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Abstract

We study how to sample paths of a random walk up to the first time it crosses a
fixed barrier, in the setting where the step sizes are iid with negative mean and have
a regularly varying right tail. We introduce a desirable property for a change of mea-
sure to be suitable for exact simulation. We study whether the change of measure of
Blanchet and Glynn [9] satisfies this property and show that it does so if and only if
the tail index α of the right tail lies in the interval (1, 3/2).
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1 Introduction

Barrier-crossing events of random walks appear in numerous engineering and science models.
Examples range from stationary waiting times in queues to ruin events in insurance risk
processes [5, 14, 20]. Random walks with regularly varying step size distributions are of
particular interest, and their special analytic structure facilitates an increasingly complete
understanding of associated rare events.

This paper considers the problem of sampling a path of a random walk until it crosses a
given fixed barrier in the setting of heavy-tailed step sizes with negative mean. The higher
the barrier, the lower the likelihood of reaching it. This poses challenges for conditional
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sampling, since naive Monte Carlo sampling devotes much computational time to paths
that never cross the barrier and must therefore be ultimately discarded.

The ability to sample up to the first barrier-crossing time plays a central role in several
related problems, such as for sampling paths up to their maximum [12] or for sampling only
the maximum itself [15]. In turn these have applications to perfect sampling from stationary
distributions [7, 13] and to approximately solving stochastic differential equations [8].

Main contributions. The central question in this paper is: Can the change of measure
proposed in Blanchet and Glynn [9] be used for exact, i.e. unbiased, conditional sampling
of heavy-tailed random walks given a barrier-crossing rare event? The Blanchet-Glynn
measure is designed to approximate such a conditional distribution, so one might therefore
expect an answer to this question in the affirmative. Surprisingly, we answer this question
by and large in the negative: this measure cannot be used for conditional sampling. Our
results are a consequence of a delicate second-order analysis of tail probabilities of a sum
of heavy tailed random variables that are related to the residual life tail distribution of the
random walk increments. The asymptotic decomposition and analysis we put forth may be
of interest in itself.

We introduce a ‘desirable’ property for a candidate change of measure to be suitable
for our exact sampling problem and reveal an intriguing dichotomy on the suitability of the
Blanchet-Glynn measure: this measure satisfies this property if and only if the tail index
is below the threshold 3/2. It is worthwhile to stress two immediate consequences. First,
our result roughly implies that only the heaviest tails stand a chance to be efficient in this
setting, since the desirable property we introduce is intuitively a proxy for efficiency of
the proposal measure. This is counterintuitive, since heavier tails typically make problems
harder. Second, the threshold is not directly connected to the existence of integer moments
for the step size distribution.

The threshold 3/2 also arises in the simulation literature involving barrier-crossing events
with regularly varying step sizes [10, 11]. The nature of the threshold we obtain here is
however different from these works for three reasons. First, these papers focus on estimating
the rare event probability of exceeding a barrier; in contrast, our work focuses on sampling
barrier-crossing paths. Second, these papers obtain that the heaviest tails are inefficient in
their framework, while we obtain a form of inefficiency for lighter tails. Third, and perhaps
most importantly, the threshold 3/2 in the existing literature is a direct consequence of
requiring second moment conditions of the estimator, while a direct relation with moments
is absent for conditional sampling problems.

A by-product of our work is a counterexample for the statement of Proposition 4 of
Blanchet and Glynn [9]. This proposition states that, for a broad class of heavy-tailed step
sizes, the expected hitting time of the barrier grows linearly in the barrier level under the
Blanchet-Glynn change of measure. We show, though, that this result does not always hold.
This proposition is not central to the framework introduced in [9], and the issue we expose
here can also be deduced from Corollary 1 in [11], but our result reopens the question of
when the measure of Blanchet and Glynn induces a linear hitting time expectation.

Related literature. The primary means for exact or unbiased sampling from heavy-tailed
random walks is based on the change of measure technique. Simply put, this procedure
consists in sampling from a distribution different from the desired one and determining (or
computing) the output using the likelihood ratio. The essential idea is that the changed or
proposal distribution should emphasize characteristics of barrier-crossing paths.
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The literature of exact simulation of barrier-crossing paths is closely related to the one
of estimating the probability of exceeding the barrier. In the heavy-tailed setting, the latter
problem has already been studied for two decades. In contrast, the exact path-sampling
problem has only recently received attention, mostly driven by applications of Dominated
Coupling From the Past when in presence of heavy tails; see [13].

For the probability estimating problem under heavy tails, early approaches are [2,3,18].
An important contribution for the current paper is [9], which was later followed by [10,11].
A recent new technique is [17], which uses Markov Chain Monte Carlo to estimate the
multiplicative inverse of the probability of crossing the barrier.

The problem of exact sampling of paths with heavy tails, on the other hand, has only
recently been tackled by [13]. The latter modifies the measure of [10], which focuses on
the probability estimation problem, and builds on the scheme for exact sampling of paths
introduced in [12, §4]. The approach studied in this paper is based on the Blanchet-Glynn
change of measure, which is conceptually simpler than the approach proposed in [13]. The
search for a simpler algorithm provided the motivation for this paper.

Outline. This paper is organized as follows. In Section 2 we discuss the general pre-
liminaries for our conditional sampling problem: a change of measure technique and the
criterion we propose as a desirable property for efficiency for exact conditional sampling.
In Section 3 we state our main result of efficiency for conditional sampling when using the
Blanchet-Glynn change of measure [9] and with regularly varying step sizes. In Section 4
we compare our threshold result of Section 3 with similar ones in the literature of rare event
sampling. In Section 5 we give a proof of the main result of Section 4.

Notation. We denote by {Sn} the infinite length paths of the random walk. Given a
probability measure Q over {Sn}, we denote the expectation with respect to measure Q as
EQ. We write EQ

y [·] := EQ[·|S0 = y] and omit y when y = 0, as customary in the literature.
Given two probability measures P and Q over the same space, we denote absolute continuity
of P with respect to Q as P � Q, meaning that for all measurable B Q(B) = 0 implies
P(B) = 0. For x, y real we denote x+ := max{x, 0}, x− := −min{x, 0}, x ∧ y := min{x, y}
and x ∨ y := max{x, y}. Also, for two functions f and g we write f(t) ∼ g(t) when
limt→∞ f(t)/g(t) = 1; we write f(t) = O (g(t)) when lim supt→∞ |f(t)/g(t)| < ∞, and
f(t) = o (g(t)) when limt→∞ |f(t)/g(t)| = 0.

2 Preliminaries

This section gives the background necessary for the exposition of our main result. In Sec-
tion 2.1, we describe techniques for exact, or unbiased, conditional sampling using change of
measure technique. In Section 2.2, we give the criterion we propose as a desirable property
for efficiency for this problem. In Section 2.3, we briefly introduce the Blanchet-Glynn [9]
change of measure.

General setting. We consider a random walk Sn :=
∑n
i=1Xi, where Xi are iid, E|Xi| <

∞ and S0 = 0 unless explicitly stated otherwise. We assume that {Sn} has negative drift,
meaning that EXi < 0. We also assume that Xi has unbounded right support; that is,
P(Xi > t) > 0 for all t ∈ R.
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Given a barrier b ≥ 0, let τb := inf{n ≥ 0 : Sn > b} be the first barrier-crossing time.
Since the random walk has negative drift, we have Sn → −∞ a.s. as n → ∞, and also
P(τb =∞) > 0.

Our main goal is to study the suitability, with efficiency in mind, of using a change of
measure to sample exactly paths (S1, . . . , Sτb) conditional on {τb <∞}.

We remark that for the sake of clarity of exposition we will abuse notation and write
that ‘(S0, . . . , Sτb) follows the distribution P( · |τb < ∞)’ to mean that for all finite n ∈ N
the random vector (S0, . . . , Sτb) with τb = n has the distribution P( · |τb = n).

2.1 Exact conditional sampling via change of measure

We tackle the problem of exact or unbiased conditional sampling using the Acceptance-
Rejection algorithm, which uses the change of measure technique. Here we give a brief
exposition of these two methods.

Change of measure technique. Let P(y, dz) be the transition kernel of the random
walk, i.e., P(y, dz) = P(S1 ∈ dz|S0 = y). We consider a “changed” or “proposal” transition
kernel Q(y, dz), which may be chosen state dependent, meaning that Q(y1, y1 + ·) and
Q(y2, y2 + ·) may be different measures for y1 6= y2. We assume that P(y, ·) � Q(y, ·) for
all y, which implies that the likelihood ratio function dP/dQ(y, ·) exists. Letting Q be the
distribution of {Sn} induced by the proposal kernel Q, we slightly abuse notation and denote
by dP/dQ(Sn : 0 ≤ n ≤ T ) the likelihood ratio of a finite path (S0, . . . , ST ). More precisely,
for T finite dP/dQ(Sn : 0 ≤ n ≤ T ) := LT where LT is the nonnegative random variable
satisfying EQ [1BLT ] = EP [1B ] for all B in the σ-algebra σ(Sn : 0 ≤ n ≤ T ). With this, it
holds that

dP
dQ

(Sn : 0 ≤ n ≤ T ) =
dP

dQ
(S0, S1) · · · dP

dQ
(ST−1, ST ),

for all T finite or Q-a.s. finite stopping time. See [1, §XIII.3] for further details.

Acceptance-Rejection algorithm for exact conditional sampling. This procedure
considers the situation of a distribution that is “difficult” to sample from, and another dis-
tribution that is “easy” to sample from; the aim is to simulate from the difficult distribution.
The Acceptance-Rejection algorithm allows one to sample from the difficult distribution by
repeatedly sampling from the easy, “proposal”, distribution. Here we show a known special-
ization of this technique to the problem of sampling paths from the conditional distribution
P ( · |τb <∞), see [12].

Let P be the transition kernel of the random walk, and consider a “proposal” kernel
Q, possibly state dependent, such that P(y, ·) � Q(y, ·) for all y. Assume that for some
computable constant C > 0 we have

dP
dQ

(Sn : 0 ≤ n ≤ τb) · 1{τb<∞} ≤ C Q-a.s.

If U is uniformly distributed on [0, 1] under Q and drawn independently from {Sn}, then it
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can be verified that

Q
(
U ≤

1{τb<∞}

C

dP
dQ

(Sn :0≤n≤τb)
)

=
P(τb <∞)

C
, (1)

Q
(
{Sn} ∈ ·

∣∣∣∣ U ≤ 1{τb<∞}

C

dP
dQ

(Sn :0≤n≤τb)
)

= P ({Sn} ∈ · |τb <∞) , (2)

over events B ∈ Fτb such that B ⊆ {τb <∞}.
The Acceptance-Rejection procedure consists on iterating the steps: (i) sample jointly

(U, (S0, . . . , Sτb)) from Q, and (ii) check whether

U ≤
1{τb<∞}

C

dP
dQ

(Sn :0≤n≤τb) (3)

holds. The algorithm stops, “accepts”, the first time inequality (3) is satisfied, and outputs
the path (S0, . . . , Sτb). Equation (1) states that a sample is “accepted” with probability
P(τb <∞)/C; and equation (2) assures that the simulation is exact, i.e., that the distribution
of the output is P( · |τb <∞).

2.2 A desirable property for conditional sampling

We now propose a criterion for when a “changed” or “proposal” transition kernel Q is useful
in sampling paths up to τb from the conditional distribution P( · |τb <∞). Simply put, our
proposed criterion states that all crossing events occur with higher probability under the
proposal measure than under the original. Intuitively thus, this criterion is an efficiency
condition for the exact conditional sampling problem.

Definition 1 (Direct proposal for exact conditional sampling). Let Q(y, dz) be a transition
kernel such that P(y, ·)� Q(y, ·) for all y. Let Q be the distribution of {Sn} on RN induced
by Q. We say that Q is a direct proposal for exact conditional sampling from P( · |τb <∞)
iff

Q ({Sn} ∈ B) ≥ P ({Sn} ∈ B) ,

for all events B ∈ Fτb such that B ⊆ {τb < ∞}, and the inequality is strict for some such
B. Here Fτb is the usual σ-algebra associated to the stopping time τb.

We remark that the previous notion does not require Q(τb < ∞) = 1, although that is
true for the Blanchet-Glynn change of measure, as we will see in Proposition 2. We also
remark that by the definition of likelihood ratio we have that for all B ⊆ {τb <∞} it holds
that P ({Sn} ∈ B) = EQ

[
1B1{τb<∞} · dP/dQ(Sn : 0≤n≤τb)

]
. Together with Definition 1,

this identity gives the following equivalent condition for a proposal measure being direct for
exact conditional sampling.

Corollary 1. The following statements are equivalent:

(i) Q is a direct proposal for exact conditional sampling from P( · |τb <∞)

(ii) 1{τb<∞} · dP/dQ(Sn : 0≤n≤τb) ≤ 1 holds Q-a.s.
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An algorithmic equivalence and motivation. We now show yet another equivalent
condition for a measure to be a direct proposal for exact conditional sampling. Informally
speaking, this is an “algorithmic” characterization, since it states the property of being a
direct proposal as a correctness property of a simulation algorithm. This algorithm has
been a keystone of several recent exact simulation works, see e.g. [7, 8, 12, 13, 19], since in
particular it samples a Bernoulli random variable with parameter P(τb < ∞), without the
need to know the actual value of P(τb <∞). This algorithmic property initially motivated
the research presented in the current paper, and also motivates the terminology for calling
a proposal direct for exact conditional sampling.

Consider the following procedure: sample a path (S0, . . . , Sτb) from Q; set I := 1 if
dP/dQ(Sn : 0≤n≤τb) ≤ 1, and I := 0 otherwise; output (I, (S0, . . . , Sτb)). It holds that if
Q(τb <∞) = 1 then parts (i) and (ii) of Corollary 1 are actually equivalent to the following
statement: I is distributed as a Bernoulli random variable with parameter P(τb < ∞) and
if I = 1 then the sample path (S0, . . . , Sτb) follows the distribution P( · |τb < ∞). Indeed,
this is direct from (1) and (2) using C = 1, by Corollary 1 part (ii).

2.3 The Blanchet-Glynn change of measure

We now present the essential ideas of the Blanchet-Glynn change of measure [9]. This
measure proved efficient for estimating the probability P(τb <∞) as b→∞. In the current
paper, we are interested in its use for the exact conditional sampling problem.

The main idea motivating the Blanchet-Glynn change of measure is to approximate the
transition kernel of the conditional distribution. Indeed, it is well-known that the one-step
transition kernel of P( · |τb <∞), say Qb,∞, satisfies

Qb,∞(y, dz) = P(y, dz) · Pz(τb <∞)

Py(τb <∞)
, (4)

where P is the original transition kernel of {Sn}; see [4, §VI.7]. Here, the term Py(τb <∞)
in the denominator of (4) can be interpreted as a normalizing term, since

∫
P(y, dz)Pz(τb <

∞) = Py(τb < ∞) for all y. It is nevertheless impractical to simulate from this kernel
because usually the values of Pz(τb <∞) for z < b are not readily known. To be consistent
with the notation of Blanchet and Glynn [9] we denote u∗(x) := Px(τ0 <∞) for all x ∈ R;
in particular, the definition of Qb,∞ in (4) takes the form

Qb,∞(y, dz) = P(y, dz) · u
∗(z − b)
u∗(y − b)

. (5)

The idea put forth by Blanchet and Glynn is to approximate u∗ using the asymptotic
approximation given by Pakes-Veraverbeke Theorem, see [16, Chapter 5]. This result states
that

u∗(x) = Px(τ0 <∞) ∼ 1

|EX|

∫ ∞
−x

P(X > s) ds as x→ −∞ (6)

for random walks with negative drift and step sizes X which are (right) strongly subexpo-
nential. Inspired by this fact, the Blanchet-Glynn change of measure uses the following
transition kernel:

Qb,c(y, dz) := P(y, dz) · v(z − b− c)
w(y − b− c)

, (7)
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where

v(x) := min

{
1,

1

|EX|

∫ ∞
−x

P(X > s) ds

}
and w(y − b − c) :=

∫
P(y, dz)w(z − b − c) =

∫
P(y − b, dz)v(z − b − c) is a normalizing

term. The constant c ∈ R is a translation parameter, which in [9] and in our work, we will
see, is eventually chosen sufficiently large. Nonetheless, a heuristic but ultimately fallacious
argument for choosing c large is that if we could choose “c = ∞” then by the Pakes-
Veraverbeke asymptotic result (6) we would have that “Qb,c = Qb,∞”, i.e., the Blanchet-
Glynn measure Qb,c matches the conditional one step transition kernel Qb,∞.

In proving our results for this transition kernel we heavily rely on the fact that the
functions v and w are closely related to the residual life tail distribution of X. That is, a
random variable Z with distribution given by

P(Z > t) := min

{
1,

1

|EX|

∫ ∞
t

P(X > s) ds

}
for all t. (8)

We thus have v(x) = P(Z > −x) and w(x) = P(X + Z > −x) for all x, and in particular
Qb,c(y, ·) = Qb,c(S1 − S0 ∈ · |S0 = y) = P (X ∈ · |X + Z > c+ b− y), where X and Z are
independent. For further details we refer the reader to [9] and [4, §VI.7].

3 Main result: a threshold for being a direct proposal

In this section we present our main result on whether the Blanchet-Glynn [9] change of
measure is a direct proposal for exact conditional sampling of random walks with regularly
varying step sizes. Our main result is Theorem 1, which establishes a dichotomy for the tail
index of the step size distribution. We give two results from which our main result easily
follows. The first is a characterization for when the Blanchet-Glynn change of measure is a
direct proposal for exact conditional sampling, and the second explores this characterization
in the case of regularly varying step sizes. Lastly, we study the time at which the barrier is
hit under the Blanchet-Glynn measure.

Main result. We now describe the main result of this paper. We work under the following
assumptions on the distribution of the step sizes, in addition to the assumption of negative
drift, i.e., EX < 0.

Assumptions:

(A1) The right tail P(X+ > ·) is regularly varying with tail index α > 1; that is, for all
u > 0 we have P(X > ut) ∼ u−αP(X > t) as t→∞.

(A2) The left tail P(X− > ·) decays fast enough so that there exists a function h(t) = o(t)
such that h(t)→∞ and

∫∞
h(t)

P(X− > s) ds = o(t · P(X+ > t)) as t→∞.

(A3) The step size distribution has a continuous density which is regularly varying with tail
index α+ 1.
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We note that the more natural condition P(X− > t) = o(P(X+ > t)) as t → ∞ not
necessarily implies Assumption (A2); although it does imply that

∫∞
h(t)

P(X− > s) ds =

o (h(t) · P(X+ > h(t))) for all h such that h(t) → ∞. Nonetheless, Assumption (A2) is
not overly restrictive. Indeed, a stronger condition is that there exists δ > 0 such that
tδ · P(X− > t) = O(P(X+ > t)) as t→∞; the latter holds for instance when P(X− > ·) is
light-tailed, or when P(X− > ·) is regularly varying with tail index β satisfying β > α. We
also note that Assumption (A3) can be replaced by the less restrictive assumption that the
step size distribution be ultimately absolutely continuous with respect to Lebesgue measure,
with continuous and regularly varying density. More precisely, it can be replaced by the
assumption that there exists some t0 such that on [t0,∞) the step size distribution has a
continuous density f(·) which is regularly varying with tail index α+ 1.

The main result of this paper follows.

Theorem 1 (Direct proposal with regularly varying right tails). Let Qb,c be the distribution
of {Sn} induced by the transition kernel Qb,c defined in (7). Under Assumptions (A1)–(A3)
the following hold:

(i) If α ∈ (1, 3/2) then there exists some sufficiently large c so that Qb,c is a direct
proposal for exact conditional sampling from P( · |τb <∞) for all b ≥ 0.

(ii) If α ∈ (3/2, 2) then for all c ∈ R and all b ≥ 0 it holds that Qb,c is not a direct
proposal for exact conditional sampling from P( · |τb <∞).

It is noteworthy that the change of measure is direct for exact conditional sampling only
for step sizes with very heavy tails. Indeed, recall that the tail index α is an indicator of
how heavy a tail is, c.f. E [(X+)p] <∞ for p ∈ (1, α) and E [(X+)p] =∞ for p > α.

Proof elements. We show here the main elements of the proof of Theorem 1, and start
by investigating in Proposition 1 how the following statements are related. The proof is
deferred to Appendix A.

(S1cb) The distribution Qb,c induced by the Blanchet-Glynn kernel (7) is direct for exact for
conditional sampling from P( · |τb <∞).

(S2) We have P(X +Z > t) ≤ P(Z > t) for all sufficiently large t, where Z has the residual
life distribution (8) and is independent of X.

Proposition 1. (i) If (S2) holds, then there exists some sufficiently large c so that (S1cb)
holds for all b ≥ 0.

(ii) Suppose that P(|X| ≤ δ) > 0 for all δ > 0. If (S1cb) holds for some b ≥ 0 and some
c ∈ R, then (S2) also holds.

We remark that part (i) says that the same parameter c, chosen sufficiently large, works
for all barriers b ≥ 0; that is, b is independent of c in this case. We also remark that in
the case of (ii), applying (i) we get that (S1cb) actually holds for all b ≥ 0, possibly after
changing the constant c.

It is shown in [9] that P(X + Z > t)− P(Z > t) = o (P(X > t)) as t→∞ for the family
of strongly subexponential distributions, which includes regularly varying tails. Hence, the
previous proposition shows that for a measure to be direct for exact conditional sampling
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it is not enough to know that the difference decays faster than P(X > t), we actually need
the sign of the difference as t→∞.

The following result shows that, in the case of step sizes satisfying Assumptions (A1)–
(A2), the sign of P(X+Z > t)−P(Z > t) when t→∞ is fully determined by the tail index
α of the right tail distribution. The proof is given in Section 5.

Theorem 2. Suppose that Assumptions (A1)–(A3) hold. Let Z be a random variable inde-
pendent of X with the residual life distribution (8). Then the following statements hold:

(i) If α ∈ (1, 3/2) then P(X + Z > t) ≤ P(Z > t) for all t > 0 sufficiently large.

(ii) If α ∈ (3/2, 2) then P(X + Z > t) ≥ P(Z > t) for all t > 0 sufficiently large.

With this, Theorem 1 is a corollary of Proposition 1 and Theorem 2.

Hitting time analysis. We now investigate the finiteness and mean value of the hitting
time τb under the Blanchet-Glynn change of measure Qb,c. The motivation is that τb gives
a rough estimate of the computational effort of sampling a barrier-crossing path using the
measure Qb,c.

The following result explores the hitting time in the regularly varying right tails setting
of Assumptions (A1)–(A2). Its proof is deferred to Appendix B.

Proposition 2 (Hitting time under Qb,c). Let Q be the distribution of {Sn} induced by the
transition kernel Qb,c defined in (7). Consider the setting of Assumptions (A1)–(A3). For
any sufficiently large c the following hold for all b ≥ 0:

(i) If α > 1 then Qb,c(τb <∞) = 1.

(ii) If α ∈ (1, 3/2) then EQb,c

τb =∞ for all b ≥ 0.

(iii) If α > 2 then EQb,c

τb = O(b) as b→∞.

We remark that part (ii) of the previous proposition, although a negative result, is
actually independent of the Blanchet-Glynn measure Qb,c and holds essentially because
we have EP[τb|τb < ∞] = ∞ when α ∈ (1, 2), see e.g. [5, Theorem 1.1]. In other words, if
α ∈ (1, 2) no algorithm or change of measure — direct or not — sampling paths (S0, . . . , Sτb)
from P( · |τb <∞) can produce paths of finite expected length.

We also remark that part (ii) of Proposition 2 is a counterexample for Proposition 4

of [9]. Indeed, the latter result claims that we have EQb,c

τb = O(b) as b→∞ when the step
sizes satisfy EP[Xp; X > 0] < ∞ for some p > 1. Part (ii) of Proposition 2 shows that the
latter condition is not enough in general. Alternatively, this issue with Proposition 4 of [9]
can also be derived from Corollary 1 of [11]. The latter result shows that if α ∈ (1, 3/2)
no change of measure can be at the same time strongly efficient for importance sampling
and have linear expected hitting time; in contrast, Proposition 4 of [9] states that for any
α > 1 the Blanchet-Glynn measure is both strongly efficient for importance sampling and
has linear expected hitting time. Clearly both results are contradictory.

4 Threshold 3/2: a comparison

In this section we compare the threshold result of Theorem 1 with previous simulation works
where, when using regularly varying step sizes, some form of efficiency of the method has
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given rise to the same threshold 3/2 for the tail index. We argue that the threshold arises
in this existing literature for reasons unrelated to our work.

Review. Previous works in which the 3/2 threshold appears in the context of efficiency are
Blanchet and Liu [11] and Murthy, Juneja and Blanchet [10]. Both papers focus on solving
the probability estimation problem via importance sampling; that is, their aim is to estimate
the probability P(τb <∞) for arbitrarily large barriers b, using Monte Carlo sampling from
another measure. Blanchet and Liu propose a parameterized and state-dependent change of
measure, say QBL, which in the regularly varying case takes the form of a mixture between
a big- and a small-jump transition kernel. Murthy et al. propose a similar big- and small-
jump mixture kernel, say QMJB, however their change of measure is state-independent and
additionally conditions on the time interval at which the barrier-crossing event occurs.

Both Blanchet and Liu [11] and Murthy et al. [10] have two requirements on their pro-
posed measures: (i) the linear scaling EQτb = O(b) as b → ∞ of the hitting time, and (ii)
strong efficiency of the estimation procedure. In short, the latter means that, under the
proposed change of measure Q, the coefficient of variation of the random variable

dP
dQ

(Sn : 0≤n≤τb) · 1{τb<∞} (9)

stays bounded as b→∞; this is a second moment condition on (9). Both papers arrive at
the same threshold result: for regularly varying step sizes, the proposed change of measure
satisfies the previous two requirements for some combination of tuning parameters if and
only if the tail index α is greater than 3/2.

Comparison. Given that the same threshold appears, it is natural to ask if there is a
connection between our result in Corollary 1 and the results in prior work. We now argue
why there is no clear or direct connection between these results.

In Blanchet and Liu [11] and Murthy et al. [10] the threshold 3/2 is strictly related to the
second moment condition over the likelihood ratio (9) that is imposed by the requirement
of efficiency for importance sampling. More precisely, in both these works if a moment
condition is imposed on a different moment than the second, then we get a different threshold
for the admissible tail indexes. In contrast, our result arises from imposing an almost sure
condition on the Blanchet-Glynn change of measure. Indeed, by Corollary 1, the condition of
a proposal measure being direct for exact conditional sampling is a Q-almost sure condition
on the random variable (9). In contrast, and as said before, efficiency for importance
sampling is a second moment condition on (9).

5 Proof of Theorem 2

In this section we prove Theorem 2, which is the main component of our main result of
Theorem 1. That is, we prove that the tail index α completely determines the sign of the
difference

P(X + Z > t)− P(Z > t) (10)

when t is large enough. We work under Assumptions (A1)–(A3), which state roughly speak-
ing that the step sizes have regularly varying right tails with tail index α, and lighter left
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tails. In short, Theorem 2 establishes that if α ∈ (1, 3/2) then the difference (10) is negative
for large t, and positive if α ∈ (3/2, 2).

The following is a roadmap for the main steps of the proof. First, in Lemma 1 we
write the difference (10) as a sum of several terms. Second, in Lemma 2 we carry out an
asymptotic analysis to determine which terms dominate when t → ∞. It follows that the
sign of the difference (10) when t→∞ can be reduced to the sign of the sum of dominant
terms when t→∞. Finally, the latter is analyzed in Lemma 3, which reveals the dichotomy
for α in (1, 3/2) or (3/2, 2).

Before embarking on the proof, some remarks on our notation are in order. Recall that
we say that the random variable Z has the residual life distribution of X if its distribution
is given by

P(Z > t) = min

{
1,

1

|EX|

∫ ∞
t

P(X > s) ds

}
, for all t.

We write the left-most point of the support of Z as z0 := inf{t : P(Z > t) < 1}, which is
finite since EX is also finite. Additionally, we use that the density of Z is P(X > t)/|EX|
for all t > z0 and that

∫∞
z0

P(X > s) ds = |EX|. We also use the notation F (t) := P(X ≤ t)
and F (t) := P(X > t) for all t. Lastly, we recall that Assumption (A1) establishes that the
right tail P(X > ·) is regularly varying with tail index α > 1.

We start with a general decomposition of the difference (10).

Lemma 1. Let X be a random variable with negative mean, and let Z be independent of
X with the residual life distribution of X. Consider any function h such that max{z0, 0} <
h(t) < t/2 for all t > max{2z0, 0}. Then the following holds for t > max{2z0, 0}:

P(X + Z > t)− P(Z > t) = p(t)− q(t) + ε1(t)− ε2(t),

where we define for t > max{2z0, 0}

p(t) :=
1

|EX|

∫ t−h(t)

h(t)

F (t− s) · F (s) ds

q(t) :=
F (t)

|EX|

∫ ∞
h(t)

[
2F (s)− F (−s)

]
ds

ε1(t) :=
1

|EX|

[(∫ h(t)

0

+

∫ h(t)

z0

)[
F (t− s)− F (t)

]
· F (s) ds

+

∫ 0

−h(t)

[
F (t)− F (t− s)

]
· F (s) ds

]

ε2(t) :=
1

|EX|

∫ −h(t)
−∞

F (t− s) · F (s) ds.

Proof. First note that

P(X + Z > t)− P(Z > t) = P(X + Z > t, Z ≤ t)− P(X + Z ≤ t, Z > t).

For t satisfying max{z0, 0} < h(t) < t/2 we decompose the first term on the right-hand side

11



as follows:

P(X + Z > t, Z ≤ t) =

∫ t

z0

F (t− s) · 1

|EX|
F (s) ds

=
1

|EX|

[∫ h(t)

z0

F (t)F (s) ds+

∫ h(t)

z0

[
F (t− s)− F (t)

]
F (s) ds

+

∫ t−h(t)

h(t)

F (t− s)F (s) ds

+

∫ h(t)

0

F (t)F (s) ds+

∫ h(t)

0

[
F (t− s)− F (t)

]
F (s) ds

]
.

A similar decomposition follows for the second term:

P(X + Z ≤ t, Z > t) =

∫ ∞
t

F (t− s) · 1

|EX|
F (s) ds

=
1

|EX|

[∫ −h(t)
−∞

F (s)F (t− s) ds+

∫ 0

−h(t)
F (s)F (t) ds

+

∫ 0

−h(t)
F (s)

[
F (t− s)− F (t)

]
ds

]
.

Subtracting both terms we obtain

|EX| · [P(X + Z > t)− P(Z > t)] =

=

∫ t−h(t)

h(t)

F (t− s)F (s) ds

−F (t)

[∫ 0

−h(t)
F (s) ds−

∫ h(t)

z0

F (s) ds−
∫ h(t)

0

F (s) ds

]

+

[(∫ h(t)

z0

+

∫ h(t)

0

)[
F (t− s)− F (t)

]
F (s) ds

−
∫ 0

−h(t)

[
F (t− s)− F (t)

]
F (s) ds

]
−
∫ −h(t)
−∞

F (s)F (t− s) ds

= |EX| · [p(t)− q(t) + ε1(t)− ε2(t)] .

The last equality comes from using the definition of p, q, ε1 and ε2, and noting that |EX| =∫∞
z0
F (s) ds and EX < 0, so we have that∫ 0

−h(t)
F (s) ds−

∫ h(t)

z0

F (s) ds−
∫ h(t)

0

F (s) ds

= EX− − |EX| − EX+ + 2

∫ ∞
h(t)

F (s) ds−
∫ −h(t)
−∞

F (s) ds

=

∫ ∞
h(t)

[
2F (s)− F (−s)

]
ds.

This concludes the proof.
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The next step consists in determining which terms dominate when t → ∞; this is done
in the following result.

Lemma 2. Let X be a random variable with negative mean satisfying Assumptions (A1)–
(A3) for some index of regular variation α ∈ (1, 2). Let Z be independent of X with the
residual life distribution of X. In the definition of p, q, ε1 and ε2 consider a function
h satisfying Assumption (A2); in particular h satisfies max{z0, 0} < h(t) < t/2 for all
t > max{2z0, 0}, and it holds that h(t)→∞ and h(t) = o (t) as t→∞. Then the following
hold as t→∞:

(i)

p(t)− q(t) ∼ tF (t)2

|EX|

(
2

∫ 1/2

0

[(1− u)−α − 1]u−α du− 2α

α− 1

)
,

(ii)
ε1(t) = o

(
tF (t)2

)
and ε2(t) = o

(
tF (t)2

)
.

We remark that Lemmas 1 and 2 together establish that if X satisfies Assumptions (A1)–
(A3) and α ∈ (1, 2) then

P(X + Z > t)− P(Z > t) ∼ KαP(Z > t)P(X > t) (11)

as t→∞, where

Kα := (α− 1)

∫ 1

0

(
(1− u)−α − 1

) (
u−α − 1

)
du− (α+ 1).

This comes from P(Z > t) ∼ tF (t)/((α − 1)|EX|) by Karamata’s Theorem [6, Theorem
1.6.1]. We note that, in contrast, Proposition 3 of [9] shows that P(X + Z > t) − P(Z >
t) = o (P(X > t)), so the result (11) is much finer.

Proof. We start proving (i). For that, first rewrite |EX| · (p(t)− q(t))/(tF (t)2) as

2

∫ t/2

h(t)

F (t− s)− F (t)

F (t)
· F (s)

tF (t)
ds−

2
∫∞
t/2

F (s) ds

tF (t)
+

∫∞
h(t)

F (−s) ds

tF (t)
.

The third term goes to zero by Assumption (A2), so we can ignore it for the proof of the
statement. For the second term, note that since α > 1, Karamata’s Theorem [6, Theorem
1.6.1] yields

2

∫ ∞
t/2

F (s) ds ∼ tF (t/2)

α− 1
∼ 2α

α− 1
tF (t).

It remains to investigate the first term. To this end, we first rewrite the integral as∫ 1/2

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du; (12)

we need to show that as t → ∞ this integral converges to
∫ 1/2

0
[(1 − u)−α − 1]u−α du. To

this end, consider δ ∈ (0, 1/2) and note that since h(t) = o(t) we can write (12) for all
sufficiently large t as∫ δ

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du+

∫ 1/2

δ

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du. (13)
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We start by analyzing the second term in (13). Since F is regularly varying with tail index
α we get by the Uniform Convergence Theorem [6, Theorem 1.2.1] that

sup
u∈[δ, 1/2]

∣∣∣∣[F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
− [(1− u)−α − 1]u−α

∣∣∣∣→ 0 as t→∞,

so ∫ 1/2

δ

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du→

∫ 1/2

δ

[(1− u)−α − 1]u−α du, (14)

as t → ∞. We next analyze the first term in (13). Using Assumption (A3) we apply the
mean value theorem on the interval (0, u) to the function s 7→ F (t(1 − s)) and establish
that F (t(1 − u))/F (t) − 1 = f (t(1− ξ)) tu/F (t) for some ξ = ξ(t, u) ∈ (0, u), where f
is the density of X. Additionally, we have that for all sufficiently large t it holds that
f (t(1− ξ)) t/F (t) ≤ 2(1+2α+1)α for all ξ ∈ (0, δ). Indeed, since f is regularly varying with
tail index α + 1 then by Karamata’s Theorem [6, Theorem 1.6.1] we get tf(t)/F (t) → α;
additionally, by Uniform Convergence Theorem [6, Theorem 1.2.1] we have that for any
large enough t

sup
ξ∈(0,δ)

∣∣∣∣f(t(1− ξ))
f(t)

− 1

(1− ξ)α+1

∣∣∣∣ ≤ 1,

so f(t(1 − ξ))/f(t) ≤ 1 + 1/(1 − ξ)α+1 ≤ 1 + 2α+1 for all sufficiently large t and for all
ξ ∈ (0, δ) ⊂ (0, 1/2). We conclude that F (t(1 − u))/F (t) − 1 ≤ 2(1 + 2α+1)αu for all large
enough t. We use this inequality to bound the term in the brackets of the first term of (13),
obtaining that for all sufficiently large t∫ δ

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du ≤ 2(1 + 2α+1)α

∫ δ

h(t)/t

tuF (tu)

tF (t)
du.

We now argue that
∫ δ
h(t)/t

(
tuF (tu)

)
/
(
tF (t)

)
du ≤ 2δ2−α/(2 − α) for all sufficiently large

t. Indeed, ∫ δ

h(t)/t

tuF (tu)

tF (t)
du =

(∫ δt

0

−
∫ h(t)

0

)
sF (s)

t2F (t)
ds,

so using that tF (t) is regularly varying with tail index α−1 ∈ (0, 1) we can apply Karamata’s
Theorem [6, Theorem 1.6.1] and that h(t)→∞ to get∫ δ

h(t)/t

tuF (tu)

tF (t)
du ∼ 1

2− α

(
δ2
F (δt)

F (t)
−
(
h(t)

t

)2
F (h(t))

F (t)

)
∼ δ2−α

2− α

as t→∞. Indeed, note that since h(t) = o(t) and s 7→ s2F (s) is regularly varying with tail

index α− 2 ∈ (−1, 0) then (h(t)/t)
2

(F (h(t))/F (t))→ 0. All in all, we obtain that the first
term of (13) satisfies, for all large enough t,∫ δ

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du ≤ 4(1 + 2α+1)α

2− α
δ2−α.
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Lastly, note that δ ∈ (0, 1/2) is arbitrary, so letting δ decrease to 0 in the latter inequality
we get that

lim
δ↘0

lim sup
t→∞

∫ δ

h(t)/t

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du = 0. (15)

Similarly, letting δ decrease to 0 in (14) we obtain

lim
δ↘0

lim
t→∞

∫ 1/2

δ

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du =

∫ 1/2

0

[(1− u)−α − 1]u−α du. (16)

From (15) and (16) and the decomposition (13) of (12) we get the desired result.
We now prove (ii). First we show that ε1(t) = o

(
tF (t)2

)
. To this end, it is suffi-

cient to prove
∫ h(t)
0

[
F (t− s)− F (t)

]
F (s) ds = o

(
tF (t)2

)
. Indeed, if z0 < 0 it holds that∫ h(t)

z0

[
F (t− s)− F (t)

]
F (s) ds = o

(
tF (t)2

)
as t→∞, since∣∣∣∣∫ 0

z0

[
F (t− s)− F (t)

]
F (s) ds

∣∣∣∣ ≤ ∫ |z0|
0

[
F (t)− F (t+ s)

]
ds ≤ |z0| sup

s∈[t,t+|z0|]
f(s) ∼ |z0|f(t)

by the Uniform Convergence Theorem [16, Chapter 2] and because f is in particular long
tailed by Assumption (A3); and since α ∈ (1, 2) then f(t) = o

(
tF (t)2

)
. It is sufficient then

to prove that the expression∫ h(t)

0

F (t− s)− F (t)

F (t)

F (s)

tF (t)
ds =

∫ h(t)/t

0

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du

goes to zero as t→∞. We proceed by using the same line of reasoning used to prove (15),
which is delineated in the following. First, apply the mean value theorem on the interval
(0, u) to the function s 7→ F (t(1− s)), and then use the Uniform Convergence Theorem [6,
Theorem 1.2.1] to get that for all sufficiently large t we have∫ h(t)/t

0

[
F (t(1− u))

F (t)
− 1

]
F (tu)

F (t)
du ≤ 2(1 + 2α+1)α

∫ h(t)/t

0

tuF (tu)

tF (t)
du. (17)

Second, apply Karamata’s Theorem [6, Theorem 1.6.1] to obtain that∫ h(t)/t

0

tuF (tu)

tF (t)
du =

∫ h(t)

0

sF (s)

t2F (t)
ds ∼ 1

2− α

(
h(t)

t

)2
F (h(t))

F (t)
, (18)

since h(t)→∞. Third, since the function s 7→ s2F (s) is regularly varying with 2−α ∈ (0, 1)

and h(t) = o(t) then (h(t)/t)
2
F (h(t))/F (t) → 0 when t → ∞. The latter fact, together

with (17) and (18), allows to conclude the desired result.
Lastly, ε2(t) = o

(
tF (t)2

)
also holds because∫ −h(t)

−∞

F (t− s)
F (t)

F (s)

tF (t)
ds =

∫ ∞
h(t)

F (t+ s)

F (t)

F (−s)
tF (t)

ds ≤
∫ ∞
h(t)

F (−s)
tF (t)

ds,

with the last term going to zero as t→∞ by Assumption (A2).
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The previous result shows that when t → ∞ the sign of the difference P(X + Z >
t) − P(Z > t) reduces to the sign of the term p(t) − q(t). We now show that the latter is
fully determined by the tail index α being either in (1, 3/2) or in (3/2, 2).

Lemma 3. The quantity∫ 1/2

0

[(1− u)−α − 1]u−α du− 2α−1

α− 1
(19)

is negative for α ∈ (1, 3/2) and positive for α ∈ (3/2, 2).

Proof. First note that for fixed u ∈ (0, 1/2) the function [(1 − u)−α − 1]u−α is strictly

increasing in α > 0, so
∫ 1/2

0
[(1 − u)−α − 1]u−α du is as well. Also, since 2β/β is strictly-

decreasing for β ∈ (0, 1) then −2α−1/(α − 1) is strictly increasing in α when α ∈ (1, 2).
Thus (19) is strictly increasing in α for α ∈ (1, 2). Lastly, it is easy to verify that if α = 3/2
then (19) is equal to zero.

With the previous lemmas the proof of Theorem 2 is straightforward.

Proof of Theorem 2. Consider in the definition of p, q, ε1 and ε2 a function h satisfying
Assumption (A2); in particular it satisfies max{z0, 0} < h(t) < t/2 for all t > max{2z0, 0},
and h(t) → ∞ and h(t) = o (t) as t → ∞. By Lemma 1 and Lemma 2 we have that as
t→∞

P(X + Z > t)− P(Z > t)

tF (t)2
=
p(t)− q(t)
tF (t)2

+ o (1) .

We conclude from Lemma 3 that as t→∞ the right-hand side is negative for α ∈ (1, 3/2)
and positive for α ∈ (3/2, 2).
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Appendices

A Proof of Proposition 1

Proof of Proposition 1. For (i), assume that (S2) holds; that is, that we have P(X + Z >
t) ≤ P(Z > t) for all t sufficiently large. Take then c sufficiently large so that P(X + Z >
c+ t) ≤ P(Z > c+ t) holds for all t ≥ 0. Thus, we have by definition of v and w that

w(y − b− c)/v(y − b− c) ≤ 1 for all y ≤ b. (20)
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Using then the definition (7) of Qb,c, the following holds for S0 = 0 and all b ≥ 0:

1{τb<∞}
dP

dQb,c
(Sn : 0≤n≤τb) = 1{τb<∞}

w(S0 − b− c)
v(Sτb − b− c)

τb−1∏
n=1

w(Sn − b− c)
v(Sn − b− c)

≤ 1{τb<∞}
w(S0 − b− c)
v(Sτb − b− c)

.

It follows that, conditional on τb <∞, we have w(S0−b−c) ≤ v(S0−b−c) ≤ v(Sτb−b−c),
by inequality (20) and monotonicity of v. So then we obtain that 1{τb<∞}dP/dQb,c(Sn :

0≤n≤τb) ≤ 1. We conclude that statement (S1b,c) holds, by Corollary 1.
For (ii), assume that (S1b,c) holds, for some b ≥ 0 and some c ∈ R; i.e., that Qb,c is a

direct proposal for conditional sampling from P( · |τb < ∞). We proceed by contradiction
and assume that (S2) does not hold, i.e., that for all t we have that there exists a t0 > t
such that P(X + Z > t0) > P(Z > t0). Using the fact that w(y) = P(X + Z > −y) and
v(y) = P(Z > −y), we get that the previous hypothesis implies in particular that for all
y ≤ b there exists y0 < y such that w(y0 − b− c)/v(y0 − b− c) > 1 holds.

With this, we will show that necessarily the following holds

Qb,c
(

1{τb<∞}
w(S0 − b− c)
v(Sτb − b− c)

τb−1∏
n=1

w(Sn − b− c)
v(Sn − b− c)

> 1

)
> 0, (21)

i.e., that Qb,c
(
1{τb<∞} · dP/dQb,c(Sn : 0≤n≤τb) > 1

)
> 0. The latter is a contradiction

with hypothesis (S1b,c), by Corollary 1. Now, to prove (21) the main idea is to construct
paths (Sn : 0≤ n≤ τb) under Qb,c that, before crossing the barrier b, spend a sufficiently
large amount of time in the set

Y c,b>1 :=

{
y ≤ b :

w(y − b− c)
v(y − b− c)

> 1

}
.

For that we distinguish two cases: if S0 = 0 ∈ Y c,b>1 or not. We start with the former case.

Case 1: if c and b ≥ 0 are such that S0 = 0 ∈ Y c,b>1 . In this case we have that for all
C > 0 there exists N > 0 such that

P

(
N−1∏
n=1

w(Sn − b− c)
v(Sn − b− c)

> C

)
> 0.

Indeed, this comes from the fact that P(|X| ≤ δ) > 0 for all δ > 0 and that the function
w(· − b − c)/v(· − b − c) is continuous; hence, the random walk can stay for an arbitrary

amount of steps in a small neighborhood of S0 = 0 subset of Y c,b>1 . It follows that we have,
for a sufficiently large N > 0,

P

(
τb = N ;

N−1∏
n=1

w(Sn − b− c)
v(Sn − b− c)

>
v(SN − b− c)
w(S0 − b− c)

)
> 0,

since X has unbounded right support and v(· − b− c) ≤ 1. Using then absolute continuity
of P with respect to Qb,c over paths with finite number of steps, we get that

Qb,c
(
τb = N ;

N−1∏
n=1

w(Sn − b− c)
v(Sn − b− c)

>
v(SN − b− c)
w(S0 − b− c)

)
> 0. (22)
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We conclude then that (21) also holds, since the event in (22) is subset of the event in (21).
This proves inequality (21), which is a contradiction with hypothesis (S1b,c).

Case 2: if c and b ≥ 0 are such that S0 = 0 /∈ Y c,b>1 . The idea for this case is to reduce

it to the previous one, by constructing paths that, first, move to the set Y c,b>1 , and second,

spend a sufficiently large amount of time in Y c,b>1 . For that, first define τ>1 := inf{n ≥ 0 :

Sn ∈ Y c,b>1 }. Take then a compact set A ⊆ R and a large enough M > 0, so that they satisfy

P (τ>1 = M ; Sn − b ∈ A for n = 0, . . . ,M) > 0;

here, A is chosen to satisfy S0−b ∈ int(A) and Y c,b>1 ∩int(A) 6= ∅. Note now that it holds that

sup
{∏M

n=1 v(yn − b− c)/w(yn − b− c) : y0, . . . , yM ∈ A+ b
}

is finite, since A is compact

and v(· − c)/w(· − c) is continuous. With this, and using the same arguments of Case 1, we
obtain that there exists a large enough N > 0 such that

P

(
τb = N +M ;

v(S0 − b− c)
w(SN+M − b− c)

M+N−1∏
n=1

w(Sn − b− c)
v(Sn − b− c)

> 1

)
> 0. (23)

Indeed, it is sufficient to condition the probability on the left hand side of (23) on the event
{τ>1 = M ; S0, . . . , SM ∈ A + b} and use the strong Markov property. It follows that, by
absolute continuity of P with respect to Qb,c over paths with finite number of steps, we have
that

Qb,c
(
τb = N +M ;

v(S0 − b− c)
w(SN+M − b− c)

M+N−1∏
n=1

w(Sn − b− c)
v(Sn − b− c)

> 1

)
> 0. (24)

Clearly then inequality (21) holds, since the event of the latter inequality contains the event
in (24). We have arrived to a contradiction with hypothesis (S1b,c).

B Proof of Proposition 2

Before showing the proof of Proposition 2 we establish the following lemma, which is a direct
corollary of [11, Lemma 2]. It will be used to prove part (iii) of the latter result.

Lemma 4. Let Q be a measure over paths of {Sn}. Assume that we have for any large
enough b > 0 that

lim inf
y→−∞

{
EQ [S1 − S0|S0 = y]−

∫ ∞
b−y

Q(S1 − S0 > u|S0 = y) du

}
> 0. (25)

Then EQτb = O(b) as b→∞.

Proof. The proof consists in showing that if (25) holds then the function h(y) := (C + |b−
y|)1{y≤b} satisfies the hypothesis of [11, Lemma 2], for some C > 0. That is, EQb,c

y [h(S1)]−
h(y) < −ρ for all y ≤ b and for some ρ > 0. For that, note that for y < b we have

EQ[h(S1)− h(y)|S0 = y] =

−EQ [S1 − S0|S0 = y] +

∫ ∞
b−y

Q (S1 − S0 > u|S0 = y) du− CQ(S1 > b|S0 = y)
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Therefore, inequality lim supy→−∞ EQ[h(S1) − h(y)|S0 = y] < 0 is equivalent to inequal-

ity (25). Using then [11, Lemma 2] we conclude that EQτb ≤ h(0)/ρ = C/ρ + ρ−1b =
O(b).

Proof of Proposition 2. For part (i), we have to show that Qb,c(τb < ∞|S0 = 0) = 1 holds
for all b ≥ 0. We will actually show that this is true for all c ∈ R.

For that, first consider any c ∈ R and note that from [9, Lemma 1] we have that

limy→−∞ EQb,c

[S1 − S0|S0 = y] > 0. This result applies in our case because X is strongly
subexponential, since X has regularly varying right tails with tail index α > 1. Also, it can
be checked that

EQb,c

[S1 − S0 |S0 = y] = EP [X |X + Z > c+ b− y] (26)

holds, since

Qb,c (S1 − S0 ∈ ·|S0 = y) = P (X ∈ ·|X + Z > c+ b− y) , (27)

where X and Z are independent and Z has the residual life distribution of X.
We have thus that there exists ε > 0 and y0 ∈ R such that for all y ≤ y0 we have

EQb,c

[S1 − S0|S0 = y] > ε. It follows that Qb,c(τy0 < ∞|S0 = y) = 1 holds for all y ≤ y0.
We distinguish two cases now: if b ≤ y0 and if y0 < b. In the former case, it is direct that
Qb,c(τb <∞|S0 = 0) ≥ Qb,c(τy0 <∞|S0 = 0) = 1 holds, since 0 ≤ b ≤ y0. In the latter case
on the other hand, that is if y0 < b, we can use a standard geometric trials argument to get
that, for all y ≤ y0,

Qb,c(τb <∞|S0 = y) ≥ Qb,c(Geom(γ) <∞) = 1.

Here, Geom(γ) is an independent geometric random variable with parameter

γ := inf
y∈[y0,b]

Qb,c (S1 − S0 > b− y0|S0 = y) ,

where γ > 0 because of (27) and using that the function y 7→ P(X > c + b − y|X + Z >
c+ b− y) is continuous and strictly positive. Indeed, it is continuous because both X and
Z have absolutely continuous distributions, the former by Assumption (A3) and the latter
by definition (8). In both cases, b ≤ y0 and y0 < b, we have shown that Qb,c(τb < ∞|S0 =
y) = 1.

For (ii), we proceed by contradiction and assume that EQb,c

[τb] < ∞. By [5, Theo-
rem 1.1], for α ∈ (1, 2) it holds EP [τb |τb <∞ ] =∞. But since Qb,c is a direct proposal for
exact conditional sampling when α ∈ (1, 3/2), then by Corollary 1 part (ii) we have

EQb,c

[τb] = EQb,c

∑
n≥0

n1{τb=n}

 ≥ EP

∑
n≥0

n1{τb=n}

 = EP [τb1{τb<∞}] =∞,

which is a contradiction.
For (iii), by Lemma 4 it is sufficient to show that (25) holds. For that, note that by

definition of the Blanchet-Glynn kernel in (7) and the fact that

v(y) = P(Z > −y) =
1

|EPX|
EP [[X + y]+

]
(28)
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and

w(y) = P(X + Z > −y) = EP [v(y +X)] (29)

we have

Qb,c (S1 − S0 ∈ · | S0 = y) = P (X ∈ · | X + Z > −y + c) ,

where Z is independent of X and has the residual life distribution of X. With this and
identities (26) and (27) we get that

EQb,c

[S1 − S0|S0 = y]−
∫ ∞
b−y

Qb,c(S1 − S0 > u|S0 = y) du

= EP [X|X + Z > c+ b− y]−
∫ ∞
b−y

EP [1{X>u}|X + Z > c+ b− y
]

du

= EP [X|X + Z > c+ b− y]− EP
[

[X − b+ y]
+
∣∣∣X + Z > c+ b− y

]
. (30)

For the first term in the right-hand side of (30) one obtains that

lim inf
y→−∞

EP [X|X + Z > c+ b− y] ≥ (α− 1)|EPX|

by following the same arguments of the proof of [9, Lemma 1] and using that t ·P(X > t) ∼
|EPX|(α−1)P(Z > t) as t→∞, which is direct from Karamata’s Theorem, see [6, Theorem
1.6.1]. For the second term in the right-hand side of (30) one gets that if b − y > z0 then
by identities (28) and (29) we have

EP
[
[X − b+ y]

+
∣∣∣X + Z > c+ b− y

]
=

EP
[
[X − b+ y]

+
1{X+Z>c+b−y}

]
P(X + Z > c+ b− y)

=
v(y − b− c)
w(y − b− c)

∫∞
b−y P(X > u, X + Z > c+ b− y) du

P(Z > c+ b− y)

≤ v(y − b− c)
w(y − b− c)

∫∞
b−y P(X > u) du

P(Z > c+ b− y)
=
v(y − b− c)
w(y − b− c)

P(Z > b− y)

P(Z > c+ b− y)
|EPX|.

It follows that

lim sup
y→−∞

EP
[
[X − b+ y]

+ |X + Z > b− y + c
]
≤ |EPX|,

since v(y − b − c)/w(y − b − c) → 1 as y → −∞ by [9, Proposition 3], and since Z is long
tailed because it is regularly varying with tail index α− 1 > 0.

We have thus obtained that

lim inf
y→−∞

{
EQb,c

[S1 − S0|S0 = y]−
∫ ∞
b−y

Qb,c(S1 − S0 > u|S0 = y)du

}
≥ (α− 2) · |EPX|,

so applying Lemma 4 we conclude that if α > 2 then EQb,c

τb = O(b) as b→∞.
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