s, T ) > u

)∣∣∣∣

+

∣∣∣∣P
(
sup
s∈I1

X(s, T ) > u

)
− P

(
sup
kq∈I1

X(kq, T ) > u

) ∣∣∣∣

+

∣∣∣∣P
(

sup
kq∈I1

X(kq, T ) > u

)
− P

(
sup

(kq,lq)∈I1×[T−δu,T ]

X(kq1, lq2) > u

)∣∣∣∣

=: M1 +M2 +M3,

where M1 = o(µ(u)) by iv) of Theorem 2.1 and (18), M2 = Kρ(d)u
2
αΨ(u) by (20) and M3 = o(µ(u)) by (19) and

(21) as u → ∞.

Case β < α2 and α1 < α2: The proof is the same as that of Case β < α2 = α1.

Case β = α1 > α2 and case β < α1 and α2 < α1: These two cases can be proved by the same arguments as for the

third and fifth cases after some time scaling as in Dȩbicki et al. (2016), so we omit the details. �

Lemma 5.4. Under the conditions of Theorem 3.1, we have

∣∣∣∣P
(

sup
(s,t)∈∪Ij×[T−δu,T ]

X(s, t) ≤ u

)
− P

(
sup

(kq1,lq2)∈∪Ij×[T−δu,T ]

X(kq1, lq2) ≤ u

)∣∣∣∣ ≤ Kρ(d)Sµ(u) (22)

as u → ∞.

13



Proof: By Lemma 5.3, we have

∣∣∣∣P
(

sup
(s,t)∈∪Ij×[T−δu,T ]

X(s, t) ≤ u

)
− P

(
sup

(kq1,lq2)∈∪Ij×[T−δu,T ]

X(kq1, lq2) ≤ u

)∣∣∣∣

≤ Smax
j

∣∣∣∣P
(

sup
(s,t)∈Ij×[T−δu,T ]

X(s, t) ≤ u

)
− P

(
sup

(kq1,lq2)∈Ij×[T−δu,T ]

X(kq1, lq2) ≤ u

)∣∣∣∣

≤ Kρ(d)Sµ(u),

which completes the proof. �

Lemma 5.5. Under the conditions of Theorem 3.1, we have

∣∣∣∣P
(

sup
(kq1,lq2)∈∪Ij×[T−δu,T ]

X(kq1, lq2) ≤ u

)
−

⌊S⌋∏

j=1

P

(
sup

(kq1,lq2)∈Ij×[T−δu,T ]

X(kq1, lq2) ≤ u

)∣∣∣∣→ 0,

as u → ∞.

Proof: Applying Berman’s inequality (see e.g. Piterbarg (1996)) we have

∣∣∣∣P
(

sup
(kq1,lq2)∈∪Ij×[T−δu,T ]

X(kq1, lq2) ≤ u

)
−

⌊S⌋∏

j=1

P

(
sup

(kq1,lq2)∈Ij×[T−δu,T ]

X(kq1, lq2) ≤ u

)∣∣∣∣

=

∣∣∣∣P
(

sup
(kq1,lq2)∈∪Ij×[T−δu,T ]

X(kq1, lq2)

σ(lq2)
≤ u

σ(lq2)

)
−

⌊S⌋∏

j=1

P

(
sup

(kq1,lq2)∈Ij×[T−δu,T ]

X(kq1, lq2)

σ(lq2)
≤ u

σ(lq2)

) ∣∣∣∣

≤
∑

j 6=j′

∑

(kq1,lq2)∈Ij×[T−δu,T ]

(k′q1,l′q2)∈I
j′

×[T−δu,T ]

|r(kq1, lq2, k′q1, l′q2)| exp
(
− (σ−2(lq2) + σ−2(l′q2))u

2

2(1 + r(kq1, lq2, k′q1, l′q2))

)

≤
∑

j 6=j′

∑

(kq1,lq2)∈Ij×[T−δu,T ]

(k′q1,l′q2)∈I
j′

×[T−δu,T ]

|r(kq1, lq2, k′q1, l′q2)| exp
(
− u2

1 + r(kq1, lq2, k′q1, l′q2)

)
.

Since |kq1 − k′q1| ≥ ǫ by definition, r(kq1, lq2, k
′q1, l

′q2) ≤ δ < 1. Set γ < (1− δ)/(1 + δ) and split the last sum into

two parts W1 and W2 with |kq1−k′q1| < Sγ and |kq1−k′q1| ≥ Sγ , respectively. For the first sum there are S1+γ/q22

combinations of two points kq1, k
′q1 ∈ ∪jIj . Together with the lq2 combinations there are (S1+γ/q21)(δu/q

2
2) terms

in the sum W1. Note that

Sµ(u) = O(1), u → ∞,

which implies for case i)

u2 = 2 lnS + (
2

α1
+

2

α2
− 2

β
− 1) ln lnS +O(1);

for case ii)-v)

u2 = 2 lnS + (
2

α1
− 1) ln lnS +O(1);

for case vi)-vii)

u2 = 2 lnS + (
2

α2
− 1) ln lnS +O(1).

Thus, W1 is bounded by

δ
S1+γδ2(u)

q21q
2
2

exp

(
− u2

1 + δ

)

≤ δ exp

(
(1 + γ) lnS + (

1

α1
+

1

α2
) ln lnS − 2(1 + o(1))

1 + δ
lnS

)

= δ exp

(
(lnS)

[
(1 + γ)− 2(1 + o(1))

1 + δ
+

( 1
α1

+ 1
α2

) ln lnS

lnS

])
→ 0

14



as S → ∞ since 1 + γ < 2/(1 + δ) by the choice of γ.

For the second sum W2 with |kq1 − k′q1| ≥ Sγ , we use that

sup
|kq1−k′q1|≥Sγ

r(kq1, lq2, k
′q1, l

′q2)(lnS)
c = o(1),

as S → ∞. In this case there (S/q1)
2 many combinations of two points kq1, k

′q1 ∈ ∪iIi. Hence W2 is bounded by

R(S) :=
o(1)

(lnS)c
S2

q21

δ2(u)

q22
exp

(
− u2

1 + o(1)/ lnS

)

≤ C exp

(
2 lnS + (

2

α1
+

2

α2
− 2

β
− 1) ln lnS +

4

β
ln ln lnS − (c− 1) ln lnS − u2

1 + o(1)/ lnS

)
.

For case i), by assumption A4, c > 1, we have

R(S) ≤ C exp

(
2 lnS + (

2

α1
+

2

α2
− 2

β
− 1) ln lnS +

4

β
ln ln lnS − (c− 1) ln lnS

− (1 + o(1))

1 + o(1)/ lnS
[2 lnS + (

2

α1
+

2

α2
− 2

β
− 1) ln lnS]

)

≤ C exp

(
−(c− 1) ln lnS +

4

β
ln ln lnS + o(1)

)
→ 0,

as S → ∞, since c > 1. For cases ii)-iii), noting that c > 1, we have

R(S) ≤ C exp

(
2 lnS + (

2

α1
+

2

α2
− 2

β
− 1) ln lnS +

4

β
ln ln lnS − (c− 1) ln lnS

− (1 + o(1))

1 + o(1)/ lnS
[2 lnS + (

2

α1
− 1) ln lnS]

)

≤ C exp

(
(
2

α2
− 2

β
) ln lnS − (c− 1) ln lnS +

4

β
ln ln lnS + o(1)

)
→ 0,

as S → ∞, since β = α2 and c > 1. For cases iv)-v), noting that c = 1, we have

R(S) ≤ C exp

(
2 lnS + (

2

α1
+

2

α2
− 2

β
− 1) ln lnS +

4

β
ln ln lnS

− (1 + o(1))

1 + o(1)/ lnS
[2 lnS + (

2

α1
− 1) ln lnS]

)

≤ C exp

(
(
2

α2
− 2

β
) ln lnS +

4

β
ln ln lnS + o(1)

)
→ 0,

as S → ∞, since β < α2. For cases vi), we have

R(S) ≤ C exp

(
2 lnS + (

2

α1
+

2

α2
− 2

β
− 1) ln lnS +

4

β
ln ln lnS − (c− 1) ln lnS

− (1 + o(1))

1 + o(1)/ lnS
[2 lnS + (

2

α2
− 1) ln lnS]

)

≤ C exp

(
(
2

α1
− 2

β
) ln lnS − (c− 1) ln lnS +

4

β
ln ln lnS + o(1)

)
→ 0,

as S → ∞, since β = α1 and c > 1. For cases vii), noting that c = 1, we have

R(S) ≤ C exp

(
2 lnS + (

2

α1
+

2

α2
− 2

β
− 1) ln lnS +

4

β
ln ln lnS

− (1 + o(1))

1 + o(1)/ lnS
[2 lnS + (

2

α2
− 1) ln lnS]

)

≤ C exp

(
(
2

α1
− 2

β
) ln lnS +

4

β
ln ln lnS + o(1)

)
→ 0,

as S → ∞, since β < α1. �
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Proof of Theorem 3.1: Recall that u = u(x) = a−1
S x+ bS. By the stationarity of X(s, t) with respect to the first

component, Lemma 5.1, Theorem 2.1 and the choice of aS , bS, we have

⌊S⌋∏

j=1

P

(
max

(s,t)∈Ij×[T−δu,T ]
X(s, t) ≤ u

)
∼ exp

(
−⌊S⌋P

(
max

(s,t)∈I1×[T−δu,T ]
X(s, t) > u

))

∼ exp (−⌊S⌋(1− ǫ)µ(u))

→ exp(−e−x), ǫ ↓ 0, S → ∞.

Further, by Lemmas 5.1-5.5, it holds that as S → ∞

P

(
max

(s,t)∈[0,S]×[0,T ]
X(s, t) ≤ u

)
∼ P

(
max

(s,t)∈∪jIj×[T−δu,T ]
X(s, t) ≤ u

)

∼ P

(
max

(kq1,lq2)∈∪jIj
X(kq1, lq2) ≤ u

)

∼
⌊S⌋∏

j=1

P

(
max

(kq1,lq2)∈Ij×[T−δu,T ]
X(kq1, lq2) ≤ u

)
.

Therefore, the claim follows. �

Proof of Proposition 4.1: In the paper of Dȩbicki et al. (2016), it is shown that the standard deviation function

of Z satisfies assumption A1 and the correlation function of Z satisfies assumption A2. It is also shown that

assumption A3 holds for Z. So, in order to prove this proposition, it suffices to show assumption A4 holds. For the

correlation function rZ(s, t, s
′, t′) of Z, we have

rZ(s, t, s
′, t′) = rX(|s+ t− s′ − t′|)− rX(|s− s′ − t′|)− rX(|s+ t− s′|) + rX(|s− s′|).

Since rX(t) is twice continuously differentiable in (0,∞), we have

|rX(|s+ t− s′ − t′|)− rX(|s− s′ − t′|)− rX(|s+ t− s′|) + rX(|s− s′|)| ≤ Cr̈X(s− s′)

for t, t′ ∈ [0, T ] as s− s′ → ∞. Now using the condition that r̈X(t)(ln t)c → 0 as t → ∞, we show that assumption

A4 holds. �

Proof of Proposition 4.2: We check that assumptions A1−A4 hold. Using the stationarity of the increments

of X(t) and C1, it follows that the variance σ2
Z(s, t) of Z(s, t) attains its maximum on [0, T ] at the unique point T ,

and further

σZ(s, t) = σX(t) = 1− b(T − t)β(1 + o(1)), t ↑ T

holds for some β, b > 0.

Notice that for the process X(t) with stationary increments

Cov(X(t), X(s)) =
1

2
[σ2

X(t) + σ2
X(s)− σ2

X(|t− s|)].

Thus, using the stationarity of the increments of X(t) again, we have for correlation function of Z(s, t)

rZ(s, t, s
′, t′) =

1

2σX(t)σX(t′)
[−σ2

X(|s+ t− s′ − t′|) + σ2
X(|s− s′ − t′|) + σ2

X(|s− s′ + t′|)− σ2
X(|s− s′|)].

It follows from C2 that

rZ(s, t, s
′, t′) = 1− 1

2
[(a|s+ t− s′ − t′|)α + (a|s− s′|)α](1 + o(1)),

as t, t → T and |s− s′| → 0. A3 holds obviously. Thus, by Theorem 2.1, the first assertion of Proposition 4.2 holds.

By Taylor expansions, it is straightforward to verify that

|rZ(s, t, s′, t′)| ≤ Cσ̈2
X(|s− s′|)

as |s− s′| → ∞, which combined with C3 implies A4. Thus, by Theorem 3.1, the second assertion holds. �
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6 Appendix

Let {ξ(t) : t ≥ 0} denote a two dimensional homogeneous Gaussian field with covariance function

rξ(t) = Cov(ξ(t), ξ(0)).

Assume that the covariance function satisfies the following conditions:

Assumption E1: There exists a non-degenerate matrix C such that

rξ(Ct) = 1− |t1|α1 − |t2|α2 + o(|t1|α1 + |t2|α2)

as t → 0 with αi ∈ (0, 2];

Assumption E2: rξ(t) < 1 for t 6= 0.

To state two key lemmas, we recall the following type of Pickands constant. For constant a > 0, let

Ha
α[0, λ] = E exp

(
max

ak∈[0,aλ]

√
2Bα(ak)− (ak)α

)

and define

Hα(a) = lim
λ→∞

Ha
α[0, λ]

aλ
.

We need the following results for the proofs of our main results.

Lemma 6.1. Let qi = du−2/αi for some d > 0 and assume that E1 and E2 hold. Then for any fixed rectangle

Ih = [0, h1]× [0, h2], we have

P

(
max
t∈Ih

ξ(t) > u

)
= h1h2Hα1Hα2 |detC−1|u2/α1+2/α2Ψ(u)(1 + o(1))

and

P

(
max
kq∈Ih

ξ(kq) > u

)
= h1h2Hα1(d)Hα2(d)|detC−1|u2/α1+2/α2Ψ(u)(1 + o(1))

as u → ∞. The results also hold for the case h1 = u−2/α′

and h2 = u−2/α′′

for α′ > α1 and α′′ > α2.

Proof: The first and second assertions can be proved following the proof of Lemma 7.1 of Piterbarg (1996) with

some obvious changes, see also the proof of Lemma 1 of Dȩbicki, Hashorva and Soja-Kukiela (2015). The third

assertion follows from the proofs of the former two by using the double sums method, see the proof of Theorem 7.2

of Piterbarg (1996). �

Lemma 6.2. Let qi = du−2/αi for some d > 0 and choose two constants α′ > α1 and α′′ > α2. Assume that E1

and E2 hold. Then for the rectangle I = [0, u−2/α′

]× [0, u−2/α′′

], we have

P

(
max
kq∈I

ξ(kq) ≤ u

)
− P

(
max
t∈I

ξ(t) ≤ u

)
≤ |detC−1|ρ(d)u2/α1+2/α2−2/α′−2/α′′

Ψ(u),

where ρ(d) = Hα1(d)Hα2 (d)−Hα1Hα2 → 0 as d → 0.

Proof: It is an immediate consequence of Lemma 6.1. �
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[8] Dȩbicki, K., Hashorva, E. and Ji, L., 2016. Extremes of a class of non-homogeneous Gaussian random fields. Ann.

Probab., 44(2), 984-1012.
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