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Abstract

We study the rare event behavior of the workload process in a transitory queue,

where the arrival epochs (or ‘points’) of a finite number of jobs are assumed

to be the ordered statistics of independent and identically distributed (i.i.d.)

random variables. The service times (or ‘marks’) of the jobs are assumed

to be i.i.d. random variables with a general distribution, that are jointly

independent of the arrival epochs. Under the assumption that the service times

are strictly positive, we derive the large deviations principle (LDP) satisfied by

the workload process. The analysis leverages the connection between ordered

statistics and self-normalized sums of exponential random variables to establish

the LDP. This paper presents the first analysis of rare events in transitory

queueing models, supplementing prior work that has focused on fluid and

diffusion approximations.

1. Introduction

We explicate the rare event behavior of a ‘transitory’ queueing model, by proving

a large deviations principle (LDP) satisfied by the workload process of the queue. A

formal definition of a transitory queue follows from [16]:

Definition 1. (Transitory Queue.) Let A(t) represent the cumulative traffic entering

a queueing system. The queue is transitory if A(t) satisfies

lim
t→∞

A(t) <∞ a.s. (1.1)

∗ Postal address: 315 N. Grant St., West Lafayette IN 47906. honnappa@purdue.edu

1

ar
X

iv
:1

70
5.

08
41

0v
1 

 [
m

at
h.

PR
] 

 2
3 

M
ay

 2
01

7
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We consider a specific transitory queueing model where the arrival epochs (or ‘points’)

of a finite but large number of jobs, say n, are ‘randomly scattered’ over [0,∞); that

is the arrival epochs (T1, . . . , Tn) are i.i.d., and drawn from some distribution with

support in [0,∞). We assume that the service times (or ‘marks’) {ν1, . . . , νn} are i.i.d.,

jointly independent of the arrival epochs and with log moment generating function that

satisfies ϕ(θ) < ∞ for θ ∈ R. We call this queueing model the RS/GI/1 queue (‘RS’

standing for randomly scattered ; this was previously dubbed the ∆(i)/GI/1 queueing

model in [15]).

While the i.i.d. assumption on the arrival epochs implies that this is a homogeneous

model, [15] shows that the workload process displays time-dependencies in the large

population fluid and diffusion scales, that mirrors those observed for ‘dynamic rate’

queueing models where time-dependent arrival rates are explicitly assumed. This

indicates that the rare event behavior of the workload or queue length process should

be atypical compared to that of time-homogeneous queueing models (such as the

G/G/1 queue; see [11]). Further, while the standard dynamic rate traffic model is

a nonhomogeneous Poisson process that necessarily has independent increments, it is

less than obvious that is a reasonable assumption for many service systems. [12, 13], for

instance, highlights data analysis and simulation results in the call center context that

indicate that independent increments might not be appropriate. A tractable alternative

is to assume that the increments are exchangeable [1]. Lemma 10.9 in [1] implies that

any traffic process over the horizon [0, 1] with exchangeable increments is necessarily

equal in distribution to the empirical sum process

N∑
i=1

1{Ti≤t} ∀t ∈ [0, 1], (1.2)

where the {Ti, 1 ≤ i ≤ N} are independent and uniformly distributed in [0,1]. In

[15] we defined (1.2) as the traffic count process for the RS/GI/1 queue. This can

be considered the canonical model of a transitory traffic process with exchangeable

increments. Thus, the results in this paper can also be viewed as explicating the rare

events behavior of queueing models with exchangeable increments. To the best of our

knowledge this has not been reported in the literature before.

Transitory queueing models, and the RS/GI/1 queue in particular, have received

some recent interest in the applied probability literature, besides [15]. In forthcoming
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work [14] studies large deviations and diffusion approximations to the workload process

in a ‘near balanced’ condition on the offered load to the system. The current paper

complements this by not assuming the near balanced condition. In recent work, [2]

established diffusion approximations to the queue length process of the ∆(i)/GI/1

queue under a uniform acceleration scaling regime, where in it is assumed that the

“initial load” near time zero satisfies ρn = 1 + βn−1/3. This, of course, contrasts with

the population acceleration regime considered in this paper, where the offered load is

accelerated by the population size at all time instances in the horizon [0, 1]. The same

authors have also considered the effect of heavy-tailed service in transitory queues in

[3], and established weak limits to the scaled workload and queue length processes to

reflected alpha-stable processes.

In the ensuing discussion, we will largely focus on the case that the arrival epochs are

uniformly distributed with support [0, 1]. Our first result in Theorem 3.1 establishes

a large deviations result for the ordered statistics process (Tn(t) := T(bntc) ∀t ∈

[0, 1]) and n ≥ 1, where T(j) represents the jth order statistic. This result parallels

that in [9], where the authors derive a sample path large deviations result for the

ordered statistics of i.i.d. uniform random variables. Our results deviate from this

result in a couple of ways. First, we do not require a full sample path LDP, since we

are interested in understanding the large deviations of the workload at a given point

in time. Second, our proof technique is different and explicitly uses the connection

between ordered statistics and self-normalized sums of exponential random variables.

It is also important to note the result in [4], where the author uses Sanov’s theorem

to prove the large deviation principle for L-statistics, which could be leveraged to

establish the LDP for the traffic process in (1.2) and, hence, the number-in-system

process. The objective of our study, on the other hand, is the workload process. In

Corollary 3.1 we use the contraction principle to extend this large deviations result to

arrival epochs that have distribution F with positive support, under the assumption

that the distribution is absolutely continuous and strictly increasing. However, much

of the ‘heavy-lifting’ for the workload LDP can be demonstrated with uniform order

statistics arrival epochs, so in the remainder of the paper we do not emphasize the

extension to more generally distributed arrival epochs.

In Proposition 3.1 we make use of the proof of Theorem 3.1 and the well known
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Cramer’s Theorem [7, Theorem 2.2.3] to derive the large deviation rate function for

the offered load process Xn(t) := Sn(t)− Tn(t) ∀t ∈ [0, 1] and n ≥ 1, where Sn(t) :=∑bntc
i=1 νi is the partial sum of the service times. Interestingly enough, the LDP (and the

corresponding good rate function) shows that the most likely path to a large deviation

event depends crucially on both the sample path of the offered load process up to t as

well as the path after t. This is a direct reflection of the fact that the traffic process is

exchangeable and that there is long-range dependence between the inter-arrival times

(which are ‘spacings’ between ordered statistics, and thus finitely exchangeable).

We prove the LDP for the workload process

Wn(t) := Γ(Xn)(t) = sup
0≤s≤t

(Xn(t)−Xn(s)),

for fixed t ∈ [0, 1], by exploiting the continuity of the reflection regulator map Γ(·).

However, to do so, we first establish two auxiliary results: in Proposition 4.1 we prove

the exponential equivalence of the workload process and a linearly interpolated version

X̃n. Then, in Proposition 4.2 we prove the LDP satisfied by the ‘partial’ sample

paths (X̃n(s), 0 ≤ s ≤ t) of the offered load process for fixed t ∈ [0, 1]. Then, in

Theorem 4.1 we establish the LDP for the workload process by applying the contraction

mapping theorem with the reflection regulator map and exploiting the two propositions

mentioned above. We conclude the paper with a summary and comments on future

directions for this research.

1.1. Notation

We assume that all random elements are defined with respect to an underlying

probability sample space (Ω,F ,P). We denote convergence in probability by
P→.

We denote the space X and topology of convergence T by the pair (X , T ), where

appropriate. In particular we note (C[0, t],U), the space of continuous functions with

domain [0, t], equipped with the uniform topology. We also designate C̄[0, t] as the

space of all continuous functions that are non-decreasing on the domain [0, t]. ‖ · ‖ =

sup0≤s≤1(·) represents the supremum norm on C[0, 1]. Finally, we will use the following

standard definitions in the ensuing results:
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Definition 2. (Rate Function.) Let X be Hausdorff topological space. Then,

• a rate function is a lower semicontinuous mapping I : X → [0,∞]; i.e., the level

set {x ∈ X : I(x) ≤ α} for any α ∈ [0,∞) is a closed subset of X , and

• a rate function is ‘good’ if the level sets are also compact.

Definition 3. (Large Deviations Principle (LDP).) The sequence of random elements

{Xn, n ≥ 1} taking values in the Hausdorff topological space X satisfies a large

deviations principle (LDP) with rate function I : X → R if

a) for each open set G ⊂ X

lim inf
n→∞

1

n
logP(Xn ∈ G) ≥ − inf

x∈G
I(x), and

b) for each closed set F ⊂ X

lim sup
n→∞

1

n
logP(Xn ∈ F ) ≤ − inf

x∈F
I(x).

Definition 4. (Weak LDP.) The sequence of random elements {Xn, n ≥ 1} taking

values in the Hausdorff topological space X satisfies a weak large deviation principle

(WLDP) with rate function I if

a) for each open set G ⊂ X

lim inf
n→∞

1

n
logP(Xn ∈ G) ≥ − inf

x∈G
I(x), and

b) for each compact set K ⊂ R,

lim sup
n→∞

1

n
logP(Xn ∈ K) ≤ − inf

x∈K
I(x).

Definition 5. (LD Tight.) A sequence of random elements {Xn, n ≥ 1} taking values

in the Hausdorff topological space X is large deviation (LD) tight if for each M <∞,

there exists a compact set KM such that

lim sup
n→∞

1

n
logP(Xn ∈ Kc

M ) ≤ −M.

2. Model

Let {(T(i), νi), i = 1, 2, . . . , n} for n ∈ N represent a marked finite point pro-

cess, where {T(i), i = 1, 2, . . . , n} are the epochs of the point process and {νi, i =
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1, 2, . . . , n} are the marks. We assume that the two sequences are independent of each

other. {T(i), i = 1, 2, . . . , n} are the order statistics of n independent and identically

distributed (i.i.d.) random variables with support [0,∞) and absolutely continuous

distribution F . {νi, i = 1, 2, . . . , n} are i.i.d. random variables with support [0,∞),

cumulant generating function ϕ(θ) <∞ for some θ ∈ R and mean E[ν1] = 1/µ. We will

also assume that P(ν1 > 0) = 1, for technical reasons. Let D := {θ ∈ R : ϕ(θ) < ∞}

and we assume 0 ∈ D. In relation to the queue, (T(j), νj) represents the arrival epoch

and service requirement of job j, and n is the total arrival population. It is useful

to think of the n marked points, or (T(i), νi) pair, being ‘scattered’ over the horizon

following the distribution F .

Let {νni := νi/n, i = 1, 2, . . . , n} be a ‘population accelerated’ sequence of marks.

Assume that (T(0), ν
n
0 ) = (0, 0). The (accelerated) workload ahead of the jth job is

Wn
j = (Wn

j−1 + νnj−1 − (T(j) − T(j−1)))+, where (·)+ := max{0, ·}. By unraveling the

recursion, and under the assumption that the queue starts empty, it can be shown that

Wn
j
D
= (Snj−1 − T(j)) + max

0≤i≤j−1

(
−(Sni − T(i+1))

)
,

where Snj−1 :=
∑j−1
i=0 ν

n
i . We define the workload process as (Wn(t), t ∈ [0, 1]) :=

(Wn
bntc, t ∈ [0, 1]). Using the unraveled recursion it can be argued that

Wn(t)
D
= Xn(t) + max

0≤s≤t
(−Xn(s)) (2.1)

where Xn(t) := n−1
∑bntc
i=0 νi − T(bntc) = Sn(t) − Tn(t) (where T(0) = 0) for t ∈ [0, 1]

is the offered load process, under the assumption that Sn0 = 0 (i.e., the queue starts

empty). Thus, it suffices to study Γ(Xn)(t) := Xn(t) + max0≤s≤t(−Xn(s)), where

Γ : D[0, 1] → D[0, 1] is the so-called Skorokhod regulator map. For future reference,

we call (Tn(t), t ∈ [0, 1]) := (T(bntc), t ∈ [0, 1]) as the ordered statistics process.

We propose to study the workload process in the large population limit and, in

particular, understand the rare event behavior in this limit. As a precursor to this

analysis, it is useful to consider what a “normal deviation” event for this process

would be. In particular, The next proposition proves a functional strong law of large

numbers (FSLLN) result for the workload process, that exposes the first order behavior

of the workload sample path, in the large population limit.
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Proposition 2.1. The workload process Wn satisfies

Wn → W̄ =
1

µ
Γ (F −M) in (C[0, 1],U) a.s.

as n→∞, where M(t) = µt.

Proof. First assume that {0 < T(1) ≤ . . . ≤ T(n) < 1} are the ordered statistics of n

i.i.d. uniform random variables. Then, by [5, Lemma 5.8] it follows that the ordered

statistics process satisfies (Tn, Sn) → (e, µ−1e) in (C[0, 1],U) a.s. as n → ∞, where

e : R → R is the identity map, and the joint convergence follows due to the fact that

the arrival epochs and service times are independent sequences. Let X̄ := (µ−1e− e),

which is continuous by definition. Since subtraction is continuous under the uniform

metric topology it follows that Xn → X̄ := µ−1(e−M) in (C[0, 1],U) a.s. as n→∞.

Finally, since Γ(·) is continuous under the uniform metric, and the limit function Γ(X̄)

is continuous, it follows that Wn → W̄ in (C[0, 1],U) a.s. as n → ∞. The limit

result for generally distributed arrival epochs follows by an application of the quantile

transform to the arrival epochs. �

From an operational perspective it is useful to understand the likelihood that the

workload exceeds an abnormally large threshold. More precisely, we are interested

in the likelihood that for a given t ∈ [0, 1] Wn(t) > w, where w >> W̄ (t). While

this is quite difficult to prove for a fixed n, we prove an LDP for the workload

process as the population size n scales to infinity, that will automatically provide

an approximation to the likelihood of this event. In the ensuing exposition, we will

largely focus on the analysis of a queue where the arrival epochs are modeled as the

ordered statistics of i.i.d. uniform random variables on [0, 1]. However, the results can

be straightforwardly extended to a more general case where the arrival epochs have

distribution F (with positive support), that is absolutely continuous with respect to

the uniform distribution.

Our agenda for proving the workload LDP will proceed in several steps. First, we

prove an LDP for the ordered statistics process of i.i.d. uniform random variables. The

proof of this result will then be used to establish an LDP for the offered load process

Xn(t). Next, we use a projective limit to establish the LDP for the sample path of the

offered load process (Xn(s), 0 ≤ s ≤ t), for each fixed t ∈ [0, 1]. Finally, we prove an
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LDP for the workload process by applying the contraction principle to the LDP for the

sample path (Xn(s), 0 ≤ s ≤ t), transformed through the Skorokhod regulator map

Γ(·).

3. An LDP for the offered load

3.1. LDP for the ordered statistics process

As a precursor to the LDP for the offered load process we prove one for the ordered

statistics process (Tn(t), t ∈ [0, 1]) := (T(bntc), t ∈ [0, 1]) by leveraging the following

well-known relation between the order statistics of uniform random variables and

partial sums of unit mean exponential random variables:

Proposition 3.1. Let 0 < T(1) < T(2) < · · · < T(n) < 1 be the ordered statistics of

independent and uniformly distributed random variables, and {ξj , 1 ≤ j ≤ n + 1}

independent mean one exponential random variables. Then,

{T(j), 1 ≤ j ≤ n} D=
{

Zj
Zn+1

, 1 ≤ j ≤ n
}
, (3.1)

where Zj :=
∑j
i=1 ξi.

Proofs of this result can be found in [10, Lemma 8.9.1]. Now, consider the convex,

continuous function It : [0, 1]→ R indexed by t ∈ [0, 1],

It(x) = t log

(
t

x

)
+ (1− t) log

(
1− t
1− x

)
. (3.2)

Figure 1 depicts (3.2) for different index values t ∈ [0, 1]. In Theorem 3.1 below we

show that It is the good rate function of the LDP satisfied by the ordered statistics

process. It is interesting to note that this function is also the rate function satisfied by

a sequence of i.i.d. Bernoulli random variables with parameter t; see the citations in

[8].

Theorem 3.1. (LDP for the Ordered Statistics Process.) Fix t ∈ [0, 1]. The ordered

statistics process Tn(t) satisfies the LDP with good rate function (3.2).

Proof. a) Let F ⊂ [0, 1] be closed. There are two cases to consider. First, if t ∈ F ,

then It(F ) := infx∈F It(x) = 0, by definition. Thus, we assume that t 6∈ F . Let

x+ := inf{x ∈ F : x > t} and x− := sup{x ∈ F : x < t}. If supF < t then we define
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Figure 1: Rate function for the ordered statistics process.

x+ = 1, and if inf F > t we set x− = 0. Since t 6∈ F , there exists a connected open set

F c ⊇ (x−, x+) 3 t.

Now, let 0 ≤ a < t. Proposition 3.1 implies that

P(T(bntc) < a) = P
(
Zbntc

Zn+1
< a

)
= P

(
Zn+1−bntc >

1− a
a

Zbntc

)
=

∫ ∞
0

P
(
Zn+1−bntc >

(1− a)x

a

)
× P

(
Zbntc ∈ dx

)
. (3.3)

Now, Chernoff’s inequality implies that

P
(
Zn+1−bntc >

(1− a)x

a

)
≤ e−θ1

(1−a)x
a E

[
eθ1Zn+1−bntc

]
.

Since Zn+1−bntc =
∑n+1−bntc
i=1 ξi, it follows that E

[
eθ1Zn+1−bntc

]
= (1−θ1)−(n+1−bntc),

for θ1 < 1. Substituting this into (3.3), we obtain

P(T(bntc) < a) ≤ (1− θ1)−(n+1−bntc)
∫ ∞

0

e−θ1
1−a
a xP(Zbntc ∈ dx).

Recognize that the integral above represents the moment generating function of Zbntc =∑bntc
i=1 ξi. Since 1−a

a > 0, if 1 > θ1 >
a
a−1 it follows that

∫ ∞
0

e−θ1
1−a
a xP(Zbntc ∈ dx) =

(
1 + θ1

1− a
a

)−bntc
.

Putting things together, it follows that

P(T(bntc) < a) ≤ (1− θ1)−(n+1−bntc)
(

1 + θ1
1− a
a

)−bntc
.
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Similarly, it can be shown for any 1 ≥ b > t that

P(Tn(t) > b) ≤ (1− θ1)−(n+1−bntc)
(

1 + θ1
1− b
b

)−bntc
,

if 1 > θ1 >
b
b−1 .

Thus, it follows that

P(Tn(t) ∈ F ) ≤ P (Tn(t) ∈ (x−, x+)c)

≤ P(Tn(t) ≤ x−) + P(Tn(t) ≥ x+)

≤ (1− θ1)−(n+1−bntc)

[(
1 + θ1

1− x−
x−

)−bntc
+

(
1 + θ1

1− x+

x+

)−bntc]

≤ 2 max
x∈F

{
(1− θ1)−(n+1−bntc)

(
1 + θ1

1− x
x

)−bntc}
. (3.4)

Now, for any x ∈ [0, 1], it can be seen that (1− θ1)−(n+1−bntc) (1 + θ1
1−x
x

)−bntc
has

a unique maximizer at θ∗1 = (t − x)(1 − x)−1. Substituting this into (3.4), it follows

that

lim sup
n→∞

1

n
logP(Tn(t) ∈ F ) ≤ max

x∈F

{
−(1− t) log

(
1− t
1− x

)
− t log

(
t

x

)}
= − inf

x∈F
It(x).

b) Next, let G ⊂ [0, 1] be an open set, such that t 6∈ G and t < inf{G}. For each point

x ∈ G, then there exists a δ > 0 (small) such that (x − δ, x + δ) ⊂ G. Once again

appealing to Proposition 3.1, we have

P (Tn(t) ∈ (x− δ, x+ δ)) = P
(

Z̄bntc

Z̄bntc + Z̄n+1−bntc
∈ (x− δ, x+ δ)

)
=

∫ ∞
z1=0

P(Z̄bntc ∈ dz1)×

P
(
Z̄n+1−bntc ∈ z1

(
− 1 +

1

x+ δ
,−1 +

1

x− δ

))
,

where Z̄m(n) := n−1Zm(n) for m(n) ∈ {bntc, n + 1 − bntc}. Let v > t > 0 implying

that the right hand side (R.H.S.) above satisfies

R.H.S. ≥ P
(
Z̄bntc ≥ v

)
P
(
Z̄n+1−bntc ∈ v

(
−1 +

1

x+ δ
,−1 +

1

x− δ

))
. (3.5)

Now, let θ1 > 0 and consider the partial sum of ‘twisted’ random variables {ξθ11 , . . . , ξ
θ1
bntc},

Zθ1bntc =
∑bntc
i=1 ξ

θ1
i , where the distribution of ξθ11 is (by an exponential change of
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measure)

P(ξθ11 ∈ dx)

P(ξ1 ∈ dx)
=

eθ1x

E[eθ1ξ1 ]
,

and, by induction,
P(Zθ1bntc ∈ dx)

P(Zbntc ∈ dx)
=

eθ1x

(E[eθ1ξ1 ])bntc
.

Define Λn(θ1) := log(E[eθ1ξ1 ])bntc, and consider P(Z̄bntc > v). From the proof of

Cramér’s Theorem (see [7, Chapter 2]) we have, for θ1 > 0,

1

n
logP(Zbntc > nv) ≥ −θ1v −

bntc
n

log(1− θ1) +
1

n
logP

(
Zθ1bntc > nv

)
.

A straightforward calculation shows that

1

n
E

bntc∑
i=1

ξθ1i

 =
bntc
n

1

1− θ1
.

Thus, we want to twist the random variables such that t
1−θ1 > v, in which case

P
(
Zθ1bntc > nv

)
→ 1 as n→∞ by the weak law of large numbers. It follows that

lim inf
n→∞

1

n
logP(Z̄bntc > v) ≥ −θ1v − t log(1− θ1). (3.6)

On the other hand, consider the second probabilistic statement in (3.5),

P
(
Z̄n+1−bntc ∈ v

(
−1 +

1

x+ δ
,−1 +

1

x− δ

))
.

Following a similar argument to that above, we consider the twisted random vari-

ables {ξθ21 , . . . , ξ
θ2
n+1−bntc}, and define Λ̃n(θ2) := log

(
E[eθ2ξ1 ]

)n+1−bntc
= −(n + 1 −

bntc) log (1− θ2) so that P
(
Z̄n+1−bntc ∈ v

(
−1 + 1

x+δ ,−1 + 1
x−δ

))
=

∫ v(−1+1/(x−δ))

v(−1+1/(x+δ))

P
(
Z̄n+1−bntc ∈ dy

)
=

∫ v(−1+1/(x−δ))

v(−1+1/(x+δ))

e−nθ2y exp
(

Λ̃n(θ2)
)
P
(
Z̄θ2n+1−bntc ∈ dy

)
≥ exp

(
−nθ2v

(
−1 +

1

(x− δ)

))
exp(Λ̃n(θ2))

P
(
Z̄θ2n+1−bntc ∈ v

(
−1 +

1

(x+ δ)
,−1 +

1

(x− δ)

))
.

(3.7)

Observe that
1

n
E
[
Zθ2n+1−bntc

]
=
n+ 1− bntc

n

1

1− θ2
.



12 Harsha Honnappa

Thus, we should twist the random variables such that,

1− t
1− θ2

∈ v
(
−1 +

1

(x+ δ)
,−1 +

1

(x− δ)

)
implying that P

(
Z̄θ2n+1−bntc ∈ v

(
−1 + 1

(x+δ) ,−1 + 1
(x−δ)

))
→ 1 as n→∞ as a conse-

quence of the weak law of large numbers. From (3.7) it follows that

lim inf
n→∞

1

n
logP

(
Z̄n+1−bntc ∈ v

(
−1 +

1

(x+ δ)
,−1 +

1

(x− δ)

))
≥ −θ2v

(
−1 +

1

x+ δ

)
− (1− t) log(1− θ2).

(3.8)

Using the limits in (3.8) and (3.6) it follows that for any 0 < ε < δ,

lim inf
n→∞

1

n
logP(Tn(t) ∈ (x− ε, x+ ε))

≥ −θ1v − t log(1− θ1)− θ2v

(
−1 +

1

x+ ε

)
− (1− t) log(1− θ2).

This is valid for any v > t. In particular, setting v = x− ε we obtain

lim inf
n→∞

1

n
logP(Tn(t) ∈ (x− ε, x+ ε)) ≥− θ1(x− ε)− t log(1− θ1)

− θ2

(
x− ε
x+ ε

)
(1− (x+ ε))− (1− t) log(1− θ2).

Now, consider the function I(θ1, θ2) := θ1(x− ε) + t log(1− θ1) + θ2

(
x−ε
x+ε

)
(1− (x+

ε)) + (1 − t) log(1 − θ2). For θ2, θ1 < 1, it is straightforward to see that the Hessian

is positive semi definite, implying it is convex. The unique minimizer of I(θ1, θ2) is

(θ∗1 , θ
∗
2) =

(
1− t/(x− ε), 1−

(
x+ε
x−ε

)(
1−t

1−(x+ε)

))
. Letting ε→ 0, it follows that

I(θ∗1 , θ
∗
2) = t log

(
t

x

)
+ (1− t) log

(
1− t
1− x

)
= It(x).

Thus, we have

lim inf
n→∞

1

n
logP(Tn(t) ∈ (x− δ, x+ δ)) ≥ −It(x). (3.9)

Next, it follows by definition that, for small enough δ > 0,

1

n
logP(Tn(t) ∈ G) ≥ sup

x∈G

1

n
logP(Tn(t) ∈ (x− δ, x+ δ)),

implying that

lim inf
n→∞

1

n
logP(Tn(t) ∈ G) ≥ − inf

x∈G
It(x).
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On the other hand, if t > sup{G}, we will now consider a v > 1 − t > 0 in the lower

bounding argument used in (3.5). Since the remaining arguments are identical to the

previous steps, we will not repeat them. This proves the LD lower bound.

Finally, observe that the rate function It is continuous and convex. Consider the

level set L(c) = {x ∈ [0, 1] : It(x) ≤ c}, for c > 0. Let {xn, n ≥ 1} be a sequence

points in the set L(c) such that xn → x∗ ∈ (0, 1) as n→∞. Since It is continuous, it

follows that It(xn) → It(x
∗) as n → ∞. Suppose It(x

∗) > c, then the only way this

can happen is if there is a singularity at x∗. However, this contradicts the fact that It

is continuous on the domain (0, 1), implying that x∗ ∈ L(c). Therefore, it is the case

that L(c) is closed. Furthermore, this level set is bounded (by definition), implying

that it is compact. Thus, It is a good rate function as well. �

Now, suppose that {T̃(i), i ≤ n} are the ordered statistics of random variables with

distribution F (assumed to have positive support) that is absolutely continuous with

respect to the Lebesgue measure, and strictly increasing. Define

Ĩt(y) := inf
x∈[0,1]:F−1(x)=y

It(x). (3.10)

The following corollary establishes an LDP for the corresponding order statistics pro-

cess.

Corollary 3.1. Fix t ∈ [0, 1]. Then, the ordered statistics process corresponding to

{T̃(i), i ≤ n} satisfies the LDP with good rate function Ĩt.

Since F−1 maps [0, 1] to [0,∞), which are Hausdorff spaces, the proof is a simple

application of the contraction principle [18, (2.12)]. For the remainder of the paper,

however, we will operate under the assumption that the arrival epochs are i.i.d. uni-

form random variables. The analysis below can be straightforwardly extended to the

more general case where the distribution is absolutely continuous with respect to the

Lebesgue measure.

3.2. LDP for the offered load

Next, recall that {νi, i ≥ 1} is a sequence of i.i.d. random variables with cumulant

generating function ϕ(θ) = logE[eθν1 ] < ∞ for some θ ∈ R. The next theorem shows

that the service process (Sn(t), t ∈ [0, 1]) satisfies the LDP.
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Lemma 3.1. (Cramér’s Theorem [7].) Fix t ∈ [0, 1]. Then, the sequence of ran-

dom variables {Sn(t), n ≥ 1} satisfies the LDP with good rate function Λ∗t (x) :=

supθ∈R{λx− tϕ(θ)}.

Note that we specifically assume that 0 ∈ D, since [7, Lemma 2.2.5] shows that if

D = {0}, then Λ∗t (x) equals zero for all x. [7, Lemma 2.2.20] proves that the rate

function is good if the interior condition is satisfied. We now establish an LDP for the

offered load process (Xn(t) = Sn(t) − Tn(t), t ≥ 0) by leveraging Theorem 3.1 and

Lemma 3.1.

Proposition 3.1. Fix t ∈ [0, 1], and let X := [0, 1] × [0,∞). Then, the sequence of

random variables {Xn(t), n ≥ 1} satisfies the LDP with good rate function Jt(y) =

inf{x∈X :x1=x2+y} It(x1) + Λ∗t (x2) for y ∈ R.

Proof. [18, Lemma 2.6] implies that {Sn(t), n ≥ 1} and {Tn(t), n ≥ 1} are LD tight

(as defined in Definition 5). By [18, Corollary 2.9] it follows that (Sn(t), Tn(t)), n ≥ 1

satisfy the LDP with good rate function Ĩt(x1, x2) = It(x1) + Λ∗t (x2). Now, since

subtraction is trivially continuous on the topology of pointwise convergence, it follows

that {Xn(t) = Sn(t) − Tn(t), n ≥ 1} satisfies the LDP with rate function Jt as a

consequence of the contraction principle (see [18, (2.12)]). �

As an example of the rate function, suppose the service times are exponentially

distributed with mean 1. Then, we have

Jt(y) = inf
x∈[0,1]

{
t log

(
t

x

)
+ (1− t) log

(
1− t
1− x

)
+ t log

(
t

x− y

)
+ (x− y − t)

}
.

Some (tedious) algebra shows that Jt(y) is strictly convex, and thus has a unique

minimizer, which is the solution to the cubic equation

x3 − yx2 − 2tx+ ty = 0.

Unfortunately, the sole real solution to this cubic equation has a complicated form,

which we do not present, but can be found by using a symbolic solver.

4. An LDP for the Workload

Recall that Wn(t) = Γ(Xn)(t) = sup0≤s≤t(X
n(t) − Xn(s)). The key difficulty

in establishing the LDP for Wn(t) is the fact that while Γ is continuous on the
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space (D[0, 1],U), the latter is not a Polish space. Therefore, it is not possible to

directly apply the contraction principle to Γ to establish the LDP. Consider, instead,

the continuous process (W̃n(t), t ∈ [0, 1]), formed by linearly interpolating between the

jump levels of Wn; equivalently, W̃n = Γ(X̃n), where X̃n is the linearly interpolated

version of the offered load. We first show that (W̃n(t), t ∈ [0, 1]) is asymptotically

exponentially equivalent to (Wn(t), t ∈ [0, 1]). Next, we prove that, for each fixed

t ∈ [0, 1], (X̃n(s), s ∈ [0, t]) satisfies the LDP, via a projective limit. This enables us

to prove that W̃n(t) satisfies the LDP by invoking the contraction principle with Γ

and using the fact that (C[0, t],U) is a Polish space. Finally, by [7, Theorem 4.2.13]

the exponential equivalence of the processes implies that Wn(t) satisfies the LDP with

the same rate function.

4.1. Exponential Equivalence

We define the linearly interpolated service time process as

S̃n(t) := Sn(t) +

(
t− bntc

n

)
νbntc+1,

and the linearly interpolated arrival epoch process as

T̃n(t) := Tn(t) +

(
t− bntc

n

)
(T(bntc+1) − T(bntc)).

Define ∆n,t := T(bntc+1)−T(bntc) and note that these are spacings of ordered statistics.

The process X̃n = S̃n − T̃n ∈ C[0, 1] can now be used to define the interpolated

workload process W̃n = Γ(X̃n) ∈ C[0, 1]. Recall that ‖ · ‖ is the supremum norm on

C[0, 1].

Proposition 4.1. The processes W̃n and Wn are exponentially equivalent. That is,

for any δ > 0

lim sup
n→∞

1

n
logP(‖W̃n −Wn‖ > δ) = −∞.

Proof. First, observe that for each t ∈ [0, 1)∣∣∣Sn(t)− S̃n(t)
∣∣∣ ≤ ∣∣∣∣(t− bntcn

)
νbntc+1

∣∣∣∣
≤

νbntc+1

n
,

and Sn(1) = S̃n(1) by definition. Similarly,∣∣∣Tn(t)− T̃n(t)
∣∣∣ ≤ (t− bntc

n

)(
T(bntc+1) − T(bntc)

)
=
nt− bntc

n
∆n,t ∀t ∈ [0, 1),



16 Harsha Honnappa

and Tn(1) = T̃n(1). Now, let {E1, . . . , En+1} be a collection of independent unit

mean exponential random variables, and define Zn+1 :=
∑n+1
i=1 Ei. Recall (from [6, pp.

134-136], for instance) that the spacings of the uniform ordered statistics are equal in

distribution to the ratio ∆n,t
D
= E1

Zn+1
. It follows that∥∥∥Xn − X̃n

∥∥∥ ≤
∥∥∥Sn − S̃n∥∥∥+

∥∥∥Tn − T̃n∥∥∥
≤

∥∥∥νbntc+1

n

∥∥∥+

∥∥∥∥(nt− bntcn

)
∆n,t

∥∥∥∥ .
Now, consider the measure of the event

{∥∥∥Xn − X̃n
∥∥∥ > 2δ

}
, and use the inequality

above to obtain:

P
(∥∥∥Xn − X̃n

∥∥∥ > 2δ
)
≤ P

(∥∥∥νbntc+1

n

∥∥∥+

∥∥∥∥(nt− bntcn

)
∆n,t

∥∥∥∥ > 2δ

)
≤ P

(∥∥∥νbntc+1

n

∥∥∥ > δ
)

+ P
(∥∥∥∥(nt− bntcn

)
∆n,t

∥∥∥∥ > δ

)
≤ nP (ν1 > nδ) + nP (∆n,1 > nδ) , (4.1)

where P
(∥∥νbntc+1

∥∥ > nδ
)

= P(
(
sup0≤t<1 νbntc+1 > nδ

)
= P(∪nm=1{νi > nδ}) ≤ nP(ν1 >

nδ) follows from the union bound and the fact that the service times are assumed i.i.d.

Similarly, since ∆n,t
D
= E1/Zn+1 and n−1 > n−1(nt − bntc) for all t ∈ [0, 1] and

n ≥ 1, we obtain the bound on ∆n,t by similar arguments. Note that we have abused

notation slightly in (4.1) and re-used ∆n,m = T(m) − T(m−1) for m ∈ {1, . . . , n} with

the understanding that T(0) = 0.

Using Chernoff’s inequality to obtain

P (ν1 > nδ) ≤ e−nδθ1eϕ(θ1),

so that

lim sup
n→∞

1

n
log (nP(ν1 > nδ)) ≤ −θ1δ, (4.2)

for all θ ∈ R. On the other hand, we have

P (∆n,1 > nδ) = P (E1 (1− nδ) > nδZn)

=

∫ ∞
0

P
(
E1 > x

nδ

1− nδ

)
P(Zn ∈ dx),

using the fact that {Ei, 1 ≤ i ≤ n} are i.i.d. Again, using Chernoff’s inequality, the
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right hand side (R.H.S.) satisfies

R.H.S. ≤ 1

1− θ2

∫ ∞
0

exp

(
−θ2x

nδ

1− nδ

)
P(Zn ∈ dx) ∀θ2 < 1

=
1

1− θ2

(
1− nδ

1− nδ(1− θ2)

)n
.

It follows that lim supn→∞
1
n logP (∆n,1 > nδ)

≤ lim sup
n→∞

log(1− θ2)

n
+ lim sup

n→∞
log

(
1− nδ

1− nδ(1− θ2)

)
= − log(1− θ2),

and so

lim sup
n→∞

1

n
log (nP (∆n,1 > nδ)) ≤ − log(1− θ2) ∀ θ2 < 1. (4.3)

Now, (4.1), (4.2) and (4.3), together with the principle of the largest term ([7,

Lemma 1.2.15]), imply

lim sup
n→∞

1

n
logP

(∥∥∥Xn − X̃n
∥∥∥) ≤ max{−θ1δ,− log(1− θ2)}.

Since θ1 ∈ R and θ2 ∈ (−∞, 1), by letting θ1 → ∞ and θ2 → −∞ simultaneously, it

follows that

lim sup
n→∞

1

n
logP

(∥∥∥Xn − X̃n
∥∥∥ > 2δ

)
= −∞. (4.4)

Finally, using the fact that the map Γ is Lipschitz in (D, J1) (see [20, Theorem

13.5.1]) we have

P
(∥∥∥Wn − W̃n

∥∥∥ > 4δ
)
≤ P

(∥∥∥Xn − X̃n
∥∥∥ > 2δ

)
,

and thus

lim sup
n→∞

1

n
logP

(∥∥∥Wn − W̃n
∥∥∥ > 4δ

)
= −∞. (4.5)

Since δ > 0 is arbitrary, the theorem is proved. �

4.2. Sample path LDP for the offered load

First, we prove an LDP for the increments of the offered load process. Fix t ∈ [0, 1],

and consider an arbitrary d-partition of [0, t], j := {0 ≤ t1 < t2 < · · · < td ≤ t}, so

that the increments are ∆X
n (j) = ∆S

n(j)−∆T
n (j), where

∆T
n (j) := (Tn(t1), Tn(t2)− Tn(t1), . . . , Tn(t)− Tn(td)), (4.6)
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and

∆S
n(j) = (Sn(t1), Sn(t2)− Sn(t1), . . . , Sn(t)− Sn(td)) .

Now, using representation (3.1), it follows that

∆T
n (j)

D
=

1

Zn+1

(
Zbnt1c, Zbnt2c − Zbnt1c, . . . , Zbntc − Zbntdc

)
A straightforward calculation shows that the cumulant generating function of the (d+

1)-dimensional random vector Zn := (Zbnt1c, . . . , Zbntc − Zbntdc, Zn+1) satisfies

lim
n→∞

1

n
logE [exp (〈λ,Zn〉)] = Λ(λ) for λ ∈ Rd+1, (4.7)

where

Λj(λ) :=

−
∑d
i=1(ti − ti−1) log(1− λi − λd+1)− (1− t) log(1− λd+1), λ ∈ DΛ,

+∞, λ 6∈ DΛ,

and DΛ := {λ ∈ Rd+1 : max1≤i≤d λi + λd+1 < 1, and λd+1 < 1}; note, t0 := 0. We

also define the function

Λ∗j (x) := sup
λ∈DΛ

d∑
i=1

(λi + λd+1)xi + (ti − ti−1) log(1− λi − λd+1)

+ λd+1xd+1 + (1− t) log(1− λd+1).

Now, define the continuous function Φ : Rd+1 → Rd as Φ(x) = (x1, . . . , xd)/
∑d+1
i=1 xi.

We can now state the LDP for the increments ∆T
n (j).

Lemma 4.1. Let j := {0 ≤ t1 < t1 < · · · < td ≤ t} be an arbitrary partition of [0, t].

Then the increments of the ordered statistics process, ∆T
n (j), satisfy the LDP with good

rate function Λ̂j(y) = infx∈Rd+1:Φ(x)=y Λ∗j (x) for all y ∈ (0, 1]d. Furthermore,

Λ̂j(y) =

d∑
i=1

(ti − ti−1) log

(
ti − ti−1

yi

)
+ (1− t) log

(
1− t

1−
∑d
l=1 yl

)
.

Proof. Equation (4.7) implies that the sufficient conditions of the Gartner-Ellis

Theorem [7, Theorem 2.3.6] are satisfied, so that Zn satisfies the LDP with rate function

Λ∗j . Equivalently, the random vector (Zbnt1c, Zbnt1c−Zbnt2c, . . . , Zbntc−Zbntdc, Zn+1−

Zbntc) satisfies the LDP with good rate function Λ∗j . Now, since Rd+1 and Rd are Polish

spaces, the contraction principle applied to the map Φ yields the LDP. Finally, it is
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straightforward to check that the Hessian of Λ∗j (x) is positive semi-definite, implying

that the latter is convex. It can now be seen that the minimizer x∗ is such that∑d+1
j=1 x

∗
j = 1 and x∗i = yi, for a given y ∈ (0, 1]d. The final expression for Λ̂j(y)

follows. �

As a sanity check, we show that if d = 1 the rate function Λ̂j(y) is precisely the

rate function It in (3.2).

Corollary 4.1. Let j = {0 ≤ t1 ≤ t} and d = 1, then the rate function is

Λ̂j(y) = t1 log

(
t1
y

)
+ (1− t1) log

(
1− t1
1− y

)
, ∀y ∈ (0, 1).

Proof. Since d = 1, by definition we have for all x ∈ R2

Λ∗j (x) = (λ1 + λ2)x1 + t1 log(1− λ1 − λ2) + λ2x2 + (1− t1) log(1− λ2).

Substituting the unique maximizer (λ∗1, λ
∗
2) =

(
1−t1
x2
− t1

x1
, 1− 1−t1

x2

)
, it follows that

Λ∗j (x) = (x1 + x2 − 1) + t1 log

(
t1
x1

)
+ (1− t1) log

(
1− t1
x2

)
.

Finally, using the fact that x∗ = arg inf {Λ∗(x)} satisfies x∗1 + x∗2 = 1, the corollary is

proved. �

As an aside, note that this result shows that Theorem 3.1 could also be established

as a corollary of Lemma 4.1. However, while the proof is straightforward, it is also

somewhat ‘opaque’: the proof of Theorem 3.1 explicitly demonstrates how the long-

range dependence inherent in the order statistics process affects the LDP and is,

we believe, more clarifying as a consequence. Next, we use this result to prove a

sample path LDP for the ordered statistics process (T̃n(s), s ∈ [0, t]) (for each fixed

t) in the topology of pointwise convergence on the space C[0, t]. Observe that the

exponential equivalence of T̃n and Tn implies that the increments of T̃n satisfy the

LDP in Lemma 4.1.

Let Jt be the space of all possible finite partitions of [0, t]. Note that for each

partition j = {0 ≤ t1 < t1 < · · · < td ≤ t} ∈ Jt, the increments take values in

the space [0, 1]d which is Hausdorff. Thus, we can appeal to the Dawson-Gartner

theorem [7, Theorem 4.6.1] to establish the LDP for the sample path (T̃n(s), s ∈ [0, t])

via a projective limit. Let pj : C[0, t] → R|j| be the canonical projections of the
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coordinate maps, and X be space of all functions in C[0, t] equipped with the topology

of pointwise convergence. Recall that any non-decreasing continuous function φ ∈

C̄[0, t] is of bounded variation, so that φ = φ(a) + φ(s) by the Lebesgue decomposition

theorem; here, φ(a) is the absolutely continuous component and the φ(s) is the singular

component of φ. Recall, too, that a singular component has derivative that satisfies

φ̇(s)(t) = 0 a.e. t.

Lemma 4.2. Fix t ∈ [0, 1]. Then the sequence of sample paths {(T̃n(s), s ∈ [0, t]), n ≥

1} satisfies the LDP with good rate function

Λ̂t(φ) = −
∫ t

0

log
(
φ̇(a)(s)

)
ds+ (1− t) log

(
1− t

1− φ(t)

)
∀φ ∈ C̄[0, t].

Proof. The proof largely follows that of [7, Lemma 5.1.8]. There are two steps to

establishing this result. First, we must show that the space X coincides with the

projective limit X̃ of {Yj = R|j|, j ∈ Jt}. This, however, follows immediately from

the proof of [7, Lemma 5.1.8]. Second, we must argue that

Λ̃t(φ) := sup
0≤t1<...<tk≤t

k∑
l=1

(tl − tl−1) log

(
tl − tl−1

φ(tl)− φ(tl−1)

)
+ (1− t) log

(
1− t

1− φ(t)

)

is equal to Λ̂t(φ). Without loss of generality, assume that tk = t. Recall that φ has

bounded variation, implying that φ(a)(t) =
∫ t

0
φ̇(s)ds or, equivalently, φ̇(a)(s) = φ̇(s)

a.e. s ∈ [0, t]. Since log(·) is concave, Jensen’s inequality implies that

k∑
l=1

(tl − tl−1) log

(
φ(tl)− φ(tl−1)

tl − tl−1

)
=

k∑
l=1

(tl − tl−1) log

(∫ tl−1

tl
φ̇(r)dr

tl − tl−1

)

≥
k∑
l=1

∫ tl−1

tl

log
(
φ̇(r)

)
dr

=

∫ t

0

log
(
φ̇(a)(r)

)
dr,

so that Λ̃t(φ) ≤ Λ̂t(φ).

Next, define

φn(r) = n

(
φ(a)

(
[nr] + 1

n

)
− φ(a)

(
[nr]

n

))
+ n

(
φ(s)

(
[nr] + 1

n

)
− φ(s)

(
[nr]

n

))
,

and observe that

lim
n→∞

φn(r) = φ̇(a)(r) a.e. r ∈ [0, t],
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since n
(
φ(a)

(
[nr]+1
n

)
− φ(a)

(
[nr]
n

))
→ φ̇(a)(r) and n

(
φ(s)

(
[nr]+1
n

)
− φ(s)

(
[nr]
n

))
→

φ̇(s)(r) = 0 a.e. r ∈ [0, t] as n→∞. Now, consider the uniform partition 0 = t0 < t1 <

. . . < tn = t of [0, t], where tl = tl/n, so that lim infn→∞
∑n
l=1

1
n log (n(φ(tl)− φ(tl−1)))

= lim inf
n→∞

n∑
l=1

1

n
log

(
n(φ(a)(tl)− φ(a)(tl−1)) + n(φ(s)(tl)− φ(s)(tl−1))

)
= lim inf

n→∞

∫ t

0

log (φn(r)) dr

≥
∫ t

0

lim inf
n→∞

log(φn(r))dr

=

∫ t

0

log
(
φ̇(a)(r)

)
dr,

where the inequality follows from Fatou’s Lemma and the last equality is a consequence

of the continuity of log(·). Now, by definition,

Λ̃t(φ) ≥ lim inf
n→∞

−
n∑
l=1

1

n
log (n(φ(tl)− φ(tl−1))) + (1− t) log

(
1− t

1− φ(t)

)
,

implying that

Λ̃t(φ) ≥ −
∫ t

0

log
(
φ̇(a)(r)

)
dr + (1− t) log

(
1− t

1− φ(t)

)
= Λ̂t(φ).

�

For the service process, we consider the following result implied by [19]. As noted in

[9], the form of Mogulskii’s theorem presented in [7, Theorem 5.1.2] does not cover the

case of exponentially distributed service times, thus we appeal to the generalization

proved in [19]. Note that [19] proves the result in the M1 topology on the space D[0, t]

which implies convergence pointwise as required here.

Lemma 4.3. Fix t ∈ [0, 1]. Then the sequence of sample paths {(S̃n(s), s ∈ [0, t])}

satisfies the LDP with good rate function, for each ψ ∈ C̄[0, t],

Ît(ψ) =

∫ t

0

Λ∗(ψ̇(a)(s))ds+ ψ(s)(t).

These two results now imply the LDP for the sequence of sample paths {(X̃n(s), s ∈

[0, t])}.
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Proposition 4.2. Fix t ∈ [0, 1]. Then the sequence of sample paths {(X̃n(s), s ∈

[0, t])} satisfies the LDP with good rate function, for ψ ∈ C[0, t],

Ĵt(ψ) = inf
φ∈C̄[0,t]

φ̇(s)−ψ̇(s)≥0, s∈[0,t]

Λ̂t(φ) + Ît(φ− ψ).

Proof. The independence of (T̃n(s), s ∈ [0, t]) and (S̃n(s), s ∈ [0, t]) for each

n ≥ 1 implies that they jointly satisfy the LDP with good rate function Λ̂t(f) + Ît(g)

as a consequence of [18, Corollary 2.9], and where (f, g) ∈ C̄[0, t] × C̄[0, t]. Since

subtraction is continuous on the Polish space C[0, t] equipped with the topology of

pointwise convergence, applying the contraction principle along with Lemma 4.1 and

[7, Lemma 5.1.8] completes the proof. �

As an illustration of the result, suppose that the service times are exponentially

distributed with mean 1. Define the function

J̌t(φ, ψ) :=

∫ t

0

(
log
(
φ̇(a)(s)

)
+ s log

(
φ̇(a)(s)− ψ̇(a)(s)

s

))
ds

−
(
φ(s)(t)− ψ(s)(t)− t2

2
+ (1− t) log

(
1− t

1− φ(t)

))
.

Then, the rate function for the offered load sample path is

Ĵt(ψ) = inf
φ∈C̄[0,t]

φ̇(t)−ψ̇(s)≥0, s∈[0,t]

−J̌t(φ, ψ).
(4.8)

We now establish the LDP for the workload process at a fixed t ∈ [0, 1].

Theorem 4.1. Fix t ∈ [0, 1]. Then, the sequence of random variables {Wn(t), n ≥ 1}

satisfy the LDP with good rate function J̃t(y) = inf{φ∈X :y=Γ(φ)(t)} Ĵt(φ) for all y ∈ R.

Proof. Recall that Γ : C[0, t] → C[0, t] is continuous. Furthermore, C[0, t] (under

the topology of pointwise convergence) and R are Hausdorff spaces. Therefore, the

conditions of the contraction principle [7, Theorem 4.2.1] are satisfied. Thus, it

follows that {W̃n(t), n ≥ 1} satisfies the LDP with the rate function J̃t. Finally,

the exponential equivalence proved in Proposition 4.1 implies that {Wn(t), n ≥ 1}

satisfies the LDP with rate function J̃t , thus completing the proof. �
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4.3. Effective Bandwidths

As noted in Section 2, our primary motivation for studying the large deviation

principle is to model the likelihood that the workload at any point in time t ∈ [0, 1]

exceeds a large threshold. This is also related to the fact that most queueing models in

practice have finite-sized buffers, and so understanding the likelihood that the workload

exceeds the buffer capacity is crucial from a system operation perspective. More

precisely, if w ∈ [0,∞) is the buffer capacity, we are interested in probability of the

event {Wn(t) > w}. Theorem 4.1 implies that

P (Wn(t) > w) ≤ exp(−nJ̃t((w,∞))),

where J̃t((w,∞)) = infy∈(w,∞) J̃t(y). A reasonable performance measure to consider

in this model is to find the ‘critical time-scale’ at which the large exceedance occurs

with probability at most p. That is, we would like to find

t∗ := inf{t > 0| exp(−nJ̃t((w,∞))) ≤ p}.

Consider the inequality J̃t((w,∞)) ≥ − 1
n log p. Using the definition of rate function,

we have

inf
f∈X :y=Γ(f)(t)

inf
φ∈C̄0

f [0,t]
−
∫ t

0

(
log(φ̇(a)(r)) + Λ∗(φ̇(a)(r)− ḟ (a)(r))

)
dr

+ (1− t) log

(
1− t

1− φ(t)

)
+ (φ(s)(t)− f (s)(t)) ≥ − log p

n
,

where we define C̄0
f [0, t] := {g ∈ C̄[0, t] : ġ(s) − ḟ(s) ≥ 0, ∀s ∈ [0, t]} for brevity. The

critical time-scale will be the optimizer of this constrained variational problem.

5. Conclusions

The large deviation principle derived for the ‘uniform scattering’ case in this paper

provides the first result on the rare event behavior of the RS/GI/1 transitory queue,

building on the fluid and diffusion approximation results established in [17, 15, 14, 2].

Our results are an important addition to the body of knowledge dealing with rare events

behavior of queueing models. In particular, a standard assumption is that the traffic

model has independent increments, while our model assumes exchangeable increments
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in the traffic count process by design. We believe that the results in this paper are the

first to report large deviations analyses of queueing models under such conditions.

Our next step in this line of research will be to extend the analysis to queues

with non-uniform arrival epoch distributions, including distributions that are not

absolutely continuous. In this case, the contraction principle cannot be directly applied,

complicating the analysis somewhat. In [14] we have made initial progress under a

‘near-balanced’ condition on the offered load process, where the traffic and service

effort (on average) are approximately equal. However, it is unclear how to drop the

assumption of near-balancedness. In particular, when the distribution is general, it

is possible for the queue to enter periods of underload, overload and critical load in

the fluid limit. This must have a significant impact on how the random variables are

‘twisted’ to rare outcomes. We do not believe it will be possible to exploit (3.1) to

establish the LDP. A further problem of interest is to consider a different acceleration

regime. In the current setting we assumed that the service times νi are scaled by

the population size. However, it is possible to entertain alternate scalings, such as

νni = n−1νi(1+βn1/3) as in [2], or scalings that are dependent on the operational time

horizon of interest. We leave these problems to future papers.
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