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Abstract

The Horton-Strahler ordering method, originating in hydrology, formulates the hierarchical struc-
ture of branching patterns using a quantity called the bifurcation ratio. The main result of this
paper is the central limit theorem for bifurcation ratio of general branch order. This is a generalized
form of the central limit theorem for the lowest bifurcation ratio, which was previously proved.
Some useful relations are also derived in the proofs of the main theorems.

1. INTRODUCTION

Branching objects are found very widely [1], ranging from natural patterns like river networks, plants, and dendritic
crystals, to conceptual expressions like binary search trees in computer science [2] and phylogenetic trees in taxon-
omy [3]. The topological structure of a branching pattern is modeled by a binary tree if a segment bifurcates (does
not trifurcate or more) at every branching point.
Let Ωn denote the set of the different binary trees having n leaves. The number of leaves is called the magnitude

in research of branching patterns. As known well [8], the number of the different binary trees of magnitude n is given
by

|Ωn| =
1

2n− 1

(

2n− 1

n

)

=
(2n− 2)!

n!(n− 1)!
,

which iscalled the n − 1st Catalan number. In Fig. 1, Ωn for n = 2, 3, and 4 are schematically shown. Introducing
the uniform probability measure Pn on Ωn (so that each binary tree is assigned equal probability 1/|Ωn|), we obtain
the probability space (Ωn, Pn) referred to as the random model [6]. The formation of real-world branching patterns
more or less involves stochastic effects, and the random model is a kind of mathematical simplification of such random
factors.
In hydrology, methods for measuring the hierarchical structure of a river network have been proposed by Horton [4],

Strahler [5], Shreve [6], Tokunaga [7], and other researchers. Their methods define how to assign an integer number
(called the order) to each stream. Among all, Strahler’s method is currently the most popular because of its simple
computation rule. Strahler’s method is a refinement of Horton’s method, so it is sometimes called the Horton-Strahler
ordering method. The Horton-Strahler method recursively defines the order of each node by the following rules. (i)
The leaf nodes are defined to have order one. (ii) A node whose children have different order r1 and r2 (r1 6= r2) has
order max{r1, r2}. (iii) A node whose two children have the same order r has order r+1. We define a branch of order
r as a maximal connected path made by nodes of equal order r. (A branch here is called a stream in the analysis of
river networks.) An example of Strahler’s ordering is shown in Fig. 2. For a binary tree τ ∈ Ωn, we let Sr,n(τ) denote
the number of branches of order r in τ . By the definition of the order, S1,n(τ) = n and 0 ≤ Sr,n(τ) ≤ n/2r−1 (r ≥ 2).
Note that S2,n(τ) 6= 0 if n ≥ 2, because a node of order 2 is produced by the merge of two leaves. For the binary
tree τ(∈ Ω6) in Fig. 2, S1,6(τ) = 6, S2,6(τ) = 2, S3,6(τ) = 1, and Sr,6(τ) = 0 for r ≥ 4. Sr,n is a random variable on
(Ωn, Pn), and its stochastic property is of main interest in this study.
For any function f : {0, 1, 2, . . .} → R, f(Sr,n(·)) is a real-valued random variable on Ωn. According to Ref. [9], the

Ω2 Ω3 Ω4

FIG. 1: Ω2,Ω3, and Ω4 contain one, two, and five binary trees, respectively.
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FIG. 2: A small example of ordering and branches. The number on each node represents the order of the node. The branches
of order 2 and 3 are shown by the dashed rectangles. This binary tree consists of six branches of order 1, two branches order
2, and one branch of order 3.

recursive relation between the averages of the rth and r − 1st variables

E [f(Sr,n)] =
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
E [f(Sr−1,m)] (1)

holds, where E [·] denotes the average on the random model. The coefficient

n!(n− 1)!(n− 2)!2n−2m

(2n− 2)!(n− 2m)!m!(m− 1)!

represents the probability Pn(S2,n = m). In particular, putting r = 2 in Eq. (1), we have

E [f(S2,n)] =
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
f(m). (2)

Mathematical properties of S2,n have been investigated thoroughly. For instance, the average and variance are
respectively given by [10]

E [S2,n] =
n(n− 1)

2(2n− 3)
, Var [S2,n] =

n(n− 1)(n− 2)(n− 3)

2(2n− 3)2(2n− 5)
. (3)

Moreover, from Eq. (2), the moment generating function M2,n(t) of S2,n is given by

M2,n(t) := E [exp(S2,nt)] =
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
emt,

and this summation can be expressed using the Gauss hypergeometric function F [11]:

M2,n(t) =
2n−2n!(n− 1)!

(2n− 2)!
etF

(

2− n

2
,
3− n

2
, 2; et

)

. (4)

The ratio Sr+1,n(τ)/Sr,n(τ) is called the bifurcation ratio of order r or simply the rth bifurcation ratio. Hydrologists
have empirically confirmed that the bifurcation ratios of an actual river network become almost constant for different
orders, and this relation is referred to as Horton’s law of stream numbers. By definition, the bifurcation ratio is always
smaller than or equal to 1/2. When Sr,n(τ) = 0, we reasonably define Sr+1,n(τ)/Sr,n(τ) = 0. The random variable
Sr+1,n/Sr,n is also called the rthe bifurcation ratio. The lowest bifurcation ratio S2,n/S1,n = S2,n/n is relatively
easy to deal with, because it is similar to S2,n. The central limit theorem for S2,n/n has been shown by Wang and
Waymire [12]:

Theorem 1 (Central limit theorem for the lowest bifurcation ratio). On the random model,

√
n

(

S2,n

n
− 1

4

)

⇒ N

(

0,
1

16

)

, n → ∞,

where “⇒” denotes convergence in distribution, and N(µ, σ2) is the normal distribution with mean µ and variance

σ2.
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It is a simple and natural idea that we extend Theorem 1 to general order r. Compared with S2,n, however, higher-
order branches Sr,n for r ≥ 3 and the bifurcation ratio of order r ≥ 2 is difficult to handle and less studied. In this
paper, we generalize Theorem 1 in two ways (Theorems 2 and 3 in §2), and further generalize them (Theorem 4 in
§6). In §3–5, we give proofs of lemmas, which are necessary for the main theorems. In these proofs, Eq. (1) and its
variant

E

[

f

(

Sr+1,n

Sr,n

)]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
E

[

f

(

Sr,m

Sr−1,m

)]

. (5)

are very useful.

2. MAIN RESULTS

The following two theorems are the main results of the present paper.

Theorem 2 (Central limit theorem for the bifurcation ratio of general order). For any order r = 1, 2, 3, . . ., the rth
bifurcation ratio Sr+1,n/Sr,n satisfies

√
n

(

Sr+1,n

Sr,n
− 1

4

)

⇒ N
(

0, 4r−3
)

, n → ∞, (6)

Theorem 3 (Central limit theorem for the number of branches of general order). For any order r = 1, 2, 3, . . ., the
number Sr+1,n of r + 1st branches satisfies

√
n

(

Sr+1,n

n
− 1

4r

)

⇒ N

(

0,
1

3

4r − 1

16r

)

, n → ∞, (7)

Remark. These two theorems are generalization of Theorem 1 to general order r; they are reduced to Theorem 1 by
setting r = 1. Theorem 2 states the property of the bifurcation ratio Sr+1,n/Sr,n, and Theorem 3 states the property
of the number of branches Sr+1,n. The limit variance 4r−3 in Theorem 2 becomes large as r increases, whereas the
limit variance in Theorem 3 becomes small as r increases.

From Theorem 2, the following property, which can be regarded as Horton’s law of stream numbers, is easily derived.

Corollary 1 (Horton’s law of stream numbers for the random model). For any order r = 1, 2, . . ., the rth bifurcation

ratio Sr+1,n/Sr,n converges in probability to the common value 1/4:

Sr+1,n

Sr,n

p−→ 1

4
,

where “
p−→” denotes convergence in probability.

Let us introduce the asymptotic equality, since this study mainly focuses on the asymptotic behavior (the limit
n → ∞) of Sr,n.

Definition 1. The average value E [f(Sr,n)] is asymptotically equivalent to gr(n) if

lim
n→∞

E [f(Sr,n)]

gr(n)
= 1,

and this is denoted by

E [f(Sr,n)] ∼ gr(n).

For example, from Eq. (3),

E [S2,n] =
n(n− 1)

2(2n− 3)
∼ n

4
.

Theorems 2 and 3 are easily proved by using the following Lemmas 1 and 2, respectively.
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Lemma 1. For r = 1, 2, . . . and s = 0, 1, 2, . . .,

E

[

(

Sr+1,n

Sr,n
− 1

4

)2s
]

∼ (2s− 1)!!

42s

( n

4r−1

)−s

, E

[

(

Sr+1,n

Sr,n
− 1

4

)2s+1
]

∼ (2s+ 1)!!

2 · 42s+1

( n

4r−1

)−s−1

Lemma 2. For r = 1, 2, . . . and s = 0, 1, 2, . . .,

E

[

(

Sr+1,n − n

4r

)2s
]

∼ (2s− 1)!!

42sr

(

4r − 1

3

)s

ns,

E

[

(

Sr+1,n − n

4r

)2s+1
]

∼ (2s+ 1)!!

2 · 4(2s+1)r

(

4r − 1

3

)s
1

5

(

4r+1 − 1

3
+

4r−1 − 1

3
4(2s+ 1)

)

ns.

The odd-power result has a more complicated form than the even-power one.

Proof of Theorem 2. We let ϕr+1
r,n (z) denote the characteristic function of the left-hand side of Eq. (6), where the

subscript r and superscript r + 1 respectively correspond to Sr,n in the denominator and Sr+1,n in the numerator in
Eq. (6). By definition, ϕr+1

r,n (z) is calculated as

ϕr+1
r,n (z) = E

[

exp

(

iz
√
n

(

Sr+1,n

Sr,n
− 1

4

))]

= E

[

∞
∑

k=0

(iz
√
n)k

k!

(

Sr+1,n

Sr,n
− 1

4

)k
]

=

∞
∑

k=0

(iz
√
n)k

k!
E

[

(

Sr+1,n

Sr,n
− 1

4

)k
]

=

∞
∑

s=0

(iz
√
n)2s

(2s)!
E

[

(

Sr+1,n

Sr,n
− 1

4

)2s
]

+

∞
∑

s=0

(iz
√
n)2s+1

(2s+ 1)!
E

[

(

Sr+1,n

Sr,n
− 1

4

)2s+1
]

,

where i =
√
−1. At the last equality, we have split the sum into even k (k = 2s) and odd k (k = 2s+1). By Lemma 1,

the terms of the first sum (even k) are O(n0), whereas the terms of the second sum (odd k) are o(n0). Hence, the
second sum can be neglected in the limit n → ∞, so that

ϕr+1
r,n (z) ∼

∞
∑

s=0

(iz
√
n)2s

(2s)!
E

[

(

Sr+1,n

Sr,n
− 1

4

)2s
]

∼
∞
∑

s=0

(−z2n)s

(2s)!

(2s− 1)!!

42s
n−s

4−(r−1)s

=

∞
∑

s=0

(

−4r−3z2

2

)s
1

s!

= exp

(

−4r−3z2

2

)

.

Recall that the characteristic function of N(µ, σ2) is exp(iµz − σ2z2/2). Since ϕr+1
r,n converges pointwise to the

characteristic function of N(0, 4r−3), convergence in distribution in Theorem 2 is proved. (For the properties of a
characteristic function, see Feller [13] for example.)
Keep in mind that the neglect of the odd-power terms is a crucial point also in the other central limit theorems in

this paper.

Proof of Theorem 3. As with the above proof of Theorem 2, the characteristic function ϕr+1
1,n (z) of the left-hand side
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of Eq. (7) is

ϕr+1
1,n (z) = E

[

exp

(

iz
√
n

(

Sr+1,n

n
− 1

4r

))]

=

∞
∑

k=0

(iz
√
n)k

k!
E

[

(

Sr+1,n

n
− 1

4r

)k
]

=

∞
∑

s=0

(iz
√
n)2s

(2s)!n2s
E

[

(

Sr+1,n − n

4r

)2s
]

+

∞
∑

s=0

(iz
√
n)2s+1

(2s+ 1)!n2s+1
E

[

(

Sr+1,n − n

4r

)2s+1
]

.

By Lemma 2, the second sum is neglected and the dominant terms are calculated to

ϕr+1
1,n (z) ∼

∞
∑

s=0

(iz
√
n)2s

(2s)!n2s
E

[

(

Sr+1,n − n

4r

)2s
]

∼
∞
∑

s=0

(−z2n)s

(2s)!n2s

(2s− 1)!!

42rs

(

4r − 1

3

)s

ns

=
∞
∑

s=0

(

−z2

2

4r − 1

3 · 16r
)s

1

s!

= exp

(

−z2

2

4r − 1

3 · 16r
)

.

Therefore, the converges in distribution to N(0, (4r − 1)/(3 · 16r)) is proved.

We give the proofs of Lemmas 1 and 2 in the following three sections.

3. STARTING POINT OF LEMMAS 1 AND 2

We show Lemmas 1 and 2 by induction on r. In this section, the case of r = 1 in Lemmas 1 and 2 is proved (Cor. 3).

Proposition 1. For a two-variable polynomial p(·, ·) of finite degree,

E [S2,np(S2,n, n)] =
n

2
E [p(S2,n, n)]−

n(n− 2)

2(2n− 3)
E [p(S2,n−1, n)] . (8)

Here, E [S2,np(S2,n, n)] and E [p(S2,n, n)] are taken over Ωn, whereas E [p(S2,n−1, n)] are over Ωn−1.

Proof. Because of the linearity of E [·], it is sufficient to check the case p(S2,n, n) = Sk
2,nn

l. The average is expressed
using the moment generating function M2,n(t) in Eq. (4).

E
[

S2,nS
k
2,nn

l
]

= nlE
[

Sk+1
2,n

]

= nl dk+1

dtk+1
M2,n(t)

∣

∣

∣

∣

t=0

= nl 2
n−2n!(n− 1)!

(2n− 2)!

dk+1

dtk+1
etF

(

2− n

2
,
3− n

2
, 2; et

)
∣

∣

∣

∣

t=0

= nl 2
n−2n!(n− 1)!

(2n− 2)!

dk

dtk
et
[

F

(

2− n

2
,
3− n

2
, 2; et

)

+
d

dt
F

(

2− n

2
,
3− n

2
, 2; et

)]∣

∣

∣

∣

t=0

.

Using the derivative of the Gauss hypergeometric function [14]

d

dz
F (α, β, γ; z) =

α

z
[F (α+ 1, β, γ; z)− F (α, β, γ; z)]

and the symmetry F (α, β, γ; z) = F (β, α, γ; z), we have

d

dt
F

(

2− n

2
,
3− n

2
, 2; et

)

=
n− 2

2

[

F

(

2− n

2
,
3− n

2
, 2; et

)

− F

(

3− n

2
,
4− n

2
, 2; et

)]

, (9)
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thereby

E
[

S2,nS
k
2,nn

l
]

= nl 2
n−2n!(n− 1)!

(2n− 2)!

dk

dtk
et
[

n

2
F

(

2− n

2
,
3− n

2
, 2; et

)

− n− 2

2
F

(

3− n

2
,
4− n

2
, 2; et

)]

= nl

(

n

2
E
[

Sk
2,n

]

− 2n(n− 1)

(2n− 2)(2n− 3)

n− 2

2
E
[

Sk
2,n−1

]

)

=
n

2
E
[

Sk
2,nn

l
]

− n(n− 2)

2(2n− 3)
E
[

Sk
2,n−1n

l
]

.

Here we comment on the utility of Prop. 1. We can calculate the moments E
[

Sk
2,n

]

recursively using Eq. (8):

E [S2,n] = E [S2,n · 1] = n

2
E [1]− n(n− 2)

2(2n− 3)
E [1] =

n(n− 1)

2(2n− 3)
,

E
[

S2
2,n

]

= E [S2,nS2,n] =
n

2
E [S2,n]−

n(n− 1)

2(2n− 3)
E [S2,n−1] =

n(n− 1)(n2 − n− 4)

4(2n− 3)(2n− 5)
,

E
[

S3
2,n

]

= E
[

S2,nS
2
2,n

]

=
n

2
E
[

S2
2,n

]

− n(n− 1)

2(2n− 3)
E
[

S2
2,n−1

]

=
n(n− 1)(n4 − 2n3 − 15n2 + 32n+ 8)

8(2n− 3)(2n− 5)(2n− 7)
,

and so on. The first and second moments were individually calculated [10] (see Eq. (3)). Note, however, that Prop. 1
provides a systematic calculation method of the kth moment of S2,n in a bottom-up way. Furthermore, we easily
obtain E

[

Sk
2,n

]

∼ (n/4)k for k = 0, 1, 2, . . . using Eq. (8).

Corollary 2. Subtracting nE [p(S2,n, n)] /4 from Eq. (8), we have

E
[(

S2,n − n

4

)

p(S2,n, n)
]

=
n

4
E [p(S2,n, n)]−

n(n− 2)

2(2n− 3)
E [p(S2,n−1, n)] .

Lemma 3. For k = 0, 1, 2, . . .,

E

[

(

S2,n − n

4

)k
]

∼ k!

2⌊(k+1)/2⌋⌊k/2⌋!4kn
⌊k/2⌋.

That is to say, the asymptotic form of E
[

(S2,n − n/4)k
]

depends on whether k is even or odd:

E

[

(

S2,n − n

4

)2s
]

∼ (2s− 1)!!

42s
ns, E

[

(

S2,n − n

4

)2s+1
]

∼ (2s+ 1)!!

2 · 42s+1
ns, (10)

for s = 0, 1, 2, . . ..

Remark. In E [S2,n − n/4] (k = 1), the leading O(n1) terms are canceled because of E [S2,n] ∼ n/4. Similarly, in
general k, O(nk), O(nk−1), . . . terms are successively canceled, so that the resultant leading order of E

[

(S2,n − n/4)k
]

becomes ⌊k/2⌋. This effect makes the estimation of E
[

(S2,n − n/4)k
]

difficult.

Proof. The proof is by induction on k. The statement is true for k = 0, 1, and 2, because

E

[

(

S2,n − n

4

)0
]

= 1,

E

[

(

S2,n − n

4

)1
]

=
n(n− 1)

2(2n− 3)
− n

4
=

n

4(2n− 3)
∼ 1

8
,

E

[

(

S2,n − n

4

)2
]

= E
[

S2
2,n

]

− n

2
E [S2,n] +

n2

16
=

n(4n2 − 17n+ 16)

16(2n− 3)(2n− 5)
∼ n

16
.
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Assume that it is true up to k ≥ 2, and we show it is true for k + 1. It follows from Cor. 2 that

E

[

(

S2,n − n

4

)k+1
]

= E

[

(

S2,n − n

4

)(

S2,n − n

4

)k
]

=
n

4
E

[

(

S2,n − n

4

)k
]

− n(n− 2)

2(2n− 3)
E

[

(

S2,n−1 −
n

4

)k
]

=
n

4
E

[

(

S2,n − n

4

)k
]

− n(n− 2)

2(2n− 3)
E

[

(

S2,n−1 −
n− 1

4
− 1

4

)k
]

=
n

4
E

[

(

S2,n − n

4

)k
]

− n(n− 2)

2(2n− 3)

k
∑

l=0

(

k

l

)(

−1

4

)l

E

[

(

S2,n−1 −
n− 1

4

)k−l
]

.

In the following, we separately investigate odd and even k.
Case 1: k is odd (k = 2s + 1). The dominant terms are l = 0 and 1 in the summation, and the others can be

neglected. Thus,

E

[

(

S2,n − n

4

)2s+1+1
]

∼ n

4
E

[

(

S2,n − n

4

)2s+1
]

− n(n− 2)

2(2n− 3)

(

E

[

(

S2,n−1 −
n− 1

4

)2s+1
]

− 2s+ 1

4
E

[

(

S2,n−1 −
n− 1

4

)2s
])

∼ n

4

(2s+ 1)!!

42s+1
− n

4

(

(2s+ 1)!!

42s+1
(n− 1)s − 2s+ 1

4

(2s− 1)!!

42s
(n− 1)s

)

∼ (2s+ 1)!!

42s+2
ns+1.

Case 2: k is even (k = 2s). Picking out the terms up to O(ns) carefully, we obtain

E

[

(

S2,n − n

4

)2s+1
]

=
n

4
E

[

(

S2,n − n

4

)2s
]

− n(n− 2)

2(2n− 3)

(

E

[

(

S2,n−1 −
n− 1

4

)2s
]

− 2s

4
E

[

(

S2,n−1 −
n− 1

4

)2s−1
]

+
2s(2s− 1)

16 · 2 E

[

(

S2,n−1 −
n− 1

4

)2s−2
]

+ o(ns−1)

)

. (11)

We introduce the coefficient as as

E

[

(

S2,n − n

4

)2s
]

=
(2s− 1)!!

42s
ns + asn

s−1 + o(ns−1),

and expand each term on the right-hand side of Eq. (11) up to O(ns) using the induction hypothesis:

n

4
E

[

(

S2,n − n

4

)2s
]

=
(2s− 1)!!

42s+1
ns+1 +

as
4
ns + o(ns),

n(n− 2)

2(2n− 3)
E

[

(

S2,n−1 −
n− 1

4

)2s
]

=
(2s− 1)!!

42s+1
ns+1 − (2s+ 1)!!

2 · 42s+1
ns +

as
4
ns + o(ns),

n(n− 2)

2(2n− 3)

2s

4
E

[

(

S2,n−1 −
n− 1

4

)2s−1
]

=
(2s− 1)!!

42s+1
sns + o(ns),

n(n− 2)

2(2n− 3)

2s(2s− 1)

16 · 2 E

[

(

S2,n−1 −
n− 1

4

)2s−2
]

=
(2s− 1)!!

42s+1
sns + o(ns).

Therefore,

E

[

(

S2,n − n

4

)2s+1
]

=
(2s+ 1)!!

2 · 42s+1
ns + o(ns).
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Note that O(ns+1) terms and those including as are all cancelled.
Therefore, the statement is true for any k.

Corollary 3. Multiplying Eq. (10) by n−k, we have

E

[

(

S2,n

n
− 1

4

)2s
]

∼ (2s− 1)!!

42s
n−s, E

[

(

S2,n

n
− 1

4

)2s+1
]

∼ (2s+ 1)!!

2 · 42s+1
n−s−1.

Remark. This result corresponds to the case r = 1 in Lemmas 1 and 2.

Using this corollary, we can provide another proof of Theorem 1 as follows. The characteristic function ϕ2
1,n(z) for

the lowest bifurcation ratio in Theorem 1 is calculated as

ϕ2
1,n(z) = E

[

exp

(

iz
√
n

(

S2,n

n
− 1

4

))]

= E

[

∞
∑

k=0

(iz
√
n)k

k!

(

S2,n

n
− 1

4

)k
]

=
∞
∑

k=0

(iz
√
n)k

k!
E

[

(

S2,n

n
− 1

4

)k
]

=

∞
∑

s=0

(iz
√
n)2s

(2s)!
E

[

(

S2,n

n
− 1

4

)2s
]

+

∞
∑

s=0

(iz
√
n)2s+1

(2s+ 1)!
E

[

(

S2,n

n
− 1

4

)2s+1
]

∼
∞
∑

s=0

(−z2

32

)s
1

s!

= exp

(

− z2

32

)

,

so the convergence of
√
n(S2,n/n− 1/4) to N(0, 1/16) is proved.

4. PROOF OF LEMMA 1

We first derive the asymptotic form of E
[

S−k
2,n

]

, which is needed in the proof of Lemma 1.

Proposition 2. For k = 0, 1, 2, . . ., we have

E
[

S−k
2,n

]

∼
(n

4

)−k

.

Remark. Since S2,n(τ) 6= 0 for any τ ∈ Ωn, S
−k
2,n surely takes a finite value and E

[

S−k
2,n

]

is not divergent.

Proof. Let us introduce the operator (d/dt)−1 defined by

(

d

dt

)−1

f(t) :=

∫ t

−∞

f(s)ds,

where f is integrable on any interval (−∞, t). Note that (d/dt)−1 is the inverse of d/dt. Owing to the property

(

d

dt

)−k

emt = m−kemt,
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the average of S−k
2,n is expressed by

E
[

S−k
2,n

]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
m−k

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!

(

d

dt

)−k

emt

∣

∣

∣

∣

∣

t=0

=
2n−2n!(n− 1)!

(2n− 2)!

(

d

dt

)−k

etF

(

2− n

2
,
3− n

2
, 2; et

)

∣

∣

∣

∣

∣

t=0

.

Let us derive a relation between E
[

S−k
2,n

]

and E
[

S
−(k+1)
2,n

]

as in Prop. 1.

E
[

S
−(k+1)
2,n

]

=
2n−2n!(n− 1)!

(2n− 2)!

(

d

dt

)−k (
d

dt

)−1

etF

(

2− n

2
,
3− n

2
, 2; et

)

∣

∣

∣

∣

∣

t=0

=
2n−2n!(n− 1)!

(2n− 2)!

(

d

dt

)−k ∫ t

−∞

esF

(

2− n

2
,
3− n

2
, 2; es

)

ds

∣

∣

∣

∣

∣

t=0

=
2n−2n!(n− 1)!

(2n− 2)!

(

d

dt

)−k
{

[

esF

(

2− n

2
,
3− n

2
, 2; es

)]t

s=−∞

−
∫ t

−∞

es
d

ds
F

(

2− n

2
,
3− n

2
, 2; es

)

ds

}∣

∣

∣

∣

∣

t=0

=
2n−2n!(n− 1)!

(2n− 2)!

(

d

dt

)−k
{

etF

(

2− n

2
,
3− n

2
, 2; et

)

−
(

d

dt

)−1

et
d

dt
F

(

2− n

2
,
3− n

2
, 2; et

)

}∣

∣

∣

∣

∣

t=0

= E
[

S−k
2,n

]

− 2n−2n!(n− 1)!

(2n− 2)!

(

d

dt

)−(k+1)

et
d

dt
F

(

2− n

2
,
3− n

2
, 2; et

)

∣

∣

∣

∣

∣

t=0

.

By using the derivative of the hypergeometric function in Eq. (9),

E
[

S
−(k+1)
2,n

]

= E
[

S−k
2,n

]

− n− 2

2
E
[

S
−(k+1)
2,n

]

+
n(n− 2)

2(2n− 3)
E
[

S
−(k+1)
2,n−1

]

,

whose asymptotic form is

n

2
E
[

S
−(k+1)
2,n

]

= E
[

S−k
2,n

]

+
n(n− 2)

2(2n− 3)
E
[

S
−(k+1)
2,n−1

]

∼ E
[

S−k
2,n

]

+
n

4
E
[

S
−(k+1)
2,n

]

,

or

E
[

S
−(k+1)
2,n

]

∼ 4

n
E
[

S−k
2,n

]

.

Considering E
[

S0
2,n

]

= 1, we obtain

E
[

S−k
2,n

]

∼
(n

4

)−k

.

Proof of Lemma 1. By induction on r. For r = 1, the statement is equivalent to Cor. 3.
Assume that it is true up to r − 1, and we show it is true for r. Using Eq. (5),

E

[

(

Sr+1,n

Sr,n
− 1

4

)k
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
E

[

(

Sr,m

Sr−1,m
− 1

4

)k
]

.
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Case 1: k is even (k = 2s).

E

[

(

Sr+1,n

Sr,n
− 1

4

)2s
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
E

[

(

Sr,m

Sr−1,m
− 1

4

)2s
]

∼ n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!

(2s− 1)!!

42s

( m

4r−2

)−s

=
(2s− 1)!!

42s4−s(r−2)

n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
m−s.

By using Eq. (5) again and Prop. 2,

E

[

(

Sr+1,n

Sr,n
− 1

4

)2s
]

∼ (2s− 1)!!

42s4−s(r−2)
E
[

S−s
2,n

]

∼ (2s− 1)!!

42s4−s(r−2)

(n

4

)−s

=
(2s− 1)!!

42s

( n

4r−1

)−s

.

Case 2: k is odd (k = 2s+ 1). Using Eq. (5) and Prop. 2 as above,

E

[

(

Sr+1,n

Sr,n
− 1

4

)2s+1
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
E

[

(

Sr,m

Sr−1,m
− 1

4

)2s+1
]

∼ n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!

(2s+ 1)!!

2 · 42s+1

( m

4r−2

)−s−1

∼ (2s+ 1)!!

2 · 42s+14(r−1)(−s−1)
E
[

S−s−1
2,n

]

=
(2s+ 1)!!

2 · 42s+1

( n

4r

)−s−1

.

5. PROOF OF LEMMA 2

In the proof of Lemma 2, we use the following relations.

Lemma 4. For s, l = 0, 1, 2, . . .,

E

[

Sl
2,n

(

S2,n − n

4

)2s
]

∼
(n

4

)l (2s− 1)!!

42s
ns, E

[

Sl
2,n

(

S2,n − n

4

)2s+1
]

∼
(n

4

)l (2s+ 1)!!

2 · 42s+1
(2l + 1)ns.

Remark. The complicated form of the odd-power result in Lemma 2 is actually due to the factor “(2l+ 1)”.

Proof. By induction on l. For l = 0, the statement is equivalent to Lemma 3.
Assume that it is true up to l ≥ 0, and we show for l + 1. Using Prop. 1,

E

[

Sl+1
2,n

(

S2,n − n

4

)k
]

=
n

2
E

[

Sl
2,n

(

S2,n − n

4

)k
]

− n(n− 2)

2(2n− 3)
E

[

Sl
2,n−1

(

S2,n−1 −
n

4

)k
]

=
n

2
E

[

Sl
2,n

(

S2,n − n

4

)k
]

− n(n− 2)

2(2n− 3)
E

[

Sl
2,n−1

(

S2,n−1 −
n− 1

4
− 1

4

)k
]

=
n

2
E

[

Sl
2,n

(

S2,n − n

4

)k
]

− n(n− 2)

2(2n− 3)

k
∑

p=0

(

k

p

)(

−1

4

)p

E

[

Sl
2,n−1

(

S2,n−1 −
n− 1

4

)k−p
]

.

Case 1: k is even (k = 2s). In the summation, only p = 0 is dominant, so that

E

[

Sl+1
2,n

(

S2,n − n

4

)2s
]

∼ n

2
E

[

Sl
2,n

(

S2,n − n

4

)2s
]

− n(n− 2)

2(2n− 3)
E

[

Sl
2,n−1

(

S2,n−1 −
n− 1

4

)2s
]

.
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By using the induction hypothesis,

E

[

Sl+1
2,n

(

S2,n − n

4

)2s
]

∼ n

2

(n

4

)l (2s− 1)!!

42s
ns − n

4

(

n− 1

4

)l
(2s− 1)!!

42s
(n− 1)s ∼

(n

4

)l+1 (2s− 1)!!

42s
ns.

Case 2: k is odd (k = 2s+ 1). Note that p = 0 and 1 in the summation are the dominant terms.

E

[

Sl+1
2,n

(

S2,n − n

4

)2s+1
]

∼ n

2
E

[

Sl
2,n

(

S2,n − n

4

)2s+1
]

− n(n− 2)

2(2n− 3)

(

E

[

Sl
2,n−1

(

S2,n−1 −
n− 1

4

)2s+1
]

− (2s+ 1)

4
E

[

Sl
2,n−1

(

S2,n−1 −
n− 1

4

)2s
])

∼ n

2

(n

4

)l (2s+ 1)!!

2 · 42s+1
(2l + 1)ns

− n(n− 2)

2(2n− 3)

[

(

n− 1

4

)l
(2s+ 1)!!

2 · 42s+1
(2l + 1)(n− 1)s − (2s+ 1)

4

(

n− 1

4

)l
(2s− 1)!!

42s
(n− 1)s

]

∼
(n

4

)l+1 (2s+ 1)!!

2 · 42s+1
(2l + 3)ns.

Proof of Lemma 2. By induction on r. For r = 1, the statement is equivalent to Lemma 3.
Assume that it is true up to r − 1, and we show it is true for r. Using Eq. (5) to calculate

E

[

(

Sr+1,n − n

4r

)k
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
E

[

(

Sr,m − n

4r

)k
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
E

[

(

Sr,m − m

4r−1
+

m

4r−1
− n

4r

)k
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!

k+1
∑

l=0

(

k

l

)

( m

4r−1
− n

4r

)k−l

E

[

(

Sr.m − m

4r−1

)l
]

.

We split the summation over l according to the parity of l, and use the induction hypothesis. The estimation of the
summation is complex compared with the other proofs above.
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Case 1: k is even (k = 2s).

E

[

(

Sr+1,n − n

4r

)2s
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!

×
[

s
∑

l=0

(

2s

2l

)

( m

4r−1
− n

4r

)2s−2l

E

[

(

Sr.m − m

4r−1

)2l
]

+

s−1
∑

l=0

(

2s

2l + 1

)

( m

4r−1
− n

4r

)2s−2l−1

E

[

(

Sr,m − m

4r−1

)2l+1
]

]

∼ n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!

×
[

s
∑

l=0

(

2s

2l

)(

1

4r−1

)2s−2l
(

m− n

4

)2s−2l (2l − 1)!!

42l(r−1)

(

4r−1 − 1

3

)l

ml

+
s−1
∑

l=0

(

2s

2l + 1

)(

1

4r−1

)2s−2l−1
(

m− n

4

)2s−2l−1 (2l + 1)!!

2 · 4(2l+1)(r−1)

(

4r−1 − 1

3

)l+1

ml

]

=
s
∑

l=0

(

2s

2l

)(

1

4r−1

)2s−2l
(2l − 1)!!

42l(r−1)

(

4r−1 − 1

3

)l

E

[

(

S2,n − n

4

)2s−2l

Sl
2,n

]

+

s−1
∑

l=0

(

2s

2l+ 1

)(

1

4r−1

)2s−2l−1
(2l + 1)!!

2 · 4(2l+1)(r−1)

(

4r−1 − 1

3

)l+1

E

[

(

S2,n − n

4

)2s−2l−1

Sl
2,n

]

.

From Lemma 4, the first summation is O(ns), while the second summation is O(ns−1). Thus, we can neglect the
second sum, so that

E

[

(

Sr+1,n − n

4r

)2s
]

∼
s
∑

l=0

(

2s

2l

)(

1

4r−1

)2s−2l
(2l − 1)!!

42l(r−1)

(

4r−1 − 1

3

)l
1

4l
(2s− 2l− 1)!!

42s−2l
ns

=
(2s)!ns

s!2s42sr

s
∑

l=0

(

s

l

)(

4r − 4

3

)l

=
(2s− 1)!!ns

42sr

(

1 +
4r − 4

3

)s

=
(2s− 1)!!ns

42sr

(

4r − 1

3

)s

.

Case 2: k is odd (k = 2s+ 1).

E

[

(

Sr+1,n − n

4r

)2s+1
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!

×
[

s
∑

l=0

(

2s+ 1

2l

)

( m

4r−1
− n

4r

)2s+1−2l

E

[

(

Sr.m − m

4r−1

)2l
]

+
s
∑

l=0

(

2s+ 1

2l + 1

)

( m

4r−1
− n

4r

)2s−2l

E

[

(

Sr,m − m

4r−1

)2l+1
]

]
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∼ n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!

×
[

s
∑

l=0

(

2s+ 1

2l

)(

1

4r−1

)2s+1−2l
(

m− n

4

)2s+1−2l (2l − 1)!!

42l(r−1)

(

4r−1 − 1

3

)l

ml

+
s
∑

l=0

(

2s+ 1

2l + 1

)(

1

4r−1

)2s−2l
(

m− n

4

)2s−2l (2l + 1)!!

2 · 4(2l+1)(r−1)

(

4r−1 − 1

3

)l

×1

5

(

4r − 1

3
+

4r−2 − 1

3
4(2l+ 1)

)

ml

]

=

s
∑

l=0

(

2s+ 1

2l

)(

1

4r−1

)2s+1−2l
(2l − 1)!!

42l(r−1)

(

4r−1 − 1

3

)l

E

[

(

S2,n − n

4

)2s+1−2l

Sl
2,n

]

+

s
∑

l=0

(

2s+ 1

2l+ 1

)(

1

4r−1

)2s−2l
(2l + 1)!!

2 · 4(2l+1)(r−1)

(

4r−1 − 1

3

)l

× 1

5

(

4r − 1

3
+

4r−2 − 1

3
4(2l+ 1)

)

E

[

(

S2,n − n

4

)2s−2l

Sl
2,n

]

.

Both two sums are O(ns−l), so we need to consider them. By using Lemma 4,

E

[

(

Sr+1,n − n

4r

)2s+1
]

∼
s
∑

l=0

(

2s+ 1

2l

)(

1

4r−1

)2s+1−2l
(2l− 1)!!

42l(r−1)

(

4r−1 − 1

3

)l
(n

4

)l (2s− 2l+ 1)!!

2 · 42s−2l+1
(2l + 1)ns−l

+

s
∑

l=0

(

2s+ 1

2l+ 1

)(

1

4r−1

)2s−2l
(2l + 1)!!

2 · 4(2l+1)(r−1)

(

4r−1 − 1

3

)l

× 1

5

(

4r − 1

3
+

4r−2 − 1

3
4(2l+ 1)

)

(n

4

)l (2s− 2l− 1)!!

42s−2l
ns−l

=
(2s+ 1)!!ns

2 · 4r(2s+1)

[

s
∑

l=0

(

s

l

)(

4r − 4

3

)l

(2l + 1) +
4

5

s
∑

l=0

(

s

l

)(

4r − 4

3

)l(
4r − 1

3
+

4r−2 − 1

3
4(2l+ 1)

)

]

=
(2s+ 1)!!ns

2 · 4r(2s+1)

4r − 1

15

s
∑

l=0

(

s

l

)(

4r − 4

3

)l

(2l + 5)

=
(2s+ 1)!!ns

2 · 4r(2s+1)

(

4r − 1

3

)s
1

5

(

4r+1 − 1

3
+

4r−1 − 1

3
4(2s+ 1)

)

,

where we have used

s
∑

l=0

(

s

l

)(

4r − 4

3

)l

=

(

4r − 1

3

)s

,

s
∑

l=0

(

s

l

)

l

(

4r − 4

3

)l

= s

(

4r − 1

3

)s−1
4r − 4

3
.

6. FURTHER GENERALIZATION

Theorems 2 and 3 are further generalized to the central limit theorem as follows.

Theorem 4. For q, r = 1, 2, . . .,

√
n

(

Sq+r,n

Sq,n
− 1

4r

)

⇒ N

(

0,
4r − 1

3 · 42r−q+1

)

Remark. This theorem is reduced to Theorem 2 when r = 1 and to Theorem 3 when q = 1; moreover, it is reduced
to Theorem 1 when r = q = 1.
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Lemma 5. For q, r = 1, 2, . . . and s = 0, 1, 2, . . .,

E

[

(

Sq+r,n

Sq,n
− 1

4r

)2s
]

∼ 4s(q−1) (2s− 1)!!

42sr

(

4r − 1

3

)s

n−s,

E

[

(

Sq+r,n

Sq,n
− 1

4r

)2s+1
]

∼ 4s(q−1) (2s+ 1)!!

4(2s+1)r

(

4r − 1

3

)s
1

5

(

4r+1 − 1

3
+

4r−1 − 1

3
4(2s+ 1)

)

n−s.

Remark. In comparison with Cor. 3, the effect of q > 1 appears in the form of the factor 4s(q−1).

Proof. By induction on q. q = 1 is equivalent to Cor 3.
Assume that the statement is true for q ≥ 1, and we show that it is true for q + 1. Using Eq. (5) and Prop. 2,

E

[

(

Sq+1+r,n

Sq+1,n
− 1

4r

)2s
]

=
n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
E

[

(

Sq+r,n

Sq,n
− 1

4r

)2s
]

∼ n!(n− 1)!(n− 2)!

(2n− 2)!

⌊n/2⌋
∑

m=1

2n−2m

(n− 2m)!m!(m− 1)!
4s(q−1) (2s− 1)!!

42sr

(

4r − 1

3

)s

m−s

= 4s(q−1) (2s− 1)!!

42sr

(

4r − 1

3

)s

E
[

S−s
2,n

]

∼ 4sq
(2s− 1)!!

42sr

(

4r − 1

3

)s

n−s.

Similarly,

E

[

(

Sq+1+r,n

Sq+1,n
− 1

4r

)2s+1
]

∼ 4sq
(2s+ 1)!!

4(2s+1)r

(

4r − 1

3

)s
1

5

(

4r+1 − 1

3
+

4r−1 − 1

3
4(2s+ 1)

)

n−s.

Proof of Theorem 4. By using Lemma 5, the characteristic function of the left-hand side, ϕq+r
q,n (z), can be calculated

as with Theorems 2 and 3:

ϕq+r
q,n (z) ∼ exp

(

−1

2

4r − 1

3 · 42r−q+1
z2
)

.
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