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EXCURSION SETS OF INFINITELY DIVISIBLE RANDOM FIELDS
WITH CONVOLUTION EQUIVALENT LÉVY MEASURE

ANDERS RØNN-NIELSEN,∗ University of Copenhagen

EVA B. VEDEL JENSEN,∗∗ Aarhus University

Abstract

We consider a continuous, infinitely divisible random field in Rd, d = 1, 2, 3,
given as an integral of a kernel function with respect to a Lévy basis with
convolution equivalent Lévy measure. For a large class of such random fields
we compute the asymptotic probability that the excursion set at level x contains
some rotation of an object with fixed radius as x → ∞. Our main result is
that the asymptotic probability is equivalent to the right tail of the underlying
Lévy measure.

Keywords: convolution equivalence; excursion set; infinite divisibility; Lévy-
based modelling
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1. Introduction

In the present paper we investigate the extremal behaviour of excursion sets for a
field (Xt)t∈B defined by

Xt =

∫
Rd
f(|t− s|)M(ds) , (1)

where M is an infinitely divisible, independently scattered random measure on Rd, f
is some kernel function, and B is a compact index set. We will assume that the Lévy
measure of the random measure M has a convolution equivalent right tail ([5, 6, 10]).
In [13] it was shown under some regularity conditions that the distribution of supt∈B Xt

has a similar convolution equivalent tail. In the present paper we will be interested in
the excursion set

Ax = {t : Xt > x} .

Under the additional assumption (11) below, we derive the result that the asymptotic
probability of the excursion set at level x containing some rotation of an object with a
fixed radius r has a tail that is equivalent to the tail of the underlying Lévy measure. A
more precise definition of the event that is studied asymptotically is found in Section 2
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2 A. Rønn-Nielsen and E.B. Vedel Jensen

below. Measures with a convolution equivalent tail cover the important cases of an
inverse Gaussian and a normal inverse Gaussian (NIG) basis, respectively, see [13].

Lévy models as defined in (1) provide a flexible and tractable modelling framework
that recently has been used for a variety of modelling purposes, including modelling
of turbulent flows ([4]), growth processes ([8]), Cox point processes ([7]), and brain
imaging data ([9]). In [9], a model (1) with M following a NIG distribution was
suitable for modelling the neuroscience data under consideration. For such data it is
typically of interest to detect for which t ∈ B a given field obtains values that are
significantly large. The results in the present paper will make it possible to discuss
whether a cluster of t ∈ B with large observations jointly form an extreme observation.

For Gaussian random fields it is known that the distribution of the supremum of the
field can be approximated by the expected Euler characteristic of an excursion set (see
[3] and references therein). The supremum and excursion sets of a non–Gaussian field
given by integrals with respect to an infinitely divisible random measure has already
been studied, when the random measure has regularly varying tails. Results for the
asymptotic distribution of the supremum are found in [11], and these results are refined
in [1] and [2], where results are obtained on the asymptotic joint distribution of the
number of critical points of the excursion sets. The arguments are – as in the present
paper – based on finding the Lévy measure of a dense countable subset of the field.
However, the remaining proofs rely heavily on the assumption of regularly varying tails
and can therefore not be translated into the convolution equivalent framework.

Note that convolution equivalent distributions have heavier tails than Gaussian
distributions and lighter tails than those of regularly varying distributions. The latter
statement follows from the fact that convolution equivalent distributions have expo-
nential tails while regularly varying distributions have power function tails.

The present paper is organised as follows. In Section 2 we define the random field
(1) and introduce the necessary assumptions. In Section 3 we show three technical
lemmas concerning the asymptotic behaviour of deterministic fields. These results will
be used in Section 4. In Section 4 we show the main result of the paper. The proof
will be in several steps, utilising that X can be decomposed as X1 +X2, where X1 is
a compound Poisson sum and X2 has lighter tails than X1. The proofs in this section
will apply techniques that are similar to the proofs in [13].

2. Preliminaries

We shall make the same general assumptions as in [13] except for the additional
assumption (11) below. For completeness, we will present all assumptions in the
following. Consider an independently scattered random measure M on Rd, d = 1, 2, 3.
Then for a sequence of disjoint sets (An)n∈N ⊆ Rd in B(Rd) the random variables
(M(An))n∈N are independent and satisfy M(∪An) =

∑
M(An). Assume furthermore

that M(A) is infinitely divisible for all A ∈ B(Rd). Then M is called a Lévy basis, see
[4] and references therein.

For a random variable X let C(λ‡X) denote its cumulant function logE(eiλX). We
shall assume that the Lévy basis is stationary and isotropic such that for A ∈ B(Rd)
the variable M(A) has a Lévy–Khintchine representation given by

C(λ‡M(A)) = iλamd(A)− 1

2
λ2θmd(A)+

∫
A×R

(
eiλz−1−iλz1[−1,1](z)

)
F (ds,dz) , (2)
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where md is the Lebesgue measure on (Rd,B(Rd)), a ∈ R, θ ≥ 0 and F is a measure
on B(Rd × R) on the form

F (A×B) = md(A)ρ(B) . (3)

We assume that ρ has an exponential tail with index β > 0, i.e. for all y ∈ R

ρ((x− y,∞))

ρ((x,∞))
→ eβy as x→∞. (4)

Note that the assumption β > 0 excludes the subexponential case. Let ρ1 be a
normalization of the restriction of ρ to (1,∞), and note that ρ1 also has an exponential
tail with index β > 0. We furthermore assume that

(ρ1 ∗ ρ1)((x,∞))

ρ1((x,∞))
→ 2m as x→∞, (5)

where m < ∞. This makes ρ1 a convolution equivalent distribution. (Formally, a
distribution is said to be convolution equivalent, if it has an exponential tail and
satisfies (5).) Here ρ1 ∗ ρ1 denotes the convolution. In fact, m =

∫
eβz ρ1(dz), cf. [10,

Corollary 2.1, (ii)]. Writing ρ((x,∞)) = L(x)e−βx, it is seen from (4) that for all y ∈ R

L(x− y)

L(x)
→ 1 as x→∞. (6)

For each a, b ∈ R, the limit (6) holds uniformly in y ∈ [a, b], cf. [10, p. 408]. We
furthermore assume ∫

z2 ρ(dz) <∞ . (7)

Now assume that f : [0,∞)→ [0,∞) is a strictly decreasing kernel function satisfying∫
Rd
f(|s|)ds <∞ , (8)

and

f(x) ≤ K1

(x+ 1)d
for all x ≥ 0 (9)

for a finite, positive constant K1. Note that (8) follows from (9), when d = 2, 3.
Assume furthermore that f is differentiable with f ′ satisfying

|f ′(x)| ≤ K2

(x+ 1)d
for all x ≥ 0 (10)

for a finite, positive constant K2. Finally, let r > 0 be fixed and assume that there
exists g such that f(x) ≤ g(x) for all x ≥ 0 and such that

g(x) = f ′(r)(x− r) + f(r) for all x ∈ [0, 2r] . (11)

Note that this in particular is satisfied if f is concave on [0, 2r]. We will furthermore
choose g on [2r,∞) such that it satisfies (8)–(10).
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Let B be a compact, convex subset of Rd with md(B) > 0 and define the set
B ⊕ Cr = {x + y : x ∈ B, y ∈ Cr(0)}, where Cr(0) is the ball with center in 0 and
radius r. We consider the family of random variables (Xt)t∈B⊕Cr defined by

Xt =

∫
Rd
f(|t− s|)M(ds) .

See [13] for existence of the integrals.

Example 2.1. (Gaussian kernel function.) Suppose that f(x) = e−σx
2

, σ > 0, then
the assumptions (8)–(10) are satisfied, and f is concave on the interval [0, 1√

2σ
]. In

particular, the assumption (11) is satisfied for r ≤ 1
2
√
2σ

.

Example 2.2. (Matérn kernel function.) Suppose that

f(x) =
1

2η−1Γ(η)
|λx|ηKη(λ|x|) ,

where Kη is the modified Bessel function of the second kind, index η ≥ 1
2 , and λ > 0.

It can be shown that the Matérn kernel satisfies the assumptions (8)–(10). See [12,
Example 2.5] and references therein for details. Furthermore [12, Example 2.5] provides
identities for the derivatives of f from which it can be shown that f is concave in an
interval (0, δ) close to 0, when η > 1

2 . In particular, the assumption (11) will be
satisfied.

For s ∈ B let Cr(s) be the ball in Rd with radius r and center s and let Sd−1 =
{α ∈ Rd : |α| = 1} be the unit sphere. Let D ⊆ Cr(0) be a set with radius r
in the sense that there exists β ∈ Sd−1 such that {−rβ, rβ} ⊆ D. Let furthermore
SO(d) denote the special orthogonal group, i.e. the set of all orthogonal matrices with
determinant 1. Hence each R ∈ SO(d) represents a rotation in Rd. For R ∈ SO(d)
and s ∈ Rd we define DR(s) = RD + s. Recalling the definition of the excursion set,
Ax = {t ∈ B ⊕ Cr : Xt > x}, we will be interested in the event

{there exists t ∈ B ,R ∈ SO(d) : DR(t) ⊆ Ax} .

Alternatively, this can be expressed as

{ sup
t0∈B

sup
R∈SO(d)

inf
t∈DR(t0)

Xt > x} .

Example 2.3. A possible choice of D is Cr(0). Here the rotations of D are unneces-
sary. Another choice could be that D = {rα0,−rα0} for a fixed α0 ∈ Sd−1. A third
possibility is the line segment connecting the points rα and −rα. For convenience, we
let α0 = 1, α0 = (1, 0), α0 = (1, 0, 0) for d = 1, 2, 3 respectively.

For the study of the extremal behaviour of (Xt)t∈B⊕Cr , it will crucial that the
field (Xt)t∈T is itself infinitely divisible, with T = (B ⊕ Cr) ∩ Qd, where Qd are
the rational numbers in Rd. For details, see [13] and references therein. The Lévy
measure of (Xt)t∈T is the measure ν on (RT ,B(RT )) defined by ν = F ◦ V −1, where
V : Rd × R→ RT is given by

V (s, z) = (zf(|t− s|))t∈T .
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Because of the infinite divisibility of (Xt)t∈T , we have the following decomposition, see
e.g. [11],

Xt = X1
t +X2

t ,

where the fields (X1
t )t∈T and (X2

t )t∈T are independent. The first field, (X1
t )t∈T , is a

compound Poisson sum

X1
t =

N∑
n=0

Unt ,

where N is Poisson distributed with parameter ν(A) < ∞ and A = {x ∈ RT :
supt∈T xt > 1}. The fields (Unt )t∈T are independent and identically distributed with
common distribution ν1 = νA/ν(A), where νA is the measure on (RT ,B(RT )) obtained
by restricting ν to A. Furthermore (X2

t )t∈T is infinitely divisible with a Lévy measure
νAc , the restriction of ν to Ac.

As argued in [13], all the fields Un, X1, and X2 have continuous extension to B⊕Cr.
It should furthermore be noted that each of the fields (Unt )t∈B⊕Cr can be represented
by
(
Zf(|t − S|)

)
t∈B⊕Cr

, where (S,Z) ∈ [0,∞) × Rd has distribution F1, that is the
restriction of the measure F to the set

V −1(A) = {(s, z) ∈ Rd × R : sup
t∈T

zf(|t− s|) > 1} .

3. Asymptotic results for deterministic fields

An important property for the arguments in [13] is that for a continuous field
(yt)t∈B⊕Cr it holds for all s ∈ B that

inf
t∈B

x− yt
f(|t− s|)

− x+ ys → 0

as x → ∞. For the purpose of this paper we shall need a similar but more involved
result concerning the asymptotic behaviour of

inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)

x− yt
f(|t− s|)

− x

f(r)
, (12)

where SO(d) and DR(t) are as defined in the introduction.

Lemma 3.1. Let (yt)t∈B⊕Cr be a continuous field. Then there exists a function λs((yt)t∈B⊕Cr )
such that for each s ∈ B

inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)

x− yt
f(|t− s|)

− x

f(r)
+ λs((yt)t∈B⊕Cr )→ 0

as x → ∞. If (yt)t∈B⊕Cr is constant–valued and equal to y, then λs((yt)t∈B⊕Cr ) =
y/f(r) for all s, and if y is a constant, λs((y+ yt)t∈B⊕Cr ) = y/f(r) +λs((yt)t∈B⊕Cr ).
Furthermore, λs((yt)t∈B⊕Cr ) only depends on (yt)t∈Cr+ε(s) for any ε > 0.

Proof. Let y∗ = supt∈B⊕Cr and y∗ = inft∈B⊕Cr . Then the expression in (12) is
bounded from above by

x− y∗
supt0,R inft∈DR(t0) f(|t− s|)

− x

f(r)
=
x− y∗
f(r)

− x

f(r)
=
−y∗
f(r)

.
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Similarly, the expression is bounded from below by −y∗/f(r). The result for a constant
field (yt) is seen from this, and the result concerning adding a constant to (yt) follows
similarly, when the existence of the limit λs((yt)t∈B⊕Cr ) is established. For each x > 0
we can choose tx ∈ B and Rx ∈ Sd−1 such that

inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)

x− yt
f(|t− s|)

− x

f(r)
= sup
t∈DRx (tx)

x− yt
f(|t− s|)

− x

f(r)
. (13)

First, we show that tx → s. We find

x− inft∈Cr(s) yt

f(r)
= sup
t∈Cr(s)

x− yt
f(r)

≥ sup
t∈DRx (tx)

x− yt
f(|t− s|)

≥ x− y∗

inft∈DRx (tx) f(|t− s|)
.

When using that inft∈DRx (tx) f(|t− s|) ≤ f(r) this yields

x− y∗

x− inft∈Cr(s) yt
≤

inft∈DRx (tx) f(|t− s|)
f(r)

≤ 1 ,

such that inft∈DRx (tx) f(|t−s|)→ f(r) as x→∞. Since furthermore inft∈DR(t0) f(|t−
s|) < f(r) for all t0 6= s and R ∈ SO(d), we can conclude that tx → s. From this we
can conclude that λs((yt)t∈B⊕Cr ) only depends on yt for t close to Cr(s).

In fact, we need a stronger version of this result. From differentiability of f in r we
have for u ≥ 0

1

f(u)
− 1

f(r)
= b(u− r) + (u− r)φ(u− r) (14)

for b > 0 and some continuous function φ with φ(0) = 0. Using that f is decreasing
we find for each K > 0 that

x
( 1

f(u)
− 1

f(r)

)
≤ −bK + φ(−K/x) for 0 < u < r − K

x
,

x
( 1

f(u)
− 1

f(r)

)
≥ bK + φ(K/x) for u > r +

K

x
.

In particular, we can choose K and x0 such that for all x > x0

x− yt
f(|t− s|)

− x

f(r)
<
−y∗

f(r)
for |t− s| < r − K

x
,

x− yt
f(|t− s|)

− x

f(r)
>
−y∗
f(r)

for |t− s| > r +
K

x
.

With this choice of K we have for x > x0 that

inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)

x− yt
f(|t− s|)

− x

f(r)
= inf
t0∈B

inf
R∈SO(d)

sup
t∈DR(t0)∩Hx

x− yt
f(|t− s|)

− x

f(r)
,

(15)
where Hx = {t ∈ Rd : r −K/x ≤ |t− s| ≤ r +K/x}. Define

h(`) = sup{|φ(u− r)| : r − ` ≤ u ≤ r + `} ,

and note that h(`)→ 0 as `→ 0.
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We will show the convergence result by contradiction. To obtain this, we assume
that there is a sequence x1 < x̃1 < x2 < x̃2 < . . . and constants a and ε > 0 such that

sup
t∈DRn (tn)

xn − yt
f(|t− s|)

− xn
f(r)

≤ a sup
t∈DR̃n (t̃n)

x̃n − yt
f(|t− s|)

− x̃n
f(r)

≥ a+ ε (16)

for all n, where Rn = Rxn , R̃n = Rx̃n are the corresponding rotation matrices, and
tn = txn , t̃n = tx̃n corresponds two the relevant displacements, chosen according
to (13). By going to subsequences we can assume that |tn − s| is decreasing and
that (Rn) is convergent. Let ` be chosen such that h(`) < 1/m, where m ∈ N will
be determined later. Let Sn be the rotation that is needed to rotate DRn+1(0) into
DRn(0): SnD

Rn+1(0) = DRn(0). Choose δ > 0 according to the uniform continuity
of (zt)t∈B⊕Cr = (yt/f(|t − s|))t∈B⊕Cr such that |zs2 − zs1 | < ε/4 if |s2 − s1| < δ.
Furthermore, δ should be chosen so small that δ < `/2. Choose x̃ > x0 such that
δ+K/x̃ < `. Now choose n such that |tn − tn+1| < δ/2, such that |Snu− u| < δ/2 for
all u ∈ B ⊕ Cr, and such that K/xn + |tn − tn+1| < K/x̃.

Recall that DRn(tn) can be parametrised by {Rnt+ tn : t ∈ D} and that similarly,
DRn+1(tn+1) is parametrised by {Rn+1t + tn+1 : t ∈ D}. Choose Dx̃ ⊆ D such that
DRn(tn) ∩Hx̃ = {Rnt+ tn : t ∈ Dx̃}. By the definition of tn we have that

sup
t∈DRn∩Hx̃

xn − yt
f(|t− s|)

− xn
f(r)

≤ a (17)

Let furthermore D̃
Rn+1

x̃ be the rotation by Sn of DRn(tn)∩Hx̃ centred in s : D̃
Rn+1

x̃ =

Sn(DRn(tn)∩Hx̃−s)+s. Now D̃
Rn+1

x̃ has the form {Rn+1t+ t̃ : t ∈ Dx̃} for some t̃; in
fact t̃ = Sn(tn−s)+s, but that will not be important in the following. Since for t ∈ Dx̃

each Rn+1t+ t̃ ∈ D̃Rn+1

x̃ is the rotation around s of Rnt+ tn ∈ DRn(tn)∩Hx̃, we have
that the distance to s is unchanged. Since furthermore, |Rn+1t + t̃ − (Rnt + tn)| < δ
for t ∈ Dx̃ because of the choice of Sn, the inequality (17) now leads to

sup
t∈D̃

Rn+1
x̃

xn − yt
f(|t− s|)

− xn
f(r)

≤ a+ ε/4 ,

which can be re–parametrised as

sup
t∈Dx̃

xn

(
1

f(|Rn+1t+ t̃− s|)
− 1

f(r)

)
− zRn+1t+t̃

≤ a+ ε/4 . (18)

Define in the same way D
Rn+1

x̃ (tn+1) = {Rn+1t+ tn+1 : t ∈ Dx̃} as a reduced version
of DRn+1(tn+1). By the definition of tn+1 we have similarly

sup
t∈Dx̃

xn

(
1

f(|Rn+1t+ tn+1 − s|)
− 1

f(r)

)
− zRn+1t+tn+1

≤ a ,

and by the uniform continuity of (zt) and the small distance between tn+1 and t̃ we
have

sup
t∈Dx̃

xn

( 1

f(|Rn+1t+ tn+1 − s|)
− 1

f(r)

)
− zRn+1t+t̃

≤ a+ ε/4 . (19)
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Note that D
Rn+1

x̃ (tn+1) is a translation of D̃
Rn+1

x̃ . We shall parametrise all the inter-
mediate translations by

Du,x̃ = {Rn+1t+ γ(u) : t ∈ Dx̃}

for u ∈ [0, 1]. Here γ(u) = t̃ + u(tn+1 − t̃) is a linear parametrisation of the line

segment from t̃ to tn+1. Note that D0,x̃ = D̃
Rn+1

x̃ and D1,x̃ = D
Rn+1

x̃ (tn+1). Now
define x(u) = K

1−u+C for u ∈ [0, 1], where C,K > 0 are chosen such that x(0) = xn
and x(1) = xn+1, see Lemma A.1 in the Appendix. Suppose we can show that

sup
t∈Dx̃

x(u)

(
1

f(|Rn+1t+ γ(u))− s|)
− 1

f(r)

)
− zRn+1t+t̃

≤ a+ ε/2 (20)

for all u ∈ [0, 1]. Then choosing u such that x(u) = x̃n and defining t̃n = γ(u) gives
the inequality

sup
t∈Dx̃

x̃n

(
1

f(|Rn+1t+ t̃n)− s|)
− 1

f(r)

)
− zRn+1t+t̃

≤ a+ ε/2 .

Using the uniform continuity of (zt) again together with a reparametrisation gives

sup
t∈Du,x̃

x̃n − yt
f(|t− s|)

− x̃n
f(r)

≤ a+ 3ε/4 .

Note that DRn+1(t̃n)∩Hx̃n ⊆ Du,x̃ due to the choices of x̃ and xn < x̃n. In combination
with (15) this gives the desired contradiction to (16).

Thus the proof will be complete, if we can show (20). First, we observe that the
cases u = 0 and u = 1 follows from (18) and (19). The result for a general u ∈ (0, 1)
will follow, if we for any given t ∈ Dx̃ can show that

x(u)F (u) ≤ a+ z̃ + ε/2 (21)

for all u ∈ [0, 1], where

F (u) =
1

f(|γ̃(u)− s|)
− 1

f(r)
,

z̃ = zRn+1t+t̃
and γ̃(u) = Rn+1t+γ(u). For ease of notation, t is suppressed. To obtain

this, we will use that for all t such that r ≤ |t− s| ≤ r + ` it holds that

(b− 1/m)(|t− s| − r) ≤
(

1

f(|t− s|)
− 1

f(r)

)
≤ (b+ 1/m)(|t− s| − r) , (22)

and for r − ` ≤ |t− s| ≤ r it holds that

(b+ 1/m)(|t− s| − r) ≤
(

1

f(|t− s|)
− 1

f(r)

)
≤ (b− 1/m)(|t− s| − r) , (23)

where we have applied (14) and that h(`) < 1/m. Note that the assumptions above
give that

∣∣|γ̃(u) − s| − r
∣∣ < ` for all u ∈ [0, 1]. Furthermore, note that F (u) > 0 if

and only if |γ̃(u) − s| − r > 0. We shall consider the cases (i): F (0), F (1) > 0, (ii):
F (0), F (1) < 0, (iii): F (0) < 0, F (1) > 0, (iv): F (0) > 0, F (1) < 0 separately.
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In the case (i) we find using (22) that

(b− 1/m)x(u)(|γ̃(u)− s| − r) ≤ a+ z̃ + ε/4 (24)

for u = 0, 1. Now let G(u) be the linear interpolation such that G(0) = (|γ̃(0)− s| − r)
and G(1) = (|γ̃(1)− s| − r). Then, since (b− 1/m)x(u)G(u) ≤ a+ z̃+ ε/2 for u = 0, 1,
and since u 7→ x(u)G(u) is monotone, Lemma A.1 in the Appendix gives that the
above inequality is satisfied for all u ∈ [0, 1]. Since furthermore, u 7→ |γ̃(u)− s| is seen
to be convex, we have that (24) is satisfied for all u ∈ [0, 1]. Thus also

(b+ 1/m)x(u)(|γ̃(u)− s| − r) ≤ (a+ z̃ + ε/4)
b+ 1/m

b− 1/m

holds for all u. Another reference to (22) then gives that

x(u)F (u) ≤ (a+ z̃ + ε/4)
b+ 1/m

b− 1/m
. (25)

Now consider the case (ii). Since F (u) < 0 if both F (0) < 0 and F (1) < 0, the
property (21) is trivially satisfied, if a+ z̃ + ε/2 ≥ 0. So assume that a+ z̃ + ε/2 < 0.
Then we find similarly using (23) that

x(u)F (u) ≤ (a+ z̃ + ε/4)
b− 1/m

b+ 1/m
(26)

The case (iii) is trivially satisfied, since u 7→ F (u) is increasing. For the case (iv), it is
only of interest to show that x(u)F (u) ≤ a+ z̃+ε/4 for all u ∈ [0, u0], where F (u0) = 0.
To obtain this, the technique from (i) can be repeated, since here x(u)F (u) ≤ a+z̃+ε/4
for u = 0, u0.

Now the desired inequality (21) can be obtained from (25) and (26) by letting
m→∞. Note that this can be done uniformly in t, since the field (zt) is bounded. �

The following lemma describes λs for a particularly simple set D:

Lemma 3.2. If D = {−α0r, α0r} with α0 as defined in Example 2.3, then

λs((yt)t∈B⊕Cr ) = sup
α∈Sd−1

1

2f(r)
(ys+αr + ys−αr)

Proof. First, we introduce the notation Dα(s) = {s− αr, s+ αr} for α ∈ Sd−1 and
s ∈ Rd. Then for s ∈ Rd fixed we have {Dα(s) : α ∈ Sd−1} = {DR(s) : R ∈ SO(d)},
so for D chosen as in the lemma we can use unit vectors to parametrise all rotations.
Now define us,α = s+rα for α ∈ Sd−1 and us,t,γ,α = s+tγ+rα for t ≥ 0 and γ ∈ Sd−1.
The latter parametrises points on the boundary of a ball with radius r and center in
s + tγ. Note that us,0,γ,α = us,α and that limt→0 us,t,γ,α = us,γ,α. Furthermore,

|ut γ,α − s| = |tγ + rα| =
√
t2 + r2 + 2tr cos∠(α, γ), where ∠(α, γ) denotes the angle

between α and γ. In the one dimensional case, where d = 1, we e.g. have ∠(1,−1) = π.
From differentiability of f in r we can write∣∣∣∣1t
(

1

f(|us,t,γ,α − s|)
− 1

f(r)

)
− −f

′(r)

f(r)2
cos∠(α, γ)

∣∣∣∣
=

∣∣∣∣1t
(
−f ′(r)
f(r)2

(
|tγ + rα| − r

)
+ φ(|tγ + rα| − r)

(
|tγ + rα| − r

))
− −f

′(r)

f(r)2
cos∠(α, γ)

∣∣∣∣ ,
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where φ is continuous with φ(0) = 0. Using a second order Taylor approximation
around 0 of t 7→

√
t2 + r2 + 2tr cos∠(α, γ) it is seen that

(
|tγ + rα| − r

)
/t converges

to cos∠(α, γ) uniformly in α, γ as t→ 0. Thus for all s ∈ B

sup
γ,α

∣∣∣∣1t
(

1

f(|us,t,γ,α − s|)
− 1

f(r)

)
− −f

′(r)

f(r)2
cos∠(α, γ)

∣∣∣∣→ 0

as t→ 0. Since yus,t,γ,α → yus,α uniformly in α, γ ∈ Sd−1 due to uniform continuity of
the (yt)–field, we find that if (tx) is a sequence decreasing to 0 such that xtx → C as
x→∞, then

sup
γ,α

∣∣∣∣ x− yus,tx,γ,α
f(|us,tx,γ,α − s|)

− x

f(r)
−
(
C
−f ′(r)
f(r)2

cos∠(α, γ)−
yus,α
f(r)

)∣∣∣∣→ 0

as x→∞. From this we find

sup
γ,α

∣∣∣∣ max
t∈Dα(s+γt)

(
x− yt

f(|t− s|)
− x

f(r)

)
− max
t∈Dα(s)

(
C
−f ′(r)
f(r)2

cos∠(t− s, γ)− yt
f(r)

)∣∣∣∣→ 0

as x→∞. Next we claim that for all α, γ ∈ Sd−1 and C ≥ 0

max
t∈Dα(s)

(
C
−f ′(r)
f(r)2

cos∠(t− s, γ)− yt
f(r)

)
= max

{
C
−f ′(r)
f(r)2

cos∠(α, γ)− ys+rα
f(r)

,−C−f
′(r)

f(r)2
cos∠(α, γ)− ys−rα

f(r)

}
≥ sup
α∈Sd−1

1

2f(r)
(ys+rα + ys−rα) ,

with equality if

α0 = argmax
α∈Sd−1

{ 1

2f(r)
(ys+rα + ys−rα) : ys+rα ≥ ys−rα

}
,

and furthermore γ0 = α0 and C0 = f(r)/(−2f ′(r))(ys+rα − ys−rα). For the proposed
choice of α0, γ0, C0 it is easily seen that

C0
−f ′(r)
f(r)2

cos∠(α0, γ0)− ys+rα0

f(r)
= −C0

−f ′(r)
f(r)2

cos∠(α0, γ0)− ys−rα0

f(r)
,

and that the common value equals the desired lower bound. It is furthermore seen that
any other choice of α, γ, C can only increase one of the two terms above.

Now let (αn) and (γn) be sequences in Sd−1, let (tn) be a sequence of positive
numbers, and let (xn) be a sequence increasing to infinity. Then the results above
show that

lim inf
n→∞

max
t∈Dαn(s+γntn)

(
x− yt

f(|t− s|)
− x

f(r)

)
≥ sup
α∈Sd−1

1

2f(r)
(ys+rα + ys−rα)

and that there is equality if αn = α0, γn = γ0 and xntn → C0 with α0, γ0, C0 as
proposed above. Combined with Lemma 3.1 this gives the desired result. �
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Lemma 3.3. Let n ∈ N and assume for each i = 1, . . . , n that (yit)t∈B⊕Cr has the
form

yit = zif(|t− si|) for all t ∈ B ⊕ Cr ,

where all zi ≥ 0 and si ∈ Rd. Let g be as defined in (11). Define for s ∈ Rd

ϕ(s) = f(r)1B⊕Cr (s) + 1(B⊕Cr)c(s) sup
t∈B

g(|t− s|) . (27)

Then it holds that

sup
s∈B

λs

(( n∑
i=1

yit
)
t∈B⊕Cr

)
≤ 1

f(r)

n∑
i=1

ziϕ(si)

and

sup
t0∈B

sup
α∈Sd−1

inf
t∈Dα(t0)

n∑
i=1

yit ≤
n∑
i=1

ziϕ(si) .

Proof. Assume si ∈ B ⊕Cr. For each α ∈ Sd−1 and s ∈ B we find that if min{|s+
rα−si|, |s−rα−si|} = r−δ for some δ > 0, then max{|s+rα−si|, |s−rα−si|} ≥ r+δ.
Using the assumption (11) then gives

1

2
(yis+rα + yis−rα) ≤ zi

2
(g(r − δ) + g(r + δ)) = zif(r) = ziϕ(si) .

This inequality is clearly also satisfied, if both |s+ rα− si| ≥ r and |s− rα− si| ≥ r.
If si ∈ (B ⊕ Cr)c then for all choices of s ∈ B and α ∈ Sd−1 it holds that

1

2
(yis+rα + yis−rα) ≤ zi

2

(
g(|s+ rα− si|) + g(|s− rα− si|)

)
≤ ziϕ(si) .

Recalling that for a given rotation matrix R ∈ SO(d) there exists α ∈ Sd−1 such that
{s−rα, s+rα} ⊆ DR(s), combined with Lemma 3.2, it is now seen that for each s ∈ B

λs

(( n∑
i=1

yit
)
t∈B⊕Cr

)
≤ sup
α∈Sd−1

1

2f(r)

( n∑
i=1

yis+αr +

n∑
i=1

yis−αr

)
≤

n∑
i=1

1

2f(r)
sup

α∈Sd−1

(
yis+αr + yis−αr

)
≤ 1

f(r)

n∑
i=1

ziϕ(si) .

Taking the supremum over s ∈ B gives the first statement. For the second statement,
we similarly find for each t0 ∈ B and R ∈ SO(d) that

inf
t∈DR(t0)

n∑
i=1

yit ≤ min
{ n∑
i=1

yit0+rα,

n∑
i=1

yit0−rα

}
≤ 1

2

( n∑
i=1

yit0+αr +

n∑
i=1

yit0−αr

)
≤

n∑
i=1

ziϕ(si) ,

where, again, α ∈ Sd−1 is chosen such that {s − rα, s + rα} ⊆ DR(s). The result
follows by taking the supremum over t0 ∈ B and R ∈ SO(d). �



12 A. Rønn-Nielsen and E.B. Vedel Jensen

4. The main theorem

In this section, we will derive the main result that is Theorem 4.4 below. For x > 0
we define the following set

Λ(x) = {(yt)t∈B⊕Cr : sup
t0∈B

sup
R∈SO(d)

inf
t∈DR(t0)

yt > x} .

Note that for a random field (Yt)t∈B⊕Cr with excursion set Ax = {t ∈ B⊕Cr : Yt > x}
we have

P ((Yt)t∈B⊕Cr ∈ Λ(x)) = P (there exists t ∈ B,R ∈ SO(d) : DR(t) ⊆ Ax) .

The first step will be determining the asymptotic behaviour of excursion sets for a field
U with distribution ν1. Recall the definition of L(x) from (6).

Theorem 4.1. Assume that (Ut)t∈B⊕Cr has distribution ν1 and let (yt)t∈B⊕Cr be
continuous. Then

P
(
(Ut + yt)t∈B⊕Cr ∈ Λ(x)

)
L(x/f(r)) exp(−βx/f(r))

→ 1

ν(A)

∫
B

exp(βλs((yt)t∈B⊕Cr )) ds as x→∞ .

(28)
Furthermore,

P
(
(Ut)t∈B⊕Cr ∈ Λ(x)

)
L(x/f(r)) exp(−βx/f(r))

→ 1

ν(A)
md(B) as x→∞ , (29)

and

P
(
(Ut + yt)t∈B⊕Cr ∈ Λ(x)

)
P
(
(Ut)t∈B⊕Cr ∈ Λ(x)

) →
∫
B

exp(βλs((yt)t∈B⊕Cr )) ds

md(B)
as x→∞ . (30)

Proof. The results (29) and (30) are direct consequences of (28), so we focus on the
proof of (28). We can assume that (yt)t∈B⊕Cr is non–negative: Simply write x = x′−x0
for a suitable x0 such that (x0 + yt)t∈B⊕Cr is non–negative, and find the limit of

P
(
(Ut + x0 + yt)t∈B⊕Cr ∈ Λ(x′)

)
L(x′/f(r)) exp(−βx′/f(r))

as x′ →∞. We find

P
(
(Ut + yt)t∈B⊕Cr ∈ Λ(x)

)
=

1

ν(A)
F ({(s, z) ∈ Rd × R : sup

t0∈B
sup

R∈SO(d)

inf
t∈DR(t0)

zf(|t− s|) + yt > x})

=
1

ν(A)
F
({

(s, z) ∈ Rd × R : z > inf
t0,R

sup
t∈DR(t0)

x− yt
f(|t− s|)

})
=

1

ν(A)

∫
B

L
(

inf
t0,α

sup
t∈DR(t0)

x− yt
f(|t− s|)

)
exp

(
− β inf

t0,R
sup

t∈DR(t0)

x− yt
f(|t− s|)

)
ds

+
1

ν(A)

∫
Rd\B

L
(

inf
t0,R

sup
t∈DR(t0)

x− yt
f(|t− s|)

)
exp

(
− β inf

t0,α
sup

t∈DR(t0)

x− yt
f(|t− s|)

)
ds .

(31)
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First, we show that the second term in (31) is o
(
L(x/f(r)) exp(−βx/f(r))

)
. Let y∗ =

sups∈B⊕Cr ys. We utilise the fact that L(x) exp(−βx) is decreasing, so if x > y∗, then
the second term is

≤ 1

ν(A)

∫
Rd\B

L
(x− y∗
f0(s)

)
exp

(
− β x− y

∗

f0(s)

)
ds , (32)

where we have introduced the notation f0(s) = supt0,R inft∈DR(t0) f(|t− s|). From the
arguments similar to the proof of [13, Theorem 3.1] it can be seen that for all γ > 0
there exists x0 > 0 and C > 0 such that

L(ax)

L(x)
≤ Ce(a−1)γx for all x ≥ x0, a ≥ 1 . (33)

Note that f0(s) < f(r) for all s ∈ Rd\B due to convexity of B. Combining this with (6),
(33) and the fact that L(x) exp(−γx)→ 0 for all γ > 0, gives that the integrand in (32)
is o
(
L(x/f(r)) exp(−βx/f(r))

)
. If we denote the integrand of (32) by h(s;x), it follows

by the dominated convergence theorem that (32) is o(L(x/f(r)) exp(−βx/f(r))) if we
can find an integrable function g such that

h(s;x)

L(x/f(r)) exp(−βx/f(r))
≤ g(s) , s ∈ Rd .

Let 0 < γ < β. Then, using (33) and the boundedness of L((x− y∗)/f(r))/L(x/f(r)),
we can find a constant C̃ and x0 > y∗ such that for x ≥ x0

h(s;x)

L(x/f(r)) exp(−βx/f(r))
≤ C̃ exp(βy∗/f(r)) exp

(
−(β − γ)

(
1

f0(s)
− 1

f(r)

)
(x0 − y∗)

)
.

(34)

Now, choose D > 0 such that B ⊕ Cr ⊆ CD(0) and supt∈B f(|t − s|) < f(r) for all
s /∈ CD(0). Then, using (9), we get for s /∈ CD(0)

f0(s) ≤ supt∈Bf(|t− s|) ≤ sup
t∈CD(0)

f(|t− s|) ≤ sup
t∈CD(0)

1

(|t− s|+ 1)d
=

1

(|s| −D + 1)d
.

It follows that the function (34) is integrable.
The theorem now follows by applying dominated convergence to the first term of

(31). From Lemma 3.1 we have for s ∈ B

L
(

inft0,R supt∈DR(t0)
x−yt
f(|t−s|)

)
exp

(
− β inft0,R supt∈DR(t0)

x−yt
f(|t−s|)

)
L(x/f(r)) exp(−βx/f(r))

→ eβλs((yt)t).

Using again that L(x) exp(−βx) is decreasing we find for x large∣∣∣∣∣∣
L
(

inft0,R supt∈DR(t0)
x−yt
f(|t−s|)

)
exp

(
− β inft0,R supt∈DR(t0)

x−yt
f(|t−s|)

)
L(x/f(r)) exp(−βx/f(r))

− eβλs((yt)t)
∣∣∣∣∣∣

≤ L((x− y∗)/f(r)) exp(−β(x− y∗)/f(r))

L(x/f(r)) exp(−βx/f(r))
+ eβλs((yt)t)

≤ (C + 1)eβy
∗
,
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where C is chosen such that L((x− y∗)/f(r))/L(x/f(r)) ≤ C. The result is integrable
over B. �

The next step will be to extend the result of Theorem 4.1 to the case P ((U1 + · · · +
Un + yt)t ∈ Λ(x)), where U i, i = 1, . . . , n, are independent with common distribution
ν1. Recall that each (U it )t∈B⊕Cr can be represented by

(
Zif(|t − Si|)

)
t∈B⊕Cr

, where

(Si, Zi) has distribution F1. For this purpose we will need the following lemma and
corollary.

Lemma 4.1. Let (S,Z) be distributed according to F1. Then,

P (Zϕ(S) > x)

L(x/f(r)) exp(−βx/f(r))
→ md(B ⊕ Cr)

ν(A)
.

In particular, we have

E exp(β/f(r)Zφ(S)) <∞ .

Proof. Similar to the proof of Theorem 4.1 we can write

P (Zφ(S) > x) =
1

ν(A)
F ({(s, z) ∈ Rd × R : zϕ(s) > x})

=
1

ν(A)

∫
B⊕Cr

L(x/f(r)) exp(−βx/f(r)) ds

+
1

ν(A)

∫
B⊕Cr

L
( x

supt∈B g(|t− s|)

)
exp

(
− β x

supt∈B g(|t− s|)

)
ds .

The first term equals L(x/f(r)) exp(−βx/f(r)) times the desired limit. The sec-
ond term is o(L(x/f(r)) exp(−βx/f(r)) by a dominated convergence argument, since
supt∈B g(|t − s|) < f(r) for all s ∈ (B ⊕ Cr)c. The second result follows from [10,
Corollary 2.1 (ii)]. �

Corollary 4.1. Let U1, U2, . . . be independent and identically distributed with distri-
bution ν1. For all n ∈ N it holds that

E exp
(
β sup
s∈B

λs((U
1
t + . . .+ Unt )t∈B⊕Cr )

)
<∞

Proof. Since each U i has the form
(
Zif(|t − Si|)

)
t∈B⊕Cr

, the result follows from
Lemma 3.3 and Lemma 4.1. �

Theorem 4.2. Let U1, U2, . . . be independent and identically distributed with distri-
bution ν1 and assume that (yt)t∈B⊕Cr is continuous. For all n ∈ N it holds that

P
(
(U1

t + . . .+ Unt + yt)t ∈ Λ(x)
)

P
(
(U1

t )t ∈ Λ(x)
) → n

md(B)

∫
B

Eeβλs((U
1
t+...+U

n−1
t +yt)t) ds

as x→∞.

Proof. As in the proof of Theorem 4.1 we can assume that (yt)t∈B⊕Cr is non–
negative. The result is shown by induction over n. For n = 1, the result is shown
in Theorem 4.1. Assume now that the theorem is correct for some n ∈ N. Let for



Excursion sets for convolution equivalent fields 15

convenience V = U1 + . . .+Un and recall the representation U it = Zif(|t−Si|). Then
we have

P ((Vt + Un+1
t + yt)t ∈ Λ(x))

= P (

n∑
i=1

Ziϕ(Si) > x/2, Zn+1ϕ(Sn+1) > x/2, (Vt + Un+1
t + yt)t ∈ Λ(x))

+ P (

n∑
i=1

Ziϕ(Si) ≤ x/2 , (Vt + Un+1
t + yt)t ∈ Λ(x))

+ P (Zn+1ϕ(Sn+1) ≤ x/2 , (Vt + Un+1
t + yt)t ∈ Λ(x)) . (35)

The first term is bounded from above by

P (

n∑
i=1

Ziϕ(Si) > x/2)P (Zn+1ϕ(Sn+1) > x/2) .

In Lemma 4.1 it was shown that the distribution of each Ziϕ(Si) is convolution equiv-
alent. Thus both factors are asymptotically equivalent with ρ1((x/(2f(r)),∞)), and
then it follows from the proof of [5, Lemma 2] that the product is o((ρ1∗ρ1)((x/f(r),∞))).
In particular, the product above is o(ρ1((x/f(r),∞))) due to the convolution equiva-
lence.

The two remaining terms in (35) divided by P ((U1
t )t ∈ Λ(x)) can be rewritten as

follows∫
Cx

P ((Un+1
t +

∑n
i=1 z

if(|t− si|) + yt)t ∈ Λ(x))

P ((U1
t )t ∈ Λ(x))

F ∗⊗n1 (d(s1, z1; . . . ; sn, zn))

+

∫
C̃x

P ((Vt + zf(|t− s|) + yt)t ∈ Λ(x))

P ((U1
t )t ∈ Λ(x))

F1(d(s, z)) . (36)

Here F ∗⊗n1 is the n−fold product measure of F1, and it has been used that (Vt)t can
be represented by

(∑n
i=1 Z

if(|t− Si|)
)
t
. The sets Cx and C̃x in (36) are defined by

Cx =
{

(s1, z1; . . . ; sn, zn) :

n∑
i=1

ziϕ(si) ≤ x/2
}

and

C̃x =
{

(s, z) : zϕ(s) ≤ x/2
}
.

Using Theorem 4.1 and the induction assumption, the two integrands of (36) times
1Cx and 1C̃x respectively, converge to, as x→∞,

f1(s1, z1; . . . ; sn, zn) =
1

md(B)

∫
B

eβλs((yt+
∑n
i=1 z

if(|t−si|))t∈B⊕Cr ) ds

and

f2(s, z) =
n

md(B)

∫
B

Eeβλs((U
1
t+...+U

n−1
t +zf(|t−s|)+yt)t∈B⊕Cr ) ds ,
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respectively. We want to show that (36) converges to∫
f1(s1, z1; . . . ; sn, zn)F ∗⊗n1 (d(s1, z1; . . . ; sn, zn)) +

∫
f2(s, z)F1(d(s, z))

=
n+ 1

md(B)

∫
B

Eeβλs((U
1
t+...+U

n
t +yt)t) ds.

Using Fatou’s lemma, it is enough to find integrable functions g1(s1, z1; . . . ; sn, zn;x)
and g2(s, z;x) that are upper bounds of the two integrands of (36) such that the limits
g1(s1, z1; . . . ; sn, zn) = limx→∞ g1(s1, z1; . . . ; sn, zn;x) and g2(s, z) = limx→∞ g2(s, z;x)
exist with∫

Cx

g1(s1, z1; . . . ; sn, zn;x)F ∗⊗n1 (d(s1, z1; . . . ; sn, zn)) +

∫
C̃x

g2(s, z;x)F1(d(s, z))

(37)
converging to the similar integrals with g1(s1, z1; . . . ; sn, zn) and g2(s, z). Using Lemma 3.3
we find that as functions g1(s1, z1; . . . ; sn, zn;x) and g2(s, z;x) we can use

g1(s1, z1; . . . ; sn, zn;x) =
P (Z1ϕ(S1) > x− y∗ −

∑n
i=1 z

iϕ(si))

P ((Ut)t ∈ Γ(x))
,

where as previously y∗ = supt∈B⊕Cr yt, and

g2(s, z;x) =
P (
∑n
i=1 Z

iϕ(Si) > x− y∗ − zϕ(s))

P ((Ut)t ∈ Γ(x))
.

Noting that P ((Ut)t ∈ Γ(x)) ∼ md(B)/md(B ⊕ Cr)P (Z1ϕ(S1) > x) due to Theo-
rem 4.1 and Lemma 4.1, we find that

g1(s1, z1; . . . ; sn, zn;x)→ g1(s1, z1; . . . ; sn, sn) =
md(B ⊕ Cr)
md(B)

eβ/f(r)
(
y∗+

∑n
k=1 z

iϕ(si)
)
,

and since the distribution of
∑n
i=1 Z

iϕ(Si) is convolution equivalent, [6, Corollary 2.11]
gives

g2(s, z;x)→ g2(s, z) =
md(B ⊕ Cr)
md(B)

n · eβ/f(r)(y
∗+zϕ(s))

(
Eeβ/f(r)Z

1ϕ(S1)
)n−1

.

We observe that∫
g1(s1, z1; . . . ; sn, zn)F ∗⊗n1 (d(s1, z1; . . . ; sn, zn)) +

∫
g2(s, z)F1(d(s, z))

=
md(B ⊕ Cr)
md(B)

(n+ 1) · eβ/f(r)y
∗
(
Eeβ/f(r)Z

1ϕ(S1)
)n

. (38)

Since the tails of
∑n
i=1 Z

iϕ(Si) and Z1ϕ(S1) in particular are exponential with index
β/f(r), we have according to [5, Lemma 2] that (37) is asymptotically equal to

eβ/f(r)y
∗ P
(∑n+1

i=1 Z
iϕ(Si) > x

)
P (Z1ϕ(S1) > x)

which, by another reference to [6, Corollary 2.11], is seen to converge to (38). �
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For a dominated convergence argument, we need the lemma below.

Lemma 4.2. Let U1, U2, . . . be independent and identically distributed with distribu-
tion ν1, and assume that (S,Z) has distribution F1. There exists a constant K such
that for all n ∈ N and all x ≥ 0

P ((U1
t + . . .+ Unt )t ∈ Λ(x)) ≤ KnP (Zϕ(S) > x) .

Proof. Since Zϕ(S) has a convolution equivalent tail according to Corollary 4.1 it
follows from [6, Lemma 2.8] that there exists K such that

P

(
n∑
i=1

Ziϕ(Si) > x

)
≤ KnP (Zϕ(S) > x) .

The result now follows directly from Lemma 3.3. �

Recall that we can write the field (Xt)t∈T as

Xt = X1
t +X2

t ,

where the field X1 is obtained from the fields U1, U2, . . . and an independent Poisson
distributed variable N with parameter ν(A) by

X1
t =

N∑
n=1

Unt .

Theorem 4.3. For each s ∈ B we have E exp
(
βλs((X

1
t )t∈B⊕Cr )

)
< ∞ and for a

continuous field, (yt)t∈B⊕Cr

lim
x→∞

P ((X1
t + yt)t ∈ Λ(x))

L(x/f(r)) exp(−βx/f(r))
=

∫
B

E
(
eβλs((X

1
t+yt)t∈B⊕Cr )

)
ds .

Proof. The first result follows, since λs((X
1
t )t∈B⊕Cr ) ≤ 1

f(r)

∑N
n=0 Z

iϕ(Si) and

E exp(β/f(r)Z1ϕ(S1)) is finite. For the proof of the limit result, we use that

P ((X1
t + yt)t ∈ Λ(x)) = e−ν(A)

∞∑
n=1

ν(A)n

n!
P ((U1

t + . . .+ Unt + yt)t ∈ Λ(x)) .

Utilising Lemma 4.2 and the notation y∗ = supt∈B⊕Cr yt, we find

∞∑
n=1

ν(A)n

n!

P ((U1
t + . . .+ Unt + yt)t ∈ Λ(x))

P (Zϕ(S) > x− y∗)

≤
∞∑
n=1

ν(A)n

n!

P ((U1
t + . . .+ Unt )t ∈ Λ(x− y∗))
P (Zϕ(S) > x− y∗)

≤
∞∑
n=1

Knν(A)n

n!

P (Zϕ(S) > x− y∗)
P (Zϕ(S) > x− y∗)

=

∞∑
n=1

Knν(A)n

n!
<∞ ,
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and furthermore, we obtain from Lemma 4.1 and Theorem 4.2 that

lim
x→∞

P ((U1
t + . . .+ Unt + yt)t ∈ Λ(x))

P (Zϕ(S) > x− y∗)

=
n

eβ/f(r)y∗md(B ⊕ Cr)

∫
B

Eeβλs((U
1
t+...+U

n−1
t +yt)t) ds .

with the convention that U1
t + . . .+Un−1t = 0 if n = 1. Then, dominated convergence

gives

lim
x→∞

P ((X1
t + yt)t ∈ Λ(x))

P (Zϕ(S) > x− y∗)

=
e−ν(A)

eβ/f(r)y∗md(B ⊕ Cr)

∞∑
n=1

ν(A)n

n!
n

∫
B

Eeβλs((U
1
t+...+U

n−1
t +yt)t) ds

ν(A)

eβ/f(r)y∗md(B ⊕ Cr)

∞∑
n=0

e−ν(A) ν(A)n

n!

∫
B

Eeβλs((U
1
t+...+U

n
t +yt)t) ds

=
ν(A)

eβ/f(r)y∗md(B ⊕ Cr)

∫
B

E
(
eβλs((U

1
t+...+U

N
t +yt)t)

)
=

ν(A)

eβ/f(r)y∗md(B ⊕ Cr)

∫
B

E
(
eβλs((X

1
t+yt)t)

)
which with a final reference to Theorem 4.1 and Lemma 4.1 concludes the proof. �

The theorem below is the main result of our paper. In the formulation of the theorem,
we explicitly state the assumptions under which the limit holds.

Theorem 4.4. Under the assumptions (2)–(7) on M and (8)–(11) on f , then it holds
that E exp

(
βλt0((Xt)t∈B⊕Cr

)
<∞ and

lim
x→∞

P (supt0∈B supR∈SO(d) inft∈DR(t0)Xt > x)

L(x/f(r)) exp(−βx/f(r))
= E exp

(
βλt0((Xt)t∈B⊕Cr

)
md(B)

as x→∞ with t0 ∈ B arbitrarily chosen, and where λt0 is as defined in Lemma 3.1.

Proof. First we note that E exp(γ supt∈B⊕Cr X
2
t ) < ∞ for all γ > 0 according to

[13, Lemma 4.1]. Since furthermore

λt0((Xt)t) ≤ λt0((X1
t + sup

t
X2
t )t) = λt0((X1

t )t) + sup
t
X2
t /f(r)

due to Lemma 3.1, the first statement follows from the first statement in Theorem 4.3.
Let π be the distribution of (X2

t )t∈B⊕Cr . We find that

P ((Xt)t ∈ Λ(x))

P ((X1
t )t ∈ Λ(x))

=

∫
P ((X1

t + yt)t ∈ Λ(x))

P ((X1
t )t ∈ Λ(x))

π(dy) =

∫
f(y;x)π(dy) ,

with

f(y;x) =
P ((X1

t + yt)t ∈ Λ(x))

P ((X1
t )t ∈ Λ(x))

.
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From Theorem 4.3 it is seen that

f(y;x)→ f(y) =

∫
B
E
(
eβλs((X

1
t+yt)t∈B⊕Cr )

)
ds∫

B
E
(
eβλs((X

1
t )t∈B⊕Cr )

)
ds

as x→∞ .

If we can show that ∫
f(y;x)π(dy)→

∫
f(y)π(dy) (39)

as x → ∞, then the theorem follows with another reference to Theorem 4.3 and by
recalling that (Xt)t∈B⊕Cr is stationary. According to Fatou’s lemma, (39) follows if
we can find integrable non-negative functions g(y;x) and g(y) such that

f(y;x) ≤ g(y;x) , (40)

g(y;x) → g(y) , (41)∫
g(y;x)π(dy) →

∫
g(y)π(dy) . (42)

For this purpose, let

g(y;x) =
P ((X1

t + supt yt)t ∈ Λ(x))

P ((X1
t )t ∈ Λ(x))

.

Then, (40) is satisfied. Furthermore, using Theorem 4.3 and Lemma 3.1, we find that
(41) is fulfilled with g(y) = eβ/f(r) supt yt . To prove (42), we have that∫

g(y;x)π2(dy) =
P (supt0,R inft∈DR(t0)X

1
t + suptX

2
t > x)

P (supt0,R inft∈DR(t0)X
1
t > x)

.

Note that supt0,R inft∈DR(t0)X
1
t has a convolution equivalent tail according to Theo-

rem 4.3 and [10, Lemma 2.4 (i)]. Since E exp(γ suptX
2
t ) < ∞ for all γ > 0 we have

from [10, Lemma 2.1] and [10, Lemma 2.4 (ii)] that

lim
x→∞

P (supt0,R inft∈DR(t0)X
1
t + suptX

2
t > x)

P (supt0,R inft∈DR(t0)X
1
t > x)

= E
(

exp(β/f(r) sup
t
X2
t )
)

=

∫
g(y)π(dy) .

It follows that (42) is fulfilled. �

Appendix A.

The following simple lemma will be used in Lemma 3.1:

Lemma A.1. Let 0 < xn < xn+1 be given. Then there exists constants C,D > 0 such
that x : [0, 1]→ [0,∞) defined by

x(u) =
C

1− u+D
(43)

is strictly increasing with x(0) = xn and x(1) = xn+1. Furthermore, if g(u) = au+ b,
then u 7→ x(u)g(u) is monotone on [0, 1].

Proof. Any function on the form (43) is clearly strictly increasing on [0, 1]. The
constants C,D are found by straightforward manipulations. The last result is obtained
by differentiating u 7→ x(u)g(u). �
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[8] Jónsdóttir, K. Ý., Schmiegel, J. and Jensen, E.B.V. (2008). Lévy-based
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