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Relaxation of monotone coupling conditions: Poisson

approximation and beyond

Fraser Daly∗ Oliver Johnson†

June 14, 2017

Abstract It is well-known that assumptions of monotonicity in size-bias couplings may
be used to prove simple, yet powerful, Poisson approximation results. Here we show how
these assumptions may be relaxed, establishing explicit Poisson approximation bounds
(depending on the first two moments only) for random variables which satisfy an ap-
proximate version of these monotonicity conditions. These are shown to be effective for
models where an underlying random variable of interest is contaminated with noise. We
also give explicit Poisson approximation bounds for sums of associated or negatively as-
sociated random variables. Applications are given to epidemic models, extremes, and
random sampling. Finally, we also show how similar techniques may be used to relax the
assumptions needed in a Poincaré inequality and in a normal approximation result.

MSC 2010 Primary: 62E17. Secondary: 60E15, 60F05, 62E10

1 Introduction

It is well-known that in many situations exploiting negative or positive dependence struc-
ture is an effective way to establish Poisson approximation results. For example, Barbour,
Holst and Janson [3] treat many applications of Poisson approximation for sums of (de-
pendent) Bernoulli random variables X1, X2, . . . , Xn which are negatively related, that is,
satisfy

E[φ(X1, . . . , Xi−1, Xi+1, . . . , Xn)|Xi = 1] ≤ E[φ(X1, . . . , Xi−1, Xi+1, . . . , Xn)] , (1)

for all i = 1, . . . , n and increasing functions φ : {0, 1}n−1 7→ {0, 1}.
The Poisson approximation bounds given in [3] under this negative relation assumption

have the advantage of only depending on the first two moments of W . In general, such
bounds require much more detailed information about the Xi in order to be evaluated.
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More precisely, let dTV be the total variation distance, defined for non-negative integer-
valued random variables W and Z by

dTV (L(W ),L(Z)) = sup
A⊆Z+

|P(W ∈ A)− P(Z ∈ A)| ,

where Z
+ = {0, 1, . . .}. Then if W is a sum of negatively related Bernoulli random

variables X1, . . . , Xn with λ = EW , and Z ∼ Po(λ) has a Poisson distribution with mean
λ, then Corollary 2.C.2 of [3] gives the bound

dTV (L(W ),L(Z)) ≤ (1− e−λ)

(
1− Var(W )

λ

)
. (2)

This upper bound is considerably simpler to evaluate in practice than more general Poisson
approximation bounds, many of which involve, for example, Cov(Xi, Xj) for each i and
j. Thus, if negative relation can be shown to hold, it is worthwhile taking advantage of
it. Straightforward Poisson approximation bounds are also available when X1, . . . , Xn are
positively related, a property which is defined analogously to (1), but with the inequality
reversed.

Within a more general approximation framework, Daly, Lefèvre and Utev [10] recently
showed that the upper bound of (2) continues to hold when W is a non-negative, integer-
valued random variable with mean λ, under the assumption that

W + 1 ≥st W
∗ , (3)

where W ∗ has the W -size-biased distribution, defined by

P(W ∗ = j) =
jP(W = j)

EW
, (4)

and ‘≥st’ denotes the usual stochastic ordering. If W is a sum of negatively related
Bernoulli random variables, then W is also shown to satisfy (3), so (3) is referred to as a
negative dependence condition for W . Daly, Lefèvre and Utev [10] also show simple Pois-
son approximation results under an analogous positive dependence condition expressed in
terms of monotonicity of the size-biased coupling.

Daly and Johnson [9] proved a simple Poincaré inequality for W under the same
condition (3), (again, with an upper bound depending only on the first two moments of
W ). Boundedness and monotonicity conditions of a similar type are also exploited in
several of the normal approximation theorems discussed by Chen, Goldstein and Shao [6].

Our aim in this work is to demonstrate how the strict condition of assumptions such as
(3) may be relaxed. The structure of the remainder of the paper is as follows. In Section
2 we derive Poisson approximation bounds (Theorem 2.2) for random variables W which
come close (in a certain sense) to satisfying either (3) or its positive dependence analogue.
This relaxation of these conditions is motivated by recent work of Cook, Goldstein and
Johnson [7], who established a concentration inequality which can control the spectral
gap of random graphs. In Section 2.2 we use Theorem 2.2 to derive explicit Poisson
approximation results for models where an underlying random variable of interest W ,
satisfying (3), or its positive dependence analogue, is contaminated by noise. In Section
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3, we show how these results can be applied to the Martin-Löf epidemic model and
extremes of associated random variables.

In Section 4 we consider Poisson approximation for sums of associated or negatively
associated random variables, illustrated by an application to simple random sampling. In
Section 5, we show how such relaxed conditions imply a Poincaré inequality. Finally, in
Section 6 we give an analogous relaxation of strict boundedness or monotonicity conditions
for continuous random variables, to obtain normal approximation results.

2 Poisson approximation results

In this section, we begin by proving a Poisson approximation bound (Theorem 2.2 below)
under conditions in the spirit of [7], which relax strict monotonicity assumptions such as
(3). As we will see, the upper bounds we obtain have a form similar to that of (2). The
condition (8) below is employed directly by [7], where a random variable Y satisfying this
condition is said to be ‘1-bounded with probability p for the upper tail’. The analogous
condition (10) was not used by [7], but is in the same spirit.

We then examine situations in which these Poisson approximation results may be
applied. Section 2.2 considers models where we have an underlying random variable W ,
satisfying a property such as (3), which is then contaminated with independent noise.

2.1 A Poisson approximation theorem

Our main Poisson approximation result is given in Theorem 2.2 below, and is proved
using the Stein–Chen method. For an introduction to the Stein–Chen method for Poisson
approximation, the interested reader is referred to [3], [11] and references therein.

Throughout this section, given a parameter λ ≥ 0 and a set A ⊆ Z
+, we write gA for

the solution to the Stein–Chen equation

λgA(j + 1)− jgA(j) = I(j ∈ A)− Πλ(A), (5)

where Πλ(A) = P(Z ∈ A) and Z ∼ Po(λ). By convention, we take gA(0) = 0 for each A.
Writing ∆f(x) = f(x + 1) − f(x) for any function f , we recall the standard bound [3,
Eq. (1.17)]

sup
x

|∆gA(x)| ≤ λ−1(1− e−λ) . (6)

For any non-negative, integer-valued random variable Y , we write the upper tail

P Y (y) =

∞∑

z=y

P(Y = z) .

Lemma 2.1. For any non-negative, integer-valued random variable Y with EY = µ > 0

P(Y ∈ A)−Πλ(A) =

∞∑

k=0

(
λP Y (k)− µP Y ∗(k + 1)

)
∆gA(k) , (7)

for any λ > 0. Here, and for the rest of the paper, Y ∗ represents the size-biased version
of Y defined in (4).
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The proof of Lemma 2.1 is deferred until Appendix A. We now apply this representa-
tion to prove the following.

Theorem 2.2. Let Y be a non-negative, integer-valued random variable with EY = µ > 0
and Var(Y ) = σ2.

(i) Suppose there is a coupling of (Y, Y ∗) and p ∈ (0, 1] such that

P(Y ∗ ≤ Y + 1|Y ∗ ≥ x) ≥ p , (8)

for all x. Then, for any λ > 0,

dTV (L(Y ),Po(λ)) ≤ (1− e−λ)

{
1 + µ+

( |µ− pλ|
λ

− p

)(
σ2

µ
+ µ

)}
. (9)

(ii) Suppose there is a coupling (Y, Y ∗), p ∈ (0, 1], and a non-negative integer-valued
random variable Z (which may be dependent on (Y, Y ∗)) such that

P(Y ∗ ≥ Y + 1− Z|Y + 1− Z ≥ x) ≥ p , (10)

for all x. Then for any λ > 0

dTV (L(Y ),Po(λ))

≤ (1− e−λ)

{
2pEZ +

( |µ− λ|
λ

+ 1

)(
σ2

µ
+ µ

)
+ (1− 2p)(µ+ 1)

}
.

Proof. (i) Under the assumptions of the first part of the theorem,

P(Y ∗ ≥ x) =
P(Y ∗ ≤ Y + 1 and Y ∗ ≥ x)

P(Y ∗ ≤ Y + 1|Y ∗ ≥ x)

≤ P(Y + 1 ≥ x)

P(Y ∗ ≤ Y + 1|Y ∗ ≥ x)
≤ 1

p
P(Y + 1 ≥ x) . (11)

Note that (11) is equivalent to the stochastic ordering IpY
∗ ≤st Y + 1, where Ip ∼

Be(p) is Bernoulli with mean p independent of all else, and hence generalizes (3).
This stochastic ordering assumption was considered by [10], and the upper bound
of part (i) now follows from their Proposition 3. For completeness we give a self-
contained proof here. An analogous proof will be used for part (ii), in the case of
positive dependence, for which no corresponding bound is available elsewhere.

We now apply the representation of Lemma 2.1. Taking modulus signs and using
the triangle inequality and (6), we have that

|P(Y ∈ A)−Πλ(A)| ≤
∞∑

k=0

∣∣λP Y (k)− µP Y ∗(k + 1)
∣∣ |(∆gA)(k)|

≤ cλ

{
∞∑

k=0

∣∣P Y (k)− pP Y ∗(k + 1)
∣∣+ |µ− pλ|

λ

∞∑

k=0

P Y ∗(k + 1)

}

= cλ

{
∞∑

k=0

(
P Y (k)− pP Y ∗(k + 1)

)
+

|µ− pλ|
λ

∞∑

k=0

P Y ∗(k + 1)

}

= cλ

{
1 + µ+

( |µ− pλ|
λ

− p

)
EY ∗

}
,
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where cλ = 1− e−λ. Since by (4) EY ∗ = EY 2/EY = σ2

µ
+ µ, the proof is complete.

(ii) We use a similar argument to the above. We have

P(Y + 1 − Z ≥ x) =
P(Y ∗ ≥ Y + 1− Z and Y + 1− Z ≥ x)

P(Y ∗ ≥ Y + 1− Z|Y + 1− Z ≥ x)
≤ 1

p
P(Y ∗ ≥ x) ,

from which an analogous argument to part (i) gives

|P(Y ∈ A)− Πλ(A)| ≤ cλ

{
2pEZ +

( |µ− λ|
λ

+ 1

)
EY ∗ + (1− 2p)(µ+ 1)

}
.

Remark 2.3. Taking p = 1 in Theorem 2.2, we recover the results we expect under the
stochastic ordering assumptions of [10]. For example, with p = 1 and λ = µ, the upper
bound of Theorem 2.2(i) reduces to (2).

Example 2.4. Let Z ∼ Po(λ) and Ip ∼ Be(p) be independent. In the zero-inflated
Poisson case where Y = IpZ and Y ∗ = Z + 1, the argument of Example 3.6 of [7] shows
that we may apply our Theorem 2.2(i), with the p and λ we have defined here. Indeed,
direct calculation gives

P(Y ∗ ≤ Y + 1|Y ∗ ≥ x) = P(Z + 1 ≤ IpZ + 1|Z + 1 ≥ x) = P(1 ≤ Ip) = p,

so that (8) holds with equality. The bound (9) is (1 − e−λ)(1 + pλ − p(1 + λ)) = (1 −
p)(1− e−λ). Since we may choose A = {0} and obtain

P(Y = 0)−Πλ(0) = (1− p) + pe−λ − e−λ = (1− p)(1− e−λ) ,

the bound (9) is exact in this case.

2.2 Models contaminated with noise

In this section, we show how the assumptions of Theorem 2.2 are satisfied by a random
variable Y , made up of a random variableW which satisfies a monotone coupling assump-
tion such as (3), together with some independent noise. In this case, we expect that Y
will be close to Poisson as long as W is close to Poisson and the noise is small. This is
confirmed in the explicit bounds we derive below.

We consider separately the cases corresponding to parts (i) and (ii) of Theorem 2.2,
beginning with part (i), the negatively dependent case.

Consider first the random variable Y = ξW +X , where

• W and W ∗ can be coupled such that W + 1 ≥ W ∗ almost surely. Note that this is
possible if W satisfies (3), which holds, for example, if W may be written as a sum
of negatively related Bernoulli random variables (see [3] for applications where this
situation arises naturally). We let EW = ν.
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• X is a non-negative, integer-valued random variable independent of (W,W ∗) with
mean φ.

• ξ ∼ Be(q) is a Bernoulli random variable, independent of all else.

Theorem 2.5. With this choice of Y , we may apply Theorem 2.2(i) with p = q2ν
qν+φ

.

Proof. Following, for example, Corollary 2.1 of [6], we may construct Y ∗ by replacing
either ξW or X by its size-biased version, with the term to replace chosen with probability
proportional to its mean. We obtain

Y ∗ = I(W ∗ +X) + (1− I)(ξW +X∗) , (12)

since (ξW )∗ and W ∗ are equal in law, where X∗ may be constructed independently of
(W,W ∗), and I is a Bernoulli random variable, independent of all else, with P(I = 1) =
qν

qν+φ
.
For any event B and indicator variable J , we know that

P(B) = P(J = 0)P(B|J = 0) + P(J = 1)P(B|J = 1) ≥ P(J = 1)P(B|J = 1). (13)

Using this result to condition firstly on I and then on ξ, we have

P(Y ∗ ≤ Y + 1|Y ∗ ≥ x) ≥ qν

qν + φ
P(W ∗ +X ≤ Y + 1|W ∗ +X ≥ x)

≥ q2ν

qν + φ
P(W ∗ +X ≤W + 1 +X|W ∗ +X ≥ x)

=
q2ν

qν + φ
,

by our assumptions on W , hence (8) is satisfied with p taking this value.

Now, to demonstrate the application of Theorem 2.2(ii) in this context, we will consider
the random variable Y = ξW +X , where

• there exists a random variable Z (which may depend on W and W ∗) such that
W + 1 − Z ≤st W

∗. In the case where W is a sum of positively related Bernoulli
random variables, such a random variable Z exists (see [10]). Again, the reader is
referred to [3] for a wealth of applications involving such sums. We assume we have
constructed (W,Z,W ∗) in such a way that W + 1− Z ≤W ∗ almost surely. This is
possible under our stochastic ordering assumption.

• X, ξ and ν are as above.

Theorem 2.6. With this choice of Y , we may apply Theorem 2.2(ii) with p = q2ν
qν+φ

.
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Proof. We still have the representation (12) for Y ∗. Proceeding as before, using (13), by
conditioning firstly on I and then on ξ, we have

P(Y ∗ ≥ Y + 1− Z|Y + 1− Z ≥ x)

≥ qν

qν + φ
P(W ∗ +X ≥ Y + 1− Z|Y + 1− Z ≥ x)

≥ q2ν

qν + φ
P(W ∗ +X ≥W + 1− Z +X|W +X + 1− Z ≥ x)

=
q2ν

qν + φ
.

Hence, (10) is satisfied with p taking this value.

3 Applications

3.1 The Martin-Löf epidemic model

We show in this section how our framework implies a Poisson approximation result for the
number of survivors in an epidemic model which is based on the Martin-Löf [17] model,
but with the addition of an independent ‘catastrophe’ which causes the entire population
to become infected. A Poisson approximation result was derived by Ball and Barbour [2]
for the usual Martin-Löf model, and we base our argument on theirs.

We begin by describing the random graph model used in the construction of the
epidemic. The random directed graph G consists of n vertices. Independently for each
vertex 1 ≤ i ≤ n, we choose a subset Li of vertices (distinct from i) to connect by a
directed edge emanating from vertex i. The value of Ni = |Li| is chosen from some given
distribution, and then, conditional on Ni = k, the set Li is chosen uniformly at random
from the k-subsets of vertices j with j 6= i.

The Martin-Löf epidemic is then constructed by choosing some initial set I0 of infected
vertices; the set of remaining vertices is S0, the set of initial susceptibles. The epidemic
then proceeds in discrete time by recursively defining the set of infected vertices Ij and
susceptible vertices Sj at time j using the equations

Ij =


 ⋃

i∈Ij−1

Li


 ∩ Sj−1 , and Sj = Sj−1 \ Ij ,

for j ≥ 1. The epidemic ends when |Ij | = 0 for some j.
Ball and Barbour prove a Poisson approximation theorem, with an explicit rate, for

|S∞|, the ultimate number of susceptible vertices remaining, in this model. We will use
their result to prove an analogous result in a modified version of this model.

To avoid the notational burden associated with the most general version of this model,
for most of this section we will concentrate on the Reed–Frost model, in which each Ni

has a binomial Bin(n− 1, r) distribution. Following [2], we let (|I0|, |S0|) = (1, n− 1) and

consider the choice r = ψ log(n)
n−1

for some 1
2
< ψ ≤ 1. We return to the more general model

at the end of the section.
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We will consider Poisson approximation for ξ|S∞|, where ξ has a Bernoulli distribution
with mean q, independent of all else. The event {ξ = 0} represents a catastrophe in which
the entire population is infected, which happens with (small) probability 1−q, independent
of the dynamics of the epidemic model. By the triangle inequality, we then write

dTV (L(ξ|S∞|),Po(n1−ψ)) ≤ dTV (L(ξ|S∞|),L(ξW )) + dTV (L(ξW ),Po(Λ))

+ dTV (Po(Λ),Po(n
1−ψ)) , (14)

where W is the number of isolated vertices (i.e., the number of vertices that cannot be
reached from any other vertex) in the random directed graph G described above, and

Λ =
n∑

i=1

∏

j 6=i

(
1− Nj

n− 1

)
,

so that Po(Λ) is a mixed Poisson distribution. The first term on the right-hand side of
(14) is equal to

dTV (L(|S∞|),L(W )) = O(n1−2ψ logn) ,

by the argument leading to Corollary 2.5 of [2]. Similarly, the final term on the right-hand
side of (14) is O(n1−2ψ log n). We use our Poisson approximation results from above to
bound the middle term on the right-hand side of (14).

Consider first the case where the Ni are fixed constants. We note that W may be
written as a sum of negatively related Bernoulli random variables (see Theorem 1 of [2]).
So, taking φ = 0 in our Theorem 2.5, we may use our Theorem 2.2(i) (with the choices
λ = EW = Λ and p = q) to get that in this case

dTV (L(ξW ),Po(Λ)) ≤ (1− q)(1 + Λ) +
q

Λ
(Λ− Var(W )) . (15)

Taking expectations on the right-hand side of (15), in order to derive a bound in the case
where the Ni are random variables, we may follow the arguments leading to Corollary 2.5
of [2] to obtain

dTV (L(ξW ),Po(Λ)) ≤ (1− q)(1 + EW ) +O(n1−2ψ log n) = O((1− q)n1−ψ + n1−2ψ log n) .

Hence, from (14) we have:

Proposition 3.1.

dTV (L(ξ|S∞|),Po(n1−ψ)) = O((1− q)n1−ψ + n1−2ψ log n) .

In particular, if 1 − q = O(n−ψ log n), we obtain the order O(n1−2ψ log n), the same
order as in Corollary 2.5 of [2] for the usual Reed–Frost model. That is, if the proba-
bility 1 − q of catastrophe is small enough, it does not affect the order of the Poisson
approximation bound obtained for the ultimate number of susceptible vertices remaining.

Remark 3.2. We can also use the arguments leading to Theorem 3 of [2] to give a bound
in the more general Martin–Löf epidemic model discussed above. Under the assumptions
of Theorem 3 of [2], and with ηn defined therein, we obtain

dTV (L(ξ|S∞|),Po(µ(n))) = O((1− q)µ(n) + ηn) ,

where µ(n) = EΛ.
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3.2 Extremes of associated random variables

We recall the following definition of association, introduced by [12].

Definition 3.3. The random variables X1, X2, . . . , Xn are associated if

E[f(Xi, 1 ≤ i ≤ n)g(Xi, 1 ≤ i ≤ n)] ≥ E[f(Xi, 1 ≤ i ≤ n)]E[g(Xi, 1 ≤ i ≤ n)] , (16)

for all increasing functions f and g.

Association is a notion of positive dependence that we will return to in Section 4.
In this section, our interest is in Poisson approximation for sums of associated random
variables.

Suppose thatX1, . . . , Xn are (for simplicity) identically distributed, associated random
variables and define W =

∑n
i=1 I(Xi > z) for some z, so that W counts the number of the

Xi that exceed the threshold z, and write λ = nP(X1 > z) = EW . Poisson approximation
in this situation is considered in Section 8.3 of [3], using the observation that W is a sum
of positively related Bernoulli random variables to obtain the bound

dTV (L(W ),Po(λ)) ≤
(
1− e−λ

)(Var(W )

λ
− 1 +

2λ

n

)
. (17)

We consider now the effect of some (independent) ‘contamination’ of our sequence on this
Poisson approximation result.

Suppose that X1, . . . , Xn are identically distributed, as before. Furthermore, let

• X1, . . . , Xm be associated, for some m ≤ n, and

• Xm+1, . . . , Xn be independent of {X1, . . . , Xm}, with arbitrary dependence among
these n−m random variables.

Let W =
∑m

i=1 I(Xi > z), X =
∑n

i=m+1 I(Xi > z), and Y = W + X . Note that the
expected number of random variables Xi exceeding the threshold z is the same as before.
In light of Theorem 2.6, we apply Theorem 2.2(ii) with the choices λ = EY , p = m/n,
and Z such that EZ = P(Xi > z) (as in the analysis in [3]) to obtain

Proposition 3.4.

dTV (L(Y ),Po(λ)) ≤
(
1− e−λ

)(Var(Y )

λ
− 1 +

2(n−m)

n
(λ+ 1) +

2mλ

n2

)
. (18)

We now compare the bounds (17) and (18) in a concrete example.

Example 3.5. Let U0, U1, . . . have independent uniform U(0, 1) distributions, and define
Xi = Ui + Ui−1, 1 ≤ i ≤ n. These random variables Xi are associated. In their Example
8.3.2, [3] shows that λ = nP(Ui +Ui−1 > 2−

√
2λ/n), if n ≥ 2λ. We hence follow [3] and

choose z = 2−
√

2λ/n. Example 8.3.2 of [3] also shows that

Var(W )

λ
− 1 <

4

3

√
2λ

n
, (19)
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and so the bound (17), for the original model without contamination, becomes

dTV (L(W ),Po(λ)) ≤ (1− e−λ)

(
4

3

√
2λ

n
+

2λ

n

)
. (20)

Now consider the ‘contaminated’ model, with Xi as above for i = 1, . . . , m. We let
Xm+1, . . . , Xn be independent of X1, . . . , Xm, but each with the same marginal distribu-
tion as X1. Writing

Var(Y )

λ
− 1 =

EW

λ

(
Var(W )

EW
− 1

)
+

EX

λ

(
Var(X)

EX
− 1

)

<
4

3
EW

√
2

mλ
+
n−m

n

(
Var(X)

EX
− 1

)
,

where we used the inequality (19), the bound (18) becomes

dTV (L(Y ),Po(λ))

≤ (1− e−λ)

(
4

3
EW

√
2

mλ
+
n−m

n

(
Var(X)

EX
− 1

)
+

2(n−m)

n
(λ+ 1) +

2mλ

n2

)
. (21)

Consider the case where λ is fixed and n → ∞. In this case, the upper bound of (20) is
of order O(n−1/2). If n−m = O(

√
n) and (EX)−1Var(X)−1 = O(n−1/2), then the upper

bound (21) for the model with contamination is of this same order.

4 Association and negative association

We now turn our attention to the application of Theorem 2.2 to derive Poisson approxima-
tion results for sums of associated or negatively associated random variables. We recall
the definition (16) of association, and the following definition of negative association,
introduced by [15].

Definition 4.1. The random variables X1, . . . , Xn are said to be negatively associated if

E[f(Xi, i ∈ Γ1)g(Xi, i ∈ Γ2)] ≤ E[f(Xi, i ∈ Γ1)]E[g(Xi, i ∈ Γ2)] ,

for all non-decreasing functions f and g, and all Γ1,Γ2 ⊆ {1, . . . , n} such that Γ1∩Γ2 = ∅.

We also refer the reader to [4], [8] and references therein for further discussion of the as-
sociation and negative association properties, their applications, and some approximation
results for sums of associated or negatively associated random variables.

We consider firstly Poisson approximation results for Y = X1 + · · · + Xn, where
X1, . . . , Xn are negatively associated, non-negative integer-valued random variables. For
each i ∈ {1, . . . , n}, we choose J(i) ⊆ {1, . . . , n} \ {i} and define Zi =

∑
j∈J(i)Xj . In the

setting of compound Poisson approximation considered by [8], for example, these sets J(i)
represent a ‘neighbourhood of dependence’ of Xi, containing those indices j such that Xj
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is strongly dependent (in some sense) on Xi. Here, however, we are free to make any
choice of these sets J(i). In the examples we consider below, we will choose J(i) = ∅ for
each i, for simplicity, though our Poisson approximation results apply with an arbitrary
choice of these sets.

Given these sets J(i) for i = 1, . . . , n, we define

θj =
1

j

n∑

i=1

E [XiI(Xi + Zi = j)] , j ≥ 1 ,

and θ =
∑∞

j=1 θj . Letting Θ be a random variable, independent of all else, with P(Θ =
j) = θj/θ for j ≥ 1, Lemma 3.1 of [8] shows that Y ∗ ≤st Y +Θ∗. So, since there exists a
coupling such that Y ∗ ≤ Y +Θ∗ almost surely, and noting that Θ∗ ≥ 1 almost surely, we
may apply Theorem 2.2(i) with the choice

p = P(Θ∗ = 1) =
θ1∑∞

j=1 jθj
,

by the definition of the size-bias distribution. We emphasise again that this applies for
any choice of the sets J(i), i = 1, . . . , n. For simplicity, we state explicitly in Corollary
4.2 below the bound we obtain from Theorem 2.2(i) in this setting with the choices λ = µ
and J(i) = ∅ for each i, in which case θj =

∑n
i=1 P(Xi = j) for each j ≥ 1.

Corollary 4.2. Let Y = X1+ · · ·+Xn, where X1, . . . , Xn are negatively associated, non-
negative integer-valued random variables, with µ = EY > 0. Let p = µ−1

∑n
i=1 P(Xi = 1).

Then

dTV (L(Y ),Po(µ)) ≤ (1− e−µ)

{
1 + µ+ (1− 2p)

(
σ2

µ
+ µ

)}
,

where σ2 = Var(Y ).

Remark 4.3. In the setting of Corollary 4.2, if the Xi are Bernoulli random variables
then we have p = 1. Since negatively associated Bernoulli random variables are known
to be negatively related (see page 78 of [11], for example), we know that Y ∗ ≤st Y + 1
in this setting, and so the results of [10] may be applied. In this case, our Corollary 4.2
gives the same bound as [10].

Given the above remark, we may think of p as measuring (in a certain sense) how close
the Xi are to having Bernoulli distributions, with an increasing p resulting in a smaller
upper bound in Poisson approximation. We illustrate this with a simple example.

Example 4.4. In the setting of Corollary 4.2, if X1, . . . , Xn are identically distributed
with P(X1 = 0) = 1 − a, P(X1 = 1) = a− ǫ and P(X1 = 2) = ǫ for some a ≥ ǫ ≥ 0 with
a + ǫ < 1, then we have p = a−ǫ

a+ǫ
, and obtain a good Poisson approximation bound when

ǫ is small.

We have so far discussed only the approximation of sums of negatively associated
random variables. We now turn our attention to sums of associated random variables,
where we use similar techniques to the above. We let X1, . . . , Xn be associated, non-
negative integer-valued random variables, and define θj (for j ≥ 1) as above, again with
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any choice of the sets J(i) ⊆ {1, . . . , n}\{i} allowed for each i. We also let Θ be as above,
again independent of all else, and write Y = X1 + · · ·+Xn.

We further define the random variable V , independent of all else, with P(V = i) =
EXi/EY for i = 1, . . . , n. Write Z = XV + ZV . By Lemma 3.2 of [8], we have that
Y ∗ ≥st Y +Θ∗−Z, and so, analogously to the case of negative association, we may apply

Theorem 2.2(ii) with this choice of Z and with p = θ1

(∑∞

j=1 jθj

)−1

. An analogue of

Corollary 4.2 thus also applies in this setting.
As before, if the Xi are Bernoulli random variables then we have p = 1. Since associ-

ated Bernoulli random variables are positively related (see, for example, page 77 of [11]),
the results of [10] may also be applied here, and we obtain the same bound as [10] in this
special case. Again, we are not limited to considering Bernoulli random variables, and
may use the value of p to measure how close the Xi are to being Bernoulli.

4.1 Application to simple random sampling

Let c1, . . . , cn be n (not necessarily distinct) non-negative integers. Suppose we take a
random sample of size m < n without replacement from this collection of numbers, and let
X1, . . . , Xm denote this sample. The random variables X1, . . . , Xm are negatively related
(see Section 3.2 of [15]), and we will consider Poisson approximation of Y = X1+ · · ·+Xm

using Corollary 4.2. Straightforward calculations give µ = (m/n)
∑n

i=1 ci and

σ2 =
m

n

n∑

i=1

c2i +
m(m− 1)

n(n− 1)

n∑

i=1

∑

j 6=i

cicj −
m2

n2

(
n∑

i=1

ci

)2

.

Noting that, by exchangeability, P(Xi = 1) = n−1|{i : ci = 1}| for each i, we may take

p =
|{i : ci = 1}|∑n

i=1 ci
,

and apply Corollary 4.2 with these choices.
In the case where each ci is either 0 or 1, Y has a hypergeometric distribution, for

which good Poisson approximation bound are well-known; see, for example, Theorem 6.A
of [3] for an upper bound obtained using the Stein–Chen method. This bound is obtained
by writing Y as a sum of negatively related Bernoulli random variables. Note that our
result generalises this bound: in the case where each ci is either 0 or 1, we may take p = 1,
and we recover the upper bound given by [3].

5 A Poincaré inequality

Next, we show how the assumptions of Section 2 may be employed to prove a Poincaré
inequality, relaxing strict monotonicity assumptions.

Definition 5.1. Define the discrete Poincaré constant RW for a (non-negative, integer-
valued) random variable W by

RW = sup
g∈G(W )

{
E[g(W )2]

E[∆g(W )2]

}
,

12



where the supremum is taken over the set

G(W ) = {g : Z+ 7→ R with E[g(W )2] <∞ and E[g(W )] = 0} .

We note the well-known lower bound

RW ≥ Var(W ) , (22)

obtained by choosing g(x) = x− EW .
Theorem 1.1 of [9] proves that if W satisfies (3), then RW ≤ EW . In Theorem 5.3

below, we weaken this condition, assuming only the conditions of Theorem 2.2(i), to prove
an analogous result. The bound can be expressed in terms of the failure rate of Y , defined
below.

Definition 5.2. For a discrete random variable Y , define the failure (or hazard) rate

hY (j) =
P(Y = j)

P(Y ≥ j)
,

and write h∗Y = infj hY (j), where the infimum is taken over the support of Y .

Throughout this section, we let Ip ∼ Be(p) have a Bernoulli distribution with mean
p, independent of all else.

Theorem 5.3. Let Y be a non-negative, integer-valued random variable with EY = µ > 0.
Let p ∈ (0, 1] be such that IpY

∗ ≤st Y + 1, then

RY ≤ µ

(
1 +

1− p

ph∗Y

)
.

Proof. Our argument is based on that of [9]. As there, we also employ the kernel function
defined by Klaassen [16]:

χ(i, j) = I(⌊µ⌋ ≤ j < i)− I(i ≤ j < ⌊µ⌋)− (µ− ⌊µ⌋)I(j = ⌊µ⌋) .

Then Lemma 5.2 of [9] gives, for g ∈ G(Y ),

E[g(Y )2] ≤ µ
∞∑

j=0

∆g(j)2 [Eχ(Y ∗, j)− Eχ(Y, j)]

= µ

∞∑

j=0

∆g(j)2 [Eχ(Y ∗, j)− Eχ(IpY
∗, j)] + µ

∞∑

j=0

∆g(j)2 [Eχ(IpY
∗, j)− Eχ(Y, j)] . (23)

Following the argument on page 517 of [9], using the stochastic ordering assumption we
make here, the second term on the right-hand side of (23) may be bounded by µE[∆g(Y )2].

For the first term on the right-hand side of (23), we have that

Eχ(Y ∗, j)− Eχ(IpY
∗, j) = (1− p)[Eχ(Y ∗, j)− Eχ(0, j)] = (1− p)P(Y ∗ > j) ,
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where this final equality follows from Eq. (15) of [9]. Again employing our stochastic
ordering assumption, we obtain

Eχ(Y ∗, j)− Eχ(IpY
∗, j) ≤ 1− p

p
P(Y ≥ j) .

We therefore have the bound

E[g(Y )2]

E[∆g(Y )2]
≤ µ

(
1 +

1− p

p

[∑∞

j=0∆g(j)
2
P(Y ≥ j)∑∞

j=0∆g(j)
2P(Y = j)

])
.

The theorem then follows.

Remark 5.4. In the case p = 1 we obtain the bound of Theorem 1.1 of [9], as we would
expect. If there is a coupling of (Y, Y ∗) and p ∈ (0, 1] such that (8) holds for all x, then
the proof of Theorem 2.2(i) shows that the assumptions of Theorem 5.3 above hold, and
we have our upper bound on RY .

Example 5.5. We return to the setting of Example 2.4, and let Y = IpZ. Then µ = pλ
and

hY (0) =
P(Y = 0)

P(Y ≥ 0)
=

(1− p)eλ + p

eλ
.

Since hY (j) = hZ(j) for all j ≥ 1, we may use the increasing failure rate (IFR) property
of the Poisson distribution to obtain the following bound from Theorem 5.3:

RY ≤ λ

(
p+ (1− p)max

{
eλ − 1

λ
,

eλ

(1− p)eλ + p

})
. (24)

Expanding (24) in λ, we obtainRY ≤ max
(
λ+ (1−p)

2
λ2 +O(λ3), λ+ p(1− p)λ2 +O(λ3)

)
.

In this case, the lower bound (22) becomes RY ≥ pλ + p(1 − p)λ2, showing that (24) is
close to sharp for p close to 1 and λ small.

Applying Theorem 5.3 relies on both controlling the failure rate of Y and finding a
suitable p. We conclude this section by showing that we can bound p, and hence RY ,
under the standard c-log-concavity condition (see [5]).

Corollary 5.6. Let Y be a non-negative, integer-valued random variable with EY = µ >
0. Assume that there exists c > 0 such that

P(Y = k)2 − P(Y = k + 1)P(Y = k − 1)

P(Y = k)P(Y = k + 1)
=

P(Y = k)

P(Y = k + 1)
− P(Y = k − 1)

P(Y = k)
≥ c (25)

for all k ≥ 0. Then

RY ≤ 1

c

(
1 + (1− cµ)

P(Y ≥ 1)

P(Y = 0)

)
.
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Proof. We first show that, if p = µc, IpY
∗ ≤st Y + 1. With this, we will then see that

the bound follows from Theorem 5.3. That is, we begin by showing that, as in (11),
pP(Y ∗ ≥ j) ≤ P(Y + 1 ≥ j) for all j ≥ 1, i.e.,

p ≤ inf
k≥0

{
P(Y ≥ k)

P(Y ∗ ≥ k + 1)

}
. (26)

We observe that, summing the collapsing sum in (25) from k = 0 to ℓ− 1, we obtain:

P(Y = ℓ− 1)

P(Y = ℓ)
≥ cℓ , (27)

for all ℓ ≥ 0. Fixing some k ≥ 0, we have by (27) that

P(Y ∗ ≥ k + 1) =

∞∑

ℓ=k+1

P(Y ∗ = ℓ)

=
1

µ

∞∑

ℓ=k+1

ℓP(Y = ℓ)

≤ 1

µc

∞∑

ℓ=k+1

P(Y = ℓ− 1) =
1

µc
P(Y ≥ k),

and the result (26) follows with p = µc.
Now, (25) implies that Y is log-concave, which in turn implies the IFR property, so

that h∗Y = hY (0) = P(Y = 0). Substituting this into Theorem 5.3 we obtain our upper
bound on RY .

Notice that if Y is Poisson with mean µ, we can take c = 1/µ in (25), to recover
the fact that p = 1 and deduce the standard Poisson Poincaré inequality RY ≤ µ. Note
also that in [14], the (stronger) fact that RY ≤ 1/c is proved under the c-log-concavity
condition (25), but this requires use of the discrete Bakry-Émery theory of [5].

6 Normal approximation

Finally, we show how our assumptions will carry over to normal approximation, again
based on ideas used in Stein’s method. Several different coupling constructions are used
in Stein’s method for normal approximation; see [6] for an introduction to these, and to
the area more generally. In line with our work in Section 2, we will consider normal ap-
proximation using the size-biased coupling; again we will consider a non-negative random
variable W and write W ∗ for its size-biased version. In this setting, a natural assumption
under which normal approximation results for W have been established is boundedness
of W ∗; see Theorems 5.6 and 5.7 of [6], for example.

We prove an analogous normal approximation theorem which allows the random vari-
able W to be contaminated with some independent noise, as we did in the Poisson ap-
proximation setting in Section 2.2. Our bound will be stated in terms of the Kolmogorov
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distance, defined by

dK(L(Y ),L(Z)) = sup
z∈R

|P(Y ≤ z)− P(Z ≤ z)| ,

and for a non-negative random variable W we will write

DW = E

∣∣∣∣E
[
1− EW

Var(W )
(W ∗ −W )

∣∣∣∣W
]∣∣∣∣ .

Before stating the main theorem of this section, we note that for any non-negative
random variable W , W ≤st W

∗, so that it is always possible to couple W and W ∗ such
that W ≤ W ∗ almost surely. We also note that the existence of a size-biased coupling
such that W ≤W ∗ ≤W + c is equivalent to the assertion that W ∗ ≤st W + c; see Section
7 of [1].

Theorem 6.1. Let W and X be independent, non-negative random variables, with 0 ≤
X ≤ a a.s. for some a > 0. Assume also that

• W and W ∗ are coupled such that W ≤W ∗ ≤W + c for some c > 0, and

• X and X∗ are coupled such that X ≤ X∗.

Let Y = W +X, µ = EY and σ2 = Var(Y ). Define p = EW/µ and

Ỹ =
Y − µ

σ
.

Then

dK(L(Ỹ ),N(0, 1)) ≤
Var(W )

σ2
DW +

Var(X)

σ2
DX + 0.82

c2µ

σ3
+
c

σ
+

µ

σ2
a(1− p) .

Proof. Abusing notation, let Ỹ ∗ = Y ∗−µ
σ

and, for fixed z ∈ R, let f : R 7→ R be the solution
to the Stein equation f ′(w) − wf(w) = I(w ≤ z) − Φ(z), where Φ is the distribution
function of the standard normal distribution. Note the standard bound |f ′(w)| ≤ 1 (see
Lemma 2.3 of [6], for example).

Now, following the proof of Theorem 5.7 of [6], we write

P(Ỹ ≤ z)− Φ(z) = E

[
f ′(Ỹ )− Ỹ f(Ỹ )

]

= E

[
f ′(Ỹ )

(
1− µ

σ
(Ỹ ∗ − Ỹ )

)
− µ

σ

∫ Ỹ ∗−Ỹ

0

(
f ′(Ỹ + t)− f ′(Ỹ )

)
dt

]
.

(28)

The absolute value of the final term on the right-hand side of (28) is bounded, as in
Theorem 5.7 of [6], by

0.82
c2µ

σ3
+
c

σ
+

µ

σ2
E [(Y ∗ − Y )I(Y ∗ − Y > c)] .
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Note that we can write Y ∗ = Ip(W
∗ + X) + (1 − Ip)(W + X∗), where Ip is a Bernoulli

variable with mean p independent of all else; see Corollary 2.1 of [6]. Conditioning on Ip,
we then have

E [(Y ∗ − Y )I(Y ∗ − Y > c)] ≤ a(1− p) ,

by the assumptions of our theorem.
We use our representation of Y ∗, and the independence of W and X , to write the first

term on the right-hand side of (28) as

Var(W )

σ2
E

[
f ′(Ỹ )

(
1− µ

Var(W )
Ip(W

∗ −W )

)]

+
Var(X)

σ2
E

[
f ′(Ỹ )

(
1− µ

Var(X)
(1− Ip)(X

∗ −X)

)]
.

Conditioning on W and X , and applying the bound |f ′(w)| ≤ 1, this may be bounded by
σ−2 (Var(W )DW +Var(X)DX).

6.1 Application: the lightbulb process

Consider the following model, motivated by a pharmaceutical study of dermal patches
designed to activate particular receptors, though often phrased in terms of lightbulbs
being switched on and off; see [13] and references therein. We begin with n lightbulbs,
all switched off. At time r (for r = 1, . . . , n), exactly r of the n lightbulbs are chosen,
uniformly at random, and their state switched. One random variable of interest isW , the
number of lightbulbs switched on after time n.

Goldstein and Zhang [13, Theorem 1.1] prove a bound for normal approximation of
W . Combining their bound with our Theorem 6.1, we see the effect of ‘contaminating’
W by X , which (for simplicity) we define to have a Bin(k, α) distribution, independent
of W . Other types of contamination can also be investigated in this framework.

Also for simplicity, we will restrict attention to the case where n is even. In this
case we have EW = n/2, and we let τ 2 denote the variance of W , which is equal to
(n/4)(1 + O(e−n)); see [13] for further details, and for a discussion of the differences
between the cases where n is even and n is odd. Goldstein and Zhang [13] also provide a
coupling such that W ≤W ∗ ≤W + 2 a.s., and show that

DW ≤ n

2τ 2

(
1

2
√
n
+

1

2n
+

1

3
e−n/2

)
.

Straightforward calculations (in the spirit of Section 5.3 of [6]) show that DX ≤
√

α
(1−α)k

.

Hence, letting Y =W +X , the bound of Theorem 6.1 becomes

Proposition 6.2.

dK(L(Ỹ ),N(0, 1)) ≤
1

σ2

{
n

2

(
1

2
√
n
+

1

2n
+

1

3
e−n/2

)
+ α

√
α(1− α)k

}

+
1.64n

σ3
+

2

σ
+

αk2n

σ2(n+ 2αk)
,

where σ2 = τ 2 + α(1− α)k.
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So, for example, if α = O(1) and k = O(n−1/4) this bound is of the same order,

O(n−1/2), as the bound on dK(L(W̃ ),N(0, 1)) given by Theorem 1.1 of [13], where W̃ =
W−n/2

τ
.

A Proof of Lemma 2.1

Let pY (j) = P(Y = j). Substituting the Stein–Chen equation (5), we have

P(Y ∈ A)− Πλ(A) =

∞∑

j=0

pY (j) (I(j ∈ A)− Πλ(A))

=
∞∑

j=0

pY (j) (λgA(j + 1)− jgA(j))

= λ

∞∑

j=0

pY (j)gA(j + 1)− µ

∞∑

j=0

pY ∗(j)gA(j) (29)

=
∞∑

k=0

(
λP Y (k)− µP Y ∗(k + 1)

)
∆gA(k) ,

where we deal with the first term in (29) since for any function h with h(0) = 0, summation
by parts gives

∞∑

j=0

pY (j)h(j + 1) =

∞∑

j=0

pY (j)

(
j∑

k=0

∆h(k)

)
=

∞∑

k=0

∆h(k)

∞∑

j=k

pY (j) =

∞∑

k=0

∆h(k)P Y (k).

The result follows taking h = gA, since we know gA(0) = 0 by assumption.
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