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Abstract

We introduce a large and flexible class of discrete tempered stable

distributions, and analyze the domains of attraction for both this class

and the related class of positive tempered stable distributions. Our

results suggest that these are natural models for sums of independent

and identically distributed random variables with tempered heavy tails

tails, i.e. tails that appear to be heavy up to a point, but ultimately

decay faster.

1 Introduction

Stable distributions play a central role in many applications. However, their
use is limited by the fact that they have an infinite variance, which is not
realistic for most real-world applications. This has led to the development
of tempered stable distributions, which is a class of models obtained by
modifying the tails of stable distributions to make them lighter, while leaving
their central portions, essentially, unchanged. Perhaps the earliest models
of this type are Tweedie distributions, which were introduced in the seminal
paper Tweedie (1984) [33]. A more general approach, allowing for a wide
variety of tail behavior, is given in Rosiński (2007) [26]. That approach
was further generalized in several directions in [27], [4], and [12]. A survey,
along with a historical overview and many references can be found in [13].
We will focus on the class of positive tempered stable (PTS) distributions.
This class is important for many applications including actuarial science [16],
biostatistics [24], mathematical finance [34], and computer science [6].

In a different direction, stable distributions have been modified to deal
with over-dispersion when modeling count data. Specifically, the class of
discrete stable distributions was introduced in Steutel and van Harn (1979)
[30], see also [9], [31], and [22]. As with continuous stable distributions,
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these models have an infinite variance, which has led to the development
of a tempered modification. In particular, [18] introduced a class of models
that has come to be known as Poisson-Tweedie. The name comes from the
fact that these can be represented as a Poisson process subordinated by a
Tweedie distribution. Many results along with applications to a variety of
areas including economics, biostatistics, bibliometrics, and ecology can be
found in, e.g. [19], [35], [10], [3], [20], [1], and the references therein.

In this paper, we introduce a large class of discrete tempered stable (DTS)
distributions, which generalize the class of Poisson-Tweedie models. We then
prove limit theorems for PTS and DTS distributions. Just as generalizations
of the central limit theorem explain how stable and discrete stable distri-
butions approximate sums of independent and identically distributed (iid)
random variables with heavy tails, our theorems aim to provide a theoretical
justification for the use of PTS and DTS models in approximating sums of
iid random variables with tempered heavy tails, i.e. tails that appear to be
heavy up to point, but have been modified to, ultimately, decay faster. For
a discussion of how such models occur in practice see [15] and [6]. Related
limit theorems for Poisson-Tweedie distributions are given in [20]. In the
continuous case, similar results for Tweedie distributions were studied in [14]
and, from a different perspective, convergence of certain random walks to
tempered stable distributions were studied in [7].

Before proceeding we introduce some notation. We write N = {1, 2, . . . },
Z+ = N ∪ {0}, R+ = [0,∞), and B(R+) to denote the Borel sets on R+.
For a probability measure µ with support contained in R+ we write µ̂(z) =
∫

R+
e−zxµ(dx) to denote its Laplace transform and X ∼ µ to denote that X

is a random variable with distribution µ. For a function f : R+ 7→ R+ and
β ∈ R, we write f ∈ RVβ to denote that f is regularly varying with index β,
i.e. that

lim
t→∞

f(xt)

f(t)
= xβ for any x > 0.

We write 1A to denote the indicator function on set A, for x > 0 we write

Γ(x) =
∫∞

0 e−ttx−1dt to denote the gamma function, and we write
p
→,

d
→,

w
→, and

d
= to denote, respectively, convergence in probability, convergence

in distribution, weak convergence, and equality in distribution. For c ∈
[−∞,∞], we write f(t) ∼ g(t) as t → c to denote that limt→c

f(x)
g(x) = 1.

2 Positive Stable and Positive Tempered Stable Dis-

tributions

In this section we formally introduce positive stable and positive tempered
stable distributions. We begin by recalling some basic facts about positive
infinitely divisible distributions. An infinitely divisible distribution µ, with
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support contained in R+, has a Laplace transform of the form

µ̂(z) = exp

{

−bz −

∫

(0,∞)

(

1− e−zx
)

M(dx)

}

, z ≥ 0, (1)

where b ≥ 0 and M is a Borel measure on (0,∞) satisfying
∫

(0,∞)
(x ∧ 1)M(dx) < ∞. (2)

Here, b is called the drift and M is called the Lévy measure. These param-
eters uniquely determine the distribution and we write µ = ID+(M, b). For
a general reference on infinitely divisible distributions see [28].

A probability measure µ on R+ is said to be strictly α-stable if, for any

n ∈ N and X1,X2, . . . ,Xn
iid
∼ µ, we have

X1
d
= n−1/α (X1 +X2 + · · ·+Xn) . (3)

By positivity, we necessarily have α ∈ (0, 1]. If α ∈ (0, 1), then µ =
ID+(Mα, 0), where

Mα(dx) = ηx−1−α1x>0dx

for some η ≥ 0. If α = 1 then µ = ID+(0, η) for some η ≥ 0, and thus µ is
a point mass at η. For α ∈ (0, 1) the Laplace transform is of the form

µ̂(z) = e−η
Γ(1−α)

α
zα , z ≥ 0.

We denote this distribution by PSα(η). Note that PSα(0) is a point mass
at zero for all α ∈ (0, 1). For more about stable distributions on R+ see [31].

It is well-known that, for α ∈ (0, 1), stable distributions have an infi-
nite mean, which is not realistic for many applications. This has lead to
the development of distributions that look stable-like in some large central
region, but with lighter tails. Following [27], we define positive tempered
stable distributions as follows.

Definition 1. A distribution µ = ID+(M, b) is called a positive tempered
stable (PTS) distribution if b ≥ 0 and

M(dx) = ηq(x)x−1−α1x>0dx,

where α ∈ (0, 1), η ≥ 0, and q : R+ 7→ R+ is a bounded, non-negative, Borel
function with limx↓0 q(x) = 1, and satisfying

∫ ∞

0
(1 ∧ x) q(x)x−1−αdx < ∞. (4)

We call q the tempering function and we write µ = PTSα(q, η, b). When
b = 0, we write PTSα(q, η) = PTSα(q, η, 0).
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We are motivated by the case where the tempering function, q, satisfies
the additional condition that limx→∞ q(x) = 0. In this case, PTSα(q, η) is
similar to PSα(η) in some central region, but with lighter tails. In this sense,
q “tempers” the tails of the stable distribution. Despite this motivation, none
of the results of the paper require this additional condition. We now give
several examples of tempering functions, others can be found in, e.g. [32]
and [13].

Examples. 1. When q ≡ 1 there is no tempering and PTSα(q, η) =
PSα(η). 2. When q(x) = e−ax for some a > 0, we get the class of Tweedie
distributions, which were introduced in [33]. When α = .5, these correspond
to inverse Gaussian distributions, see e.g. [29]. 3. When q(x) = 1[0≤x<a] for
some a > 0, we call this truncation. Such distributions are important for
certain limit theorems, see [8].

3 Discrete Stable and Discrete Tempered Stable

Distributions

A discrete analogue of stable distributions was introduced in [30]. Here (3)
is modified to ensure that the right side remains an integer. Specifically, [30]
introduced the so-called ‘thinning’ operation ◦, which is defined as follows.
If γ ∈ [0, 1] and X is a random variable with support contained in Z+, then
γ ◦X is a random variable with distribution

γ ◦X
d
=

X
∑

i=1

ǫi,

where ǫ1, ǫ2, . . . are iid random variables independent of X having a Bernoulli
distribution with P (ǫi = 1) = 1 − P (ǫi = 0) = γ. Here and throughout, we
set

∑0
i=1 ǫi = 0. Note that, if P (s) is the probability generating function

(pgf) of X, i.e. P (s) = E[sX ], then the pgf of γ ◦X is P (1− γ + γs).
For α ∈ (0, 1], a distribution µ on Z+ is called discrete α-stable if for any

n ∈ N we have
X1

d
= n−1/α ◦ (X1 +X2 + · · ·+Xn) ,

where X1,X2, . . .
iid
∼ µ. The class of discrete 1-stable distributions coincides

with the class of Poisson distributions. For α ∈ (0, 1) the pgf of a discrete
stable distribution is of the form

∫

Z+

sxµ(dx) = e−η
Γ(1−α)

α
(1−s)α , |s| ≤ 1,

where η ≥ 0 is a parameter. We denote this distribution by DSα(η). A
useful representation of discrete stable distributions is given in Theorem 6.7
on page 371 of [31]. It is as follows.
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Proposition 2. Fix α ∈ (0, 1) and η ≥ 0. If {Nt : t ≥ 0} is a Poisson
process with rate 1 and T ∼ PSα(η) is independent of this process, then
NT ∼ DSα(η).

By analogy, we define discrete tempered stable distributions as follows.

Definition 3. Fix α ∈ (0, 1) and η ≥ 0. Let T ∼ PTSα(q, η) and let {Nt :
t ≥ 0} be a Poisson process with rate 1 independent of T . The distribution of
NT is called a discrete tempered stable (DTS) distribution. We denote this
distribution by DTSα(q, η).

By a simple conditioning argument, the pgf of DTSα(q, η) is, for s ∈ (0, 1]

E[sNT ] = E[e−(1−s)T ] = exp

{

−η

∫

(0,∞)

(

1− e−(1−s)x
)

q(x)x−1−αdx

}

. (5)

Remark 4. There are two simple ways to generalize Definition 3. The
first is to allow the rate of the Poisson process to be r > 0 not necessarily
1. However, in this case, the distribution of NT is DTSα(qr, r

αη), where
qr(x) = q(x/r). The second is to allow T ∼ PTSα(q, η, b) with b > 0.
In this case, the distribution of NT is the convolution of DTSα(q, η) and a
Poisson distribution with mean b.

We can consider the same tempering functions as for PTS distributions.
This leads to the following examples.

Examples. 1. When q ≡ 1 we have DTSα(q, η) = DSα(η). 2. When
q(x) = e−ax for a > 0 the corresponding distributions are Poisson-Tweedie.
When α = .5 these correspond to Poisson Inverse Gaussian distributions,
which were introduced in [17]. 3. When q(x) = 10≤x<a for a > 0, we are in
the case of truncation.

We conclude this section by showing that we can approximate PTS dis-
tributions by DTS distributions. The idea is motivated by [22], which gives
similar results for certain generalizations of discrete stable distributions. Let
q be a tempering function. For any a > 0 define Xa ∼ DTSα(q1/a, a

−αη),
where q1/a(x) = q(ax). Since Xa is defined on Z+, aXa is defined on
aZ+ = {0, a, 2a, . . . }.

Proposition 5. We have

aXa
d
→ PTSα(q, η) as a ↓ 0.

Proof. From (5) it follows that the Laplace transform of aXa is given, for
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z ≥ 0, by

E[e−zaXa ] = exp

{

−a−αη

∫

(0,∞)

(

1− e−(1−e
−za)x

)

q(ax)x−1−αdx

}

= exp

{

−η

∫

(0,∞)

(

1− e−
(1−e

−za)
a

x

)

q(x)x−1−αdx

}

→ exp

{

−η

∫

(0,∞)

(

1− e−zx
)

q(x)x−1−αdx

}

,

as a ↓ 0. Here the convergence follows by the facts that (1−e−za)
a → z,

(

1− e−
(1−e

−za)
a

x

)

≤ 1∧ (1−e−za)x
a ≤ 1∧(zx) ≤ (z+1)(1∧x), and dominated

convergence.

4 Main Results

Let µ be a probability measure on R+ such that, for t > 0,

µ({x : x > t}) = t−αL(t) (6)

for some α ∈ (0, 1) and L ∈ RV0. Let

V (t) = tα/L(t) and at = 1/V ←(t), (7)

where V←(t) = inf{s : V (s) > t} is the generalized inverse of V , satisfying

V (V←(t)) ∼ V←(V (t)) ∼ t as t → ∞,

see [5]. Note that at ∈ RV−1/α and thus that an → 0 as n → ∞. The
following lemma is well-known, but, for completeness, its proof is given in
Section 5.

Lemma 6. If X1,X2, . . .
iid
∼ µ then

an

n
∑

i=1

Xi
d
→ PSα(α).

We now consider the effect of tempering on this result. Let q be a tem-
pering function and, for ℓ > 0, define

qℓ(x) = q(x/ℓ) and µℓ(dx) = cℓqℓ(x)µ(dx),

where

cℓ =

[

∫

[0,∞)
qℓ(x)µ(dx)

]−1
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is a normalizing constant. Note that, as ℓ → ∞, we have cℓ → 1 and
µℓ

w
→ µ. Thus, for large ℓ, µℓ is close to µ in some central region, but, if

limx→∞ qℓ(x) = 0, then it has lighter tails. In this sense, we interpret µℓ as
a tempered version of µ.

Examples. 1. When q ≡ 1 there is no tempering and µℓ = µ for each ℓ > 0.
2. When q(x) = e−ax for some a > 0, we have qℓ(x) = e−ax/ℓ. Thus, µℓ

is an Esscher transform of µ. 3. When q(x) = 10≤x<a for some a > 0, we
have qℓ(x) = 10≤x<aℓ. Thus, µℓ is µ truncated at aℓ. This means that, if
X ∼ µ, then µℓ is the conditional distribution of X given the event [X < aℓ].

Examples 2 and 3 above lead to different modifications of µ which, for
large values of ℓ, are similar to µ in some central portion, but have lighter
tails. We now give our main result for convergence to PTS distributions.

Theorem 7. Let {ℓn} be a sequence of positive numbers with ℓn → ∞, let

Xn1,Xn2, . . . ,Xnn
iid
∼ µℓn for each n ∈ N, and let D be the set of discontinu-

ities of q. Assume that Lebesgue measure of D is 0. If anℓn → c ∈ (0,∞),
then

an

n
∑

i=1

Xni
p
→ PTSα(qc, α),

where qc(x) = q(x/c) for x ≥ 0. If anℓn → ∞, then

an

n
∑

i=1

Xni
p
→ PSα(β) (8)

with β = α. If anℓn → 0 and limx→∞ q(x) = ζ < ∞, then (8) holds with
β = αζ.

Proof. The proof can be found in Section 5.

Remark 8. For most applications the parameter ℓ is not actually approach-
ing infinity. Instead, it is some fixed but (very) large constant. Since a• ∈
RV−1/α, we can write anℓ = [n−1ℓα]1/αL′(n) for some L′ ∈ RV0. Now,
consider the sum of n iid random variables from µℓ, and assume that the
tempering function q is such that µℓ has a finite variance. Theorem 7 can be
interpreted as follows. When n is on the order of ℓα the distribution of the
sum is close to PTSα(qc, α). However, once n is much larger than ℓα, the
central limit theorem will take effect and the distribution of the sum will be
well approximated by the Gaussian. A constant that determines when such
regimes occur was called the “natural scale” in [15]. Thus, in this case, the
natural scale is ℓα. Using slightly different perspectives, this was previously
found to be the natural scale for Tweedie distributions in [15] and [14].
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The following transfer lemma allows us to transfer convergence results
from the case of multiplicative scaling to that of scaling using the thinning
operation ◦. It is an extension of a remark in [30].

Lemma 9. Let {Xn} be a sequence of random variables on Z+ and assume

that {γn} is a deterministic sequence in [0, 1] with γn → 0. If γnXn
d
→ X

for some random variable X, then

γn ◦Xn
d
→ NX ,

where {Nt : t ≥ 0} is a Poisson process with rate 1 and independent of X.

Proof. The proof can be found in Section 5.

Combining this with Lemma 6 gives the following.

Lemma 10. Assume that the support of µ is contained in Z+. If X1,X2, . . .
iid
∼

µ then

an ◦

n
∑

i=1

Xi
d
→ DSα(α).

Now combining Theorem 7 with Lemma 9 gives our main result for con-
vergence to DTS distributions.

Theorem 11. Assume that the support of µ is contained in Z+. Let {ℓn} be

a sequence of positive numbers with ℓn → ∞, let Xn1,Xn2, . . . ,Xnn
iid
∼ µℓn

for each n ∈ N, and let D be the set of discontinuities of q. Assume that
Lebesgue measure of D is 0. If anℓn → c ∈ (0,∞), then

an ◦

n
∑

i=1

Xni
p
→ DTSα(qc, α),

where qc(x) = q(x/c) for x ≥ 0. If anℓn → ∞, then

an ◦

n
∑

i=1

Xni
p
→ DSα(β) (9)

with β = α. If anℓn → 0 and limx→∞ q(x) = ζ < ∞, then (9) holds with
β = αζ.

5 Proofs

The proofs of Lemma 6 and Theorem 7 are based on verifying conditions
for the convergence of sums of triangular array. The general theory can be
found in, e.g. [23] or [21]. However, for the situations considered here, the
conditions can be simplified. These are as follows.
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Proposition 12. Let kn be a sequence of positive integers with kn → ∞,
let M be a Borel measure on (0,∞) satisfying (2), and let {Xnm : n =
1, 2, . . . ,m = 1, 2, . . . , kn} be nonnegative random variables such that, for

every n, the random variables Xn1,Xn2, . . . ,Xnkn are iid and Xn1
p
→ 0 as

n → ∞. If, for every s > 0 with M({s}) = 0, we have

lim
n→∞

knP (Xn1 > s) = M((s,∞)) (10)

and

lim
ǫ↓0

lim sup
n→∞

knE
[

Xn11[Xn1<ǫ]

]

= 0 (11)

then
kn
∑

m=1

Xnm
d
→ ID+(M, 0).

Proof. Let νn be the distribution of Xn1, let ν = ID+(M, 0), and let ν̂n(u) =
∫

[0,∞) e
−uxνn(dx) and ν̂(u) =

∫

[0,∞) e
−uxν(dx) be the Laplace transforms

of νn and ν respectively. The Laplace transform of the distribution of
∑kn

m=1 Xnm is [ν̂n(u)]
kn . We must show that

lim
n→∞

[ν̂n(u)]
kn = ν̂(u), u ≥ 0.

We will write the left side in a simpler form. Specifically, we have

lim
n→∞

[ν̂n(u)]
kn = lim

n→∞
exp {kn log [ν̂n(u)]}

= lim
n→∞

exp {kn [ν̂n(u)− 1]}

= lim
n→∞

exp

(

−kn

∫

[0,∞)

(

1− e−ux
)

νn(dx)

)

,

where the second equality follows from the facts that log(x) ∼ (x − 1) as

x → 1 and limn→∞ ν̂n(u) = 1 for each u ≥ 0 since Xn1
p
→ 0 as n → ∞.

Since, for fixed u, fu(x) = (1− e−ux) is a bounded and continuous func-
tion of x, by the Portmanteau Theorem for vague convergence (see Theorem
1 in [2]) (10) implies that, for any ǫ > 0,

lim
n→∞

kn

∫

[ǫ,∞)

(

1− e−ux
)

νn(dx) =

∫

[ǫ,∞)

(

1− e−ux
)

M(dx).

By (11) and well-known facts about the exponential function, we have

0 ≤ lim
ǫ↓0

lim inf
n→∞

kn

∫

[0,ǫ)

(

1− e−ux
)

νn(dx)

≤ lim
ǫ↓0

lim sup
n→∞

kn

∫

[0,ǫ)

(

1− e−ux
)

νn(dx)

≤ lim
ǫ↓0

lim sup
n→∞

ukn

∫

[0,ǫ)
xνn(dx) = 0.

9



Combining the above with Lebesgue’s dominated convergence theorem gives

lim inf
n→∞

kn

∫

[0,∞)

(

1− e−ux
)

νn(dx)

= lim
ǫ↓0

lim inf
n→∞

kn

∫

[0,ǫ)

(

1− e−ux
)

νn(dx)

+ lim
ǫ↓0

lim inf
n→∞

kn

∫

[ǫ,∞)

(

1− e−ux
)

νn(dx)

= lim
ǫ↓0

∫

[ǫ,∞)

(

1− e−ux
)

M(dx)

=

∫

(0,∞)

(

1− e−ux
)

M(dx).

Similarly, we can repeat the above with lim sup in place of lim inf. Then,
putting everything together gives

lim
n→∞

[ν̂n(u)]
kn = lim

n→∞
exp

(

−kn

∫

[0,∞)

(

1− e−ux
)

νn(dx)

)

= exp

(

−

∫

(0,∞)

(

1− e−ux
)

M(dx)

)

,

which is the Laplace transform of ID+(M, 0) as required.

Before proceeding, we define the Borel measures

Mn(A) = n

∫

[0,∞)
1A(anx)µ(dx), A ∈ B(R+) (12)

and

M∞(A) =

∫

[0,∞)
1A(x)αx

−α−1dx, A ∈ B(R+). (13)

Note that M∞ is the Lévy measure of the distribution PSα(α).

Lemma 13. The following hold

lim
n→∞

Mn((s,∞)) = M∞((s,∞)), s > 0

and

lim
ǫ↓0

lim sup
n→∞

∫

[0,ǫ)
xMn(dx) = 0.

10



Proof. We have, for s > 0,

lim
n→∞

Mn((s,∞)) = lim
n→∞

V (V←(n))µ((s/an,∞))

= lim
n→∞

V (1/an)
1

V (s/an)
= s−α = M∞((s,∞))

and, recalling that α ∈ (0, 1) gives

lim
ǫ↓0

lim sup
n→∞

∫

[0,ǫ)
xMn(dx) = lim

ǫ↓0
lim sup
n→∞

nan

∫

[0,ǫ/an)
xµ(dx)

= lim
ǫ↓0

lim sup
n→∞

V (1/an)an

∫

[0,ǫ/an)
xµ(dx)

= lim
ǫ↓0

lim sup
n→∞

ǫ−αV (ǫ/an)an

∫

[0,ǫ/an)
xµ(dx)

= lim
ǫ↓0

ǫ1−α lim sup
n→∞

∫

[0,ǫ/an)
xµ(dx)

(ǫ/an)
∫

(ǫ/an,∞) µ(dx)

= lim
ǫ↓0

ǫ1−α
α

1− α
= 0,

where the first convergence follows by Theorem 2 on page 283 of [11].

Proof of Lemma 6. Since an → 0, Slutsky’s Theorem implies that anX1
p
→

0. From here, the result follows by combining Lemma 13 with Proposition
12.

Lemma 14. Let h, h1, h2, . . . be is a sequence of Borel functions and let D
be a Borel set with Lebesgue measure zero such that for any x ∈ Dc and any
sequence of real numbers x1, x2, . . . with xn → x we have hn(xn) → h(x).
Then, for any s > 0,

lim
n→∞

∫

(s,∞)
hn(x)Mn(dx) =

∫

(s,∞)
h(x)M∞(dx).

Proof. Fix s > 0. Let mn = Mn((s,∞)), m∞ = M∞((s,∞)), and de-

fine the probability measures M
(s)
n (dx) = m−1n 1x>sMn(dx) and M

(s)
∞ (dx) =

m−1∞ 1x>sM∞(dx). From Lemma 13 and the Portmanteau Theorem it fol-

lows that M
(s)
n

w
→ M

(s)
∞ . Further, since M

(s)
∞ is absolutely continuous with

respect to Lebesgue measure, it follows that M
(s)
∞ (D) = 0. From here, a

standard result about weak convergence, see e.g. Example 32 on page 58 in
[25], implies that

lim
n→∞

∫

(s,∞)
hn(x)M

(s)
n (dx) =

∫

(s,∞)
h(x)M (s)

∞ (dx).

The result follows by combining this with the fact that mn → m∞.
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Proof of Theorem 7. The proof is based on verifying that the assumptions
of Proposition 12 hold. Toward this end, note that

nP (anX1n > s) = ncℓn

∫

(s/an,∞)
qℓn(x)µ(dx)

∼ n

∫

(s/an,∞)
q(x/ℓn)µ(dx)

=

∫

(s,∞)
q(x/(anℓn))Mn(dx).

By Lemma 14 this converges to

∫

(s,∞)
q(x/c)M∞(dx) = α

∫

(s,∞)
qc(x)x

−1−αdx,

where we interpret q(x/c) = 1 if c = ∞ and q(x/c) = ζ if c = 0. Further,

lim
ǫ↓0

lim sup
n→∞

nE
[

anX11[anX1<ǫ]

]

= lim
ǫ↓0

lim sup
n→∞

nancℓn

∫

[0,ǫ/an)
xq(x/ℓn)µ(dx)

= lim
ǫ↓0

lim sup
n→∞

nan

∫

[0,ǫ/an)
xq(x/ℓn)µ(dx)

≤ K lim
ǫ↓0

lim sup
n→∞

∫

[0,ǫ)
xMn(dx) = 0,

where the last line follows by Lemma 13 and K is any upper bound on q.

Proof of Lemma 9. First note that, by Slutsky’s Theorem, for any t > 0

−Xn log(1− γnt) = −γntXn
log(1− γnt)

γnt

d
→ Xt.

Let Pn be the pgf of the distribution of Xn. The pgf of the distribution of
γn ◦ Xn is then Pn(1 − γn + γns) = Pn(1 − γnt), where t = 1 − s. Since
convergence in distribution implies convergence of Laplace transforms,

lim
n→∞

Pn(1− γnt) = lim
n→∞

E
[

eXn log(1−γnt)
]

= E
[

e−Xt
]

= E
[

e−X(1−s)
]

.

Observing that

E[sNX ] = E
[

E[sNX |X]
]

= E[e−X(1−s)]

gives the result.

12



References

[1] A. Baccini, L. Barabesi, L. Stracqualursi (2016). Random variate
generation and connected computational issues for the Poisson-Tweedie
distribution. Computational Statistics, 31:729–748.

[2] M. Barczy and G. Pap (2006). Portmanteau theorem for unbounded
measures. Statistics and Probability Letters, 76(17):1831–1835.

[3] O. E. Barndorff-Nielsen, D. G. Pollard, and N. Shephard (2012). Integer-
valued Lévy processes and low latency financial econometrics. Quanti-
tative Finance, 12(4):587–605.

[4] M. L. Bianchi, S. T. Rachev, Y. S. Kim, and F. J. Fabozzi (2011). Tem-
pered infinitely divisible distributions and processes. Theory of Proba-
bility and Its Applications, 55(1):2–26.

[5] N. H. Bingham, C. M. Goldie, and J. L. Teugels (1987). Regular Vari-
ation. Encyclopedia of Mathematics And Its Applications. Cambridge
University Press, Cambridge.

[6] L. Cao and M. Grabchak (2014). Smoothly truncated Lévy walks: To-
ward a realistic mobility model. IPCCC ’14: Proceedings of the 33rd In-
ternational Performance Computing and Communications Conference.

[7] A. Chakrabarty and M. M. Meerschaert (2011). Tempered stable laws
as random walk limits. Statistics & Probability Letters, 81(8):989–997.

[8] A. Chakrabarty and G. Samorodnitsky (2012). Understanding heavy
tails in a bounded world or, is a truncated heavy tail heavy or not?
Stochastic Models 12(1):109–143.

[9] G. Christoph and K. Schreiber (1998). Discrete stable random variables.
Statistics and Probability Letters, 36(3):243–247.

[10] A. H. El-Shaarawi, R. Zhu, and H. Joe (2010). Modelling species abun-
dance using the Poisson-Tweedie family. Environmetrics, 22(2):152–164.

[11] W. Feller. An Introduction to Probability Theory and Its Applications,
Vol. II. John Wiley & Sons, Inc., New York, 2nd edition, 1971.

[12] M. Grabchak (2012). On a new class of tempered stable distribu-
tions: Moments and regular variation. Journal of Applied Probability,
49(4):1015–1035.

[13] M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models
for Multiscale Processes. Springer, Cham, Switzerland.

13



[14] M. Grabchak and S. Molchanov (2015). Limit theorems and phase
transitions for two models of summation of i.i.d. random variables with
a parameter. Theory of Probability and Its Applications, 59(2):222–243.

[15] M. Grabchak and G. Samorodnitsky (2010). Do financial returns have
finite or infinite variance? A paradox and an explanation. Quantitative
Finance, 10(8):883–893.

[16] P. S. Griffin, R. A. Maller, and D. Roberts (2013). Finite time ruin
probabilities for tempered stable insurance risk processes. Insurance:
Mathematics and Economics, 53(2): 478–489.

[17] M. S. Holla (1967). On a poisson-inverse gaussian distribution. Metrika,
11(1):115–121.

[18] P. Hougaard (1987). Modelling multivariate survival. Scandinavian
Journal of Statistics, 14(4):291–304.

[19] P. Hougaard, M. T. Lee and G. A. Whitmore (1997). Analysis of
Overdispersed Count Data by Mixtures of Poisson Variables and Poisson
Processes. Biometrics, 53(4):1225–1238.

[20] B. Jørgensen and C. C. Kokonendji (2016). Discrete dispersion models
and their Tweedie asymptotics. AStA Advances in Statistical Analysis,
100(1):43-78.

[21] O. Kallenberg (2002). Foundations of Modern Probability 2nd ed.
Springer, New York.

[22] L. B. Klebanov and L. Slámova (2013). Integer valued stable random
variables. Statistics and Probability Letters, 83(6):1513–1519.

[23] M. M. Meerschaert and H. Scheffler (2001). Limit Distributions for Sums
of Independent Random Vectors: Heavy Tails in Theory and Practice.
John Wiley & Sons, New York.

[24] K. J. Palmer, M. S. Ridout, and B. J. T. Morgan (2008). Modelling cell
generation times by using the tempered stable distribution. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 57(4):379–
397.

[25] D. Pollard. Convergence of Stochastic Processes. Springer-Verlag, New
York, 1984.

[26] J. Rosiński (2007). Tempering stable processes. Stochastic Processes
and their Applications, 117(6):677–707.

[27] J. Rosiński and J. L. Sinclair (2010). Generalized tempered stable pro-
cesses. Banach Center Publications, 90:153–170.

14



[28] K. Sato (1999). Lévy Processes and Infinitely Divisible Distributions.
Cambidge University Press, Cambridge.

[29] V. Seshadri (1993). The Inverse Gaussian Distribution: A Case Study
in Exponential Families. Oxford University Press, Oxford.

[30] F. W. Steutel and K. van Harn (1979). Discrete analogues of self-
decomposability and stability. Annals of Probability, 7(5):893–899.

[31] F. W. Steutel and K. van Harn (2004). Infinite Divisibility of Probability
Distributions on the Real Line. Marcel Dekker, Inc, New York.

[32] G. Terdik and W. A. Woyczyński (2006). Rosiński Measures for tem-
pered stable and related Ornstien-Uhlenbeck processes. Probability and
Mathematical Statistics, 26(2): 213–243.

[33] M. C. K. Tweedie (1984). An index which distinguishes between some
important exponential families. In J. K. Ghosh and J. Roy (eds.), Statis-
tics: Applications and New Directions. Proceedings of the Indian Statis-
tical Institute Golden Jubilee International Conference. Indian Statisti-
cal Institute, Calcutta, pg. 579–604.

[34] L. Valdivieso, W. Schoutens, and F. Tuerlinckx, 2009. Maximum like-
lihood estimation in processes of Ornstein-Uhlenbeck type. Statistical
Inference for Stochastic Processes, 12(1):1–19.

[35] R. Zhu and H. Joe (2009). Modelling heavy-tailed count data using a
generalised Poisson-inverse Gaussian family. Statistics and Probability
Letters, 79(15):1695–1703.

15


	1 Introduction
	2 Positive Stable and Positive Tempered Stable Distributions
	3 Discrete Stable and Discrete Tempered Stable Distributions
	4 Main Results
	5 Proofs

