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PATHWISE LARGE DEVIATIONS FOR THE ROUGH BERGOMI MODEL

ANTOINE JACQUIER, MIKKO S. PAKKANEN, AND HENRY STONE

Abstract. Introduced recently in mathematical finance by Bayer, Friz and Gatheral [4], the rough

Bergomi model has proved particularly efficient to calibrate option markets. We investigate here some

of its probabilistic properties, in particular proving a pathwise large deviations principle for a small-

noise version of the model. The exponential function (continuous but superlinear) as well as the drift

appearing in the volatility process fall beyond the scope of existing results, and a dedicated analysis is

needed.

1. Introduction

The extension of the Black-Scholes model, in which volatility is assumed to be constant, to the case

where the volatility is stochastic has proved successful in explaining certain phenomena observed in option

price data, in particular the implied volatility smile. The main shortcoming of such stochastic volatility

models, however, is that they are unable to capture the true steepness of the implied volatility smile close

to maturity. While choosing to add jumps to stock price models, for example modelling the stock price

process as an exponential Lévy process, does indeed produce steeper implied volatility smiles [17], the

question of the presence of jumps in stock price processes remains controversial [6, 12].

As an alternative to exponential Lévy and classical stochastic volatility models, one may choose a

fractional Brownian motion, or a process with similar fine properties, to drive the volatility process,

rather than a standard Brownian motion. Since volatility is neither directly observable nor tradable, the

issue of arbitrage that is sometimes associated to fractional Brownian motion does not arise in this case. A

fractional Brownian motion is a centred Gaussian process, whose covariance structure depends on a Hurst

parameter H ∈ (0, 1). If H ∈ (0, 1/2), then the fractional Brownian motion has negatively correlated

increments and ‘rough’ sample paths, and if H ∈ (1/2, 1) then it has positively correlated increments and

‘smooth’ sample paths, when compared to a standard Brownian motion, which is recovered by taking

H = 1/2. There has been a resurgent interest in fractional Brownian motion and related processes within

the mathematical finance community in recent years. In particular, Gatheral, Jaisson and Rosenbaum [25]

carried out an empirical study that suggests that the log volatility behaves at short time scales in a manner

similar to a fractional Brownian motion, with Hurst parameter H ≈ 0.1. This finding is corroborated by

Bennedsen, Lunde and Pakkanen [8], who study over a thousand individual US equities and find that the

Hurst parameter H lies in (0, 1/2) for each equity. In addition, such so-called ‘rough’ volatility models

are able to capture the observed steepness of small-time implied volatility smiles and the term structure

of at-the-money skew much better than classical stochastic volatility models.

Following [25], Bayer, Friz and Gatheral [4] propose the so-called rough Bergomi model, which they

used to price options on integrated volatility and on the underlying itself. The advantage of their model

is that it captures the rough behaviour of log volatility, in accordance with [8, 25], as well as fits observed

implied volatility smiles better than traditional Markovian stochastic volatility models, most notably

in the close-to-maturity case. The works [3, 21, 22] study the short-time behaviour of rough volatility

models. Despite recent advances in simulation methods for the rough Bergomi model [7, 29], it is necessary
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to seek a more profound analytical understanding of the properties of this model. Specifically, in the

present paper we prove pathwise large deviations for this model, which allow to characterise its small-

time behaviour. Related results have been recently obtained by Bayer, Friz, Gulisashvili, Horvath and

Stemper [5], and large deviations theory is now a common tool for such analysis in standard stochastic

volatility models [13, 18, 20, 28, 30], and for their rough counterparts [5, 19].

In Section 2, we present the correlated rough Bergomi model, together with its main properties, and

lay out the main results of the paper; specifically a small-time large deviations principle for a rescaled

version of the normalised process. In Section 3, we present several elements from the theory of Gaussian

measures and large deviations that are required to prove the main results of the paper. In Section 4, we

give the proofs of the main results, and Section 5 elucidates the analogous large deviations result for the

uncorrelated rough Bergomi model.

Notations: The notation L2 := L2(T ,R) stands for the space of real-valued square integrable func-

tions on some index set T , and Cd := C(T ,Rd) the space of Rd-valued continuous functions on T . We

shall fix T = [0, 1] for the rest of this paper, although our results can be easily adapted for general

interval [0, T ]. We shall further denote BV the space of paths of finite variations on T , and R+ := [0,∞).

For two paths x and y belonging to C = C1, we denote by zxy the two-dimensional path (x, y)⊤. Now,

I(zxy)(t) represents the integral (whenever well-defined)
∫ t

0

√
x(s)dy(s); the expression I(zxy) shall be used

whenever the integral is taken over the whole time period [0, 1], and x · y :=
∫ 1

0 x(s)dy(s).

2. Model and main results

We assume a given filtered probability space (Ω,A , (Ft)t≥0,P), where the filtration satisfies the usual

conditions, and all stochastic processes here will be assumed to live on this probability space.

2.1. Rough Bergomi Model and main properties. Bayer, Friz and Gatheral [4] introduce a non-

Markovian generalisation of Bergomi’s ‘second generation’ stochastic volatility model, which they dub

‘rough Bergomi’ model. Let Z be the process defined pathwise as

(2.1) Zt :=

∫ t

0

Kα(s, t)dWs, for any t ≥ 0,

where α ∈
(
− 1

2 , 0
)
, W a standard Brownian motion, and where the kernel Kα : R+ × R+ → R+ reads

(2.2) Kα(s, t) := η
√
2α+ 1(t− s)α, for all 0 ≤ s < t,

for some strictly positive constant η. Note that, for any t ≥ 0, the map s 7→ Kα(s, t) belongs to L2, so

that the stochastic integral (2.1) is well defined. The rough Bergomi model, where X is the log stock

price process and v is the volatility process, is then defined as

(2.3)
Xt = −1

2

∫ t

0

vsds+

∫ t

0

√
vsdBs, X0 = 0,

vt = v0 exp

(
Zt −

η2

2
t2α+1

)
, v0 > 0,

where the Brownian motion B is defined as B := ρW +
√
1− ρ2W⊥ for ρ ∈ [−1, 1] and some standard

Brownian motion W⊥ independent of W . The filtration (Ft)t≥0 can here be taken as the one generated

by the two-dimensional Brownian motion (W,W⊥).

Proposition 2.1. The two-dimensional Gaussian process (Z,B) is centred with covariance structure

cov

((
Zt

Bt

)
,

(
Zt

Bt

))
=

(
η2t2α+1 ̺tα+1

̺tα+1 t

)
,

E(ZsZt) =

∫ s∧t

0

Kα(u, s)Kα(u, t)du =
η2(2α+ 1)

α+ 1
(s ∧ t)1+α(s ∨ t)α2F1

(
1,−α, 2 + α,

s ∧ t

s ∨ t

)
,

for any s, t ≥ 0, with ̺ := ρη
√
2α+1

α+1 and 2F1 the Gauss hypergeometric function [37, Chapter 5, Section 9].
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Proof. Without loss of generality, assume first that s < t. This then implies that E(ZsZt) = η2(2α +

1)
∫ s

0 (t − u)α(s − u)αdu = tαs1+α
∫ 1

0 (1 − v)α(1 − sv/t)αdv, where the second equality follows from a

change of variables. Using Euler’s integral representation of the Gauss hypergeometric function 2F1, it

follows that
∫ s

0 (t− u)α(s− u)αdu = 1
α+12F1(−α, 1;α+ 2; s/t), from which the proposition follows. �

Proposition 2.1 implies in particular that the process Z is not stationary, and that the following holds:

Corollary 2.2. The process Z is (α + 1
2 ) self-similar: for any a > 0, the processes (Zat)t≥0 and

(aα+
1
2Zt)t≥0 are equal in distribution.

Note then that the parameter α determines both the local and long-term behaviour of Z.

Remark 2.3. The process Z in (2.1) is the Holmgren-Riemann-Liouville fractional Brownian motion

introduced by Lévy [34], modulo some constant scaling, rather than the more commonly known fractional

Brownian motion characterised by Mandelbrot and Van Ness [35, Definition 2.1] as

WH
t =

1

Γ(H + 1/2)

(∫ 0

−∞
((t− s)H−1/2 − (−s)H−1/2)dW̃s +

∫ t

0

(t− s)H−1/2dW̃s

)
,

where W̃ is a standard Brownian motion, and Γ the standard Gamma function. The Mandelbrot-Van

Ness representation of WH
t requires the knowledge of W̃ from −∞ to t; in comparison we only need to

know W from 0 to t to compute the value of Z. Also both Z and WH are self-similar, but WH has

stationary increments whereas the increments of Z are non-stationary.

Proposition 2.4. The process log v has a modification whose trajectories are almost surely locally γ-

Hölder continuous, for all γ ∈
(
0, α+ 1

2

)
.

Proof. We first prove that Z has a modification whose trajectories are γ-Hölder continuous, for all

γ ∈ (0, α + 1
2 ). Firstly, E(|Zt − Zs|2) ≤ η2(2α + 1)

(∫ t

s |t− u|2αdu +
∫ s

0 |(t− u)α − (s− u)α|2du
)

=

η2|t− s|2α+1 + η2(2α+ 1)
∫ s

0
|(t− u)α − (s− u)α|2du. Following the change of variables s− u = (t− s)y

the integral becomes |t − s|2α+1
∫ s

t−s

0 |(y + 1)α − yα|2dy, and hence
∫ s

t−s

0 |(y + 1)α − yα|2dy is finite

since α ∈ (− 1
2 , 0). Therefore there exists K > 0 such that E(|Zt − Zs|2) ≤ K|t− s|2α+1 for any s, t ≥ 0.

Applying the Kolmogorov continuity theorem [32, Theorem 3.22] then yields that the Gaussian process Z

has a modification whose trajectories are locally γ-Hölder continuous where γ ∈ (0, α+ 1
2 ), thus proving

the claim. Now, for the process log v, we have

| log vt − log vs| =
∣∣∣∣Zt −

η2

2
t2α+1 −

(
Zs −

η2

2
s2α+1

)∣∣∣∣

≤ |Zt − Zs|+
η2

2

∣∣t2α+1 − s2α+1
∣∣ ≤ C|t− s|γ +

η2

2

∣∣t2α+1 − s2α+1
∣∣ ,

where C is a strictly positive constant, and γ ∈ (0, α + 1/2). Since the map t 7→ t2α+1 is also locally

γ-Hölder continuous for all γ ∈ (0, 2α + 1] and in particular for all γ ∈ (0, α + 1/2), it follows that the

process log v has a modification with locally γ-Hölder continuous trajectories, for all γ ∈ (0, α+ 1
2 ). �

As a comparison, the fractional Brownian motion has sample paths that are γ-Hölder continuous

for any γ ∈ (0, H) [9, Theorem 1.6.1], so that the rough Bergomi model also captures this roughness

by identification α = H − 1/2; in particular these trajectories are rougher than those of the standard

Brownian motion, for which H = 1/2.

2.2. Main results. For any functions ϕ1, ϕ2 : R+ × R+ → R, introduce the L2 operators Iϕ1 and Iϕ1
ϕ2

defined as

(2.4) Iϕ1f :=

∫ ·

0

ϕ1(u, ·)f(u)du and Iϕ1
ϕ2

f :=

(
Iϕ1f

Iϕ2f

)
.

Whenever the function ϕ is constant, say equal to c, we shall write Ic without ambiguity. We also define

the space H ϕ1
ϕ2

:=
{
Iϕ1
ϕ2

f : f ∈ L2
}
that is clearly a Hilbert space once endowed with the inner product
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〈
Iϕ1
ϕ2

f1, Iϕ1
ϕ2

f2
〉

H
ϕ1
ϕ2

:= 〈f1, f2〉L2 , where ϕ1, ϕ2 are such that Iϕ1
ϕ2

is injective, making the inner product

well-defined. For t, ε ≥ 0, now define the rescaled processes

(2.5) Xε
t := εβXεt, Zε

t := εβ/2Zt
d
= Zεt, vεt := ε1+βv0 exp

(
Zε
t −

η2

2
(εt)β

)
, Bε

t := εβ/2Bt,

where β := 2α+ 1 ∈ (0, 1). Note in particular that, for any t, ε ≥ 0, Zε
t and Zεt are equal in law, and so

are vεt and ε1+βvεt, which in turn implies that the following representation holds for any t ≥ 0:

Xε
t := εβXεt

d
= εβ

(∫ εt

0

√
vsdBs −

1

2

∫ εt

0

vsds

)
d
= εβ

(∫ t

0

√
vεsdBεs −

ε

2

∫ t

0

vεsds

)

d
=

∫ t

0

√
ε1+2βvεsdBs −

1

2

∫ t

0

ε1+βvεsds
d
=

∫ t

0

√
vεsdB

ε
s −

1

2

∫ t

0

vεsds.(2.6)

We now state the main result of this section, namely a pathwise large deviations principle for the

sequence of rescaled processes (Xε)ε≥0. We recall first some facts about large deviations on a real,

separable Banach space (E , ‖ · ‖E ), following [15] as our guide.

Definition 2.5. A function Λ : E → [0,+∞] is said to be a rate function if it is lower semi-continuous,

that is, if, for all x0 ∈ E ,

lim inf
x→x0

Λ(x) ≥ Λ(x0).

Definition 2.6. A family of probability measures (µε)ε≥0 on (E ,B(E )) is said to satisfy a large deviations

principle (LDP) as ε tends to zero with speed ε−1 and rate function Λ if, for any B ∈ B(E ),

(2.7) − inf
x∈B◦

Λ(x) ≤ lim inf
ε↓0

ε logµε(B) ≤ lim sup
ε↓0

ε logµε(B) ≤ − inf
x∈B

Λ(x),

where B and B◦ denote respectively the closure and the interior of B.

Correspondingly, a stochastic process (Yε)ε≥0 is said to satisfy a LDP as ε tends to zero if the family

of probability measures (P(Yε ∈ ·))ε≥0 satisfies a LDP as ε tends to zero. Unless otherwise stated, all

LDP here shall be as ε tends to zero, so we shall drop this mention for simplicity. To state our results,

we now define the operator M : C2 → C(T × R+,R+ × R) as

(2.8) (Mzxy)(t, ε) :=

(
(mx)(t, ε)

y(t)

)
for all t ∈ T , ε > 0,

where the operator m : C → C(T × R+,R+) is defined by

(2.9) (mx)(t, ε) := v0ε
1+β exp

(
x(t) − η2

2
(εt)β

)
,

as well as the functions Λ∗,Λ : C2 → R+ defined by

Λ∗(zxy) :=
1

2
‖zxy‖2H Kα

ρ
and Λ(zx1

y1
) := inf

{
Λ∗(zx2

y2
) : zx1

y1
= Mzx2

y2

}
.

Theorem 2.7. The sequence (Xε)ε≥0 satisfies a LDP on C with speed ε−β and rate function ΛX : C → [0,+∞]

defined as ΛX(ϕ) := inf
{
Λ(zxy) : ϕ =

√
x · y, y ∈ BV ∩ C

}
.

Corollary 2.8. The rescaled log stock price process
(
tβXt

)
t≥0

satisfies a LDP on R with speed t−β and

rate function ΛX
1 (u) := inf{ΛX(ϕ) : ϕ(1) = u}, u ∈ R.

Proof. Since Xε
1 and εβXε are equal in law, (εβXε)ε≥0 satisfies a LDP with speed ε−β and rate func-

tion ΛX
1 by Theorem 2.7 together with the contraction principle (Proposition 3.16 below). Substituting ε

with t completes the proof. �

Remark 2.9. Recently, Forde and Zhang [19] derived pathwise large deviations for rough volatility

models, with application (by scaling) to small-time asymptotics of the corresponding implied volatility.

The model they consider is of the following form, for the log stock price process:
{

dXt = − 1
2σ(Yt)

2dt+ σ(Yt)dBt,

Yt = WH
t ,
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where B is a standard Brownian motion, WH a (possibly correlated) fractional Brownian motion. In

order to prove LDP, they consider a small-noise version of the SDE above, namely:
{

dXε
t = − 1

2εσ(Yt)
2dt+

√
εσ(Yt)dBt,

Y ε
t = εHWH

t .

It is of course tempting to apply their results to the rough Bergomi model. Unfortunately, the following

intricacies make this impossible: firstly, they assume the function σ to have at most linear growth,

whereas it is of exponential growth in rough Bergomi; secondly, their scaling assumption, allowing them

to translate small-noise into small-time estimates crucially relies on the volatility process Y being driftless

[19, Equation (4.4)], which does not hold in rough Bergomi.

Theorem 2.7 and Corollary 2.8 have several potential applications within mathematical finance, two of

which we now outline. One application is to establish the small-time behaviour of implied volatility under

the rough Bergomi model. This would require, however, first showing that the stock price process in the

rough Bergomi model is a true martingale, which is far from trivial and beyond the scope of the present

paper. Another potential application is to variance reduction of Monte Carlo pricing of path-dependent

options, following the importance sampling approach employed in [36, 38, 39].

There is a degree of flexibility when defining the rescaled processXε. For example, we may defineXε
t :=

εαXεγ t, where γ := α/(α/2 + 5/4). In this case define (Zε, Bε) := εγ(α+1/2)(Z,B), and vεt := εα+γvεγ t,

so that Xε satisfies a LDP with speed ε−2γ(α+1/2) and rate function identical to that in Theorem 2.7.

This essentially falls in the category of moderate deviations, within the context of [26], for the original

process X , which is scaled by 1/(h(t)
√
t), where h(t) ∈ [1, t−1/2] for small enough t.

Remark 2.10. The structure of the Hilbert space H Kα
ρ in Corollary 3.11 below precisely determines

the rate function ΛX . In the uncorrelated case ρ = 0, H Kα
ρ (and its inner product) is degenerate, and

clearly Λ∗ does not make sense. This case needs to be treated separately and is analysed in Section 5.

From (2.4), every zxy ∈ H Kα
ρ has the representation zxy = IKα

ρ f , for some f ∈ L2. Therefore the rate

function in Theorem 2.7 can be rewritten as

(2.10) ΛX(ϕ) = inf
f∈L2

{
1

2

∫ 1

0

f2(u)du : ϕ = I
(
M
(
IKα
ρ f

))}
.

With this formulation, it is easy to see that ΛX(0) = 0: denoting zx̃y := Mzxy and using that x̃ > 0,

it follows that if I(x̃, y) = 0, then y ≡ 0, which in turn implies that f ≡ 0, and hence ΛX(0) = 0.

Furthermore, since clearly ΛX cannot take negative values, its minimum value is attained at the origin.

3. Gaussian Measures on Banach Spaces and Large Deviations

In this section, we gather several elements from the theory of Gaussian measures and large deviations

in order to prove Theorem 2.7. This proof shall require a certain number of steps, in particular the

precise characterisation of the reproducing kernel Hilbert spaces associated to the different processes

under consideration.

3.1. Gaussian measures on Banach spaces. A centred process (Zt)t∈T is called Gaussian if for all

n ∈ N and any t1, . . . , tn ∈ T , the random variables Zt1 , . . . , Ztn are jointly Gaussian; any such process

is then completely characterised by its covariance function. We recall some basic facts, needed later, on

Gaussian measures on Banach spaces, mostly following Carmona and Tehranchi [10, Chapter 3]. Let

(E , ‖ · ‖E ) be a real, separable Banach space, and E ∗ its topological dual (i.e. the space of all linear

functionals on E ), with duality relationship 〈·, ·〉E ∗E . The bilinear functional 〈·, ·〉E ∗E : E ∗ × E → R is

such that if 〈x∗, x〉E ∗E = 0 for all x∗ ∈ E ∗ (resp. x ∈ E ) then x = 0 (resp. x∗ = 0) [2, Page 195]. We

shall further let B(E ) denote the Borel σ-algebra of E .

Definition 3.1. [10, Definition 3.1] A measure µ on (E ,B(E )) is (centred) Gaussian if every f∗ ∈ E ∗,

when viewed as a random variable via the dual pairing f 7→ 〈f∗, f〉E ∗E , is a (centred) real Gaussian

random variable on (E ,B(E ), µ).
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The following proposition [10, Proposition 3.1] characterises Gaussian measures on Banach spaces.

Proposition 3.2. Any (centred) Gaussian measure µ on E is the law of some (centred) Gaussian process

with continuous paths, indexed by some compact metric space.

Note that every real-valued, centred Gaussian process taking values in E induces some measure on C,
the space of continuous functions from T to R. By Proposition 3.2, one can construct a centred Gaussian

probability measure µ on E by constructing the corresponding Gaussian process. The above argument

may be extended to a d-dimensional centred Gaussian process, thereby inducing a Gaussian measure on

E = Cd. For a Gaussian measure µ on E , we introduce the bounded, linear operator Γ : E ∗ → E as

(3.1) Γ(f∗) :=

∫

E

〈f∗, f〉E ∗E fµ(df),

and note in particular that 〈f∗, f〉E ∗E f is an E -valued random variable on (E ,B(E ), µ).

Definition 3.3. [10, Definition 3.3] The reproducing kernel Hilbert space (RKHS) Hµ of µ is defined as

the completion of Γ(E ∗) with the inner product 〈Γ(f∗),Γ(g∗)〉Hµ
:=

∫

E

〈f∗, f〉E ∗E 〈g∗, f〉E ∗Eµ(df).

For the inclusion map ι : Hµ → E , the space ι(Hµ) is dense in E ; it follows then for the adjoint map

ι∗ : E ∗ → H∗
µ that ι∗(E ∗) is dense in H∗

µ. Recall also that Hµ and H∗
µ are isometrically isomorphic,

which we denote by H∗
µ ≃ Hµ (by the Riesz representation theorem, as R is the underlying field). Now,

for a centred Gaussian random variable f∗ on E , by Definition 3.1, it follows that

E
(
〈f∗, f〉2E ∗E

)
=

∫

E

〈f∗, f〉E ∗E 〈f∗, f〉E ∗Eµ(df) = ‖f‖2Hµ
= ‖ι∗f∗‖2H∗

µ
.

This yields the following equivalent form of Definition 3.3 for the RKHS of µ [14, Page 88].

Definition 3.4. A real, separable Hilbert space Hµ such that Hµ ⊂ E is the RKHS of µ if the following

two conditions hold:

• there exists an embedding I : Hµ → E , i.e. an injective continuous map whose image is dense

in E ;

• any f∗ ∈ E ∗ is a centred Gaussian random variable on E with variance ‖I∗f∗‖2H∗

µ
.

Remark 3.5. The embedding I need not necessarily be the inclusion map.

Remark 3.6. Given a triplet (E ,Hµ, µ), consider the inclusion map I∗ : E ∗ → L2(E , µ) (we think of E ∗

as a dense subset in H∗
µ ≃ Hµ by ι∗). Since I∗ preserves the Hilbert space structure of L2(E , µ), it can

be extended to an isometric embedding Ī∗ : H∗
µ → L2(E , µ) such that ‖Ī∗f∗‖H∗

µ
= ‖f∗‖L2(E ,µ).

We now explicitly characterise the RKHS of the measures induced by (Zt)t∈T (introduced in (2.1))

on C, and by ((Zt, Bt))t∈T on C2. In fact, we first prove a more general result, using the operators in (2.4).

Introduce the following assumption on the function ϕ defining the operator Iϕ:

Assumption 3.7. There exists φ ∈ L2(T ,R) such that
∫ ε

0
|φ(s)|ds > 0 for some ε > 0 and ϕ(·, t) =

φ(t− ·) for any t ∈ T .

Theorem 3.8. Let ϕ satisfy Assumption 3.7, which makes Iϕ injective on L2. The RKHS of the

measure induced by the process
∫ ·
0
ϕ(u, ·)dWu on C is given by H ϕ = {Iϕf : f ∈ L2}, with inner product

〈Iϕf1, Iϕf2〉H ϕ := 〈f1, f2〉L2 .

Proof of Theorem 3.8. See Section 4. �

Corollary 3.9. The RKHS of the Gaussian measure induced (on C) by (Zt)t∈T in (2.1) is H Kα .

We need to extend Theorem 3.8 (and Corollary 3.9) to find the RKHS of the Gaussian measure on

the space C2 induced by the two-dimensional process ((Zt, Bt))t∈T , where Z and B are defined in (2.1)

and (2.3) respectively.
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Theorem 3.10. Let ϕ1, ϕ2 satisfy Assumption 3.7, which makes Iϕ1
ϕ2

injective on L2. Introduce the

R
2-valued process (Y 1, Y 2) as Y i :=

∫ ·
0
ϕi(s, ·)dW i

s for i = 1, 2, where W 1 and W 2 are two standard

Brownian motions with correlation ρ ∈ [−1, 1]\{0}. Then the RKHS of the measure induced by (Y 1, Y 2)

on C2 is H ϕ1
ϕ2

=
{
Iϕ1
ϕ2

f : f ∈ L2
}
, with inner product

〈
Iϕ1
ϕ2

f1, Iϕ1
ϕ2

f2
〉

H
ϕ1
ϕ2

:= 〈f1, f2〉L2 .

Proof of Theorem 3.10. See Section 4. �

Corollary 3.11. The RKHS of the measure induced (on C2) by the process ((Zt, Bt))t∈T is H Kα
ρ .

3.2. Large deviations for Gaussian measures. We now concentrate on large deviations for Gaussian

measures. As before, E denotes a real, separable Banach space with norm ‖ · ‖E , and we introduce a

centred Gaussian measure µ on (E ,B(E )) such that, for any y ∈ E ∗,
∫

E

ei〈y,x〉E∗E µ(dx) = exp

(
−Cµ(y, y)

2

)
,

where Cµ : E ∗ × E ∗ → [0,+∞) is a bilinear, symmetric map. We define Λ∗
µ : E → R as Λ∗

µ(x) :=

sup
{
〈y, x〉E ∗E − 1

2Cµ(y, y) : y ∈ E ∗} on E . The following lemma is proved in [14, Lemma 3.4.2].

Lemma 3.12. The following three statements hold for the measure µ:

(1) There exists α > 0 such that

∫

E

exp
(
α‖x‖2E

)
µ(dx) is finite;

(2) For all y ∈ E ∗, Cµ(y, y) =

∫

E

〈y, x〉2E ∗Eµ(dx) ≤ ‖y‖2E ∗

∫

E

‖x‖2Eµ(dx) ∈ (0,+∞);

(3) Λ∗
µ defines a rate function on E and satisfies Λ∗

µ(ay) = a2Λ∗
µ(y) for all a ∈ R.

The reader may recognise statement (1) in Lemma 3.12 above as Fernique’s theorem [16]. For an

E -valued Gaussian random variable X with distribution µ, define Xε := ε1/2X , with law µε. Then the

following holds [14, Theorem 3.4.5]:

Theorem 3.13. The sequence of probability measures (µε)ε≥0 satisfies a LDP on E with speed ε−1 and

rate function Λ∗
µ.

Remark 3.14. Theorem 3.13 implies in particular that the standard Brownian motion (Wt)t≥0 satisfies

a LDP on R with speed t−1, since Wt and
√
tW1 are equal in law.

Corollary 3.15. For any t ∈ T , let νt be the law of Zt defined in (2.1). Then the sequence (νt)t>0

satisfies a LDP on R with speed t−β and rate function Λ∗
µ(x) :=

x2

2η2 , for x ∈ R.

Proof. Here, E = R and 〈u, v〉E ∗E = uv. Since Zt and tβ/2Z1 are equal in law, and
∫
R
eiyxP(Z1 ∈ dx) =

exp(−y2η2/2), taking Cµ(x, y) ≡ xyη2, the proof follows from Theorem 3.13 and Remark 4.1. �

The following two results will be essential for establishing a LDP for the rough Bergomi model. The

first one, the contraction principle, states that continuous mappings preserve large deviations principles,

while the second one is a universal LDP result for general Gaussian measures on Banach spaces.

Proposition 3.16 (Theorem 4.2.1. in [15] (Contraction Principle)). Let E and Ẽ be two Hausdorff

topological spaces and let f : E → Ẽ be a continuous mapping. Let (νε)ε≥0, (ν̃ε)ε≥0 be two families of

probability measures on (E ,B(E )) and (Ẽ ,B(Ẽ )) respectively, such that ν̃ε = νε ◦ f−1 for each ε > 0. If

(νε)ε≥0 satisfies a LDP on E with rate function Λ, then (ν̃ε)ε≥0 satisfies a LDP on Ẽ with rate function

Λ̃(y) := inf {Λ(x) : y = f(x)} .

Theorem 3.17 (Theorem 3.4.12 in [14]). Let B be a d-dimensional Gaussian process, inducing a mea-

sure µ on (Cd,B(Cd)) with RKHS Hµ. Then (εµ)ε≥0 satisfies a LDP with speed ε−1 and rate function

Λ∗
µ(x) :=





1

2
‖x‖2Hµ

, if x ∈ Hµ,

+∞, otherwise.
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In order to deal with the stochastic differential equation (2.6), we have to consider the stochastic

integral
∫ ·
0

√
vεsdB

ε
s . Assuming that the sequence (

√
vεs , B

ε
s) converges weakly as ε tends to zero yields,

under some conditions, a weak convergence for the stochastic integral [31, 33]. However, in order to

state a large deviations principle, we need a stronger result, proved by Garcia [24]. Before stating it

(Theorem 3.19 below), though, we introduce the following class of sequences of stochastic processes:

Definition 3.18 (Definition 1.1 in [24]). Let U denote the space of simple, real-valued, adapted pro-

cesses Z such that supt≥0 |Zt| ≤ 1. A sequence of semi-martingales (Y ε)ε≥0 is said to be uniformly

exponentially tight (UET) if, for every c, t > 0, there exists Kc,t > 0 such that

lim sup
ε↓0

ε log

(
sup
Z∈U

P

(
sup
s≤t

∣∣∣∣
∫ s

0

Zu−dY
ε
u

∣∣∣∣ ≥ Kc,t

))
≤ −c.

Theorem 3.19 (Theorem 1.2 in [24]). Let (Xε)ε≥0 be a sequence of adapted, càdlàg stochastic processes,

and (Y ε)ε≥0 a sequence of uniformly exponentially tight semi-martingales. If the sequence ((Xε, Y ε))ε≥0

satisfies a LDP with rate function Λ, then the sequence of stochastic integrals (Xε · Y ε)ε≥0 satisfies a

LDP with rate function Λ̂(ϕ) := inf
{
Λ(zxy) : ϕ = x · y, y ∈ BV

}
.

4. Proof of the main results

Proof of Theorem 3.8. Let Assumption 3.7 hold for a given function ϕ ∈ L2. The operator Iϕ in (2.4) is

surjective on H ϕ. Let f1, f2 ∈ L2 be such that Iϕf1 = Iϕf2. Then
∫ t

0 ϕ(u, t)[f1(u)−f2(u)]du = 0 for any

t ∈ T . Titchmarsh’s convolution theorem [40, Theorem VII] then implies that f1 = f2 almost everywhere,

so that Iϕ is a bijection. The linearity of Iϕ implies that 〈Iϕf1, Iϕf2〉H ϕ := 〈f1, f2〉L2 defines an inner

product on H ϕ, and hence (H ϕ, 〈·, ·〉H ϕ) is a real inner product space. In order for H ϕ to satisfy

Definition 3.4, we first need to show that it is a separable Hilbert space. Let {fn}n∈N be a sequence

of functions in L2 such that {Iϕfn}n∈N converges to Iϕf in H ϕ. Therefore ‖Iϕfn − Iϕfm‖H ϕ =

‖fn − fm‖L2 tends to zero as n and m tend to infinity. Since L2 is a complete (Hilbert) space, there

exists a function f̃ ∈ L2 such that the sequence {fn}n∈N converges to f̃ . Assume for a contradiction that

f 6= f̃ , then, since Iϕ is a bijection, the triangle inequality yields

0 <
∥∥∥Iϕf − Iϕf̃

∥∥∥
H ϕ

≤ ‖Iϕf − Iϕfn‖H ϕ +
∥∥∥Iϕf̃ − Iϕfn

∥∥∥
H ϕ

,

which converges to zero as n tends to infinity. Therefore f = f̃ , Iϕf ∈ H ϕ and H ϕ is complete, hence

a real Hilbert space. Since L2 is separable with countable orthonormal basis {φn}n∈N, then {Iϕφn}n∈N

is an orthonormal basis for H ϕ, which is then separable.

We now find a dense embedding I : H ϕ → C as in Definition 3.4. Since H ϕ ⊂ C, take the embedding to

be the inclusion map I = ι. By [11, Lemma 2.1], the conditions on φ in Assumption 3.7 imply that H ϕ

is dense in C. Finally, for f∗ ∈ C∗, the measure µ induced by the process
∫ ·
0 ϕ(u, ·)dWs is a Gaussian

probability measure on (E ,B(E )), and f∗ is a centred, real Gaussian random variable on (E ,B(E ), µ)

by Definition 3.1 . In turn, Remark 3.6 implies that I∗, the dual of I, admits an isometric embedding Ī∗

such that ‖Ī∗f∗‖2(H ϕ)∗ = ‖f∗‖2L2(E ,µ) =
∫

E
(f∗)2dµ = V(f∗), hence H ϕ is the RKHS of µ. �

Proof of Theorem 3.10. We proceed in a similar manner to the proof of Theorem 3.8. Let ϕ1, ϕ2 satisfy

Assumption 3.7. Clearly the operator Iϕ1
ϕ2

in (2.4) is surjective on H ϕ1
ϕ2

⊂ C2. By Titchmarsh’s convolu-

tion Theorem [40, Theorem VII], if Iϕ1
ϕ2

f1 = Iϕ1
ϕ2

f2 on T , then f1 = f2 and Iϕ1
ϕ2

is a bijection. Furthermore

〈Iϕ1
ϕ2

f1, Iϕ1
ϕ2

f2〉H ϕ1
ϕ2

:= 〈f1, f2〉L2 is a well-defined inner product and, following the proof of Theorem 3.8,

(H ϕ1
ϕ2

, 〈·, ·〉H ϕ1
ϕ2

) is a real, separable Hilbert space. To find a dense embedding I : H ϕ1
ϕ2

→ C2, take I as

the inclusion map ι; then the conditions on φ1, φ2 in Assumption 3.7 imply that H ϕ1
ϕ2

is dense in C2 by [11,

Lemma 2.1]. Finally, f∗ ∈ (C2)∗ is a real, centred Gaussian random variable on (C2,B(C2), µ), where µ

denotes the measure induced by (Y 1, Y 2), and V(f∗) =
∫
C2(f

∗)2dµ2 = ‖f∗‖2L2(C2,µ2)
= ‖ι∗f∗‖2

(H
ϕ1
ϕ2

)∗
, so

that by Definition 3.4, H ϕ1
ϕ2

is the RKHS of the measure induced by (Y 1, Y 2) on C2. �
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Proof of Theorem 2.7. Let (Zε, Bε) be as in (2.5). From Theorem 3.17 and Corollary 3.11 the sequence

((Zε, Bε))ε≥0 satisfies a LDP with speed ε−β and rate function (with H Kα
ρ given in Corollary 3.11)

Λ∗(zxy) =





1

2

∥∥zxy
∥∥2

H
Kα
ρ

, if zxy ∈ H Kα
ρ ,

+∞, otherwise.

Pathwise, we may view the map t 7→ (Zε
t , B

ε
t )

⊤ as an element of C2, and write
(
vεt
Bε

t

)
= M

(
Zε

Bε

)
(t, ε).

We first verify that the operator M in (2.8) is continuous with respect to the C(T × R+,R+ × R)

norm ‖ · ‖∞. For any (f, g)⊤ ∈ C2, introduce a small perturbation (δf , δg) ∈ C2. Then
∥∥∥∥M

(
f + δf

g + δg

)
−M

(
f

g

)∥∥∥∥
∞

= sup
t∈T ,ε>0

{∣∣∣(m(f + δf ))(t, ε) − (mf)(t, ε)
∣∣∣+ |δg(t)|

}

≤ sup
t∈T ,ε>0

{
v1+β
0 exp

(
−η2

2
(εt)β

) ∣∣∣ef(t)
∣∣∣
∣∣∣eδ

f (t) − 1
∣∣∣
}
+ sup

t∈T
|δg(t)|

≤ C sup
t∈T

∣∣∣eδ
f (t) − 1

∣∣∣+ sup
t∈T

|δg(t)|,

for some strictly positive constant C. The right-hand side clearly tends to zero as (δf , δg) tends to zero

with respect to the sup norm on C2, and hence M is a continuous operator. The contraction principle

(Proposition 3.16) therefore implies that the sequence ((vε, Bε))ε≥0 satisfies a LDP on C(T ×R+,R+×R),

with speed ε−β and rate function Λ. Since M is clearly a bijection, the rate function Λ may then be

expressed as Λ(zx1
y1
) = Λ∗ (M−1(zx1

y1
)
)
, for any (x1, y1) ∈ C2.

In the second step we will apply Theorem 3.19 to prove that the sequence of stochastic integrals

(I(vε, Bε)(·))ε≥0 := (
∫ ·
0

√
vεsdB

ε
s)ε≥0 satisfies a LDP. Since Bε = εα+1/2B by (2.6), we can write the

stochastic integral I(vε, Bε)(·) = I(ε2αvε,
√
εB)(·), which holds almost surely, and therefore [24, Example

2.1] the sequence of (semi)-martingales (
√
εB)ε≥0 is UET in the sense of Definition 3.18. Since the

sequence (
√
ε2αvε)ε≥0 consists of càdlàg, (Ft)-adapted processes, Theorem 3.19 implies that the sequence

of stochastic integrals (I(vε, Bε)(·))ε≥0 satisfies a LDP with speed ε−β and rate function

ΛX(z) = inf{Λ(zxy), z = I(x, y) and y ∈ BV ∩ C}.

The final step is to prove the LDP for Xε =
∫ ·
0

√
vεsdB

ε
s − 1

2

∫ ·
0 v

ε
sds. To do this we show that the

sequences (Xε)ε≥0 and (I(vε, Bε))ε≥0 are exponentially equivalent. For any δ > 0 it follows that

P

(
sup

t∈[0,1]

|Xε
t − I(vε, Bε)(t)| > δ

)
≤ P

(∫ 1

0

vεsds > δ

)
≤ P

(∫ 1

0

exp(Zε
s )ds > bε

)
,

where bε := δ/v0ε
1+β . Using that

∫ 1

0 exp(Zε
s )ds ≤ exp(supt∈[0,1] Z

ε
t ) almost surely, it follows that

P

(∫ 1

0

exp(Zε
s )ds > bε

)
≤ P

(
sup

t∈[0,1]

Zε
t > log bε

)
= P

(
sup

t∈[0,1]

Zt >
log bε
εβ/2

)
.

The process (Zt)t∈[0,1] is almost surely bounded [1, Theorem 1.5.4], and so we may apply the Borell-TIS

inequality; a consequence of which [1, Theorem 2.1.1 and discussion below], implies that

P

(
sup

t∈[0,1]

Zt >
log bε
εβ/2

)
≤ exp



−1

2

(
log bε
εβ/2

− E

(
sup

t∈[0,1]

Zt

))2


 .

This then implies that

εβ logP

(∫ 1

0

exp(Zs)ds > bε

)
≤ εβ



− (log bε)

2

2εβ
+

log bε
εβ/2

E

(
sup

t∈[0,1]

Zt

)
− 1

2
E

(
sup

t∈[0,1]

Zt

)2


 .
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Note that εβ/2 log bε converges to zero as ε tends to zero, which in turn implies that

lim sup
ε↓0

εβ/2 log bεE

(
sup

t∈[0,1]

Zt

)
= 0.

Similarly, lim supε↓0 ε
β
E

(
supt∈[0,1] Zt

)2
= 0. Furthermore, it follows that

lim sup
ε↓0

εβ
(
− (log bε)

2

2εβ

)
= −∞,

and therefore

lim sup
ε↓0

εβ logP

(
sup

t∈[0,1]

|Xε
t − I(vε, Bε)(t)| > δ

)
= −∞,

which is precisely the definition of exponential equivalence [15, Definition 4.2.10]. Then, by [15, Theorem

4.2.13], the sequence (Xε)ε≥0 satisfies a LDP with speed ε−β and rate function ΛX . �

Proof of Theorem 3.13. Let X := (X1, . . . , Xn) be an n-dimensional random vector taking values on E n,

where each Xk has distribution µ, so that the average 1
n

∑n
k=1 X

k has distribution µ1/n. Lemma 3.12

implies that
∫

E
exp(α‖x‖2

E
)µ1/n(dx) is finite for some α > 0, and [14, Theorem 3.3.11] yields a LDP for

the sequence (µ1/n)n≥1, with rate function Λ∗
µ. Define now n(ε) :=

⌊
1
ε

⌋
∨ 1 and ℓ(ε) := εn(ε) for ε > 0,

noting that ℓ(ε) ∈ [1−ε, 1) for ε ∈ (0, 1/2) and in [ 12 , 1] for ε ∈ [1/2, 1]; for a Gaussian random variable X

with distribution µ1/n(ε), it follows that ℓ(ε)1/2X has distribution µε. For a closed subset B of E , we

define the dilated set B̃ :=
{
ℓ−1/2x : for all ℓ ∈

[
1
2 , 1
]
, x ∈ B

}
, so that

lim sup
ε↓0

ε logµε(B) = lim sup
ε↓0

ℓ(ε)

n(ε)
logµ1/n(ε)

(
ℓ(ε)−1/2B

)

≤ lim sup
ε↓0

1

n(ε)
logµ1/n(ε)(B̃) = lim sup

n↑∞

1

n
logµ1/n(B̃) ≤ − inf

x∈B̃
Λ∗
µ(x).

The large deviations upper bound then follows from the obvious equalities

inf
x∈B̃

Λ∗
µ(x) = inf

ℓ∈[ 12 ,1]
inf
x∈B

Λ∗
µ(ℓ

−1/2x) = inf
ℓ∈[ 12 ,1]

ℓ−1 inf
x∈B

Λ∗
µ(x) = inf

x∈B
Λ∗
µ(x).

Now for any x in any open set C ⊂ E , we can find an open neighbourhood Ox such that Ox ⊆ ℓ(ε)−1/2C

for all 0 < ε < ε0 with ε0 ∈
(
0, 12
]
. The large deviations lower bound then follows from the inequalities

lim inf
ε↓0

ε logµε(C) = lim inf
ε↓0

ℓ(ε)

n(ε)
logµ 1

n(ε)

(
ℓ(ε)−1/2C

)
≥ lim inf

n↑∞

1

n
logµ 1

n
(Ox) ≥ − inf

y∈Ox

Λ∗
µ(y) ≥ −Λ∗

µ(x).

�

Remark 4.1. The proof of Theorem 3.13 stills holds for the case where tβ/2X ∼ µt with speed t−β , and

the proof can be easily adapted to confirm this case.

5. Large deviations for the uncorrelated Rough Bergomi model

We treat here the special case of (2.3), where the Brownian motions W and B are independent (ρ = 0).

Following similar arguments to Corollary 3.11, and mimicking (2.4), we introduce the L2 operator I0 as

I0(f1, f2) :=

(
IKαf1
I1f2

)
, for any f1, f2 ∈ L2,

so that the RKHS (on C2) of the measure induced by (Z,B) is H :=
{
I0(f1, f2) : f1, f2 ∈ L2

}
, with

inner product
〈
I0(f1, f2), I0(g1, g2)

〉
H

:= 〈f1, g1〉L2 + 〈f2, g2〉L2 , for any f1, f2, g1, g2 ∈ L2. Similarly to

Theorem 2.7, [14, Theorem 3.4.12] yields a LDP on C2 for ((Zε, Bε))ε≥0 with speed ε−β and rate function

Λ(zxy) :=

{ 1

2

∥∥zxy
∥∥2

H
, if(x, y)⊤ ∈ H ,

+∞, otherwise.
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This in turn yields a LDP for ((vε, Bε))ε≥0 in (2.5) on C2 with speed ε−β and rate function Λ̃(zxy) :=

inf
{
Λ(zx

∗

y∗) : zxy = Mzx
∗

y∗

}
, where the operator M is defined in (2.8). In the same vein as Theorem 2.7,

Theorem 3.19 yields a LDP for (
∫ ·
0

√
vεsdB

ε
s)ε≥0 on C with speed ε−β and rate function Λ̂X , defined as

Λ̂X(ϕ) := inf
{
Λ̃(zxy) : ϕ = x · y, y ∈ BV ∩ C

}
= inf

{
Λ(zx

∗

y∗) : ϕ = x · y, zxy = Mzx
∗

y∗ , x∗, y∗ ∈ H

}

= inf
{
Λ(zxy) : ϕ = x · y, zxy = M(I0(f1, f2)), f1, f2 ∈ L2

}

= inf
f1,f2∈L2

{
1

2
‖f1‖2L2 +

1

2
‖f2‖2L2 : ϕ =

∫ ·

0

√
m ((IKαf1)(s))f2(s)ds

}
.

with m introduced in (2.9). Following an argument identical to the one presented in the proof of Theorem

2.7, we conclude that (Xε)ε>0 satisfies a LDP with speed ε−β and rate function Λ̂X .
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