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Abstract

We introduce a large and flexible class of discrete tempered stable
distributions, and analyze the domains of attraction for both this class
and the related class of positive tempered stable distributions. Our
results suggest that these are natural models for sums of independent
and identically distributed random variables with tempered heavy tails
tails, i.e. tails that appear to be heavy up to a point, but ultimately
decay faster.

1 Introduction

Stable distributions play a central role in many applications. However, their
use is limited by the fact that they have an infinite variance, which is not
realistic for most real-world applications. This has led to the development
of tempered stable distributions, which is a class of models obtained by
modifying the tails of stable distributions to make them lighter, while leaving
their central portions, essentially, unchanged. Perhaps the earliest models
of this type are Tweedie distributions, which were introduced in the seminal
paper Tweedie (1984) [33]. A more general approach, allowing for a wide
variety of tail behavior, is given in Rosinski (2007) [26]. That approach
was further generalized in several directions in [27], [4], and [I2]. A survey,
along with a historical overview and many references can be found in [13].
We will focus on the class of positive tempered stable (PTS) distributions.
This class is important for many applications including actuarial science [16],
biostatistics [24], mathematical finance [34], and computer science [6].

In a different direction, stable distributions have been modified to deal
with over-dispersion when modeling count data. Specifically, the class of
discrete stable distributions was introduced in Steutel and van Harn (1979)
[30], see also [9], [31], and [22]. As with continuous stable distributions,
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these models have an infinite variance, which has led to the development
of a tempered modification. In particular, [I8] introduced a class of models
that has come to be known as Poisson-Tweedie. The name comes from the
fact that these can be represented as a Poisson process subordinated by a
Tweedie distribution. Many results along with applications to a variety of
areas including economics, biostatistics, bibliometrics, and ecology can be
found in, e.g. [19], [35], [10], [3], [20], [1], and the references therein.

In this paper, we introduce a large class of discrete tempered stable (DTS)
distributions, which generalize the class of Poisson-Tweedie models. We then
prove limit theorems for PTS and DTS distributions. Just as generalizations
of the central limit theorem explain how stable and discrete stable distri-
butions approximate sums of independent and identically distributed (iid)
random variables with heavy tails, our theorems aim to provide a theoretical
justification for the use of PTS and DTS models in approximating sums of
iid random variables with tempered heavy tails, i.e. tails that appear to be
heavy up to point, but have been modified to, ultimately, decay faster. For
a discussion of how such models occur in practice see [15] and [6]. Related
limit theorems for Poisson-Tweedie distributions are given in [20]. In the
continuous case, similar results for Tweedie distributions were studied in [14]
and, from a different perspective, convergence of certain random walks to
tempered stable distributions were studied in [7].

Before proceeding we introduce some notation. We write N = {1,2,...},
Zy = NU{0}, Ry = [0,00), and B(R,) to denote the Borel sets on R.
For a probability measure p with support contained in R, we write [i(z) =
fR+ e **p(dx) to denote its Laplace transform and X ~ p to denote that X
is a random variable with distribution u. For a function f : Ry — R, and
B € R, we write f € RVj3 to denote that f is regularly varying with index £,

i.e. that

tlg&% =2 for any z > 0.
We write 14 to denote the indicator function on set A, for z > 0 we write
I'(z) = fooo e~ 't*~1d¢ to denote the gamma function, and we write -, i>,
2 and 2 o denote, respectively, convergence in probability, convergence

in distribution, weak convergence, and equality in distribution. For ¢ €

[—00, 0], we write f(t) ~ g(t) as t — ¢ to denote that lim; . % =1

2 Positive Stable and Positive Tempered Stable Dis-
tributions
In this section we formally introduce positive stable and positive tempered

stable distributions. We begin by recalling some basic facts about positive
infinitely divisible distributions. An infinitely divisible distribution u, with



support contained in R, , has a Laplace transform of the form

,&(z):exp{—bz—/(o )(1—6”)M(dx)}, z >0, (1)

where b > 0 and M is a Borel measure on (0, c0) satisfying

/ (x A1) M(dz) < oo. (2)
(0,00)

Here, b is called the drift and M is called the Lévy measure. These param-
eters uniquely determine the distribution and we write g = I.Dy(M,b). For
a general reference on infinitely divisible distributions see [28].

A probability measure p on Ry is said to be strictly a-stable if, for any

n € N and Xl,Xg,...,Xniri\Sip, we have

Xy L Ve (X + Xo+ 0+ Xn). (3)

By positivity, we necessarily have o« € (0,1]. If a € (0,1), then u =
ID,(M,,0), where
My (dz) = nz~ 1715 0dz

for some n > 0. If @« = 1 then = ID,(0,n) for some n > 0, and thus p is
a point mass at 7. For a € (0, 1) the Laplace transform is of the form

N _pf=a) o

flz) =e a2, 220
We denote this distribution by PS,(n). Note that PS,(0) is a point mass
at zero for all a € (0,1). For more about stable distributions on R4 see [31].

It is well-known that, for a € (0, 1), stable distributions have an infi-

nite mean, which is not realistic for many applications. This has lead to
the development of distributions that look stable-like in some large central
region, but with lighter tails. Following [27], we define positive tempered
stable distributions as follows.

Definition 1. A distribution p = ID,(M,b) is called a positive tempered
stable (PTS) distribution if b > 0 and

M(dz) = nq(x)a™' " *1z50dz,

where a € (0,1), n >0, and q : Ry — Ry is a bounded, non-negative, Borel
function with limg o q(x) = 1, and satisfying

/000 (1A z)q(z)z™ 7%z < oco. (4)

We call q the tempering function and we write u = PTSy(q,m,b). When
b =0, we write PTS,(q,n) = PTS4(q,7,0).



We are motivated by the case where the tempering function, ¢, satisfies
the additional condition that lim, ,~ g(x) = 0. In this case, PT'S,(q,n) is
similar to PS,(n) in some central region, but with lighter tails. In this sense,
q “tempers” the tails of the stable distribution. Despite this motivation, none
of the results of the paper require this additional condition. We now give
several examples of tempering functions, others can be found in, e.g. [32]
and [13].

Examples. 1. When ¢ = 1 there is no tempering and PTS,(¢q,n) =
PS.(n). 2. When ¢(z) = e~ for some a > 0, we get the class of Tweedie
distributions, which were introduced in [33]. When « = .5, these correspond
to inverse Gaussian distributions, see e.g. [29]. 3. When ¢(r) = 1jg<z<q) for
some a > 0, we call this truncation. Such distributions are important for
certain limit theorems, see [§].

3 Discrete Stable and Discrete Tempered Stable
Distributions

A discrete analogue of stable distributions was introduced in [30]. Here (3)
is modified to ensure that the right side remains an integer. Specifically, [30]
introduced the so-called ‘thinning’ operation o, which is defined as follows.
If v € [0,1] and X is a random variable with support contained in Z,, then
v o X is a random variable with distribution

X
’YOXiZEi,
=1

where €1, €3, . .. are iid random variables independent of X having a Bernoulli
distribution with P(e; = 1) =1 — P(e; = 0) = . Here and throughout, we
set Z?:1 ¢, = 0. Note that, if P(s) is the probability generating function
(pef) of X, i.e. P(s) = E[s*], then the pgf of v o X is P(1 — v + vs).

For a € (0, 1], a distribution p on Z. is called discrete a-stable if for any
n € N we have

X L Voo (X 4 Xo+ -+ Xy),

where X1, Xo, ... g . The class of discrete 1-stable distributions coincides
with the class of Poisson distributions. For a € (0,1) the pgf of a discrete

stable distribution is of the form

'(l—o) a
/ Su(dz) = e U797 g <1,
Z+

where n > 0 is a parameter. We denote this distribution by DS,(n). A
useful representation of discrete stable distributions is given in Theorem 6.7
on page 371 of [31]. It is as follows.



Proposition 2. Fiz o € (0,1) and n > 0. If {N; : t > 0} is a Poisson
process with rate 1 and T ~ PS,(n) is independent of this process, then
NT ~ DSa(ﬁ)

By analogy, we define discrete tempered stable distributions as follows.

Definition 3. Fiz a € (0,1) andn > 0. Let T ~ PTS,(q,n) and let {Ny :
t > 0} be a Poisson process with rate 1 independent of T. The distribution of
Nt is called a discrete tempered stable (DTS) distribution. We denote this
distribution by DTS, (q,n).

By a simple conditioning argument, the pgf of DT'S,(q,n) is, for s € (0, 1]

E[SNT] — E[ef(lfS)T] = exp {—77 /(0 (1 — e*(lfs)m) q(m)xladx} . (5)

7m)

Remark 4. There are two simple ways to generalize Definition [3.  The
first is to allow the rate of the Poisson process to be r > 0 not necessarily
1. However, in this case, the distribution of Np is DTSy(q.,m"n), where
qr(x) = q(z/r). The second is to allow T ~ PTS,(q,n,b) with b > 0.
In this case, the distribution of Nt is the convolution of DT S,(q,n) and a
Poisson distribution with mean b.

We can consider the same tempering functions as for PTS distributions.
This leads to the following examples.

Examples. 1. When ¢ = 1 we have DT'S,(q,n) = DS,(n). 2. When
q(x) = e for a > 0 the corresponding distributions are Poisson-Tweedie.
When a = .5 these correspond to Poisson Inverse Gaussian distributions,
which were introduced in [I7]. 3. When ¢(z) = lo<z<q for a > 0, we are in
the case of truncation.

We conclude this section by showing that we can approximate PTS dis-
tributions by DTS distributions. The idea is motivated by [22], which gives
similar results for certain generalizations of discrete stable distributions. Let
q be a tempering function. For any a > 0 define X, ~ DT'S.(q1/4,a™"n),
where q;/,(r) = g(ar). Since X, is defined on Z,, aX, is defined on
aZs ={0,a,2a,...}.

Proposition 5. We have
aXg LA PTS.(q,n) asalD0.

Proof. From () it follows that the Laplace transform of aX, is given, for



E[e %] = exp {—aan /(0 ) <1 — 67(176—%)33) q(ax):cladx}

B P —1l-o
= exps —7 1—e a q(x)x dz
(0,00)

—  exp {—77/ (1 - efm) q(:c)xladx} ,
(0,00)

as a | 0. Here the convergence follows by the facts that @ - 2z,
(1—e”*%Y __,—za
<1 e x) < 1/\@ < 1A(zz) < (2+1)(1Ax), and dominated

convergence. O

4 Main Results
Let p be a probability measure on Ry such that, for ¢t > 0,
pfz e > 1)) =t L(t) (6)
for some « € (0,1) and L € RVj. Let
V(t) =t*/L(t) and a; = 1/V < (¢), (7)
where V< (t) = inf{s : V(s) > t} is the generalized inverse of V, satisfying
VIVE(t) ~VT(V(t) ~tast — oo,

see [5]. Note that a; € RV_j/, and thus that a, — 0 as n — oo. The
following lemma is well-known, but, for completeness, its proof is given in
Section

Lemma 6. If X1, Xo,... iri\(},u then

an Y X; % PSa(a).
=1

We now consider the effect of tempering on this result. Let ¢ be a tem-
pering function and, for £ > 0, define

qe(x) = q(x/€) and p(dz) = coqe(x)p(dz),

—1
o= [/[0700) Qz(iﬂ)u(dﬁﬂ)]

6

where



is a normalizing constant. Note that, as / — 0o, we have ¢ — 1 and

w . . . .
e — . Thus, for large ¢, py is close to p in some central region, but, if
lim, o ge(x) = 0, then it has lighter tails. In this sense, we interpret py as
a tempered version of p.

Examples. 1. When ¢ = 1 there is no tempering and u, = u for each £ > 0.
2. When g(z) = e~ for some a > 0, we have g(z) = e~%/¢. Thus, y
is an Esscher transform of p. 3. When ¢(x) = lo<z<, for some a > 0, we
have ge(x) = lo<g<qe- Thus, pg is p truncated at af. This means that, if
X ~ p, then py is the conditional distribution of X given the event [X < af].

Examples 2 and 3 above lead to different modifications of p which, for
large values of ¢, are similar to g in some central portion, but have lighter
tails. We now give our main result for convergence to PTS distributions.

Theorem 7. Let {{,} be a sequence of positive numbers with £, — oo, let

X1, Xn2, oo s X id e, for each n € N, and let D be the set of discontinu-

ities of q. Assume that Lebesgue measure of D is 0. If apl, — ¢ € (0,00),
then

n
an Y Xni B PTSa(qe, @),
=1

where q.(x) = q(x/c) for x > 0. If apnl,, — oo, then

an Y Xni > PSa(B) (8)

=1

with B = a. If apl, — 0 and lim,_, q(x) = ¢ < oo, then () holds with
B =a(.

Proof. The proof can be found in Section U

Remark 8. For most applications the parameter £ is not actually approach-
ing infinity. Instead, it is some fized but (very) large constant. Since ae €
RV_y o, we can write apl = [n=1ee] /e L/ (n) for some L' € RVy. Now,
consider the sum of n iid random wvariables from g, and assume that the
tempering function q is such that py has a finite variance. Theorem[d can be
interpreted as follows. When n is on the order of £¢ the distribution of the
sum is close to PT S, (qc, ). However, once n is much larger than (%, the
central limit theorem will take effect and the distribution of the sum will be
well approximated by the Gaussian. A constant that determines when such
regimes occur was called the “natural scale” in [15]. Thus, in this case, the
natural scale is £*. Using slightly different perspectives, this was previously
found to be the natural scale for Tweedie distributions in [15] and [17).



The following transfer lemma allows us to transfer convergence results
from the case of multiplicative scaling to that of scaling using the thinning
operation o. It is an extension of a remark in [30].

Lemma 9. Let {X,,} be a sequence of random variables on Z, and assume

that {vn} is a deterministic sequence in [0,1] with v, — 0. If v, X, 4 X
for some random variable X, then

Yn © Xn i Nx,
where {Ny : t > 0} is a Poisson process with rate 1 and independent of X.
Proof. The proof can be found in Section O

Combining this with Lemma [f] gives the following.

Lemma 10. Assume that the support of i is contained in Z, . If X1, Xoa, . .. id

1 then
n
ap © ZXi 4 DS, ().
i=1
Now combining Theorem [[] with Lemma [9] gives our main result for con-
vergence to DTS distributions.

Theorem 11. Assume that the support of u is contained in Z.. Let {{,} be
a sequence of positive numbers with £, — 0o, let Xn1, Xn2, -, Xan id L,
for each n € N, and let D be the set of discontinuities of q. Assume that

Lebesgue measure of D is 0. If aply, — ¢ € (0,00), then

n
anp O Z Xni LN DTS, (qe, ),
i=1

where q.(x) = q(x/c) for x > 0. If apnl,, — oo, then

an 0 Xni & DSa(B) (9)
i=1
with = a. If aply, — 0 and lim,_o q(z) = ¢ < oo, then (@) holds with
8 =a(.

5 Proofs

The proofs of Lemma [6l and Theorem [1 are based on verifying conditions
for the convergence of sums of triangular array. The general theory can be
found in, e.g. [23] or [2I]. However, for the situations considered here, the
conditions can be simplified. These are as follows.



Proposition 12. Let k, be a sequence of positive integers with k, — oo,
let M be a Borel measure on (0,00) satisfying @), and let {Xpm : n =

1,2,...,m = 1,2,...,k,} be nonnegative random variables such that, for
every n, the random wvariables X1, Xy2, ..., Xk, are 1id and Xp 20 as
n — oco. If, for every s > 0 with M ({s}) = 0, we have
lim k,P (X1 > s) = M((s,00)) (10)
n—oo
and
lim lim sup kn, B [Xp11(x,, <] =0 (11)

el0 n—oco

then i
> Xom % ID4.(M,0).

m=1
Proof. Let v, be the distribution of X1, let v = D (M,0), and let 0, (u) =
f[o,oo) e "y, (dz) and D(u) = f[o,oo) e “y(dx) be the Laplace transforms
of v, and v respectively. The Laplace transform of the distribution of
S X 18 [0n ()], We must show that

m=1

lim [0n(u)]* = D(u), u>0.

We will write the left side in a simpler form. Specifically, we have

lim [Zn(w)]™ = lim exp {knlog [Pn(u)]}

n—o0

— 7}1—{20 exp {kn [Un(u) — 1]}

= lim exp —kn/ 1—e ") y,(do) |,
e (o [ 0o

where the second equality follows from the facts that log(z) ~ (z — 1) as

x — 1 and limy, o0 75 (u) = 1 for each u > 0 since X1 B 0asn— oo.

Since, for fixed u, f,(z) = (1 — e ") is a bounded and continuous func-
tion of x, by the Portmanteau Theorem for vague convergence (see Theorem
1in [2]) (I0) implies that, for any ¢ > 0,

lim k:n/ (1—e ) vp(dz) = / (1—e™") M(dz).
=00 [€,00) [€,00)

By (I and well-known facts about the exponential function, we have

el0 n—oo

0 < limliminfk, / (1—e™) vp(da)
[0,€)

IN

el0 n—ooco

lim lim sup k:n/ (1—e ) vp(da)
[0,€)

IN

lim lim sup uk, / zvp(dz) = 0.
[0,€)

el0 n—ooco

9



Combining the above with Lebesgue’s dominated convergence theorem gives

lim inf k:n/ (1—e™) vp(da)
[0,00)

n—oo

el0 nm—oo

= lim lim inf k:n/ (1—e™") vp(da)
[0,€)
e]0 n—oo

+ lim lim inf kn/ (1—e™) vp(da)
[e,00)

= 13%1 ) (1—e™™) M(dx)

:/ (1 - &) M(da).
(0.09)

Similarly, we can repeat the above with limsup in place of liminf. Then,
putting everything together gives

lim [0, (w)]* = lim exp | —k, 1—e %)y, (dz
[P (2] p< /[Om)( ) v >>

n—oo n—oo
= exp (—/ (1 — e_um) M(dx)) ,
(0,00)
which is the Laplace transform of I D (M,0) as required. O

Before proceeding, we define the Borel measures

M, (A) = n/[o )1A(anx),u(dx), AeBRy) (12)
and
My (A) = / La(x)az* tdz, AeBRy). (13)
[0,00)

Note that My, is the Lévy measure of the distribution PSy(«).

Lemma 13. The following hold

lim M, ((s,00)) = Mxo((s,00)), s>0

n—oo

and

lim lim sup/ xM,(dz) = 0.
[0,€)

el0 n—oco

10



Proof. We have, for s > 0,

Jlim My ((s,00)) = lim V(V(n)) u((s/an, 0))
~ I V(l/an)m 0 = Mo ((s,00)

and, recalling that o € (0,1) gives

lim lim sup / xMy(dz) = limlimsupnay, / zp(dx)
[0,¢) [0,¢/an)

el0 n—ooco el0 n—ooco

= limlimsupV(l/an)an/ zp(dx)
[0,e/an)

el0 n—ooco

el0 n—ooco

= limlimsup e_O‘V(e/an)an/ zp(dx)
[0,e/an)

J0.e/ay TH(d2)
= lime' ™ limsu Oe/an)
€l0 n—)oop (E/an) f(e/an,oo) M(dx)
= lim Elia @ - Oa
€l0 11—«

where the first convergence follows by Theorem 2 on page 283 of [11]. O

Proof of Lemmald. Since a,, — 0, Slutsky’s Theorem implies that a,X; RS
0. From here, the result follows by combining Lemma [13] with Proposition
O

Lemma 14. Let h, hq,ho,... be is a sequence of Borel functions and let D
be a Borel set with Lebesgue measure zero such that for any x € D° and any
sequence of real numbers x1,xo,... with r, — x we have h,(x,) — h(zx).
Then, for any s > 0,

lim b () M, (dx) :/ h(z) My (dz).
o0 (s,00) (8,00)

Proof. Fix s > 0. Let m,, = M,((s,0)), M = Moo((s,00)), and de-
fine the probability measures Mr(f)(dx) =m; 1> M, (dr) and Még)(dx) =
motlyssMoo(dr). From Lemma [[3 and the Portmanteau Theorem it fol-
lows that M,(LS) “ Méi). Further, since Mé‘g) is absolutely continuous with
respect to Lebesgue measure, it follows that Még)(D) = 0. From here, a
standard result about weak convergence, see e.g. Example 32 on page 58 in
[25], implies that

lim B (2) M) (d) = / h(z) M (dz).
=00 J(s,00) (s,00)
The result follows by combining this with the fact that m,, — M. O

11



Proof of Theorem[[. The proof is based on verifying that the assumptions
of Proposition 2] hold. Toward this end, note that

nP(a, X1, >s) = nc, / qe, (z)p(dx)
(S/O/y“OO)
~ o[ a/tut)
(s/an,00)
- /( ale/(anta) Ma(d).
By Lemma [T4] this converges to

/ q(z/c)My(dz) = a/ qc(ac)xflfadx,
(8,00) (8,00)

where we interpret ¢(x/c) =1 if ¢ = oo and ¢(x/c) = ¢ if ¢ = 0. Further,

lim lim sup nE [anXl Lianx: <s}]
el0 n—soo

= lim lim sup na,cy, / xq(x/ly)p(dz)
[ng/an)

el0 n—ooco

= lim lim sup nan/ xq(x/ly)p(de)
[0,e/an)

el0 n—ooco

< K lim lim sup/ xM,(dx) =0,
el0 n—oco [075)
where the last line follows by Lemma [[3 and K is any upper bound on gq. [

Proof of Lemmald First note that, by Slutsky’s Theorem, for any ¢ > 0

log(1 — ~,t
og(1 — y,t) A oxy
Ynt

Let P, be the pgf of the distribution of X,,. The pgf of the distribution of
Yn © Xp, is then P, (1 — v, + vns) = Pu(1 — y,ut), where t = 1 — 5. Since
convergence in distribution implies convergence of Laplace transforms,

=X, log(1l — ypt) = =yt X,

: 1 Xn log(1—vn _ -Xt1 _ —X(1—s
S Pl =0t) = Jim B[00 = B[] = B e t07].
Observing that

E[s™X] = E [E[s"*|X]] = E[e~¥(79)]

gives the result. U
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