
FROM TREES TO GRAPHS: COLLAPSING
CONTINUOUS-TIME BRANCHING PROCESSES

Alessandro Garavagliaa,1 and Remco van der Hofstada,2

aDepartment of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands

email address: 1a.garavaglia@tue.nl, 2rhofstad@win.tue.nl

abstract

Continuous-time branching processes (CTBPs) are powerful tools in random graph theory,
but are not appropriate to describe real-world networks, since they produce trees rather than
(multi)graphs. In this paper we analyze collapsed branching processes (CBPs), obtained by a
collapsing procedure on CTBPs, in order to define multigraphs where vertices have fixed out-
degree m ≥ 2. A key example consists of preferential attachment models (PAMs), as well as
generalized PAMs where vertices are chosen according to their degree and age. We identify the
degree distribution of CBPs, showing that it is closely related to the limiting distribution of the
CTBP before collapsing. In particular, this is the first time that CTBPs are used to investigate
the degree distribution of PAMs beyond the tree setting.

1. Introduction and main results

1.1 Our model and main result. The main result of this paper is the definition of multigraphs
from continuous-time branching processes (CTBP), through a procedure that we call collapsing.
We analyze the case where we collapse a fixed number m ∈ N of individuals. The heuristic idea is
to consider the tree defined by the branching process, and collapse or merge together m different
nodes in the tree to create a vertex in the multigraph. Throughout this paper, we will consider
an individual to be a node in the tree of the branching process, while a vertex is a node in the
multigraph obtained by collapsing.

We recall now some notation on CTBPs. For a more detailed introduction, we refer to Section
2.1. We consider a branching process ξ defined by a birth process (ξt)t≥0. In these models,
individuals produce children according to i.i.d. copies of the process (ξt)t≥0. Usually, individuals
in the branching populations are denoted by x = ∅x1 · · ·xk (see Definition 2.1). In this paper, we
will not denote individuals with their position in the genealogical tree, but rather by their birth
order. Denote the sequence of birth times of individuals in the branching population by (τn)n∈N.

Fix m ∈ N. We denote (n, j) = m(n − 1) + j, for j = 1, . . . ,m. We now give the precise
definition of the collapsed branching process:

Definition 1.1 (Collapsed branching process). Consider a branching process ξ. Then, a collapsed
branching process is a random process (CBP(m)

t )t≥0, for which, for every t ≥ 0, CBP(m)

t is a directed
multigraph with adjacency matrix (gx,y(t))x,y∈N, where

gx,y(t) =

m∑

j=1

1{(x,j)→(y,1),...,(y,m)}1R+(t− τ(x,j)), (1.1)

and {(x, j) → (y, 1), · · · , (y,m)} is the event that there is a directed edge between individual (x, j)
and one of the individuals (y, 1), . . . , (y,m) in the tree defined by the branching process at time t.
We denote the size of CBP(m)

t by N (m)(t).
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from trees to graphs

As the reader can see from the definition, the collapsing procedure combines m individuals
together with their edges to create a vertex, and there is an edge between two vertices if and only
if there is an edge between a pair of individuals collapsed to create the two vertices. CBP(m)

t is a
graph where every vertex (except vertex 1) has out-degree m. Self-loops and multiple edges are
allowed (see Figure 1 for an example of CBP).

We consider the birth time of the vertex n in the multigraph to be τ(n,1) = τm(n−1)+1. Thus,
vertex n in CBP(m) is considered alive when (n, 1) is alive in ξ. Notice that when n is born, it has
only one out-edge, because the other individuals (n, 2), . . . , (n,m) are not yet alive. Clearly, the
in-degree at time t of a vertex n in CBP(m) is given by

D(in)
n (t) =

m∑

j=1

ξ
(n,j)
t−τ(n,j) .

The main difference between CBPs and Preferential Attachment Models (PAMs) is that CBPs are
defined in continuous-time, while time in PAMs is discrete. Heuristically, discrete time in PAMs is
described as the time unit at which a nex vertex is added to the graph (see for instance [1], [13,
Chapter 8], [7]), while in CBPs time is continuous and new vertices are born at exponential rate
([18, Theorem A], [17, Theorem 5.4], Theorem 2.3 below).
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(b) Collapsed branching process

figure 1: An example of a collapsed branching process where vertices have fixed out-degree m = 3.

1.2 Results. Our main goal is to show that we can define a multigraph from a CTBP, and analyze
its rate of growth as well as the limiting degree distribution.

Our results are a first attempt to create a link between trees and multigraphs in continuous time.
The collapsing procedure creates difficulties though. For instance, we consider different individuals
to create a vertex, each one of them having its own birth time. This has to be taken into account
to investigate the degree evolution of a vertex in CBP.

Here we state the result on the limiting degree distribution of CBPs, relying on properties of
CTBPs as formulated in Theorem 2.5 below:

Theorem 1.2 (Limiting degree distribution of CBPs). Consider a branching process ξ, and fix
m ∈ N. Denote the size of CBP(m)

t by N (m)(t) and the number of vertices with degree k by N (m)

k (t).
Under the hypotheses of Theorem 2.5, as t→∞,

N (m)

k (t)

N (m)(t)

P−→ p(m)

k = P
(
ξ1
Tα∗

+ · · ·+ ξmTα∗ = k
)
, (1.2)

where (ξ1
t )t≥0, . . . , (ξ

m
t )t≥0 are m independent copies of the birth process (ξt)t≥0, α∗ is the Malthu-

sian parameter of ξ, and Tα∗ is an exponentially distributed random variable with parameter α∗.
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The hypotheses of Theorem 2.5 are technical, and they are deferred to later. Theorem 1.2
is part of Theorem 2.5, that is more general and requires notation from CTBPs theory that we
introduce in Section 2.1.

1.3 Embedding PAMs. In discrete time, PAMs are defined as a sequence of random graphs
(Gn)n∈N, where at every step a new vertex is introduced in the graph. In general, the attachment rule
is given in terms of a function of the degree f that we call the PA function or weight. Conditionally
on the graph G(n,j) where the j-th edge of the n-th vertex has been added,

P
(
n
j+1→ i | G(n,j)

)
=

f(Di(n, j))∑n
h=1 f(Dh(n, j))

, (1.3)

where Di(n, j) denotes the degree of the vertex i in G(n,j). When f is affine, it is possible to
define the model with out-degree m ≥ 2 from the tree case where the out-degree is 1 (we refer to
[13, Chapter 8, Section 8.2] for the precise definition). In particular, the collapsing procedure we
introduced in Definition 1.1 mimics the construction of PAMs with affine attachment function.

Several works in the literature ([2], [3], [18]) use CTBPs to investigate the degree distribution of
PA trees. In particular, embedding theorems are proved between discrete and continuous time (see
[2, Theorem 3.3], [3, Theorem 2.1]). These results are based on the fact that all intervals between
two jumps in every copy of the birth process (ξt)t≥0 are exponentially distributed. This means
that, conditionally on the present state of the tree, the probability that a new vertex is attached
to the i-th vertex already present is just the ratio between the PA function of the degree of vertex
i and the total weight of the tree. Also PAMs with out-degree m ≥ 2 have been investigated, but
not through embeddings of CTBPs.

It is possible to construct a CBP that embeds PAMs with affine attachment function. We need
to define a suitable birth process for this:

Definition 1.3 (Embedding birth process). Consider a sequence of positive numbers (λk)k∈N.
Let (Ek)k∈N be a sequence of independent and exponentially distributed random variables, with
Ek ∼ E(λk), and E−1 = 0. We call (ξt)t≥0 the embedding birth process, where ξt = k if t ∈
[E−1 + · · ·+ Ek−1, E−1 + · · ·+ Ek).

This construction in used in [18], [2], [3]. It allows to embed PA trees in continuous time where
the PA function is given by f(k) = λk. Embedding birth processes allow us to describe PAMs with
out-degree m ≥ 2 and affine f using CBPs. In fact, an immediate application of [2, Theorem 3.3]
and [3, Theorem 2.1] is enough to prove that the transition probability in CBP from CBP(m)

τ(n,j)
to

CBP(m)
τ(n,j+1)

are exactly given by (1.3), with the restriction that the first edge of every vertex cannot
be a self-loop. In particular, this yields the following result:

Corollary 1.4 (Continuous-time PAM). Fix m ≥ 2 and δ > −m. Let (ξt)k∈N be an embedding
birth process defined by the sequence (k + 1 + δ/m)k∈N. Then, the corresponding CBP embeds
the PAM in continuous time with attachment rule f(k) = k + δ, and satisfies Theorem 1.2 (and
Theorem 2.5). As a consequence, the limiting degree distribution is given by

p(m)

k = (2 + δ/m)
Γ(2 + δ/m+m+ δ)

Γ(m+ δ)

Γ(k +m+ δ)

Γ(k +m+ δ + 3 + δ/m)
. (1.4)

Corollary 1.4 is the application of Theorem 1.2 to the case of the CTBPs that embed PAMs in
continuous time. Indeed, the CBP observed at times (τn)n∈N ( the sequence of birth times of the
CTBP) corresponds to the discrete-time PAM. However, since the ratio N (m)

k (t)/N (m)(t) converges
in probability, Theorem 1.2 does not imply the convergence along the sequence (τn)n∈N. To prove
that the convergence holds also in discrete time, a more detailed analysis is necessary, therefore we
state it as a separate result:

3



from trees to graphs

Theorem 1.5 (Discrete-time PAMs). Fix m ≥ 2 and δ > −m. Let (ξt)k∈N be an embedding birth
process defined by the sequence (k + 1 + δ/m)k∈N. Consider the corresponding discrete-time PAM
defined as PAn,j(m, δ) = CBP(m)

τ(n,j)
, for n ∈ N and j ∈ [m]. Then, for every k ∈ N, the fraction of

vertices with degree k in PAn,j(m, δ) converges in probability to p(m)

k as in (1.4).

While CTBP arguments have been used a lot in the context of PA trees (for which m = 1),
Theorem 1.5 provides the first example where it is applied beyond the tree setting. Thus, our
results offer to opportunity to use the powerful CTBP tools in order to study PAMs.

To show the universality of our collapsing construction, we apply Theorem 1.2 to another
classical random graph model. A random recursive tree (RRT) is a sequence of PA trees where the
attachment function f is equal to one. At every step, a vertex is added to the tree and attached
uniformly to one existing vertex (see [14] for an introduction). In this case we obtain the following
result:

Corollary 1.6 (Random recursive graph). Fix m ≥ 2. Let (ξt)k∈N be an embedding birth process
defined by the sequence λk = 1 for every k ∈ N. Then, the corresponding CBP defines a sequence
of random graphs which transition probabilities are given by

P
(
n
j+1→ i | CBP(m)

τ(n,j)

)
=





1
(n−1)+j/m if i 6= n,

j/m
(n−1)+j/m if i = n.

(1.5)

We call the sequence of random graphs defined by (1.5) random recursive graph. As a consequence,
the limiting degree distribution is given by

p(m)

k =
1

m+ 1

(
1 +

1

m

)−k
. (1.6)

Consequently, the same result also holds in discrete time.

In this case the CBP can be seen as the generalization of the RRT to the case where the out-
degree is m ≥ 2. In particular, when m = 1 the distribution in (1.6) reduces to p(1)k = 2−(k+1),
which is the known limiting degree distribution for the RRT (see [16]).

An extension of the PAM has been proposed by us in [11], where we introduce fitness and aging
in preferential attachment trees. The methodology used in the present work is applicable to the
case with aging only. The fitness case is not tractable, and we explain the reason in Section 1.4. A
preferential attachment tree with aging is given in terms of a CTBP, where we introduce the effect
of aging, i.e., the probability of generating a child decreases with age. For a precise definition of
such processes, we refer to [11, Section 2.2].

Definition 1.7 (Aging birth process). Consider a sequence of positive numbers (λk)k∈N, and the
corresponding embedding birth process as in Definition 1.3. Consider a function g : R+ → R+

called aging function, such that
∫∞

0 g(t)dt < ∞. Defining G(t) =
∫ t

0 g(s)ds, we call (ξG(t))t≥0 an
aging birth process.

The assumption on the integrability of g is not necessary, but as shown in [11] this is the non-
trivial case of aging effect. In [11] we prove that a CTBP defined by an aging birth process has a
limiting degree distribution (p(1)k )k∈N with exponential tail, under the condition limt→∞ E[ξG(t)] > 1.
The result of the present paper can also be applied to the aging birth processes, leading to the
following result:

Corollary 1.8 (Aging PAMs). Fix m ≥ 2, δ > −m, and define the sequence (k + 1 + δ/m)k∈N.
Denote the corresponding embedding birth process by (ξt)t≥0. Let g be an aging function as in

4
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Definition 1.7, such that g(t) ≤ ḡ for some constant ḡ > 0 and for every t ≥ 0. Assume that
limt→∞ E[ξG(t)] > 1. Then, the CBP obtained by the CTBP defined by the aging process satisfies

Theorem 1.2 (and Theorem 2.5). As a consequence, the limiting degree distribution (p(m)

k )k∈N
satisfies

p(m)

k =
Γ(k +m+ δ)

Γ(k + 1)
e−Ck(1 + o(1)), (1.7)

where C = | log(1− e−
∫∞
0 g(t)dt)|.

In particular, it is possible to show that the transition probabilities of the discrete-time version
(CBP(m)

τ(n,j)
)n∈N,j∈[m] of a CBP defined by an aging process satisfies

P
(
n
j+1→ i | CBP(m)

τ(n,j)
, τ(n,j+1)

)
≈

(Di(τ(n,j)) + δ)g(τ(n,j+1) − τ(i,1))∑n
h=1(Dh(τ(n,j)) + δ)g(τ(n,j+1) − τ(h,1))

, (1.8)

where Di(t) denotes the total degree of vertex i in CBP(m)

t and the approximation is due to the
fact that we consider τ(i,1) as the birth time of all the m individuals collapsed to generate vertex i.
The expression in (1.8) for the attachment rule in the presence of aging resembles the ones given
in other works about aging in PAMs ([20], [19], [12]).

1.4 Discussion and open problems.

Neighborhoods in CBP. CBP with fixed out-degree m ≥ 2 is a continuous-time random graph
model of which the size of the graph grows exponentially in time (see (2.9)), and we are able to
describe its limiting degree distribution. In particular, we can see a branching tree as a special case
of CBP with m = 1. This is an attempt to translate properties from CTBP to multigraphs. As a
consequence, we might ask what other topological properties a CBP inherits from the underlying
CTBP. As an example, PAMs are known to be locally tree-like graphs (see [5]), prompting the
question whether this is true because PAMs can be defined as CBPs.

7
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(a) CBP

77
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44332211

(b) CTBP

figure 2: An example of minimum degree tree in CBP with m = 2, and a realization of the
corresponding structure in CTBP that generates it. Notice that different realizations in CTBP can
generate the same graph in CBP.

For example, a tree in CBP with depth k and vertices of minimum degree m is generated
by chains of individuals in the corresponding CTBP. In [9], we prove that the number of such
trees in PAM diverges as the size of the graph increases. In terms of the CTBP, it is necessary
to look for structures similar to the one in Figure 2. It would be interesting to investigate the
topological properties of the neighborhoods of vertices in CBP, to see if and how they depend on
the corresponding CTBP. It would also be interesting to compare the local structure of CTBP
with the result given in [5] in terms of local weak convergence.
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Random out-degree. An interesting extension of the present work is the case of random out-
degree graphs. Instead, our CBP have fixed out-degree m ≥ 2. However, the collapsing procedure
is well defined for any sequence of out-degrees (mn)n∈N, both deterministic or random. Results are
known for PAM with random out-degree (see [10]), suggesting that CBP with random out-degree
is the continuous-time version of PAM with random out-degrees.

More general PA functions and fitnesses. When collapsing, the degree D(in)
n (t) of a vertex

n in CBP is distributed as the sum of m independent birth process (ξt)t≥0. When we consider an
affine PA function of the type f(k) = ak + b, with a ≥ 0 and b > 0, the sum of the m weights
corresponding to the m individuals becomes a(D1 + . . .+Dm) +mb, i.e., the collapsed individuals
become indistinguishable. This is still true when we consider an affine PA function f and aging g,
because of the linearity of f and the fact that the error given by the difference of birth times is
negligible.

This is no longer true when the PA function is not affine and/or in the presence of fitness. In
fitness models, every individual x is assigned an independent realization Yx from a fitness distribu-
tion, and it produces children according to the sequence of PA weights (Yxf(k))k∈N (see [8], [6],[11]).
In this case, individuals with different fitness values are not indistinguishable anymore. Assigning
the same fitness value to m different individuals would define a process that is not a CTBP in the
sense of Definition 2.1. To overcome this problem, in the case of discrete-valued fitness, we might
collapse individuals according to their fitness values and not according to their birth order. This
might be applied also to CTBPs with fitness and aging as introduced in [11]. This is a topic for
future work.

2.Overview of the proof of Theorem 2.5

2.1 General branching process theory. Here we recall the main results on branching processes
that we will use in this paper. Continuous-time branching processes (CTBPs) are models where a
population is composed by individuals that produce children according to i.i.d. copies of a birth
process (ξt)t≥0. The formal definition of a CTBP is the following:

Definition 2.1 (Branching process). We define the set of individuals in the population as

N =
⋃

n∈N
Nn. (2.1)

Consider a point process ξ. Then, the continuous-time branching process is described by

(Ω,A,P) =
∏

x∈N
(Ωx,Ax,Px), (2.2)

where (Ωx,Ax,Px) are probability spaces and (ξx)x∈N are i.i.d. copies of ξ. For x ∈ Nn and k ∈ N
we denote the k-th child of x by xk ∈ Nn+1. More generally, for x ∈ Nn and y ∈ Nm, we denote
the y descendant of x by xy. We call the branching process the triplet (Ω,A,P) and the sequence
of point processes (ξx)x∈N . We denote the branching process by ξ.

The behavior of CTBPs is determined by the properties of the birth process. Consider a jump
process ξ on R+, i.e., an integer-valued random measure on R+. Denote the time of the k-th jump
of (ξt)t≥0 by Tk. Then we say that ξ is supercritical when there exists α∗ > 0 such that

L(Eξ(d·))(α∗) =

∫ ∞

0
e−α

∗tEξ(dt) = 1. (2.3)

Here Eξ(dx) denotes the density of the averaged measure E[ξ([0, t])]. A second fundamental
property for the analysis of branching processes is the Malthusian property. Consider a point

6
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process ξ. Take the parameter α∗ that satisfies(2.3). Then the process ξ is Malthusian with
Malthusian parameter α∗ if

µ := − d

dα
(L(Eξ(d·))) (α)

∣∣∣∣
α∗

=

∫ ∞

0
te−α

∗tEξ(dt) <∞. (2.4)

An important class of functions of branching processes are random characteristics:

Definition 2.2 (Random characteristic). A random characteristic is a real-valued process Φ: Ω×
R→ R such that Φ(ω, s) = 0 for any s < 0, and Φ(ω, s) = Φ(s) is a deterministic bounded function
for every s ≥ 0 that only depends on ω through the birth time of the individual, as well as the birth
process of its children.

Let L(f(·))(α) denote the Laplace transform of a function f evaluated in α > 0. We are now
ready to quote the main result on CTBPs:

Theorem 2.3. Consider a point process ξ, and the corresponding branching process ξ. Let ξ be
supercritical and Malthusian with parameter α∗, and suppose that there exists ᾱ < α∗ such that

∫ ∞

0
e−ᾱtEξ(dt) <∞. (2.5)

Then, the following properties hold:

(1) There exists a random variable Θ such that, for any random characteristic Ψ, as t→∞,

e−α
∗tξΨ

t
P−a.s.−→ 1

µ
L(E[Ψ(·)])(α∗)Θ. (2.6)

(2) On the event {ξ1R+
t →∞}, P (Θ > 0) = 1 and E[Θ] = 1.

These results are classical (see [3], [18], [15], [17]). From (2.6) it follows immediately that, for
any two random characteristics Φ and Ψ, as t→∞,

ξΦ
t

ξΨ
t

P−a.s.−→ L(E[Φ(·)])(α∗)
L(E[Ψ(·)])(α∗) . (2.7)

As a consequence, the ratio between the branching process evaluated with the two characteristics
1{k} and 1R+ , which is the fraction of individuals with k children, converges to a deterministic

limit. We denote this limit by (p(1)k )k∈N, where

p(1)k = α∗L(P (ξ(·) = k))(α∗) = α∗
∫ ∞

0
e−α

∗tP (ξ(t) = k) dt = E
[
P(ξ(u) = k)u=Tα∗

]
. (2.8)

Here Tα∗ is an exponential random variable with rate α∗ independent of ξ. Then (p(1)k )k∈N is called
the limiting degree distribution for the branching process ξ. The notation p(1)k underlines the fact
that the CTBP can be seen as a CBP where we fix m = 1.

2.2 Structure of the proof of Theorem 2.5. Our main result requires the following condition:

Condition 2.4 (Lipschitz). Assume that a birth process (ξt)≥0 is supercritical and Malthusian.
The Lipschitz condition is that, for every k ∈ N, there exists a constant 0 < L(k) < ∞ such that
the function Pk[ξ](t) = P (ξt = k) is Lipschitz with constant L(k).

Condition 2.4 requires that the functions (Pk[ξ](t))k∈N associated to the birth process (ξt)t≥0

are smooth, in the sense that they do not have dramatic changes over time. We can now state the
main result of the paper:

7
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Theorem 2.5. Let (ξt)t≥0 be a supercritical and Malthusian birth process that satisfies Condition
2.4. Let (CBP(m)

t )t≥0 be the corresponding collapsed branching process. Let Θ and µ be as in
Theorem 2.3. Denote the size of CBP(m)

t by N (m)(t), and the number of vertices with degree k by
N (m)

k (t). Then, as t→∞,

(1)

me−α
∗tN (m)(t)

P−a.s.−→ 1

µα∗
Θ; (2.9)

(2) for every k ∈ N, there exists p(m)

k such that,

me−α
∗tN (m)

k (t)
P−→ 1

µα∗
p(m)

k Θ; (2.10)

(3) As a consequence,
N (m)

k (t)

N (m)(t)

P−→ p(m)

k . (2.11)

The sequence (p(m)

k )k∈N is called the limiting degree distribution of (CBP(m)

t )t≥0, and is given by

p(m)

k = α∗L (P [ξ](·)∗mk ) (α∗) = E [P [ξ](Tα∗)
∗m
k ] , (2.12)

where Pk[ξ](t) = P(ξt = k), Tα∗ is an exponentially distributed random variable with parameter
α∗, and

P [ξ](t)∗mk =
∑

k1+···+km=k

Pk1 [ξ](t) · · ·Pkm [ξ](t) (2.13)

is the k-th element of the m-fold convolution of the sequence (Pk[ξ](t))k∈N.
We now comment on Theorem 2.5 (for comparison with CTBPs, we refer to Theorem 2.3). (2.9)

assures us that the size of a CBP grows at exponential rate α∗ as for the underlying CTBP. Even
the size of CBP(m)

t , up to the constant m, scales exactly as the size of the CTBP, and the limiting
random variable Θ is the same. This means that the collapsing procedure does not destroy the
exponential growth of the graph.

(2.10) assures that, for every k ∈ N, the number of vertices with in-degree k scales exponen-
tially and also in this case we have a limiting random variable. (2.11) tells us that there exists a
deterministic limiting degree distribution for a CBP.

The expression for (p(m)

k )k∈N can be explained in terms of CTBPs. In fact, for a CTBP ξ, the
limiting degree distribution is given by p(1)k = E [Pk[ξ](Tα∗)], with α∗ the Malthusian parameter of
ξ. We can see Tα∗ as a time unit that a process (ξt)t≥0 takes to generate, on average, 1 individual.
Then, p(1)k can be seen as the probability that (ξt)t≥0 generates k individuals instead of the average
1. Using the same heuristic, the limiting degree distribution of CBP can be seen as the probability
that m different individuals produce k children in total in the time unit Tα∗ . Notice that in the
expression of (p(m)

k )k∈N the Malthusian parameter α∗ is that of the branching process ξ.
Unfortunately, the size of CBP and the number of vertices with degree k ∈ N are not the

evaluation of a CTBP with a random characteristic as in Definition 2.2. For example the degree of
a vertex in CBP is the sum of the degrees of m different individuals. The solution for the size of
CBP and the number of vertices with degree k is different. From Definition 1.1, it is obvious that

N (m)(t) =

⌈
ξ
1R+
t

m

⌉
. (2.14)

Using then (2.6), the proof of (2.9) is immediate.
The proof of (2.10) is harder, and it requires a conditional second moment method on N (m)

k (t).
Before stating the result, we need a preliminary discussion. We use artificial randomness that
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Ω(n,1)

Ω(n,2)

...

Ω(n,m)

ξ
(n,1)
t−τ(n,1)

ξ
(n,2)
t−τ(n,2)

...

ξ
(n,m)
t−τ(n,m)

ξ
(n,1),2
t−τ(n,1)

ξ
(n,2),2
t−τ(n,2)

...

ξ
(n,m),2
t−τ(n,m)

· · ·

· · ·

. . .

· · ·

ξ
(n,1),m
t−τ(n,1)

ξ
(n,2),m
t−τ(n,2)

...

ξ
(n,m),m
t−τ(n,m)

Φk
(
t− τ(n,1)

)

Φk
(
t− τ(n,2)

)

...

Φk
(
t− τ(n,m)

)

D
(in)
n (t)

we add to the branching process to rewrite the degree of a vertex in CBP in terms of a random
characteristic. In the population space in the definition of CTBPs, we consider a single birth process
(ξxt )t≥0 for every individual x in the population. We instead consider on every Ωx a vector of birth
processes (ξx,1t , . . . , ξx,mt ), where ξx,1t , · · · , ξx,mt are i.i.d. copies of the birth process, defined on the
space corresponding to the individual x. With this notation, the standard branching processes
defined by (ξt)t≥0 is the branching process where we consider as birth process the first component
of every vector associated to every individual.

Now, for k ∈ N, we consider the random characteristic

Φ(m)

k (t) = 1{k}

(
ξx,1t−τx + · · ·+ ξx,mt−τx

)
, (2.15)

which corresponds to the event that the sum of the components of the vector associated to the
individual x when its age is t− τx is equal to k. This is a random characteristic that depends only
on the randomness defined on the space Ωx.

The crucial observation is that

P
(
D(in)
n (t) = k

)
= P

(
ξ

(n,1)
t−τ(n,1) + · · ·+ ξ

(n,m)
t−τ(n,m)

= k
)

≈ 1

m

m∑

j=1

P
(
ξ

(n,j),1
t−τ(n,j) + · · ·+ ξ

(n,j),m
t−τ(n,j) = k

)

=
1

m

m∑

j=1

E
[
Φ(m)

k (t− τ(n,j))
]

+ (error),

(2.16)

when we assume that the difference between the birth times τ(n,1), τ(n,2), . . . , τ(n,m) is very small.
The approximation in (2.16) can be explained by the fact that all the components of the vectors
(ξn,1t , . . . , ξn,mt ) are i.i.d. and τ(n,1) ≈ τ(n,m). In fact, on the left side of (2.16) we have the
probability that the sum of m independent copies of (ξt)t≥0, evaluated at different times, is equal
to k. Assuming that the differences between the birth times τ(n,1), τ(n,2), . . . , τ(n,m) are small, we
can just evaluate the m different processes at time τ(n,1), with a negligible error.

The proof of this, based on Condition 2.4, is given in Proposition 3.3. It gives the bound on
the error term with the difference between the birth rimes of the individuals collapsed to generate
the vertex, i.e., the error term is bounded by mL|τ(n,m) − τ(n,1)|, where L = maxi∈[k]{L(i)}.

9
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The use of artificial randomness might not seem intuitive. The point is that the equality in
expectation between the random characteristic Φ(m)

k (t − τ(n,1)) and D(in)
n (t) is enough. This relies

on the fact that, conditionally on the first stages of the branching process, the contribution to the
number of vertices with degree k given by the latter individuals is almost deterministic. Let us
formalize this idea:

Definition 2.6 (x-bulk filtration). Consider a branching process ξ, and its natural filtration
(Ft)t≥0. Consider an increasing function x(t) : R+ → R+. We call (Fx(t))t≥0 the x-bulk fil-
tration of ξ. At every time t ≥ 0, a random variable measurable with respect to Fx(t) is called
x-bulk measurable.

If we consider x(t) to be o(t), then the x-bulk filtration heuristically contains information only
on the early stage of the CTBP. Nevertheless, the information contained in Fx(t) is enough to
estimate the behavior of the CTBP:

Proposition 2.7 (Conditional moments of N (m)

k (t)). Assume that x is a monotonic function such
that, as t→∞, x(t)→∞ and x(t) = o(t). Then, under the conditions of Theorem 2.5, as t→∞,

(1)

me−α
∗tE
[
N (m)

k (t)
∣∣Fx(t)

] P−a.s.−→ 1

µ
L
(
Φ(m)

k (·)
)

(α∗)Θ; (2.17)

(2)

e−2α∗tE
[
N (m)

k (t)2
∣∣Fx(t)

] P−a.s.
≤

(
e−α

∗tE
[
N (m)

k (t)
∣∣Fx(t)

])2
+ o(1). (2.18)

We point out that if X ≤ Y + o(1), then o(1) is a term that converges almost surely to 0. The
proof of Proposition 2.7 is moved to Section 4. With Proposition 2.7 in hand, we can prove (2.10).

We bound
∣∣∣me−α

∗tN (m)

k (t)− 1
µL(Φ(m)

k (·))(α∗)Θ
∣∣∣ by

∣∣∣me−α
∗tN (m)

k (t)−me−α
∗tE[N (m)

k (t)|Fx(t)]
∣∣∣+
∣∣∣∣me−α

∗tE[N (m)

k (t)|Fx(t)]−
1

µ
L(Φ(m)

k (·))(α∗)Θ
∣∣∣∣ . (2.19)

As a consequence, (2.10) holds if both terms in (2.19) converges P-a.s. to zero. For the sec-
ond term this is true by (2.17). For the first term, we use (2.17) and (2.18) to conclude that
Var

(
me−α

∗tN (m)

k (t)|Fx(t)

)
= oa.s.(1), so that

∣∣∣me−α
∗tN (m)

k (t)−me−α
∗tE[N (m)

k (t)|Fx(t)]
∣∣∣ P−→ 0. (2.20)

This concludes the proof of (2.10). (2.11) follows immediately.

Remark 2.8 (Times and bulk sigma-field). We have proved Proposition 2.7 (and thus Theorem
2.5) by looking at the CTBP at time t, considering the x(t)-bulk sigma-field. We can extend the
argument as follows. Consider s ≥ 0, and let y : R+ → R+ be a monotonic function of s such that
y(s)/s→∞ as s→∞. In this case, looking at the graph at time y(s), and considering the s-bulk
sigma-field, Proposition 2.7 still holds. More generally, as suggested by (4.1) below, conditionally
on the s-bulk sigma-field, the evolution of a CTBP is almost deterministic. This implies that
Proposition 2.7 even holds when we consider a random process Y (s) such that Y (s)/s

a.s.→ ∞, under
the assumption that Y (s) is s-bulk measurable for every s ≥ 0. These observations will be useful
when extending our results to discrete time in Section 6.

10
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3.Preliminaries on birth times

3.1 Bound on the difference in time. In this section, we prove the fact that the error term in
(2.16) can be bounded by the difference of birth times of the considered individuals. We introduce
the definition of convolution:

Definition 3.1 (Convolution). We define convolution between two sequences (ak)k∈N and (bk)k∈N
as

(a ∗ b)k :=
k∑

l=0

albk−l. (3.1)

With this definition, we can state a technical lemma we need to prove the bound we are interested
in:

Lemma 3.2 (Difference in times). Consider the sequence of functions (P [ξ]k(t))k∈N. If (ξt)t≥0

satisfies Condition 2.4, then, for every x ∈ R+, and for every hi ≤ x for i ∈ [n],

|(P [ξ](x− h1) ∗ · · · ∗ P [ξ](x− hm))k − (P [ξ](x− h1)∗m)k| ≤ L
m∑

j=2

|h1 − hj |, (3.2)

where L = maxi∈[k] L(i).

Proof. Without loss of generality, assume 0 ≤ h1 ≤ . . . ≤ hn. We prove Lemma 3.2 by induction
on m. We start the induction with m = 2, so

(P [ξ](x− h1) ∗ P [ξ](t− h2))k =

k∑

l=0

P [ξ]l(x− h1)P [ξ]k−l(x− h2). (3.3)

We now use Condition 2.4 to bound |P [ξ]k−l(x− h2)− P [ξ]k−l(x− h1)| ≤ +L(k − l)(h2 − h1).
Using this in (3.3), then we obtain, for L = maxi∈[k] L(i),

∣∣(P [ξ](x− h1) ∗ P [ξ](t− h2))k −
(
P [ξ](x− h1)∗2

)
k

∣∣ ≤ L
k∑

l=0

P [ξ]k−l(x− h1) |(h2 − h1)| . (3.4)

Since
∑k

l=0 Pl[ξ](x− h1) = P [ξ]≤k(x− h1) ≤ 1,
∣∣(P [ξ](x− h1) ∗ P [ξ](t− h2))k −

(
P [ξ](x− h1)∗2

)
k

∣∣ ≤ L|h2 − h1|,

so (3.2) holds for m = 2. We now advance the induction hypothesis, so suppose that (3.2) holds
for m− 1. We can write

(P [ξ](x− h1) ∗ · · · ∗ P [ξ](x− hm))k =

k∑

l=0

(P [ξ](x− h1) ∗ · · · ∗ P [ξ](x− hm−1))l P [ξ]k−l(x− hm).

(3.5)
Notice that we can apply (3.2) to the first terms in the sum in (3.5) thanks to the induction
hypothesis, since it is now the convolution ofm−1 functions. We just need to replace P [ξ]k−l(x−hm)
by P [ξ]k−l(x− h1). It is easy to do this using a similar argument used to prove the bound in (3.4),
which implies again the use of Condition 2.4. In the end, we have

|(P [ξ](x− h1) ∗ · · · ∗ P [ξ](x− hm))k − (P [ξ](x− h1)∗m)k| ≤ L
m−1∑

j=2

|h1 − hj |+ L|hm − h1|, (3.6)

where them−1 terms comes from the induction hypothesis, and the last one from the approximation
of P [ξ]k−l(x− hm). This completes the proof.

11
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Lemma 3.2 holds for every time t and h1, . . . , hm that we consider. We can now prove the bound
on the error term in (2.16):

Proposition 3.3 (Approximation at fixed time). Consider (CBP(m)

t )t≥0 obtained from a branching
process ξ. Assume that (ξt)t≥0 satisfies Condition 2.4. Then, for every k ∈ N, with L as in Lemma
3.2, P-a.s. for every n ∈ N,

∣∣∣P
(
D(in)
n (t) = k | τ(n,1), . . . , τ(n,m)

)
−
(
P [ξ](t− τ(n,1))

∗m)
k

∣∣∣ ≤ Lm|τ(n,m) − τ(n,1)|. (3.7)

Proof. Conditionally on the birth times, the processes (ξ
(n,1)
t )t≥0, . . . , (ξ

(n,m)
t )t≥0 are independent.

As a consequence,

P
(
D(in)
n (t) = k | τ(n,1), . . . , τ(n,m)

)
=
(
P [ξ](t− τ(n,1)) ∗ · · · ∗ P [ξ](t− τ(n,m))

)
k
. (3.8)

Then (3.7) follows immediately from Lemma 3.2, where we consider h1 = τ(n,1), . . . , hm = τ(n,m),
and the fact that τ(n,j) − τ(n,1) ≤ τ(n,m) − τ(n,1) for every j = 1, . . . ,m.

3.2 Replacing birth times with Ft-measurable approximations. Recall that Ft denotes the
natural filtration of the CTBP up to time t. It is possible to rewrite (2.6) as

ne−α
∗τn P−a.s.−→ 1

µα∗
Θ.

As a consequence, as n→∞,

− τn +
1

α∗
log n

P−a.s.−→ 1

α∗
log

(
1

µα∗
Θ

)
. (3.9)

Notice that on the event {ξ1R+
t → ∞}, Θ is positive with probability 1, so log

(
1
µα∗Θ

)
is well

defined. Define, for n ≥ ξ
1R+
t ,

σn(t) :=
1

α∗
log n− 1

α∗
log

(
1

µα∗
Θt

)
, where Θt = µα∗e−α

∗tξ
1R+
t . (3.10)

Then σn(t) is an approximation of τn given the information up to time t, where the factor Θt

includes the stochastic fluctuation of the size of the branching process. What is interesting is that
the random variable σn(t) is an approximation of τn measurable with respect to Ft. We now prove
that (σn(t))t≥0 is an acceptable approximation of τn:

Lemma 3.4 (Error of (σn(t))t≥0). P-a.s., as t→∞,

sup

n≥ξ
1R+
t

|σn(t)− τn| → 0. (3.11)

Proof. For every t ≥ 0 and n ≥ ξ
1R+
t we write

|σn(t)− τn| ≤
∣∣∣∣

1

α∗
log n− τn − log

(
1

µα∗
Θ

)∣∣∣∣+

∣∣∣∣log

(
1

µα∗
Θ

)
− log

(
1

µα∗
Θt

)∣∣∣∣ . (3.12)

Using (3.12) in (3.11), we can bound

sup

n≥ξ
1R+
t

|σn(t)− τn| ≤
∣∣∣∣log

(
1

µα∗
Θ

)
− log

(
1

µα∗
Θt

)∣∣∣∣+ sup

n≥ξ
1R+
t

∣∣∣∣
1

α∗
log n− τn − log

(
1

µα∗
Θ

)∣∣∣∣ .

(3.13)

First of all, from (2.6) we know Θt/(µα
∗) = e−α

∗tξ
1R+
t → Θ/(µα∗). As a consequence, the first

term in the right hand side of (3.13) converges P-a.s. to zero. For the second term, we use (3.9)

and the fact that the supremum decreases as ξ
1R+
t →∞. This completes the proof.

Lemma 3.4 suggests that, conditionally on Ft, we can replace the birth sequence (τn)n≥ξ1t with
the sequence (σn(t))n≥ξ1t when evaluating random characteristics.
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4. Second moment method: proof of Proposition 2.7

4.1 First conditional moment asymptotics. In this section, we investigate the first conditional

moment of N (m)

k (t) with respect to the bulk filtration. In particular, consider a function x such
that, as t→∞, x(t)→∞ and x(t) = o(t). Heuristically, we want to show that

mE
[
N (m)

k (t) | Fx(t)

]
≈ N (m)(x(t))E

[
ξ

Φ
(m)
k

t−x(t)

]
. (4.1)

Equation (4.1) shows that, conditionally on the information up to time x(t), at time t we have
N (m)(x(t)) processes, each one producing the expected number of vertices with degree k at time
t−x(t). This follows from the fact that all the individual processes in ξ are independent from each
other once we condition on the birth times.

We start writing N (m)

k (t) as sum of indicator functions, i.e.,

E
[
N (m)

k (t) | Fx(t)

]
= E



N(m)(x(t))∑

n=1

1{D(in)
n (t)=k} +

∞∑

n=N(m)(x(t))+1

1{D(in)
n (t)=k}

∣∣∣∣∣∣
Fx(t)


 .

We can ignore the first sum in the conditional expectation, since

0 ≤ e−α
∗tE



N(m)(x(t))∑

n=1

1{D(in)
n (t)=k}

∣∣∣∣∣∣
Fx(t)


 ≤ e−α

∗tN (m)(x(t)), (4.2)

and, using Theorem 2.3 and the fact that x(t) = o(t),

e−α
∗(t−x(t))e−α

∗x(t)N (m)(x(t))
P−a.s.−→ 0. (4.3)

Consider the sequence (σn(x(t)))t≥0
n∈N as defined in Section 3.2. This is a sequence of random

variables that approximates (τn)n∈N and it is measurable with respect to the bulk filtration. This
means that we can write, for any n ≥ N (m)(x(t)),

D(in)
n (t) = ξ(n,1)(t− σ(n,1)(x(t))) + · · ·+ ξ(n,m)(t− σ(n,m)(x(t))).

Now, conditionally on the birth times σ(n,1)(x(t)), . . . , σ(n,m)(x(t)), the m processes related to the

n-th vertex (ξ
(n,1)
t )t≥0, . . . , (ξ

(n,m)
t )t≥0 are independent, so the probability that the sum is equal to

k is (
P [ξ](t− σ(n,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n,m)(x(t)))

)
k
, (4.4)

which is a x-bulk measurable random variable. As a consequence,

E




∞∑

n=N(m)(x(t))+1

1{D(in)
n (t)=k}

∣∣∣∣∣∣
Fx(t)




=

∞∑

n=N(m)(x(t))+1

(
P [ξ](t− σ(n,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n,m)(x(t)))

)
k
.

(4.5)

For any k ∈ N, the function u 7→ Pk[ξ](u) is zero for negative argument. As a consequence, the sum
in (4.5) is taken only over indeces n such that σ(n,j)(x(t)) < t. From the definition of σ(n,j)(x(t))
as in (3.10) and the fact that (n, j) = m(n− 1) + j, it follows that σ(n,j)(x(t)) < t if and only if

n < 1 + j/m+ eα
∗(t−x(t))ξ

1R+
x(t) /m = eα

∗(t−x(t))N (m)(x(t))(1 + oa.s.(1)), (4.6)

13
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where oa.s.(1) denotes a term that converges P-a.s. to zero. Using (4.6) and then applying Propo-
sition 3.3, for L as in Lemma 3.2, we obtain

N(m)(x(t))eα
∗(t−x(t))∑

n=N(m)(x(t))+1

P [ξ](t− σ(n,1)(x(t)))∗mk + Lm

N(m)(x(t))eα
∗(t−x(t))∑

n=N(m)(x(t))+1

σ(n,m)(x(t))− σ(n,1)(x(t)), (4.7)

where the difference between (4.5) and the first sum in (4.7) is bounded in absolute value by the
second sum in (4.7).

Consider the difference t− σ(n,1)(x(t)). Using the definition of the sequence (σn(x(t)))n∈N, and

recalling that mN (m)(x(t)) = ξ
1R+
x(t) (1+oa.s.(1)) (see (2.14)), it follows that t−σ(N(m)(x(t)),1)(x(t)) =

(t− x(t))(1 + oa.s.(1)). As a consequence, ignoring negligible terms,

t− σ(n,1)(x(t)) = t− σ(N(m)(x(t)),1)(x(t))−
(
σ(n,1)(x(t))− σ(N(m)(x(t)),1)(x(t))

)

= t− x(t) +
1

α∗
log

(
m(n− 1) + 1

mN (m)(x(t))

)

= t− x(t) +
1

α∗
log

(
n

N (m)(x(t))

)
.

(4.8)

The second sum in the right hand side of (4.7) is bounded by a telescopic sum, since σ(n,1)(x(t)) ≥
σ(n−1,m)(x(t)), which implies that we can bound it with the difference between the last and the
first term. Using (4.8) in (4.7), for s = t− x(t), it leads to

N(m)(x(t))eα
∗s∑

n=N(m)(x(t))+1

P [ξ](s− 1

α∗
log

(
m(n− 1) + 1

mN (m)(x(t))

)
)∗mk +

mL

α∗
log

(
mN (m)(x(t))eα

∗s

mN (m)(x(t))

)

=
eα
∗s∑

p=1

N(m)(x(t))∑

q=1

P [ξ](s− 1

α∗
log
(
p+ q/N (m)(x(t))

)
)∗mk +mL(t− x(t))

= N (m)(x(t))
eα
∗s∑

p=1

P [ξ]

(
s− 1

α∗
log(p)

)∗m

k

+mL(t− x(t))

= N (m)(x(t))
eα
∗s∑

p=1

E
[
Φ(m)

k

(
s− 1

α∗
log(p)

)]
+mL(t− x(t)).

(4.9)

We can ignore the term mL(t − x(t)), since e−α
∗tmL(t − x(t)) = o(1). To analyze the remaining

sum, we introduce two measures γ1 and γ2 on R+. For v ≥ 0,

γ1([0, v]) =

∫ v

0

∑

p∈N
δ{1/α∗ log p}(du) = eα

∗v, and γ2([0, v]) = E

[∫ v

0

∑

n∈N
δ{τn}(du)

]
= E

[
ξ
1R+
v

]
.

Notice that γ2 is the average measure of the random measure given by the branching process size.

From Theorem 2.3 we know that γ2([0, v]) = E[ξ
1R+
v ] = (1/µα∗)eα

∗v(1 + o(1)). This means that,
asymptotically in v, γ1([0, v]) = µα∗γ2([0, v]). Using these two measures it is possible to write

eα
∗s∑

p=1

E
[
Φ(m)

k

(
s− 1

α∗
log(p)

)]
=

∫ s

0
E[Φ(m)

k (s− u)]γ1(du)

= µα∗
∫ s

0
E[Φ(m)

k (s− u)]γ2(du) = µα∗E
[
ξ

Φ
(m)
k

s

]
.

(4.10)
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Using (4.10) in (4.9), we conclude that

e−α
∗tE
[
N (m)

k (t) | Fx(t)

]
= e−α

∗tµα∗N (m)(x(t))E
[
ξ

Φ
(m)
k

t−x(t)

]
+ oa.s.(1)

=
(
µα∗e−α

∗x(t)N (m)(x(t))
)(

e−α
∗(t−x(t))E

[
ξ

Φ
(m)
k

t−x(t)

])
+ oa.s.(1).

(4.11)

Applying (2.6) it follows that, as t → ∞, µα∗e−α
∗x(t)N(x(t)) converges P-a.s. to Θ, while

µα∗e−α
∗(t−x(t))E

[
ξ

Φ
(m)
k

t−x(t)

]
converges to L(Φ(m)

k (·))(α∗)/µ. This completes the proof of (2.17).

4.2 Conditional second moment asymptotics. In this section, we prove (2.18), i.e., the result

on the conditional second moment of N (m)

k (t). We again write N (m)

k (t) as sum of indicator functions,
which means

e−2α∗tE
[
N (m)

k (t)2
∣∣Fx(t)

]
= e−2α∗tE


 ∑

n,n′∈N
1{D(in)

n (t)=k}1{D(in)

n′ (t)=k}

∣∣∣∣∣∣
Fx(t)


 . (4.12)

We now divide the sum in different sums, according to the indices n and n′, as
∑

n,n′≤N(m)(x(t))

1{D(in)
n (t)=k}1{D(in)

n′ (t)=k}

+
∑

n,n′>N(m)(x(t))

1{D(in)
n (t)=k}1{D(in)

n′ (t)=k} + 2
∑

n≤N(m)(x(t)),n′>N(m)(x(t))

1{D(in)
n (t)=k}1{D(in)

n′ (t)=k}.

(4.13)

For the first sum in (4.13), we use (4.2) as bound, and by (4.3) it is oa.s.(1). For the second sum
in (4.13), we again use the sequence (σn(x(t)))n∈N to approximate the birth times. Using similar
arguments as in Section 4.1, and the fact that conditionally on the birth times all the birth processes
are independent, we write, for n 6= n′ and n, n′ > N (m)(x(t)),

P
(
D(in)
n (t) = k,D(in)

n′ (t) = k | Fx(t)

)
=
(
P [ξ](t− σ(n,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n,m)(x(t)))

)
k

×
(
P [ξ](t− σ(n′,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n′,m)(x(t)))

)
k
.

(4.14)

We can use (4.14) to bound the conditional expectation of the second sum in (4.13). In fact, adding
the missing terms we can write

E
[ ∑

n,n′>N(m)(x(t))

1{D(in)
n (t)=k}1{D(in)

n′ (t)=k}

∣∣∣∣Fx(t)

]

≤
( ∑

n>N(m)(x(t))

(
P [ξ](t− σ(n,1)(x(t))) ∗ · · · ∗ P [ξ](t− σ(n,m)(x(t)))

)
k

)2

+ E
[
N (m)

k (t)

∣∣∣∣Fx(t)

]

= E
[ ∑

n>N(m)(x(t))

1{D(in)
n (t)=k}

∣∣∣∣Fx(t)

]2

+ E
[
N (m)

k (t)
∣∣Fx(t)

]

≤ E
[
N (m)

k (t)
∣∣Fx(t)

]2
+ E

[
N (m)

k (t)
∣∣Fx(t)

]
.

(4.15)

The third sum in (4.13) can be easily bound by 2N (m)(x(t))E[N (m)

k (t)|Fx(t)]. Putting together the

three bounds we obtained, we have that e−2α∗tE
[
N (m)

k (t)2|Fx(t)

]
is bounded by

e−2α∗tE[Nk(t)|Fx(t)]
2 + e−2α∗t (2N(x(t)) + 1)E[Nk(t)|Fx(t)] + oa.s.(1). (4.16)
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The result follows since the second term in (4.16) is again oa.s.(1), similarly to the first term in
(4.13).

5.Proofs of corollaries 1.4, 1.6 and 1.8

5.1 Corollaries 1.4 and 1.6. In Section 1.2 we already showed that CBPs defined by birth
processes as in Definition 1.3 embeds the PAM in continuous-time and what we called random
recursive graph. We just need to show that Condition 2.4 is satisfied. In general, processes defined
as in Definition 1.3 are differentiable and satisfy a recursive property (see [4, Section 3.2]):

d

dt
P0[ξ](t) = −λ0P0[ξ](t), and, for k ≥ 1,

d

dt
Pk[ξ](t) = −λkPk[ξ](t) + λk−1Pk−1[ξ](t). (5.1)

Since in general we consider a non-decreasing sequence (λk)k∈N, it is possible to see that if we
set L(k) = λk then Condition 2.4 is satisfied. Hence, the limiting degree distribution (p(m)

k )k∈N
is the distribution of the sum of m independent copies of (ξt)t≥0 at exponential time Tα∗ , for α∗

Malthusian parameter of the CTBP.
In the case of the PAM embedding, the sum of m birth processes is distributed as an embedding

birth process defined by the PA rule λ̄k = k + m + δ (it is easy to prove this by induction over
the distribution of birth times). This implies that we can use known results on this type of birth
processes ([18],[2]) to write

p(m)

k = P
(
ξ1
Tα∗

+ · · ·+ ξmTα∗ = k
)

=
α∗

α∗ + k +m+ δ

k−1∏

i=0

i+m+ δ

α∗ + i+m+ δ
,

that can be rewritten as in (1.4) using Γ functions, since in this case α∗ = 1 + δ/m (see [18, Section
4.2], [11, Proposition 3.15]).

For the random recursive graph, calculations are easier. It is easy to show that in this case
α∗ = 1. Since the sum of m Poisson processes (PP) with parameter 1 is a PP with parameter m,
the limiting degree distribution is the distribution of a PP at an exponentially distributed time
with parameter 1. Then

p(m)

k = E
[
e−mT1

(mT1)k

k!

]
=

1

m+ 1

(
1 +

1

m

)−k
. (5.2)

As mentioned, for m = 1 (so without collapsing) the random recursive graph reduces to the random
recursive tree, and the limiting distribution is just p(1)k = 2−(k+1) (see [16]).

5.2 The aging case. Here we prove the result on aging processes stated in Corollary 1.8. The
result follows immediately from the proof of Corollary 1.4 and the definition of the aging process.
In fact, an aging process is defined as (ξG(t))t≥0, where (ξt)t≥0 is an embedding process defined by
the sequence (k + 1 + δ/m)k∈N. As a simple consequence of the chain rule, from (5.1) it follows
that

d

dt
Pk[ξ](G(t)) = (−(k + 1 + δ/m)Pk[ξ](t) + (k + δ/m)Pk−1[ξ](t)) g(t). (5.3)

Assuming that the aging function g is bounded almost everywhere, Condition 2.4 is satisfied for
L = k supt≥0 |g(t)|. The condition limt→∞ E[ξG(t)] > 1 is necessary and sufficient for the existence
of the Malthusian parameter α∗ (see [11, Lemma 4.1]).

Since the sum of m processes ξ1
t + · · ·+ ξmt is distributed as a single embedding process defined

by the sequence (k + m + δ)k∈N, it follows that ξ1
G(t) + · · · + ξmG(t) is distributed as a single aging

process with the same aging function g and sequence (k +m+ δ)k∈N. (1.7) is then a consequence
of [11, Proposition 5.2].
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6.Discrete-time processes: proof of Theorem 1.5

The convergence result given in Theorem 1.2 assures that in continuous time, the proportion of
vertices in CBP with degree k converges in probability to p(m)

k . When considering a CTBP in the
presence of aging, this result is enough since these types of CBPs are defined only in continuous
time.

When we instead consider embedding processes as in Definition 1.3, we can consider a discrete-
time sequence of random graphs (CBP(m)

τn )n∈N, where (τn)n∈N is the sequence of birth times of the
corresponding CTBP. This is the way the PAM is usually defined. In particular, the sequence
(τn)n∈N corresponds to the sequence of times at which a new edge appears in the CBP. In this
setting, the convergence in probability given in Theorem 1.2 does not imply the convergence in
probability of (me−α

∗τnN (m)

k (τn))n∈N. Here, we will prove that e−α
∗τnN (m)

k (τn) converges in prob-
ability to p(m)

k Θ/(µα∗), and that this further implies that N (m)

k (τmn)/n converges in probability to
p(m)

k , as required.
Recall the t-bulk sigma-field. We denote, as in (3.10), for n ≥ ξ1t ,

σn = σn(t) =
1

α∗
log n− 1

µα∗
Θt.

Take t = tn = (log n)1/2. Then, define the sequence (τ ′n)n∈N, where τ ′n := σn(tn). Notice that τ ′n
is tn-bulk-measurable. Further, τ ′n

a.s.→ ∞ and

tn
τ ′n

=
(log n)1/2

1
α∗ log n− 1

µα∗ log Θtn

=
(log n)1/2

log n(1/α∗ − log Θtn/(µα
∗ log n))

a.s.−→ 0.

By Remark 2.8, Proposition 2.7 holds forme−α
∗τ ′nN (m)

k (τ ′n), so thatme−α
∗τ ′nN (m)

k (τ ′n)
P→ p(m)

k Θ/(µα∗).
The advantage of the sequence (τ ′n)n∈N, other than being tn-bulk measurable, is that it is a good
approximation of the sequence (τn)n∈N. Indeed,

|τn − τ ′n| ≤
∣∣∣∣τn −

1

α∗
log n− 1

µα∗
log Θ

∣∣∣∣+

∣∣∣∣
1

µα∗
log Θ− 1

µα∗
log Θtn

∣∣∣∣ , (6.1)

so that |τn − τ ′n|
a.s.→ 0. As a consequence, also me−α

∗τnN (m)

k (τn)
P→ p(m)

k Θ/(µα∗).

By Theorem 2.5, we further know that me−α
∗tN (m)(t)

a.s.→ Θ/(µα∗), so this holds also for
me−α

∗τnN (m)(τn). As a consequence,

me−α
∗τnN (m)

k (τn)

me−α∗τnN (m)(τn)
=
N (m)

k (τn)

N (m)(τn)
=
m

n
N (m)

k (τn)
P−→ p(m)

k . (6.2)

Consequently, N (m)

k (τmn)/n
P−→ p(m)

k . This completes the proof of Theorem 1.5.
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graph process”. Random Structures Algorithms 18.3 (2001), pp. 279–290.

[8] C. Borgs, J. Chayes, C. Daskalakis, and S. Roch. “First to market is not everything: an analysis of
preferential attachment with fitness”. STOC’07—Proceedings of the 39th Annual ACM, Symposium
on Theory of Computing (2007), pp. 135–144.

[9] F. Caravenna, A. Garavaglia, and R. van der Hofstad. “Diameter in ultra-small scale-free random
graphs”. To appear in Random Structures & Algorithms (2016).

[10] M. Deijfen, H. van den Esker, R. van der Hofstad, and G. Hooghiemstra. “A preferential attachment
model with random initial degrees”. Arkiv för Matematik 47.1 (2008), pp. 41–72.

[11] A. Garavaglia, R. van der Hofstad, and G. Woeginger. “The dynamics of power laws: fitness and aging
in preferential attachment trees”. Journal of Statistical Physics 168.6 (2017), pp. 1137–1179.

[12] X. Geng and Y. Wang. “Degree correlations in citation networks model with aging”. Europhysics
Letters 88.3 (2009), p. 38002.

[13] R. van der Hofstad. “Random graphs and complex networks, Volume 1”. Cambridge University Press
(2017).

[14] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem. “On the covariance of the level sizes in
random recursive trees”. Random Structures Algorithms 20.4 (2002), pp. 519–539.

[15] P. Jagers and O. Nerman. “The growth and composition of branching populations”. Adv. in Appl.
Probab. 16.2 (1984), pp. 221–259.

[16] S. Janson. “Asymptotic degree distribution in random recursive trees”. Random Structures Algorithms
26.1-2 (2005), pp. 69–83.

[17] O. Nerman. “On the convergence of supercritical general (C-M-J) branching processes”. Probability
Theory and Related Fields 57.3 (1981), pp. 365–395.
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