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Abstract

Different Markov chains can be used for approximate sampling of a distribution

given by an unnormalized density function with respect to the Lebesgue

measure. The hit-and-run, (hybrid) slice sampler and random walk Metropolis

algorithm are popular tools to simulate such Markov chains. We develop a

general approach to compare the efficiency of these sampling procedures by the

use of a partial ordering of their Markov operators, the covariance ordering. In

particular, we show that the hit-and-run and the simple slice sampler are more

efficient than a hybrid slice sampler based on hit-and-run which, itself, is more

efficient than a (lazy) random walk Metropolis algorithm.
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1. Introduction

In many scenarios of Bayesian statistics, statistical physics and other branches of

applied sciences, see [33, 17, 4], it is of interest to sample on Rd with respect to a

distribution π. In particular, we assume that π is given by an unnormalized density.

More precisely, let K ⊆ Rd be an open, measurable set and ρ : K → (0,∞) be a

positive, bounded and with respect to the Lebesgue measure an almost everywhere

continuous function with
∫
K
ρ(x) dx ∈ (0,∞). Then, define the probability measure π
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through ρ by

π(A) =

∫
A ρ(x) dx∫
K
ρ(x) dx

for all measurable A ⊆ K.

Maybe the most successful approach to approximate π is the construction of a

suitable Markov chain. The hit-and-run algorithm, the random walk Metropolis, the

simple slice sampler and hybrid slice sampler provide such construction methods. A

crucial question is: Which one of these algorithm should be used?

This question is of course related to the speed of convergence of the Markov chain

sampling and any answer depends very much on the imposed assumptions. In general

it is difficult to derive explicit estimates of this speed of convergence. But, it might be

possible to prove that one algorithm is better than another. This motivates the idea

of the comparison of Markov chains.

The first comparison result of Markov chains is due to Peskun [29]. There, a partial

ordering on finite state spaces is invented, where one transition kernel has higher order

than another one if the former dominates the latter off the diagonal. This order

was later extended by Tierney [39] to general state spaces. However, for the Markov

chains we have in mind it seems not possible to use this off-diagonal ordering. We

consider a partial ordering on the set of linear operators, see [12, p. 470]. In the

context of Markov chains this ordering is called covariance ordering, see [20, 21]. Let

L2(π) be the Hilbert space of functions with finite stationary variance and assume that

P1, P2 : L2(π) → L2(π) are two self-adjoint linear operators. Then we say, P1 ≤ P2 if

and only if

〈P1f, f〉π ≥ 〈P2f, f〉π, f ∈ L2(π).

Here the inner-product of L2(π) is given by

〈f1, f2〉π =

∫

K

f1(x)f2(x) dπ(x), f1, f2 ∈ L2(π).

The operator P1 is called positive if P1 ≥ 0, that is, 〈P1f, f〉π ≥ 0 for any f ∈
L2(π). Reversible transition kernels of given Markov chains induce self-adjoint Markov

operators and we can compare these operators.

Let P1, P2 be two of such Markov operators and assume that 0 ≤ P1 ≤ P2. There

are a number of consequences for the corresponding Markov chains: For example, the
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spectral gap of P2 is smaller than that of P1. The spectral gap of a Markov chain

is a quantity which is closely related to the speed of convergence to π, see [3, 36].

Another example is concerning the stationary asymptotic variance of sample averages.

For i = 1, 2 let S
(i)
n (f) = 1

n

∑n
k=1 f(X

(i)
k ) with Markov chain (X

(i)
k )k∈Nature starting in

stationarity corresponding to Pi and an arbitrary function f ∈ L2(π). These sample

averages give approximations of the mean Ef =
∫
K
f dπ and, in [39, 20] it is observed

that, if P1 ≤ P2, then

V(f, P2) ≤ V(f, P1).

Here V(f, Pi) := limn→∞ n · E|S(i)
n (f)− Ef |2 is the stationary asymptotic variance of

S
(i)
n (f). In other words, the Markov chain of P2 is (asymptotically) more efficient than

that of P1. For more details to implications of P1 ≤ P2 we refer to Section 2.1.1.

The goal of this article is to compare the hit-and-run algorithm, the (lazy) random

walk Metropolis, the simple slice sampler and a hybrid slice sampler based on hit-and-

run according to this partial ordering. To do so we develop a systematic approach

for the comparison of Markov chains which can be written by a suitable two step

procedure.

The intuition behind our approach is the following. It is a simple and well-known

observation that, if the self-adjoint and positive Markov operators P1 and P2 satisfy

P1P2 = P2, then P1 ≤ P2. However, due to the quite restrictive assumptions,

this technique can only be used in very few cases. A useful generalization of this

technique, which was invented in a special case in [41], can be used whenever we have

the representation Pi = RP̃iR
∗ for certain operators R and P̃i, i = 1, 2. In this

case, and if P̃1P̃2 = P̃2, one can also conclude that P1 ≤ P2, see Lemma 1. Our

comparison inequalities therefore follow once we have established such representations

for the Markov chains under consideration.

The algorithms

Let us briefly explain the algorithms. Roughly, a transition of the hit-and-run

algorithm works as follows. Choose randomly a line through the current state and

sample according to π restricted to this line. Thus, instead of sampling with respect

to π on K ⊆ R
d hit-and-run only uses sampling with respect to π on 1-dimensional
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lines through the state space, which is feasible in many cases .

In contrast, the simple slice sampler chooses a suitable d-dimensional set, a super-

level set of ρ, depending on the current state and then, samples the next state of the

Markov chain uniformly distributed on this super-level set. Sampling of the uniform

distribution on a d-dimensional set is often not efficiently implementable. This is why

this Markov chain is mostly of theoretical interest.

The hybrid slice sampler we are interested in overcomes this problem by replacing

the uniform sampling by one step of a hit-and-run algorithm on the super-level set:

First, choose a line through the current state uniformly at random and then generate

the next state uniformly distributed on the intersection of that line with the super-level

set. We call this procedure hybrid slice sampler based on hit-and-run. Intuitively, it

is clear that the simple slice sampler is better than that hybrid one. The intuition

for the comparison of the hit-and-run algorithm and the hybrid slice sampler based on

hit-and-run is not so obvious. Observe that this particular hybrid sampler can also be

interpreted as choosing first a line and, then, performing a simple slice sampling step

according the distribution of π restricted to that line. This observation leads us to the

fact that the hit-and-run algorithm is better.

Finally, let us consider the random walk Metropolis. Assume that we have a proposal

density q on R
d and let x ∈ K be the current state. A transition works as follows:

Generate z ∈ Rd according the distribution determined by q and accept x + z as the

next state with probability min{1, ρ(x + z)/ρ(x)} if x + z ∈ K. Otherwise stay at

x. It is well known, see [10, 35], that the random walk Metropolis can be interpreted

as a certain (hybrid) slice sampling procedure, which runs a random walk according

to q on the super-level set with uniform limit distribution. We want to compare the

random walk Metropolis and the hybrid slice sampler based on a hit-and-run. Thus,

the question is whether the uniform hit-and-run step is better than the random walk

step on the super-level set. It turns out that this is indeed the case.

For example, if ρ is a log-concave density, then the restriction of π to a line has also a log-concave

density and one can use different acceptance/rejection methods to sample such a distribution on the

line efficiently. For details we refer to [7, Sect. 2.4.2] see also [19, 37].
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Main results

Now let us formulate the main results. To compare the above Markov chains we

develop in Section 3 a general approach which might be of interest on its own. There, in

Lemma 1 conditions for two suitably defined Markov operators P1, P2 are stated which

imply that P1 ≤ P2. This lemma is the main ingredient for the comparison argument.

Its application leads us to Theorem 5. For the Markov operators M,U,H, S of the

(lazy) random walk Metropolis with rotational invariant proposal q, the hybrid slice

sampler based on hit-and-run, the hit-and-run algorithm and the simple slice sampler,

respectively, we have

M ≤ U ≤ H,

M ≤ U ≤ S.

Thus, the random walk Metropolis is less efficient than the hit-and-run algorithm and

simple slice sampler. The hybrid slice sampler based on hit-and-run we propose lies

concerning efficiency in between.

Outline

The paper is organized as follows. In the next section we introduce the notation we

use, comment on the partial ordering, present consequences for the Markov chains and

state the algorithms we study in detail. In Section 3 we invent a new approach how to

compare Markov chains with a specific structure. Section 4 contains the application

of the former developed comparison arguments. Finally, in Section 5, we give some

concluding remarks and discuss open problems.

2. Preliminaries

Let L2(π) be the Hilbert space of functions f : K → R with finite norm ‖f‖π =

〈f, f〉1/2π , where the inner-product of f1, f2 ∈ L2(π) is denoted by

〈f1, f2〉π =

∫

K

f1(x)f2(x) dπ(x).

Let P be a transition kernel on K which is reversible with respect to π and let

(Xn)n∈Nature be a Markov chain with transition kernel P , i.e.

P (x,A) = P(Xk+1 ∈ A | Xk = x)
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almost surely for all k ∈ Nature and A ⊆ K. The corresponding Markov operator, also

denoted by P , is given by

Pf(x) =

∫

K

f(y)P (x, dy) (1)

for f ∈ L2(π). Obviously, P (x,A) = P1A(x) for all A ⊆ K, where 1A denotes the

indicator function of A. Note that, by the reversibility, P : L2(π) → L2(π) is self-

adjoint. We say that a (Markov) operator P on L2(π) is positive if 〈Pf, f〉π ≥ 0 for

all f ∈ L2(π).

2.1. On the ordering and consequences

With this notation we define on the set of Markov operators the following partial

ordering. For Markov operators P1 and P2 we write

P1 ≤ P2

if and only if 〈P1f, f〉π ≥ 〈P2f, f〉π for all f ∈ L2(π). In the following let us motivate

why the consideration of this ordering is particularly meaningful for Markov chains.

2.1.1. Consequences for the speed of convergence There are many ways to measure

the speed of convergence of the distribution of a Markov chain towards its stationary

distribution. Probably the most desirable quantity is the total variation distance of

νPn and π, i.e.

‖νPn − π‖tv = sup
A⊆K

|νPn(A)− π(A)|,

where νPn(A) =
∫
K Pn(x,A) dν(x) is the distribution of the Markov chain with

transition kernel P and initial distribution ν after n steps. However, estimating the

total variation distance is quite delicate and, in practice, it is usually much easier to

derive bounds on it by more analytic quantities, like isoperimetric constants or certain

norms of P , see e.g. [15, 18] and [23]. Many of these quantities are defined by

cM(P ) = inf
f∈M

〈(I − P )f, f〉π

for certain sets of functions M ⊂ L2(π), where If := f . Hence, the proof of P1 ≤ P2

is enough to obtain cM(P1) ≤ cM(P2) for every choice of M. Prominent examples are

the
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• spectral gap: M = {f : ‖f‖π = 1,
∫
K
f dπ = 0}

• conductance: M = {f : f = 1A√
π(A)

, π(A) ∈ (0, 1/2], A ⊂ K}

• log-Sobolev constant: M = {f :
∫
K f2 log(f2/‖f‖2π) dπ = 1}.

There are some more quantities of this form, like the best constant in a Nash inequality,

average and blocking conductance. For details see e.g. [6] and [26].

In what follows, we will prove P1 ≤ P2 for a couple of Markov operators and, hence,

that P2 is “faster” than P1 in all the above senses.

2.1.2. Consequences for sample averages The property P1 ≤ P2 has also consequences

for the worst case mean square error and the asymptotic stationary variance of Markov

chain Monte Carlo methods.

Let (X
(i)
k )k∈Nature be a Markov chain with transition kernel Pi, i = 1, 2, and initial

distribution π, and define the Markov chain Monte Carlo method

S(i)
n (f) =

1

n

n∑

k=1

f(X
(i)
k ), i = 1, 2,

which gives an approximation to Ef :=
∫
K f dπ for f ∈ L2(π). By virtue of spectral

theoretic arguments one can show that

sup
‖f‖

π
≤1

Econometrica
∣∣∣S(2)

n (f)− Ef
∣∣∣
2

≤ sup
‖f‖

π
≤1

Econometrica
∣∣∣S(1)

n (f)− Ef
∣∣∣
2

.

Another interesting consequence is stated in [21, Theorem 6]. There it is proven

that P1 ≤ P2 if and only if

V(f, P2) ≤ V(f, P1),

for each individual f ∈ L2(π), where V(f, Pi) := limn→∞ n · E|S(i)
n (f) − Ef |2 is the

asymptotic stationary variance (which can also be considered as asymptotic mean

square error).

2.2. The algorithms

We present the different algorithms we consider in detail and provide relevant

literature.

One argues with Corollary 3.27 and Lemma 2.12 from [36], as well as the fact that the spectral

gap of P1 is smaller than that of P2.
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2.2.1. Hit-and-run algorithm The hit-and-run algorithm proposed by Smith [38] is well

studied in different settings, see [5, 8, 13, 15, 18, 14, 37].

Informally it samples at each step on a randomly chosen 1-dimensional line with

respect to the corresponding conditional distribution. Let Sd−1 be the Euclidean unit

sphere in Rd. For x ∈ K and θ ∈ Sd−1 we define

L(x, θ) = {x+ sθ ∈ K | s ∈ R}

as the chord through x in direction θ. A transition from x to y of the hit-and-run

algorithm works as follows: Generate a set L(x, θ) by choosing θ with the uniform

distribution on the sphere and, then, choose y ∈ L(x, θ) according to the distribution

determined by ρ conditioned on the chord L(x, θ). A transition of hit-and-run is given

by Algorithm 1.

Algorithm 1. (Hit-and-run)

Transition from current state x to next state y:

1. Sample θ ∼ Uniform(Sd−1).

2. Sample y ∼ Hθ(x, ·), where

Hθ(x,A) =

∫
L(x,θ) 1A(z)ρ(z) dz∫

L(x,θ)
ρ(z) dz

.

Note that the integral in Hθ is over a 1-dimensional subset of Rd and the integration

is with respect to the 1-dimensional Lebesgue measure. For x ∈ K and A ⊆ K the

transition kernel, say H , of the hit-and-run algorithm is determined by

H(x,A) =

∫

Sd−1

Hθ(x,A) dσ(θ),

where σ = Uniform(Sd−1) denotes the uniform distribution on the sphere. It is well

known that this transition kernel is reversible with respect to π, see for example [5].

An important special case of the hit-and-run algorithm above is given if the density

is an indicator function, for example ρ = 1K . In this case, the hit-and-run algorithm is

reversible with respect to the uniform distribution on K. Thus, under weak regularity

assumptions, the uniform distribution is the (unique) stationary distribution, see [5].

We call this special case uniform hit-and-run. Let us mention that we use the uniform

hit-and-run in the next section.
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2.2.2. Simple and hybrid slice sampling Slice sampling belongs to the class of auxiliary

variable algorithms that are defined by a Markov chain on an extended state space,

see [10, 31, 22, 25, 33, 27] and the references therein.

We consider the simple slice sampler and a hybrid slice sampler based on hit-and-

run. A single transition of the simple slice sampler is presented in Algorithm 2.

Algorithm 2. (Simple slice sampler)

Transition from current state x to next state y.

1. Sample t ∼ Uniform(0, ρ(x)).

2. Sample y ∼ Uniform(K(t)), where

K(t) = {x ∈ K | ρ(x) > t}

is the super-level set of ρ determined by t.

The transition kernel, say S, corresponding to Algorithm 2 is

S(x,A) =
1

ρ(x)

∫ ρ(x)

0

vold(A ∩K(t))

vold(K(t))
dt,

where vold denotes the d-dimensional Lebesgue measure. The simple slice sampler

exhibits quite robust convergence properties, see [31, 25]. However, a crucial drawback

is that the second step is difficult to implement. Because of this we consider the

following hybrid slice sampler based on hit-and-run. The idea is to replace the second

step of the simple slice sampler by a Markov chain transition according to the uniform

hit-and-run algorithm in K(t), see Algorithm 3.

Algorithm 3. (Hybrid slice sampler based on hit-and-run)

Transition from current state x to next state y.

1. Sample t ∼ Uniform(0, ρ(x)) and θ ∼ Uniform(Sd−1) independently.

2. Sample y ∼ Uniform (Lt(x, θ)), where

Lt(x, θ) = {x+ rθ ∈ K(t) | r ∈ R}

is the chord through x in direction θ restricted to K(t).
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The transition kernel, say U , of this hybrid slice sampler is given by

U(x,A) =
1

ρ(x)

∫ ρ(x)

0

∫

Sd−1

|Lt(x, θ) ∩ A|
|Lt(x, θ)|

dσ(θ) dt

where |·| here denotes the 1-dimensional Lebesgue measure. This modification is

tempting since the uniform hit-and-run algorithm is, at least in some scenarios, im-

plementable. For example, when the super-level sets are convex (ρ is quasi-conave)

by a bisection method one can roughly approximate the intersection points of the line

x+ rθ with K(t) and use a 1-dimensional acceptance/rejection approach to sample the

uniform distribution on Lt(x, θ). Further, the simple slice sampler and the hybrid slice

sampler are reversible with respect to π, see for example in [16].

2.2.3. Random walk Metropolis The random walk Metropolis in Rd provides an easy to

implement method for Markov chain sampling. Further, it is well studied and different

convergence results are known, see for example [34, 24, 11].

To guarantee that a certain operator is positive we consider a lazy version of a

random walk Metropolis. Further, we assume in the following that q : Rd → [0,∞) is

a rotational invariant probability density on Rd, i.e. q(rθ1) = q(rθ2) for θ1, θ2 ∈ Sd−1.

The rotational invariance guarantees that q is symmetric. Let us provide two examples

which satisfy the rotational invariance.

Example 2.1. Let x ∈ Rd, δ > 0 and Bd be the Euclidean unit ball with κd :=

vold(Bd). Then we can set q(x) := 1Bd
(δ−1x)/(δdκd) and the corresponding random

walk Metropolis is known as δ-ball walk.

Example 2.2. Again, let x ∈ Rd and set q(x) := exp(− |x|2 /2)/(2π)d/2. The corre-

sponding random walk Metropolis is known as Gaussian random walk.

In Example 2.1 the proposal q depends on a parameter δ. In connection to this we want

to mention that in recent years optimal scaling results concerning a parameter of the

proposal of the random walk Metropolis attracted a lot of attention, see [30, 32, 28].

Now a single transition of the (lazy) random walk Metropolis with proposal q is

described in Algorithm 4.

Algorithm 4. (Random walk Metropolis)

Transition from current state x to next state y with proposal q.
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1. Sample z ∼ q and u1, u2 ∼ Uniform (0, 1) independently.

2. If x+ z ∈ K, u1 ≤ 1/2 and u2 < min{1, ρ(x+ z)/ρ(x)} then accept the proposal,

and set y := x+ z, else reject the proposal and set y := x.

To simplify the notation we define the acceptance probability of a proposed state

y = x+ z as

α(x, y) = min
{
1,

ρ(y)

ρ(x)

}

for x, y ∈ K and α(x, y) = 0 otherwise. Then, the transition kernel is given by

M(x,A) =
1

2

∫

K

1A(y) α(x, y) q(y − x) dy,

for A ⊆ K with x /∈ A and M(x, {x}) = 1−M(x,K \ {x}).

3. Auxiliary variable Markov chains

We develop a systematic approach how to compare Markov chains which can be

described by a suitable two-step procedure. That many Markov chains are of this form

was already observed in [2] and the idea of a comparison of this type was developed in

[40, 41] in a specific setting.

For this let A be an arbitrary (index) set equipped with a σ-finite measure λ. By

assumption we have a function s : K ×A → [0,∞) which satisfies:

• for all x ∈ K we have that s(x, ·) is a probability density function according to

λ;

• for all a ∈ A we have that s(·, a) is integrable according to π.

Define for almost all a ∈ A (concerning λ) a probability measure πa on K induced by

s(x, a), i.e.

πa(A) =

∫
A s(x, a) dπ(x)∫
K
s(x, a) dπ(x)

, A ⊆ K.

In addition, we assume that

• for every a ∈ A we have an equivalence relation ∼a and by [x]a = {y ∈ K : x ∼a

y} we denote the equivalence class of K with respect to ∼a to which x belongs;

• for (λ-almost) every a ∈ A we have a transition kernel Pa on (K,B(K)), such

that Pa(x,A) = 0 for each x ∈ K and A ⊆ K \ [x]a.
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With this we can define a Markov chain in K for which a single transition, starting

from x ∈ K, can be written as the following procedure:

1) Sample a ∈ A according to the distribution with density s(x, ·).

2) Generate the next state with respect to Pa(x, ·).

That is, the transition kernel P is given by

P (x,A) =

∫

A

Pa

(
x,A

)
s(x, a) dλ(a) (2)

for A ⊆ K.

Remark 1. Since the support of the measure Pa(x, ·) is contained in [x]a and [x]a =

[y]a if y ∈ [x]a, we can interpret a Markov chain with transition kernel Pa on K and

initial state x as a Markov chain on [x]a.

Clearly, for every Markov chain a transition can be written in this form. (Simply,

set Pa(x, ·) := P (x, ·) and take [x]a ≡ K for arbitrary A and λ.) However, there might

also be more interesting equivalence relations and scenarios as we illustrate for the

hit-and-run transition kernel.

Example 3.1. Here let A := Sd−1 and λ := σ. Then, for every a ∈ A let x ∼a y

if and only if x ∈ L(y, a), such that [x]a := L(x, a). Further, for (x, a) ∈ K × A set

s(x, a) := 1, which implies πa = π for all a ∈ A. For (λ-almost every) a ∈ A we have

that

Ha(x,A) =

∫
[x]a

ρ(y)1A(y) dy∫
[x]a

ρ(y) dy
, A ⊆ K,

is a transition kernel on K and we can write the Markov operator H : L2(π) → L2(π)

of the hit-and-run algorithm in the form (2) as

Hf(x) =

∫

A

∫

K

f(y)Ha(x, dy) dλ(a).

In some cases it is even possible to represent the transitions of two different Markov

chains in the form (2) with the same equivalence relations ∼a and s(x, a), so that the

corresponding “inner” transition kernels are much easier to analyze. We show that

a suitable relation of these “inner” kernels is enough to compare the original Markov

chains.
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Lemma 1. Assume that for (λ-almost) all a ∈ A there are transition kernels P
(1)
a , P

(2)
a

on K such that

1. P
(1)
a and P

(2)
a are self-adjoint operators on L2(πa);

2. P
(1)
a is positive on L2(πa);

3. P
(1)
a P

(2)
a = P

(2)
a .

Then, for the operators P1, P2 : L2(π) → L2(π) defined by

Pif(x) =

∫

A

P (i)
a f(x) s(x, a) dλ(a), i ∈ {1, 2}

holds P1 ≤ P2.

Proof. First, we show that Pi can be written as a product of suitable operators. For

this let µ be a probability measure on K ×A that is given by

µ(B) :=

∫

K

∫

A

1B(x, a) s(x, a) dλ(a) dπ(x) (3)

for B ⊆ K × A, and let L2(µ) be the Hilbert space of functions g : K × A → R with

finite norm ‖g‖µ = 〈g, g〉1/2µ , where the inner-product of g, h ∈ L2(µ) is defined by

〈g, h〉µ =

∫

K×A

g(x, a)h(x, a) dµ(x, a)

=

∫

K

∫

A

g(x, a)h(x, a) s(x, a) dλ(a) dπ(x).

Further, let R : L2(µ) → L2(π) be the operator that is given by

Rg(x) =

∫

A

g(x, a) s(x, a) dλ(a), g ∈ L2(µ). (4)

Since

〈f,Rg〉π =

∫

K

∫

A

f(x) g(x, a) s(x, a) dλ(a) dπ(x),

we obtain that the adjoint operator R∗ : L2(π) → L2(µ) satisfies

R∗f(x, a) = f(x), f ∈ L2(π), (5)

for a ∈ A and x ∈ K. It is useful to write ga(x) = g(x, a) for g ∈ L2(µ) and fixed

a ∈ A. Clearly, ga ∈ L2(πa) for almost every a ∈ A (with respect to λ), such that

P
(i)
a ga is well-defined. Let

P̃i g(x, a) =

∫

K

g(y, a)P (i)
a (x, dy), g ∈ L2(µ), (6)
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and note that the operator satisfies P̃i : L2(µ) → L2(µ). An immediate consequence of

the definitions is

Pi = RP̃iR
∗, i ∈ {1, 2}. (7)

We prove different properties of P̃1 and P̃2. For i ∈ {1, 2} we show that P̃i is self-

adjoint on L2(µ). Note that by the assumptions we know that P
(i)
a is self-adjoint on

L2(πa). With

Ca =

∫

K

s(x, a) dπ(x)

we have for g, h ∈ L2(µ) that

〈P̃ig, h〉µ =

∫

K

∫

A

∫

K

g(y, a)P (i)
a (x, dy)h(x, a) s(x, a) dλ(a) dπ(x)

=

∫

A

Ca

∫

K

∫

K

g(y, a)P (i)
a (x, dy)h(x, a) dπa(x) dλ(a)

=

∫

A

Ca〈P (i)
a ga, ha〉πa

dλ(a) =

∫

A

Ca〈ga, P (i)
a ha〉πa

dλ(a)

= 〈g, P̃ih〉µ.

By the same line of arguments, for g ∈ L2(µ) we have

〈P̃1g, g〉µ =

∫

A

Ca〈P (1)
a ga, ga〉πa

dλ(a) ≥ 0,

such that P̃1 preserves the positivity of P
(1)
a , i.e. P̃1 is positive on L2(µ).

Further, for g ∈ L2(µ) we obtain

P̃1P̃2 g(x, a) = P (1)
a P (2)

a ga(x) = P (2)
a ga(x) = P̃2 g(x, a).

By the self-adjointness of P̃1 and P̃2 we also have P̃2P̃1 = P̃2.

Now we gathered all tools together to prove the assertion. By the positivity, we

know that P̃1 has a unique positive square root N , i.e. N2 = P̃1. It is well known that

N commutes with every operator that commutes with P̃1 , see e.g. [12, Theorem 9.4-2],

in particular NP̃2 = P̃2N . We obtain

〈P2f, f〉π = 〈RP̃2R
∗f, f〉π = 〈P̃2R

∗f,R∗f〉µ

= 〈P̃1P̃2R
∗f,R∗f〉µ = 〈P̃2NR∗f,NR∗f〉µ

≤ 〈NR∗f,NR∗f〉µ = 〈P̃1R
∗f,R∗f〉µ = 〈P1f, f〉π,

where the inequality comes from ‖P̃2‖ ≤ 1, which is true since P̃2 is a Markov operator.

�
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Thus, for each of the intended comparisons, say between P1 and P2, we have to

• find representations

Pif(x) =

∫

A

P (i)
a f(x)s(x, a) dλ(a), i ∈ {1, 2};

• check the assumptions 1.-3. of Lemma 1, i.e. reversibility of P
(i)
a with respect to

πa, positivity of P
(1)
a and P

(1)
a P

(2)
a = P

(2)
a .

Remark 2. Let us comment on the necessity and possible generalizations of the

assumptions in Lemma 1. The second assumption, i.e., the positivity of P
(1)
a , is most

likely an artifact of the proof technique and we conjecture that the result holds without

this assumption. However, in the proof it is essential and we were not able to remove

it. The same problem already appeared in [40, 41]. The third assumption of the lemma

says, roughly speaking, that a step of the Markov chain with corresponding operator

P
(1)
a “cannot be seen” if followed by P

(2)
a . As the last steps of the proof show, this could

be replaced, e.g., by the weaker assumption that P̃1 ≤ P̃2, i.e., 〈P̃2g, g〉µ ≤ 〈P̃1g, g〉µ
for all g ∈ L2(µ). However, at least in the examples we consider, the relatively easy-

to-check assumption 3. is already fulfilled.

4. Main result

In this section we apply Lemma 1 to prove the following theorem.

Theorem 5. Let M,U,H, S be the Markov operators of the (lazy) random walk Metropo-

lis with rotational invariant proposal q, the hybrid slice sampler based on hit-and-run,

the hit-and-run algorithm and the simple slice sampler. Then

M ≤ U ≤ H,

M ≤ U ≤ S.

Before proving the different inequalities in the statement we start with recalling some

notion and state a useful lemma. Recall that Sd−1 denotes the Euclidean unit sphere

in Rd and σ is the uniform distribution on Sd−1. For θ ∈ Sd−1, x ∈ Rd and t ∈ [0,∞)

let

K(t) = {x ∈ K | ρ(x) > t}



16 Daniel Rudolf and Mario Ullrich

be the super-level set of ρ determined by t and

Lt(x, θ) = {x+ θr ∈ K(t) | r ∈ R}

be the chord in K(t) through x in direction θ. Moreover, define L(x, θ) := L0(x, θ)

and, for a set A ⊆ K = K(0), let

Πθ(A) = {y ∈ R
d | y⊥θ, L(y, θ) ∩ A 6= ∅}

be the orthogonal projection of A to the hyperplane that is orthogonal to θ. We obtain

the following useful results by an application of the Theorem of Fubini and the integral

transformation to polar coordinates.

Lemma 2. Let t ≥ 0 and θ ∈ Sd−1. For Lebesgue integrable f : K(t) → R we have

∫

K(t)

f(x) dx =

∫

Πθ(K(t))

∫

Lt(x,θ)

f(y) dy dx, (8)

and for fixed x ∈ Rd holds

∫

K(t)

f(y) dy =
dκd

2

∫

Sd−1

∫

Lt(x,θ)

f(y) |x− y|d−1
dy dσ(θ) (9)

where κd = vold(Bd) denotes the volume of the d-dimensional Euclidean unit ball.

Note that in both identities the inner integral on the ride-hand-side is over a 1-

dimensional subset of Rd and the integration is with respect to the 1-dimensional

Lebesgue measure.

The different inequalities in Theorem 5 will be proven in the following sections.

There we use the notation of Section 3.

4.1. Hit-and-run vs. hybrid slice sampler:

For the hit-and-run we use the scenario described in Example 3.1. Hence, let A :=

Sd−1 and λ := σ. Further, for (x, a) ∈ K ×A set s(x, a) := 1 such as [x]a := L0(x, a).

This implies πa = π for all a ∈ A. By

Ha(x,A) =

∫
[x]a

ρ(y)1A(y) dy∫
[x]a

ρ(y) dy
, A ⊆ K,

we can write the Markov operator H : L2(π) → L2(π) of the hit-and-run algorithm as

Hf(x) =

∫

A

∫

K

f(y)Ha(x, dy) dλ(a).
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Let

Ua(x,A) =
1

ρ(x)

∫ ρ(x)

0

∫

Lt(x,a)

1A(y)

|Lt(x, a)|
dy dt

and observe that Lt(x, a) = [x]a ∩K(t). With this we can write the Markov operator

U : L2(π) → L2(π) of the hybrid slice sampler based on hit-and-run as

Uf(x) =

∫

A

∫

K

f(y)Ua(x, dy) dλ(a).

Thus we have a common representation. Now we check the assumptions (1).-(3). of

Lemma 1:

1. To the reversibility of Ha and Ua with respect to πa:

We only show reversibility of Ua, since reversibility of Ha follows by the same

line of arguments. For A,B ⊆ K it is enough to prove
∫

A

Ua(x,B)ρ(x) dx =

∫

B

Ua(x,A)ρ(x) dx. (10)

By the application of (8) with t = 0, the equality 1[0,ρ(y))(t) = 1K(t)(y) and the

fact that y ∈ [x]a implies Lt(y, a) = Lt(x, a) we obtain
∫

A

Ua(x,B)ρ(x) dx =

∫

Πa(K)

∫

[x]a

1A(y)Ua(y,B)ρ(y) dy dx

=

∫

Πa(K)

∫

[x]a

1A(y)

∫ ρ(y)

0

∫

Lt(y,a)

1B(z)

|Lt(y, a)|
dz dt dy dx

=

∫

Πa(K)

∫ ∞

0

1

|Lt(x, a)|
|Lt(x, a) ∩ A| |Lt(x, a) ∩B| dt dx.

Observe that in the right-hand-side A and B are interchangeable which proves

(10).

2. To the positivity of Ua:

By similar arguments as in the proof of (10) we obtain with c =
∫
K ρ(x) dx that

〈Uaf, f〉π =
1

c

∫

Πa(K)

∫ ∞

0

1

|Lt(x, a)|

(∫

Lt(x,a)

f(y) dy

)2

dt dx ≥ 0.

3. To UaHa = Ha:

From the definition of the Markov kernels Ha it is obvious that y ∈ [x]a implies

Ha(y,A) = Ha(x,A) for all A ⊆ K. This implies

UaHa(x,A) =
1

ρ(x)

∫ ρ(x)

0

∫

Lt(x,a)

Ha(y,A)
dy

|Lt(x, a)|
dt = Ha(x,A)

and hence UaHa = Ha.
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Thus, as a direct consequence of Lemma 1 we obtain U ≤ H .

4.2. Simple vs. hybrid slice sampler:

Here, we derive another representation of the hybrid slice sampler adapted to simple

slice sampling.

For this let A := [0,∞) and λ be the 1-dimensional Lebesgue measure. Further, for

(x, a) ∈ K ×A set s(x, a) := 1[0,ρ(x))(a)/ρ(x) such as [x]a := K(a). Observe that

πa(A) =
vold(A ∩K(a))

vold(K(a))
.

For any x ∈ K let

Sa(x,A) = πa(A), A ⊆ K.

Clearly, the Markov operator S : L2(π) → L2(π) of the simple slice sampler can be

written as

Sf(x) =

∫

A

∫

K

f(y)Sa(x, dy) s(x, a) dλ(a).

Note that, with these notations, we have La(x, θ) = [x]a ∩ L(x, θ) and let

Ua(x,A) =

∫

Sd−1

∫

La(x,θ)

1A(y)

|La(x, θ)|
dy dσ(θ).

With this we can write the Markov operator U : L2(π) → L2(π) of the hybrid slice

sampler based on hit-and-run as

Uf(x) =

∫

A

∫

K

f(y)Ua(x, dy)s(x, a) dλ(a).

Again, we have a common representation and it remains to check the assumptions 1.-3.

of Lemma 1:

1. To the reversibility of Sa and Ua with respect to πa:

Since Sa(x,A) = πa(A) reversibility of Sa is obvious. Observe that πa is the

uniform distribution on [x]a = K(a) and Ua(x, ·) performs a uniform hit-and-run

step on K(a) which is known to be reversible, see for example [36, Lemma 4.10].

2. To the positivity of Ua:

With c = vold(K(a)), by the application of (8) and by the fact that for y ∈
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La(x, θ) follows La(x, θ) = La(y, θ) holds

〈Uaf, f〉πa
=

1

c

∫

K(a)

∫

Sd−1

∫

La(x,θ)

f(z)f(x)

|La(x, θ)|
dz dσ(θ) dx

=
1

c

∫

Sd−1

∫

Πθ(K(a))

∫

La(x,θ)

∫

La(y,θ)

f(y)f(z)

|La(y, θ)|
dz dy dxdσ(θ)

=
1

c

∫

Sd−1

∫

Πθ(K(a))

1

|La(x, θ)|

(∫

La(x,θ)

f(y) dy

)2

dxdσ(θ) ≥ 0.

3. To UaSa = Sa:

This follows immediately from Sa = πa and the reversibility of Ua with respect

to πa.

Thus, as a direct consequence of Lemma 1 we obtain U ≤ S.

4.3. Hybrid slice sampler vs. Metropolis:

Again we need a suitable representation for the hybrid slice sampler based on hit-

and-run.

Here, let A := Sd−1 × [0,∞) and λ be the product measure of σ and the 1-

dimensional Lebesgue measure. Further, for x ∈ K and (a1, a2) ∈ A, set s(x, a1, a2) =

1[0,ρ(x)](a2)/ρ(x) such as [x](a1,a2) := La2(x, a1). Observe that

π(a1,a2)(A) =
vold(A ∩K(a2))

vold(K(a2))
, A ⊆ K,

is the uniform distribution in K(a2). By

U(a1,a2)(x,A) =

∫

[x](a1,a2)

1A(y)
dy∣∣[x](a1,a2)

∣∣

we have a representation of the Markov operator U : L2(π) → L2(π) of the hybrid slice

sampler by

Uf(x) =

∫

A

∫

K

f(y)Ua(x, dy)s(x, a) dλ(a)

with a ∈ A. Now we have to represent the random walk Metropolis in the same fashion.

For this let us define

η(x, y) =
dκd

2
q(y − x) |y − x|d−1

, x, y ∈ R
d

and for A ⊆ K let

Ma(x,A) =
1

2

∫

[x]a

1A(y) η(x, y) dy + 1A(x)

(
1− 1

2

∫

[x]a

η(x, y) dy

)
.
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Here it is essential that q is rotational invariant, namely this property assures that
∫
[x]a

η(x, y) dy ≤ 1. Note that Ma is again a lazy transition kernel, since Ma(x, {x}) ≥
1/2. For x 6∈ A by (9) we have

M(x,A) =
1

2

∫

K

1A(y)α(x, y) q(y − x) dy

=
1

2ρ(x)

∫ ρ(x)

0

∫

K

1[0,ρ(y)](t)1A(y) q(y − x) dy dt

=
1

2ρ(x)

∫ ρ(x)

0

∫

K(t)

1A(y) q(y − x) dy dt

=
dκd

4ρ(x)

∫

Sd−1

∫ ρ(x)

0

∫

Lt(x,θ)

1A(y)q(x − y) |x− y|d−1
dy dt dσ(θ)

=

∫

A

Ma(x,A)s(x, a) dλ(a).

Thus, the transition kernel of the random walk Metropolis has the desired representa-

tion. It remains to check the conditions 1.-3. of Lemma 1:

1. To the reversibility of Ma and Ua with respect to πa:

This follows again by a suitable application of (8). Let a = (a1, a2). Due to

its simple form, reversibility of Ua is obvious. It is enough to show for disjoint

A,B ⊆ K that
∫

A∩K(a2)

Ma(x,B) dx =

∫

B∩K(a2)

Ma(x,A) dx.

Since La2(x, a1) = La2(y, a1) if y ∈ La2(x, a1) we have

1

2

∫

A∩K(a2)

∫

[x]a

1B(y)η(x, y) dy dx

=
1

2

∫

K(a2)

∫

La2(x,a1)

1A(x)1B(y)η(x, y) dy dx

=
1

2

∫

Πa1 (K(a2))

∫

La2(x,a1)

∫

La2(y,a1)

1A(y)1B(z)η(y, z) dz dy dx

=
1

2

∫

Πa1 (K(a2))

∫

La2(x,a1)

∫

La2(x,a1)

1A(y)1B(z)η(y, z) dz dy dx.

By the symmetry of q, i.e. q(y − z) = q(z − y) follows η(y, z) = η(z, y). This

leads to the reversibility.

2. To the positivity of Ma:

By the fact that Ma is a lazy transition kernel we have positivity.
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3. To MaUa = Ua:

By the fact that y ∈ [x]a implies [x]a = [y]a and hence Ua(x,A) = Ua(y,A) for

all A ⊆ K we obtain

MaUa(x,A)

=
1

2

∫

[x]a

Ua(y,A) η(x, y) dy + Ua(x,A)

(
1− 1

2

∫

[x]a

η(x, y) dy

)

= Ua(x,A).

Thus, as a direct consequence of Lemma 1 we obtain M ≤ U .

5. Concluding remarks

In this article we have presented a technique to compare the efficiency of Markov

chains of a specific type. Using this technique we provide two comparison hierarchies

according to a partial ordering of Markov operators of four prominent Markov chains

for sampling general distributions in R
d. The comparison with respect to the partial

ordering leads to comparison results according to different criterions, for example the

spectral gap, the conductance or the log-Sobolev constant, cf. Section 2.1.1.

Let us mention here that the computational cost for the simulation of each individual

Markov chain is not taken into account. There seems to be a trade-off between efficiency

and computional cost which should be further investigated. We leave this open for

future work.

Finally, there are three open problems related to the considered Markov chains.

First, what is about the relation of the hit-and-run and the simple slice sampler?

It is easy to see that there cannot be a general result as in the other cases. For this

consider two examples:

1. If π is the uniform distribution on K, then one step of the simple slice sampler

is enough to sample π, while for the hit-and-run algorithm it is not (as long as

d > 1). Hence, in this situation, hit-and-run is worse.

2. Let d = 1. Then, the hit-and-run algorithm samples π in one step, regardless of

π. Hence, in this situation hit-and-run is better.
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It seems to be interesting to find cases where hit-and-run is better. This is because,

we guess that in general the computational cost of the simple slice sampler is (if it is

at all implementable) much higher.

The second open problem concerns reverse inequalities. That is, if a Markov chain

is better than another, how much better is it? This seems to be a delicate question

and we can answer it only for toy examples. The techniques that were used in [41] in

a discrete setting do not seem to work here.

The last problem we want to mention: Is there a similar hierarchy for the mixing

time? That is, the number of steps that are needed to make the total variation distance

“small”, cf. Section 2.1.1. Certainly, the answer to this question additionally depends

on the choice of the initial distribution. But the (quite analytical) techniques of this

paper, see also [29, 16, 41, 1], do not seem to be suitable for this purpose. One

interesting approach in this direction for Markov chains on discrete state spaces is

given in [9].
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