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Stein’s method for negatively associated random variables with

applications to second order stationary random fields

Nathakhun Wiroonsri

University of Southern California

Abstract

Let ξ = (ξ1, . . . , ξm) be a negatively associated mean zero random vector with components
that obey the bound |ξi| ≤ B, i = 1, . . . ,m, and whose sum W =

∑m

i=1
ξi has variance 1, the

bound

d1
(

L(W ),L(Z)
)

≤ 5B − 5.2
∑

i6=j

σij .

is obtained where Z has the standard normal distribution and d1(·, ·) is the L1 metric. The result
is extended to the multidimensional case with the L1 metric replaced by a smooth functions
metric. Applications to second order stationary random fields with exponential decreasing
covariance are also presented.

1 Introduction

This work is extended from the recent paper [GW18] that focuses only on positive association.
Particularly, in this work, we provide non-asymptotic L1 bounds to the normal for negatively
associated random fields in Z

d using the same technique developed in [GW18]. We recall that
the L1, or Wasserstein, distance between the distributions L(X) and L(Y ) of real valued random
variables X and Y is given by

d1
(

L(X),L(Y )
)

=

∫ ∞

−∞
|P (X ≤ t)− P (Y ≤ t)|dt. (1)

A random vector ξ = (ξ1, . . . , ξm) ∈ R
m is said to be positively associated whenever

Cov
(

f(ξ), g(ξ)
)

≥ 0

for all real valued coordinate-wise nondecreasing functions f and g on R
m such that f(ξ) and

g(ξ) have finite second moments. A random vector ξ = (ξ1, . . . , ξm) ∈ R
m is said to be negatively

associated if for any disjoint subsets A,B of [m] := {1, 2, . . . ,m},

Cov
(

f(ξi, i ∈ A), g(ξj , j ∈ B)
)

≤ 0 (2)

for all coordinate-wise increasing functions f : R|A| → R and g : R|B| → R such that f(ξi, i ∈ A) and
g(ξj , j ∈ B) have finite second moments. In general, a collection {ξα : α ∈ I} of real valued random
variables indexed by a set I is said to be positively associated (resp. negatively associated) if all
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finite subcollections are positively associated (resp. negatively associated). Positive association
was introduced in [EPW67] and has been found frequently in probabilistic models in several areas,
especially statistical physics. In some literature positive association is termed the ‘FKG-inequality’
or simply ‘association’ (see [New80] and [CG84] for examples). Negative association was later
introduced in [JP83] and has well-known applications related to permutation distributions.

Over the last few decades, many researchers established central limit theorems and rates of
convergence for sums of positively associated random variables ([New80],[Bir88],[Bul95]) and neg-
atively associated random variables ([LW08],[CW09]) under different assumptions. Recently, the
work [GW18] developed an L1 version of Stein’s method adapted to sums of positively associated
random variables with applications to statistical physics. Stein’s method, introduced by [Ste72], is
nowadays one of the most powerful methods to prove convergence in distribution as it has main
advantages that it provides non-asymptotic bounds on the distance between distributions, and that
it can handle various situations involving dependence. Thus far, many applications in several areas
such as statistics, statistical physics and applied sciences have been developed using this method.
For more detail about the method in general, see the text [CGS11] and the introductory notes
[Ros11].

The one dimensional result of [GW18] is stated below.

Theorem 1.1 ([GW18]) Let ξ = (ξ1, . . . , ξm) be a positively associated mean zero random vector
with components obeying the bound |ξi| ≤ B for some B > 0, and whose sum W =

∑m
i=1 ξi has

variance 1. Let Z be a standard normal random variable. Then

d1
(

L(W ),L(Z)
)

≤ 5B +

√

8

π

∑

i 6=j

σij where σij = E[ξiξj].

The multidimensional result was also obtained in [GW18] with the L1 metric replaced by a
smooth functions metric, following the development of Chapter 12 of [CGS11].

For

x ∈ R
p let |x|1 =

p
∑

i=1

|xi|, the L1 vector norm,

and for a real valued function ϕ(u) defined on the domain D, let |ϕ|∞ = supx∈D |ϕ(x)|. We include
in this definition the | · |∞ norm of vectors and matrices, for instance, by considering them as real
valued functions of their indices. Also, from this point, we denote Nk = [k,∞) ∩ Z for k ∈ Z.

For m ∈ N0, let L∞
m (Rp) be the collection of all functions h : R

p → R such that for all
k = (k1, . . . , kp) ∈ N

p
0 with |k|1 ≤ m, the partial derivative

h(k)(x) =
∂|k|1h

∂k1x1 · · · ∂kpxp
exists, and

|h|L∞

m (Rp) := max
0≤|k|1≤m

|h(k)|∞ is finite.

For f ∈ L∞
m (Rp) let

Hm,∞,p =
{

h ∈ L∞
m (Rp) : |h|L∞

m (Rp) ≤ 1
}

,

and for random vectors X and Y in R
p, define the smooth functions metric

dHm,∞,p

(

L(X),L(Y)
)

= sup
h∈Hm,∞,p

|Eh(X)− Eh(Y)|. (3)
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For a positive semidefinite matrix H, we let H1/2 denote the unique positive semidefinite square
root of H. When H is positive definite, we write H−1/2 = (H1/2)−1. The following theorem states
the multidimensional result of [GW18].

Theorem 1.2 ([GW18]) With m, p ∈ N1, let {ξi,j : i ∈ [m], j ∈ [p]} be positively associated
mean zero random variables bounded in absolute value by some positive constant B. Let S =
(S1, S2, . . . , Sp) where Sj =

∑

1≤i≤m ξi,j for j ∈ [p] and assume that Σ = Var
(

S
)

is positive definite.
Then

dH3,∞,p

(

L(Σ−1/2 (S− ES)) ,L(Z)
)

≤
(

1

6
+ 2

√
2

)

p3B|Σ−1/2|3∞
p
∑

j=1

Σj,j

+

(

3√
2
+

1

2

)

p2|Σ−1/2|2∞
p
∑

j=1

∑

i,k∈[m],i 6=k

Cov (ξi,j, ξk,j)

+

(

2
√
2p3B|Σ−1/2|3∞ +

(

3√
2
+

1

2

)

p2|Σ−1/2|2∞
)

∑

j,l∈[p],j 6=l

Σj,l,

where Z ∼ N (0, Ip), a standard normal vector in R
p.

The results above were applied to second order stationary random fields assuming exponential
decreasing covariance and to four models in statistical physics; Ising and voter models, bond per-
colation and contact process. In the present work, we prove similar results adapted to negative
association.

Stein’s method has been used previously for negative association and some related concepts. In
[LW08], Stein’s method was used in normal approximation for sums of pairwise negative quadrant
dependent random variables which allows one to derive a CLT for pairwise negative quadrant
dependent random variables with Lindeberg’s condition. We note that when m = 2 in (2) negative
association and negative quadrant dependent are equivalent (see [JP83]). In [Dal13], Stein’s method
was used to obtain the total variation distance between compound Poisson distribution and sums
of positively associated or negatively associated random variables.

Our main results in the one dimensional and multidimensional cases are stated in Theorems 1.3
and 1.4, respectively, as follows.

Theorem 1.3 Let ξ = (ξ1, . . . , ξm) be a negatively associated mean zero random vector with com-
ponents obeying the bound |ξi| ≤ B for some B > 0, and whose sum W =

∑m
i=1 ξi has variance 1.

Let Z be a standard normal random variable. Then, with σij = E[ξiξj],

d1
(

L(W ),L(Z)
)

≤ 5B − 5.2
∑

i 6=j

σij. (4)

Theorem 1.4 With m, p ∈ N1, let {ξi,j : i ∈ [m], j ∈ [p]} be negatively associated mean zero
random variables satisfying |ξi,j| ≤ B for some B > 0. Let S = (S1, S2, . . . , Sp) where Sj =

3



∑

1≤i≤m ξi,j for j ∈ [p] and assume that Σ = Var
(

S
)

is positive definite. Then

dH3,∞,p

(

L(Σ−1/2 (S− ES)) ,L(Z)
)

≤ 5

6
p3B|Σ−1/2|3∞

p
∑

j=1

Σj,j

−
(

3

2
p3B|Σ−1/2|3∞ + p2|Σ−1/2|2∞

) p
∑

j=1

∑

i,k∈[m],i 6=k

Cov (ξi,j, ξk,j)

−
(

2

3
p3B|Σ−1/2|3∞ + p2|Σ−1/2|2∞

)

∑

j,l∈[p],j 6=l

Σj,l, (5)

where Z ∼ N (0, Ip), a standard normal random vector in R
p.

Remark 1.5 We note that the differences between our results in Theorems 1.3 and 1.4 for negative
association and those in Theorems 1.1 and 1.2 of [GW18] for positive association, are that the signs
of the covariance terms are reverse and that the constants are different. Nevertheless, in Section
3 we have an example where these changes do not contribute rates of convergence. We also note
that the bounds in the four theorems above are particularly useful when the variables one handles
are bounded and (positively or negatively) associated. However let us compare the one dimensional
results in Theorems 1.1 and 1.3 with the classical result for independent and identically distributed
variables Xi, i ∈ [n] with EXi = 0, VarXi = σ2 > 0 and |Xi| ≤ K for some K > 0. With
W = (

∑

iXi) /(σ
√
n), both Theorems 1.1 and 1.3 give that d1

(

L(W ),L(Z)
)

≤ 5Kσ−1n−1/2. The

classical Berry Esseen theorem provides the bound supx∈R |P (W ≤ x)−P (Z ≤ x)| ≤ CK3σ−3n−1/2

with the smallest constant C = 0.4748 obtained recently by [She11]. Though the rates of convergence
in n are the same, the constants are different and actually the two distances are not comparable as

it is known that supx∈R |P (X ≤ x) − P (Y ≤ x)| ≤
√

2cd1
(

L(X),L(Y )
)

for some c > 0 but not

conversely (See Proposition 1.2 of [Ros11]).

The remainder of this work is organized as follows. In the next section, we use Stein’s method
to prove the two main results, Theorems 1.3 and 1.4. We state our results for negatively associated
random fields whose covariance decays exponentially in Section 3 . One similar advantage of the
four theorems stated in this section is that, unlike many results based on Stein’s method, they may
be applied without the need for coupling constructions.

2 Proofs of main theorems

In this section we prove our main results, Theorems 1.3 and 1.4, using similar techniques as in
[GW18]. For this purpose, we first state the following two lemmas proved in [JP83] and [CW09],
respectively. The more general version of the first lemma was originally proved in [BS98] in Russian
and the English version can be found in the book [BS07]. Lemma 2.1 states that two disjoint sums
of negatively associated random variables are negatively associated which will be used throughout
the remainder of this work. Lemma 2.2 allows us to bound |Cov(f(ξi : i ∈ A), g(ξj : j ∈ B))| by a
linear combination of −Cov(ξi, ξj) with i ∈ A, j ∈ B when A and B are disjoint.

Lemma 2.1 ([JP83]) Increasing functions defined on disjoint subsets of a set of negatively asso-
ciated random variables are negatively associated.
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Lemma 2.2 ([BS98], [CW09]) Let A and B be disjoint finite sets, and let ξj, j ∈ A ∪ B, be
negatively associated random variables. If f : R|A| → R, g : R|B| → R are partially differentiable
with bounded partial derivatives, then

|Cov(f(ξi : i ∈ A), g(ξj : j ∈ B))| ≤ −
∑

i∈A

∑

j∈B

∣

∣

∣

∣

∂f

∂ξi

∣

∣

∣

∣

∞

∣

∣

∣

∣

∂g

∂ξj

∣

∣

∣

∣

∞

Cov(ξi, ξj).

We note that the difference between the proofs below and the ones in [GW18] results from that
Lemma 2.2 requires A and B to be disjoint unlike the one for positive association. Therefore we
add a few more steps in the proofs to handle this situation. In the proof that follows, we use the
alternate form of the L1, or Wasserstein distance (see e.g. [Rac84]);

d1
(

L(X),L(Y )
)

= sup
h∈L

|Eh(X) − Eh(Y )| where L = {h : |h(y)− h(x)| ≤ |y − x|}. (6)

Proof of Theorem 1.3 For given h ∈ L let f be the unique bounded solution to the Stein equation

f ′(w)− wf(w) = h(w) −Nh where Nh = Eh(Z), (7)

with L(Z) the standard normal distribution. Then, (see e.g. Lemma 2.4 of [CGS11]),

|f ′|∞ ≤
√

2

π
and |f ′′|∞ ≤ 2. (8)

Recall that in the proof below we use the notations σij = E[ξiξj] and σ
2
i = Var(ξi) for i 6= j ∈ [n].

As Var(W ) =
∑n

i=1 σ
2
i +

∑

i 6=j σij = 1, we obtain

E[f ′(W )] = E





m
∑

i=1

σ2i f
′(W ) +

∑

i 6=j

σijf
′(W )





= E





m
∑

i=1

ξ2i f
′(W ) +

∑

i 6=j

σijf
′(W ) +

m
∑

i=1

(σ2i − ξ2i )f
′(W )



 .

Now letting W i =W − ξi, write

E[Wf(W )] = E

m
∑

i=1

ξif(W ) = E

m
∑

i=1

ξif(W
i + ξi) = E

m
∑

i=1

[

ξif(W
i) + ξ2i

∫ 1

0
f ′(W i + uξi)du

]

.

Recalling the Stein equation (7) and subtracting two equations above, we obtain

E[h(W )−Nh] = E[f ′(W )−Wf(W )]

= E

(

m
∑

i=1

ξ2i

(
∫ 1

0

(

f ′(W )− f ′(W i + uξi)
)

du

)

+

m
∑

i=1

(σ2i − ξ2i )f
′(W )

+
∑

i 6=j

σijf
′(W )−

m
∑

i=1

ξif(W
i)



 . (9)
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Using the second inequality in (8), we bound the first term in (9) by
∣

∣

∣

∣

∣

E

m
∑

i=1

ξ2i

∫ 1

0

(

f ′(W )− f ′(W i + uξi)
)

du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E

m
∑

i=1

ξ2i

∫ 1

0

∫ ξi

uξi

f ′′(W i + t)dtdu

∣

∣

∣

∣

∣

≤ 2E
m
∑

i=1

ξ2i

(

∫ 1

0

∫ |ξi|

u|ξi|
dtdu

)

= E

m
∑

i=1

|ξi|3 ≤ BE

m
∑

i=1

ξ2i = B



1−
∑

i 6=j

σij



 . (10)

To handle the second term in (9), using the triangle inequality, we first bound it by the three
terms denoted by I1, I2, I3, respectively,

∣

∣

∣

∣

∣

E

m
∑

i=1

f ′(W )(σ2i − ξ2i )

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

E

m
∑

i=1

f ′(W i)(σ2i − ξ2i )

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E

m
∑

i=1

(f ′(W )− f ′(W i))(σ2i − ξ2i )

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

E

m
∑

i=1

f ′(W i)(σ2i − ξ2i )

∣

∣

∣

∣

∣

+ E

m
∑

i=1

∣

∣f ′(W )− f ′(W i)
∣

∣

∣

∣σ2i − ξ2i
∣

∣

≤
∣

∣

∣

∣

∣

E

m
∑

i=1

f ′(W i)(σ2i − ξ2i )

∣

∣

∣

∣

∣

+ E

m
∑

i=1

∣

∣f ′(W )− f ′(W i)
∣

∣ σ2i

+E

m
∑

i=1

∣

∣f ′(W )− f ′(W i)
∣

∣ ξ2i := I1 + I2 + I3.

Note that W i and ξi are coordinate-wise increasing functions defined on disjoint subsets of ξ, and
hence negatively associated by Lemma 2.1. Now for I1, applying Lemma 2.2 with

g(x) =

{

x2 |x| ≤ B
B2 |x| > B

and using the second inequality in (8), we have

I1 =

∣

∣

∣

∣

∣

m
∑

i=1

Cov
(

f ′(W i), g(ξi)
)

∣

∣

∣

∣

∣

≤ −4B

m
∑

i=1

Cov
(

W i, ξi
)

= −4B
∑

i 6=j

σij . (11)

For I2 and I3, applying again the second inequality in (8), we obtain

I2 ≤ |f ′′|∞
m
∑

i=1

σ2iE|W −W i| ≤ 2B
m
∑

i=1

σ2i = 2B



1−
∑

i 6=j

σij



 , (12)

and

I3 ≤ |f ′′|∞
m
∑

i=1

Eξ2i |W −W i| ≤ 2B

m
∑

i=1

Eξ2i = 2B



1−
∑

i 6=j

σij



 . (13)

For the third term in (9), using the negativity of the covariances σij, i 6= j, and the first
inequality in (8) we obtain

∣

∣

∣

∣

∣

∣

E

∑

i 6=j

σijf
′(W )

∣

∣

∣

∣

∣

∣

≤ −|Ef ′(W )|
∑

i 6=j

σij ≤ −
√

2

π

∑

i 6=j

σij. (14)
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For the final term in (9), using again the fact that the pair (W i, ξi) is negatively associated and
applying Lemma 2.2 and the first inequality in (8) now yields

∣

∣

∣

∣

∣

E

m
∑

i=1

ξif(W
i)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

i=1

Cov
(

ξi, f(W
i)
)

∣

∣

∣

∣

∣

≤ −
√

2

π

m
∑

i=1

Cov
(

ξi,W
i
)

= −
√

2

π

∑

i 6=j

σij. (15)

Summing the bounds (10)-(15), taking supremum over h ∈ L and using the form of the L1

distance given in (6), we obtain

d1
(

L(W ),L(Z)
)

≤ 5B − 9B
∑

i 6=j

σij −
√

8

π

∑

i 6=j

σij.

Using the fact that d1(·, ·) ≤ 2 and that σi,j are negative, we can assume that B ≤ 0.4 and thus
the last expression is bounded by the right hand side of (4).

�

Next we use the following result which is slightly different from Lemma 2.6 of [CGS11] due to
[Bar90] to prove Theorem 1.4. Let Z be a standard normal random vector in R

p. For h : Rp → R

let Nh = Eh(Z) and for u ≥ 0 define

(Tuh)(s) = Eh(se−u +
√

1− e−2uZ).

We write D2h for the Hessian matrix of h when it exists.

Lemma 2.3 For m ≥ 3 and h ∈ L∞
m (Rp) the function

g(s) = −
∫ ∞

0
[Tuh(s)−Nh]du

solves

trD2g(s) − s · ∇g(s) = h(s) −Nh,

and for any 0 ≤ |k|1 ≤ m

|g(k)|∞ ≤ 1

|k|1
|h(k)|∞.

Furthermore, for any λ ∈ R
p and positive definite p × p matrix Σ, f defined by the change of

variable

f(s) = g(Σ−1/2(s− λ)) (16)

solves

trΣD2f(s)− (s− λ) · ∇f(s) = h(Σ−1/2(s− λ))−Nh, (17)

and satisfies

|f (k)|∞ ≤ p|k|1

|k|1
|Σ−1/2||k|1∞ |h(k)|∞.

In particular, if h ∈ Hm,∞,p then

|f (k)|∞ ≤ p|k|1

|k|1
|Σ−1/2||k|1∞ for all 0 ≤ |k|1 ≤ m. (18)

7



We apply the same technique as in the univariate case, along with Lemmas 2.2 and 2.3, to prove
our main multivariate theorem below.
Proof of Theorem 1.4 Given h ∈ H3,∞,p, let f be the solution of (17) given by (16) with λ = 0.
Writing out the expressions in (17) yields

E

[

h(Σ−1/2S)−Nh
]

= E





p
∑

j=1

p
∑

l=1

Σj,l
∂2

∂sj∂sl
f(S)−

p
∑

j=1

Sj
∂

∂sj
f(S)





= E

p
∑

j=1

Σj,j
∂2

∂s2j
f(S) + E

∑

j,l∈[p],j 6=l

Σj,l
∂2

∂sj∂sl
f(S)− E

p
∑

j=1

Sj
∂

∂sj
f(S). (19)

We consider the first term of (19) and deal with each term under the sum separately for j = 1, . . . , p.
Letting σ2i,j := Var

(

ξi,j
)

and σi,j;k,l := Cov
(

ξi,j, ξk,l
)

, we have

Σj,j
∂2

∂s2j
f(S) =

m
∑

i=1

σ2i,j
∂2

∂s2j
f(S) +

∑

i,k∈[m],i 6=k

σi,j;k,j
∂2

∂s2j
f(S)

=

m
∑

i=1

ξ2i,j
∂2

∂s2j
f(S) +

∑

i,k∈[m],i 6=k

σi,j;k,j
∂2

∂s2j
f(S) +

m
∑

i=1

(σ2i,j − ξ2i,j)
∂2

∂s2j
f(S). (20)

Now, with Sj∗i := Sj − ξi,j we write the summands of the third term on the right hand side of (19)
as

Sj
∂

∂sj
f(S) =

m
∑

i=1

ξi,j
∂

∂sj
f(S)

=

m
∑

i=1

ξi,j
∂

∂sj
f(S1, . . . , Sj∗i, . . . , Sp)

+

m
∑

i=1

ξ2i,j

∫ 1

0

∂2

∂s2j
f(S1, . . . , Sj∗i + uξi,j, . . . , Sp)du. (21)

Substituting (20) and (21) into (19) and letting Sj∗i =: (S1, . . . , Sj−1, Sj∗i, Sj+1, . . . , Sp), we
obtain

E

[

h(Σ−1/2S)−Nh
]

= E

p
∑

j=1

m
∑

i=1

ξ2i,j

∫ 1

0

(

∂2

∂s2j
f(S)− ∂2

∂s2j
f(S1, . . . , Sj∗i + uξi,j, . . . , Sp)

)

du

+E

p
∑

j=1

m
∑

i=1

(σ2i,j − ξ2i,j)
∂2

∂s2j
f(S)− E

p
∑

j=1

m
∑

i=1

ξi,j
∂

∂sj
f(Sj∗i)

+E

p
∑

j=1

∑

i,k∈[m],i 6=k

σi,j;k,j
∂2

∂s2j
f(S) + E

∑

j,l∈[p],j 6=l

Σj,l
∂2

∂sj∂sl
f(S). (22)
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Now we handle these five terms in (22) separately. For the first term, using (18) we have

∣

∣

∣

∣

∣

E

p
∑

j=1

m
∑

i=1

ξ2i,j

∫ 1

0

(

∂2

∂s2j
f(S)− ∂2

∂s2j
f(S1, . . . , Sj∗i + uξi,j, . . . , Sp)

)

du

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E

p
∑

j=1

m
∑

i=1

ξ2i,j

∫ 1

0

∫ ξi,j

uξi,j

∂3

∂s3j
f(S1, . . . , Sj∗i + t, . . . , Sp)dtdu

∣

∣

∣

∣

∣

∣

≤ p3

3
|Σ−1/2|3∞E

p
∑

j=1

m
∑

i=1

ξ2i,j

∫ 1

0

∫ |ξi,j |

u|ξi,j |
dtdu

=
p3

6
|Σ−1/2|3∞

p
∑

j=1

m
∑

i=1

E|ξi,j|3

≤ p3

6
|Σ−1/2|3∞B

p
∑

j=1

m
∑

i=1

Eξ2i,j

=
p3

6
|Σ−1/2|3∞B

p
∑

j=1



Σj,j −
∑

i,k∈[m],i 6=k

σi,j;k,j



 , (23)

where we have used the almost sure bound on the variables ξi,j, and that their sum Sj over i from
1 to m has mean zero in the last two inequalities, respectively.

For the second term in (22), we first bound it by the three terms denoted by I1, I2, I3, respec-
tively,

∣

∣

∣

∣

∣

∣

E

p
∑

j=1

m
∑

i=1

(σ2i,j − ξ2i,j)
∂2

∂s2j
f(S)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

E

p
∑

j=1

m
∑

i=1

(σ2i,j − ξ2i,j)
∂2

∂s2j
f(Sj∗i)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

E

p
∑

j=1

m
∑

i=1

(σ2i,j − ξ2i,j)

(

∂2

∂s2j
f(Sj∗i)− ∂2

∂s2j
f(S)

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

p
∑

j=1

m
∑

i=1

Cov

(

∂2

∂s2j
f(Sj∗i), ξ2i,j

)

∣

∣

∣

∣

∣

∣

+ E

p
∑

j=1

m
∑

i=1

σ2i,j

∣

∣

∣

∣

∣

(

∂2

∂s2j
f(Sj∗i)− ∂2

∂s2j
f(S)

)∣

∣

∣

∣

∣

+E

p
∑

j=1

m
∑

i=1

ξ2i,j

∣

∣

∣

∣

∣

(

∂2

∂s2j
f(Sj∗i)− ∂2

∂s2j
f(S)

)∣

∣

∣

∣

∣

:= I1 + I2 + I3.

Then we write I1 as

I1 =

∣

∣

∣

∣

∣

∣

p
∑

j=1

m
∑

i=1

Cov

(

∂2

∂s2j
f(Sj∗i), g(ξi,j)

)

∣

∣

∣

∣

∣

∣

,

where

g(x) =

{

x2 |x| ≤ B
B2 |x| > B,

As Sj∗i and ξi,j are increasing functions defined on disjoint subsets of ξ, by Lemma 2.1, (Sj∗i, ξi,j)
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are negatively associated for all i, j. Applying Lemma 2.2 and using the bound (18), we obtain

I1 ≤

∣

∣

∣

∣

∣

∣

p
∑

j=1

m
∑

i=1





∑

l∈[p],l 6=j

∣

∣

∣

∣

∣

∂3

∂sl∂s
2
j

f

∣

∣

∣

∣

∣

∞

∣

∣

∣

∣

∂g

∂x

∣

∣

∣

∣

∞

Cov (Sl, ξi,j) +

∣

∣

∣

∣

∣

∂3

∂s3j
f

∣

∣

∣

∣

∣

∞

∣

∣

∣

∣

∂g

∂x

∣

∣

∣

∣

∞

Cov (Sj∗i, ξi,j)





∣

∣

∣

∣

∣

∣

≤ 2

3
p3|Σ−1/2|3∞B

∣

∣

∣

∣

∣

∣

p
∑

j=1

m
∑

i=1





∑

l∈[p],l 6=j

Cov
(

Sl, ξi,j
)

+Cov (Sj∗i, ξi,j)





∣

∣

∣

∣

∣

∣

=
2

3
p3|Σ−1/2|3∞B

∣

∣

∣

∣

∣

∣

∑

j,l∈[p],j 6=l

m
∑

i,k=1

σi,j;k,l +

p
∑

j=1

∑

i,k∈[m],i 6=k

σi,j;k,j

∣

∣

∣

∣

∣

∣

= −2

3
p3|Σ−1/2|3∞B





∑

j,l∈[p],j 6=l

Σj,l +

p
∑

j=1

∑

i,k∈[m],i 6=k

σi,j;k,j



 . (24)

Again using (18), we have

I2 ≤
p
∑

j=1

m
∑

i=1

σ2i,j

∣

∣

∣

∣

∣

∂3

∂s3j
f

∣

∣

∣

∣

∣

∞

E |Sj∗i − Sj| =
p
∑

j=1

m
∑

i=1

σ2i,j

∣

∣

∣

∣

∣

∂3

∂s3j
f

∣

∣

∣

∣

∣

∞

E |ξi,j|

≤ p3

3
|Σ−1/2|3∞B

p
∑

j=1



Σj,j −
∑

i,k∈[m],i 6=k

σi,j;k,j



 , (25)

and

I3 ≤
p
∑

j=1

m
∑

i=1

∣

∣

∣

∣

∣

∂3

∂s3j
f

∣

∣

∣

∣

∣

∞

Eξ2i,j |Sj∗i − Sj| ≤
p3

3
|Σ−1/2|3∞B

p
∑

j=1

m
∑

i=1

Eξ2i,j

=
p3

3
|Σ−1/2|3∞B

p
∑

j=1



Σj,j −
∑

i,k∈[m],i 6=k

σi,j;k,j



 . (26)

For the third term in (22), again applying Lemma 2.2 and arguing as for I1 in (24), we have

∣

∣

∣

∣

∣

∣

E

p
∑

j=1

m
∑

i=1

ξi,j
∂

∂sj
f(Sj∗i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

p
∑

j=1

m
∑

i=1

Cov

(

ξi,j,
∂

∂sj
f(Sj∗i)

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

p
∑

j=1

m
∑

i=1





∑

l∈[p]\{j}

∣

∣

∣

∣

∂2

∂sl∂sj
f

∣

∣

∣

∣

∞

Cov (ξi,j, Sl) +

∣

∣

∣

∣

∣

∂2

∂s2j
f

∣

∣

∣

∣

∣

∞

Cov (ξi,j, Sj∗i)





∣

∣

∣

∣

∣

∣

≤ −p
2

2
|Σ−1/2|2∞





∑

j,l∈[p],j 6=l

m
∑

i=1

Cov (ξi,j, Sl) +

p
∑

j=1

m
∑

i=1

Cov (ξi,j, Sj∗i)





= −p
2

2
|Σ−1/2|2∞





∑

j,l∈[p],j 6=l

m
∑

i,k=1

σi,j;k,l +

p
∑

j=1

∑

i,k∈[m],i 6=k

σi,j;k,j





= −p
2

2
|Σ−1/2|2∞





∑

j,l∈[p],j 6=l

Σj,l +

p
∑

j=1

∑

i,k∈[m],i 6=k

σi,j;k,j



 . (27)
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For the fourth and the fifth terms in (22), again using (18) we obtain

∣

∣

∣

∣

∣

∣

p
∑

j=1

∑

i,k∈[m],i 6=k

σi,j;k,j
∂2

∂s2j
f(S)

∣

∣

∣

∣

∣

∣

≤ −p
2

2
|Σ−1/2|2∞

p
∑

j=1

∑

i,k∈[m],i 6=k

σi,j;k,j (28)

and
∣

∣

∣

∣

∣

∣

E

∑

j,l∈[p],j 6=l

Σj,l
∂2

∂sj∂sl
f(S)

∣

∣

∣

∣

∣

∣

≤ −p
2

2
|Σ−1/2|2∞

∑

j,l∈[p],j 6=l

Σj,l. (29)

Summing the bounds (23)-(29) we find that
∣

∣E
[

h(Σ−1/2S)−Nh
]∣

∣ is bounded by the right hand
side of (5). Taking supremum over h ∈ H3,∞,p and using the definition (3) of dHm,∞,p , yields the
claim.

�

3 Applications

In this section, we follow the same structure as in Section 2.1 of [GW18] with positive association
replaced by negative association. In particular, we apply our main theorems in the first section to
second order stationary negatively associated random fields with exponential covariance decay.

First we introduce the definitions and notations used in [GW18] that will also be used here. Let
{Xj : j ∈ Z

d} be a negatively associated random field on the d-dimensional integer lattice Z
d and

assume that the field is second order stationary. We recall that a random field {Xj : j ∈ Z
d} is called

second order stationary when EX2
j < ∞ for all j ∈ Z

d and the covariance Cov
(

Xi,Xj

)

= R(j− i)

for all i, j ∈ R
d, with R(·) given by

R(k) = Cov
(

X0,Xk

)

. (30)

We let 1 ∈ Z
d denotes the vector with all components 1, and write inequalities such as a < b

for vectors a,b ∈ R
d when they hold componentwise. For k ∈ Z

d, n ∈ N1, define the ‘block sum’
variables, over a block with side length n, by

Sn
k =

∑

j∈Bn
k

Xj where Bn
k =

{

j ∈ Z
d : k ≤ j < k+ n1

}

. (31)

Note that Bn
k = Bn

0 + k.
For R(·) given in (30), we have

Var
(

Sn
k

)

=
∑

i,j∈Bn
k

Cov
(

Xi,Xj

)

= ndAn where An =
1

nd

∑

i,j∈Bn
1

R(i− j). (32)

Since the field is negatively associated, R(k) ≤ 0 for all k 6= 0, which implies that 0 ≤ An ≤ R(0)
for all n ∈ N1. For simplicity, in this work, we assume that infnAn > 0 which implies that An is
of constant order. With this assumption, we may include An in our bounds without affecting the
rate of convergence.

With Sn
k defined in (31), we consider the standardized variables

W n
k =

Sn
k − ESn

k
√

ndAn

, k ∈ Z
d, n ∈ N1, (33)
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that have mean zero and variance 1. The following theorem provides a bound of order n−d/(2d+2)

with an explicit constant on the L1 distance between the distribution of W n
k and the normal under

the assumption that the covariance function R(·) decays at exponential rate in the L1 norm in R
d.

Since all norms in R
d are equivalent, we use the L1 norm that makes our calculation simplest.

Theorem 3.1 Let d ∈ N1 and {Xj : j ∈ Z
d} be a negatively associated second order stationary

random field with covariance function R(k) = Cov(Xj,Xj+k) for all j,k ∈ Z
d, and suppose that for

some K > 0, |Xj| ≤ K a.s. for all j ∈ Z
d. Assume that there exist λ > 0 and κ0 > 0 such that

−R(k) ≤ κ0e
−λ|k|1 for all k ∈ Z

d/{0} (34)

and infnAn > 0 where An is given in (32). Let

µλ =
eλ

(eλ − 1)
2 , νλ =

e2λ

(eλ − 1)
2 and γλ,d = (4µλ + 2νλ)

d − (2νλ)
d (35)

and

Cλ,κ0,d =
10Kd

√
An

5.2κ0γλ,d
(36)

Then, for any k ∈ Z
d, with W n

k as given in (33) and Z a standard normal random variable,

d1
(

L(W n
k ),L(Z)

)

≤ κ1
nd/(2d+2)

for all n ≥ max
{

C
2/d
λ,κ0,d

, C
−2/(d+2)
λ,κ0,d

}

, (37)

where

κ1 =

(

10K(5.2κ0γλ,d)
d

A
d+1/2
n

)1/(d+1) (
1

d
d

d+1

+ 2d
1

d+1

)

.

The bound in (37) is of order n−d/(2d+2) recalling that An is bounded away from zero and infinity
and hence does not contribute the rate. We also extend Theorem 3.1 to the multidimensional case.
For any p ∈ N1 and indices k1, . . . ,kp in Zd such that Bn

ki
, i ∈ [p] are disjoint, Theorem 3.2 provides

a bound in the metric dH3,∞,p
to the multivariate normal for Sn = (Sn

k1
, . . . , Sn

kp
) under exponential

decay of the covariance function. We note the difference between the assumption (38) below and
the one in (30) of [GW18] that we require Bn

ki
, i ∈ [p] here to be disjoint, otherwise, there exists

j ∈ Z
d that belongs to both Bn

ki
and Bn

kj
for some i, j and (Xj,Xj) is positively associated to which

Theorem 1.4 is not applicable. The same issue does not arise in the positively associated case as a
pair of the same variable has positive covariance. In the following result and its proof, constants
will not be tracked with precision, but will be indexed by the set of variables on which it depends.

Theorem 3.2 For d ∈ N1, let {Xj : j ∈ Z
d} be a negatively associated second order stationary

random field with covariance function R(k) = Cov(Xj,Xj+k) for all j,k ∈ Z
d, and suppose that

there exist constants K > 0, κ0 > 0 and λ > 0 such that |Xj| ≤ K a.s. for all j ∈ Z
d,

−R(k) ≤ κ0e
−λ|k|1 for all k ∈ Z

d/{0},

and infnAn > 0 where An is given in (32). For p ∈ N1 let k1, . . . ,kp ∈ Z
d be such that

min
q,s∈[p],q 6=s

|kq − ks|∞ ≥ n. (38)
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Let Sn = (Sn
k1
, . . . , Sn

kp
), where Sn

k is defined as in (31) and Σ be the covariance matrix of Sn.

Then, for n > (p− 1)κ0ν
d
λe

−λA−1
n with νλ as in (35), Σ is invertible and

|Σ−1|∞ ≤ 1

nd−1(nAn − (p − 1)κ0νdλe
−λ)

. (39)

Furthermore, with

ψn = nd/2|Σ−1/2|∞ for n > (p− 1)κ0ν
d
λe

−λA−1
n and Bn,d = dψnAn

there exists a constant Cλ,κ0,d,p,K such that, for

n > max
{

B
2/d
n,d , B

−2/(d+2)
n,d , (p − 1)κ0ν

d
λe

−λA−1
n

}

, (40)

dH3,∞,p

(

L(Σ−1/2(Sn − ESn)),L(Z)
)

≤ Cλ,κ0,d,p,K

(

ψ
(2d+4)/(d+1)
n

A
(d−1)/(d+1)
n nd/(d+1)

+
ψ
(2d+3)/(d+1)
n

A
d/(d+1)
n n(3d+2)/(2d+2)

+
ψ2
n

n
+
A

1/(d+1)
n ψ

(2d+3)/(d+1)
n

nd/(2d+2)

)

, (41)

where Z is a standard normal random vector in R
p.

Since An is of constant order, |Σ−1/2|∞ is of order at most n−d/2 by (39). This implies that ψn

is of at most constant order and thus so is Bn,d. Therefore the last term on the right hand side of
(41) is the only one that contributes the rate of convergence of order n−d/(2d+2) as the other terms
converge to zero at much faster rates. We note that the bounds in Theorems 3.1 and 3.2 have the
same order as the ones in Theorems 2.1 and 2.2 of [GW18], respectively. However, comparing to
the results of [GW18], the constant of the bound (37) is bigger and the bound (41) has the extra
terms that do not contribute the rate.

To prove Theorems 3.1 and 3.2, we use the same technique as in [GW18] decomposing the sum
Sn
k over the block Bn

k into sums over smaller, disjoint blocks whose side lengths are at most some
integer l. That is, for 1 ≤ l ≤ n, we uniquely write n = (m − 1)l + r with m ≥ 1 and 1 ≤ r ≤ l
and correspondingly decompose Bn

k into md disjoint blocks Dl
i,k, i ∈ [m]d, where there are (m− 1)d

‘main’ blocks having all sides of length l, and md − (m − 1)d remainder blocks having all sides of
length r or l, with at least one side of length r.

To be more precise, for k ∈ Z
d and i ∈ [m]d set Dl

i,k = Dl
i + k− 1 where

Dl
i =

{

j ∈ Z
d : (is − 1)l + 1 ≤ js ≤ isl for is 6= m,

(m− 1)l + 1 ≤ js ≤ (m− 1)l + r for is = m
}

.

It is easy to see that for i ∈ [m− 1]d, the vectors indexing the ‘main blocks’, we have

Dl
i = Bl

(i−1)l+1 for i ∈ [m− 1]d, (42)

and if r = l then Dl
i is given by (42) for all i ∈ [m]d. Furthermore, it is straightforward to verify

that the elements of the collection {Dl
i,k, i ∈ [m]d} is the partition of Bn

k .
Letting

ξli,k =
∑

t∈Dl
i,k

(Xt − EXt) for i ∈ [m]d, and W n
k =

∑

i∈[m]d

ξli,k
√

ndAn

, (43)
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we see that ξni,k has mean zero, and W n
k as in (43) agrees with its representation as given in (33),

and has mean zero and variance one. For simplicity we will drop the index k in ξi,k when k = 1,
as we do also for Di,k, and also suppress n in ξni,k.

As the elements of {ξi,k : i ∈ [m]d} are increasing functions of disjoint subsets of {Xj : j ∈ Z
d},

they are negatively associated by Lemma 2.1. We prove Theorems 3.1 and 3.2 with the help of the
following three lemmas. The first, Lemma 3.3 bounds the sum of the covariances between ξli,k and

ξlj,k, defined in (43), over i, j ∈ [m]d. Next, we state Lemma 3.4, proved in [GW18], which is used
in the proof of Lemma 3.5 that bounds the covariance between two non-overlapped block sums of
size nd.

Lemma 3.3 Let {Xj : j ∈ Z
d} be a second order, negatively associated stationary random field

with covariance function R(k) = Cov(Xj,Xj+k) for all j ∈ Z
d and k ∈ Z

d/{0} where R(·) satisfies
the exponential decay condition (34). For n ≥ 2 and 1 ≤ l ≤ n, let n = (m − 1)l + r for integers
m ∈ N1 and 1 ≤ r ≤ l. Then for i ∈ [m] and k ∈ Z

d, with ξi,k given by (43) we have

∑

i,j∈[m]d,i 6=j

−E

[

ξli,kξ
l
j,k

]

≤ κ0γλ,dn
d

l
,

where κ0 is given in (34), and γλ,d in (35).

Proof: We note that the difference between (34) of this work and (22) of [GW18] is only the sign on
the left hand side of the inequality. Thus the proof follows immediately from the proof of Lemma

2.4 of [GW18] with E

[

ξli,kξ
l
j,k

]

and R(k) replaced by −E

[

ξli,kξ
l
j,k

]

and −R(k), respectively.
�

Lemma 3.4 ([GW18]) For all n ∈ N2 and λ > 0,

n−1
∑

a=−n+1

(n− |a|)e−λ|q+a| is decreasing as a function of |q| ∈ N0.

In the following we will use the identities

n−1
∑

k=1

(n − k)wk =
w ((n − 1)− nw + wn)

(w − 1)2
for w 6= 1, (44)

and

n+ 2
n−1
∑

b=1

(n− b)ub =
(1− u2)n− 2u+ 2un+1

(u− 1)2
for u 6= 1. (45)

Lemma 3.5 Let {Xj : j ∈ Z
d} be a second order stationary random field with covariance function

R(k) = Cov(Xj,Xj+k) for all j ∈ Z
d and k ∈ Z

d/{0} where R(·) satisfies (34). Let n ∈ N2, k1 and
k2 be vectors in Z

d such that

|k1 − k2|∞ ≥ n,

then with λ and κ0 as in (34), and νλ as in (35),

−Cov
(

Sn
k1
, Sn

k2

)

≤ κ0ν
d
λe

−λnd−1.
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Proof: Using the definition of Sn
k and that Xj, j ∈ Z

d are second order stationary, we have

−Cov
(

Sn
k1
, Sn

k2

)

= −
n−1
∑

p1,...,pd=0
q1,...,qd=0

R













(p1 + k21)− (q1 + k11)
...

(pd + k2d)− (qd + k1d)













≤ κ0

n−1
∑

a1,...,ad=−n+1

(n− |a1|) . . . (n− |ad|) exp






−λ

∣

∣

∣

∣

∣

∣

∣







a1 + (k21 − k11)
...

ad + (k2d − k1d)







∣

∣

∣

∣

∣

∣

∣

1







= κ0

d
∏

i=1

n−1
∑

ai=−n+1

(n − |ai|)e−λ|(k2i −k1i )+ai|. (46)

Applying Lemma 3.4, we have

n−1
∑

ai=−n+1

(n− |ai|)e−λ|(k2i −k1i )+ai| is a decreasing function of |k1i − k2i |. (47)

Hence the ith sum appearing in the product (46) is maximized by its value when k1i = k2i . As
|k1 − k2|∞ ≥ n, there must exist at least one i for which |k2i − k1i | ≥ n, and whose corresponding
sum is bounded by its value when |k2i − k1i | is exactly n, using (47). The product of these sums, by
(47) again, is maximized when there is just a single coordinate achieving n as its absolute difference,
and where this difference in all other terms achieve equality to zero. Therefore, by symmetry (46)
is bounded by the case where k1i = k2i for i ∈ [d− 1] and k2d − k1d = n and thus

−Cov
(

Sn
k1
, Sn

k2

)

≤ κ0

d−1
∏

i=1

n−1
∑

ai=−n+1

(n− |ai|)e−λ|ai|
n−1
∑

ad=−n+1

(n− |ad|)e−λ|ad+n|

≤ κ0 (nνλ)
d−1

n−1
∑

ad=−n+1

(n− |ad|)e−λ|ad+n|, (48)

where we have applied (45) in the final inequality and νλ is given in (35).
Now considering the sum in (48), we obtain

n−1
∑

a=−n+1

(n− |a|)e−λ|a+n| =
n−1
∑

a=−n+1

(n− |a|)e−λ(a+n)

=

n−1
∑

a=1

(n− a)e−λ(−a+n) +

n−1
∑

a=0

(n− a)e−λ(a+n).

For each sum, making a change of variable and applying (44), we obtain

n−1
∑

a=1

(n− a)e−λ(−a+n) = e−λn
n−1
∑

a=1

(n− a)eλa

=
e−λneλ

(

n− 1− neλ + eλn
)

(eλ − 1)
2

=
eλ + n

(

1− eλ
)

eλ(1−n) − eλ(1−n)

(eλ − 1)
2
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and

n−1
∑

a=0

(n− a)e−λ(a+n) = ne−λn + e−λn
n−1
∑

a=1

(n− a)e−λa

= ne−λn +
e−λne−λ

(

n− 1− ne−λ + e−λn
)

(e−λ − 1)
2

= ne−λn +
e−λneλ

(

n− 1− ne−λ + e−λn
)

(eλ − 1)
2

=
eλ(1−2n) − eλ(1−n) + n(eλ − 1)eλ(1−n)

(eλ − 1)
2 .

Summing these two terms yields

n−1
∑

a=−n+1

(n − |a|)e−λ|a+n| =
eλ(1−2n) + eλ − 2eλ(1−n)

(eλ − 1)
2 ≤ eλ

(eλ − 1)
2 = νλe

−λ.

Plugging the last bound in (48) yields the claim.
�

Now we have all ingredients to prove Theorems 3.1 and 3.2. In the following, we use the same
technique as in (44) of [GW18], that is, for any positive real numbers a and b the minimum of
ald + b/l over real numbers l is achieved at l0 = (b/ad)1/(d+1). Taking l = ⌊l0⌋ when l0 ≥ 1 and
using that l0/2 ≤ l ≤ l0 yields

min
l∈N1

(

ald +
b

l

)

≤ a

(

b

ad

) d
d+1

+ 2b

(

ad

b

) 1

d+1

= a
1

d+1 b
d

d+1

(

1

d
d

d+1

+ 2d
1

d+1

)

. (49)

Proof of Theorem 3.1: By second order stationarity, it suffices to prove the case k = 1. Let
n ≥ 2, Bn

1 the block of size nd as given in (31), and W n
1 the standardized sum over that block, as

in (33). For any 1 ≤ l ≤ n write n = (m − 1)l + r, 1 ≤ r ≤ l, and decompose W n
1 as the sum of

ξi/
√

ndAn over i ∈ [m], as in (43).
We apply Theorem 1.3, dealing with the two terms on the right hand side of (4). For the first

term, using |Xj| ≤ K, the definition (43) of ξi, and the fact that the side lengths of all blocks Dl
i

are at most l, we have
∣

∣

∣

∣

∣

ξi
√

ndAn

∣

∣

∣

∣

∣

≤ B with B =
2Kld
√

ndAn

for all i ∈ [m]d.

Applying Lemma 3.3 for the last term and invoking Theorem 1.3 now yields

d1
(

L(W1),L(Z)
)

≤ 10Kld

nd/2A
1/2
n

+
5.2κ0γλ,d
lAn

. (50)

Applying the bound (49) to the last expression with l0 = C
−1/(d+1)
λ,κ0,d

nd/(2d+2) and Cλ,κ0,d as in (36)
and plugging in l = ⌊l0⌋ back to the right hand side of (50) yields the result. It is easy to check

that 1 ≤ l0 ≤ n for n ≥ max
{

C
2/d
λ,κ0,d

, C
−2/(d+2)
λ,κ0,d

}

.

�

To prove Theorem 3.2, we apply Theorem 1.4 and use the same techniques as in Theorem 3.1.
We remind the reader that for this result we do not explicitly compute the constants, but index
them by the parameters on which they depend.
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Proof of Theorem 3.2: First we prove the claims that, Σ is invertible and |Σ−1|∞ is bounded
by (39) when n > (p− 1)κ0ν

d
λe

−λ/An. Applying Lemma 3.5, for all q ∈ [p] we have

Σq,q −
∑

1≤s≤p,s 6=q

|Σq,s| ≥ nd−1(nAn − (p − 1)κ0ν
d
λe

−λ) > 0 if n >
(p− 1)κ0ν

d
λe

−λ

An
.

which implies that Σ is a strictly diagonally dominant matrix, and is therefore invertible by the
Gershgorin circle theorem, see for instance Theorem 15.10 of [BR14]. Another claim in (39) follows
from [AN63], where it is shown that the bound (39) holds for the norm ||C||∞ = maxi

∑p
j=1 |cij |,

which dominates |C|∞.
Next we proceed as in the one dimensional case. For n ≥ 2, and 1 ≤ l ≤ n we write n =

(m − 1)l + r with m ≥ 1 and 1 ≤ r ≤ l, and decompose Sn
kq

− ESn
kq

for q ∈ [p] as the sum over

i ∈ [m]d of the variables ξi,kq
given in (43).

Applying Theorem 1.4, we handle the three terms on the right hand side of (5). Using the
definition (43) of ξi,kq

and that |Xt| ≤ K, we have
∣

∣ξi,kq

∣

∣ ≤ B where B = 2Kld for all i ∈ [m]d, q ∈ [p]

and thus using |Σ−1/2|∞ = n−d/2ψn and Σjj = ndAn, we may bound the first term as

5

6
p3Bn−3d/2ψ3

n

p
∑

q=1

Σq,q ≤
Cp,Kl

dAnψ
3
n

nd/2
. (51)

For the second term, by Lemma (3.3) we have

−
(

3

2
p3Bn−3d/2ψ3

n + p2n−dψ2
n

) p
∑

q=1

∑

i,j∈[m]d,i 6=j

E
(

ξi,kq
ξj,kq

)

= −
(

Cp,Kl
dψ3

n

nd/2
+ Cpψ

2
n

) p
∑

q=1

∑

i,j∈[m]d,i 6=j

E

(

ξi,kq
ξj,kq

nd

)

≤ Cλ,κ0,p,K,dl
d−1ψ3

n

nd/2
+
Cλ,κ0,p,dψ

2
n

l
. (52)

Next, invoking Lemma 3.5 and assumption (38) we have

−Σq,s = −Cov
(

Sn
kq
, Sn

ks

)

≤ κ0ν
d
λe

−λnd−1 for q 6= s ∈ [p],

and hence we may bound the last term as

−
(

2

3
p3Bn−3d/2ψ3

n + p2n−dψ2
n

)

∑

q,s∈[p],q 6=s

Σq,s ≤
(

Cp,K l
dψ3

n

n3d/2
+
Cpψ

2
n

nd

)

κ0ν
d
λe

−λnd−1

≤ Cλ,κ0d,p,K l
dψ3

n

n(d+2)/2
+
Cλ,κ0,d,pψ

2
n

n
. (53)

By Theorem 1.4 and (51)-(53), we have

dH3,∞,p

(

L(Σ−1/2W),L(Z)
)

≤ Cλ,κ0,K,p,d

(

ld−1ψ3
n

nd/2
+

ldψ3
n

n(d+2)/2
+
ψ2
n

n
+
ldAnψ

3
n

nd/2
+
ψ2
n

l

)

.

Since the first three terms do not contribute the rate, applying (49) to the last two terms in the
parentheses, we obtain

l0 =

(

1

dψnAn

)
1

d+1

n
d

2d+2 ,

which satisfies 1 ≤ l0 ≤ n for the range of n given in (40), and pluging in l = ⌊l0⌋ back to the
bound yields the result.

�
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