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Abstract

De Finetti’s optimal dividend problem has recently been extended to the case dividend payments
can only be made at Poisson arrival times. This paper considers the version with bail-outs where
the surplus must be nonnegative uniformly in time. For a general spectrally negative Lévy model,
we show the optimality of a Parisian-classical reflection strategy that pays the excess above a given
barrier at each Poisson arrival times and also reflects from below at zero in the classical sense.
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1 Introduction

In the bail-out model of de Finetti’s dividend problem, a joint optimal dividend and capital injection
strategy is pursued so as to maximize the total expected dividend payments minus the costs of capital
injections. In the past decade, the classical Cramér-Lundberg model has been generalized to a spectrally
negative Lévy model. In particular, Avram et al. [4] showed the optimality of a double barrier strategy
that reflects from below at zero and also from above at a certain barrier.

In this paper, we consider its extension with a periodic dividend constraint. Periodic observation
models have recently been studied widely in the insurance literature (as in, e.g., Albrecher et al. [1, 2]).
For the case without capital injections in which dividends are paid until the time of ruin, a periodic
barrier strategy that pays any excess above a certain barrier at each payment opportunity is expected to
be optimal. Its optimality has been confirmed for the spectrally positive Lévy (dual) models by Avanzi
et al. [3] and Pérez and Yamazaki [15], and for the spectrally negative Lévy models with a completely
monotone Lévy density by Noba et al. [14]. On the other hand, regarding the bail-out case, the optimality
results are only available for the dual model given in the second problem considered in [15], to the best
of our knowledge.

The objective of this paper is to show the optimality of a periodic-classical barrier strategy under a
general spectrally negative Lévy model. This can be seen as the bail-out extension of [14] and also as
the spectrally negative version of the bail-out model in [15].

We follow the guess and verify procedure to tackle the problem. Under a periodic-classical barrier
strategy, the expected NPVs of dividends and capital injections can be written in terms of the scale
function by the results given in [16]. The candidate optimal barrier is first chosen using the conjecture
that the slope of the value function at the barrier becomes one. The optimality of the selected strategy
is then confirmed by showing that the candidate value function solves the proper variational inequalities.
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This is indeed satisfied by the convexity of the candidate value function, that is shown by our observation
that its slope becomes proportional to a certain ruin identity, which is monotone in the starting value of
the process.

Regarding the comparison with the dual model [15], there are both similarities and differences. In
this paper, we focus on the differences and omit similar results, such as the verification lemma, that can
be attained similarly to [15]. In the dual model, only minimal modifications are necessary to solve the
bail-out case from the case with ruin. As shown in [15], the value functions for both cases admit exactly
the same expressions except that the optimal barriers are different. On the other hand, this is not expected
in the spectrally negative Lévy model. The expressions of the optimal solutions are different, and we use
different approaches to show the variational inequalities. It is noted that in this paper we do not assume
the completely monotone density assumption which was needed in [14].

The rest of the paper is organized as follows. The considered problem is formulated and a review of
the spectrally negative Lévy process is given in Section 2. In Section 3, we define the periodic-classical
barrier strategies and construct the corresponding surplus process. We also provide a review of the scale
function and obtain the expected NPVs corresponding to these strategies. In Section 4 we obtain the
optimal barrier for the periodic-classical strategy, and in Section 5 we prove that the expected NPVs
associated with this strategy solves the proper variational inequalities. Finally, in Section 6, we provide
some numerical results.

2 Preliminaries

2.1 Spectrally negative Lévy processes

LetX = (X(t); t ≥ 0) be defined on a probability space (Ω,F ,P), modeling the surplus of an insurance
company in the absence of control. For x ∈ R, we denote by Px the law ofX when it starts at x and write
for convenience P in place of P0. Accordingly, we shall write Ex and E for the associated expectation
operators.

In this paper, we assume that X is a spectrally negative Lévy process that is not the negative of a
subordinator, and its Laplace exponent ψ(θ) : [0,∞)→ R is such that

E
[
eθX(t)

]
=: eψ(θ)t, t, θ ≥ 0,

given by the Lévy-Khintchine formula

ψ(θ) := γθ +
η2

2
θ2 +

∫
(−∞,0)

(
eθz − 1− θz1{z>−1}

)
Π(dz), θ ≥ 0. (2.1)

Here, γ ∈ R, η ≥ 0, and Π is a Lévy measure on (−∞, 0) such that∫
(−∞,0)

(1 ∧ z2)Π(dz) <∞.

The process X has paths of bounded variation if and only if η = 0 and
∫

(−1,0) |z|Π(dz) is finite. In
this case X can be written as

X(t) = ct− S(t), t ≥ 0,
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where

c := γ −
∫

(−1,0)
zΠ(dz)

and (S(t); t ≥ 0) is a driftless subordinator. By the assumption that it does not have monotone paths, we
must have c > 0 and we can write

ψ(θ) = cθ +

∫
(−∞,0)

(
eθz − 1

)
Π(dz), θ ≥ 0.

2.2 The optimal Poissonian dividend problem with classical capital injection

A (dividend/capital injection) strategy is a pair of processes π := (Lπ(t), Rπ(t); t ≥ 0) consisting of the
cumulative amount of dividends Lπ and those of capital injection Rπ.

Regarding the dividend strategy, we assume that the dividend payments can only be made at the
arrival times Tr := (T (i); i ≥ 1) of a Poisson process N r = (N r(t); t ≥ 0) with intensity r > 0, which
is independent of the Lévy process X . In other words, T (i) − T (i − 1), i ≥ 1 (with T (0) := 0) are
independent and exponentially distributed with mean 1/r. More precisely, Lπ admits the form

Lπ(t) =

∫
[0,t]

νπ(s)dN r(s), t ≥ 0, (2.2)

for some càglàd process νπ adapted to the filtration F := (F(t); t ≥ 0) generated by the processes
(X,N r).

Regarding the capital injection, we assume that Rπ is a nondecreasing, right-continuous, and F-
adapted process with Rπ(0−) = 0. Contrary to the dividend payments, capital injection can be made
continuously.

The corresponding risk process is given by Uπ(0−) = X(0) and

Uπ(t) := X(t)− Lπ(t) +Rπ(t), t ≥ 0,

and (Lπ, Rπ) must be chosen so that Uπ(t) ≥ 0 for all t ≥ 0 a.s.
Assuming that β > 1 is the cost per unit injected capital and q > 0 is the discount factor, the objective

is to maximize

vπ(x) := Ex

(∫
[0,∞)

e−qtdLπ(t)− β
∫

[0,∞)
e−qtdRπ(t)

)
, x ≥ 0, (2.3)

over the set of all admissible strategies A that satisfy all the constraints described above and

Ex

(∫
[0,∞)

e−qtdRπ(t)

)
<∞. (2.4)

Hence the problem is to compute the value function

v(x) := sup
π∈A

vπ(x), x ≥ 0, (2.5)

and obtain an optimal strategy π∗ that attains it, if such a strategy exists. Throughout the paper, for the
solution to be nontrivial, we assume

E[X(1)] = ψ′(0+) > −∞. (2.6)
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3 Periodic-classical barrier strategies

As in the spectrally positive case [15], the objective of this paper is to show the optimality of the periodic-
classical barrier strategy

π0,b := {(L0,b
r (t), R0,b

r (t)); t ≥ 0}.

The controlled process U0,b
r becomes the Lévy process with Parisian reflection above and classical re-

flection below considered in [15], which can be constructed as follows.
Let R(t) := (− inf0≤s≤tX(s)) ∨ 0 for t ≥ 0, then we have

U0,b
r (t) = X(t) +R(t), 0 ≤ t < T̂+

b (1)

where T̂+
b (1) := inf{T (i) : X(T (i)) + R(T (i)) > b}. The process then jumps down by X(T̂+

b (1)) +

R(T̂+
b (1)) − b so that U0,b

r (T̂+
b (1)) = b. For T̂+

b (1) ≤ t < T̂+
b (2) := inf{T (i) > T̂+

b (1) :

U0,b
r (T (i)−) > b},U0,b

r (t) is the process reflected at 0 of the process (X(t)−X(T̂+
b (1))+b; t ≥ T̂+

b (1)).
The process U0,b

r can be constructed by repeating this procedure. It is clear that it admits a decomposition

U0,b
r (t) = X(t)− L0,b

r (t) +R0,b
r (t), t ≥ 0,

where L0,b
r (t) and R0,b

r (t) are, respectively, the cumulative amounts of Parisian and classical reflection
until time t.

We will see that the strategy π0,b := {(L0,b
r (t), R0,b

r (t)); t ≥ 0}, for b ≥ 0, is admissible for the
problem described in Section 2.2 (because (2.4) holds by Lemma 3.1 and our assumption (2.6)). Its
expected NPV of dividends minus the costs of capital injection is denoted by

vb(x) := Ex

(∫
[0,∞)

e−qtdL0,b
r (t)− β

∫
[0,∞)

e−qtdR0,b
r (t)

)
, x ≥ 0. (3.1)

3.1 Scale functions

For fixed q ≥ 0, let W (q) : R → [0,∞) be the scale function of the spectrally negative Lévy process
X . This takes the value zero on the negative half-line, and on the positive half-line it is a continuous and
strictly increasing function defined by its Laplace transform:∫ ∞

0
e−θxW (q)(x)dx =

1

ψ(θ)− q
, θ > Φ(q), (3.2)

where ψ is as defined in (2.1) and

Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}. (3.3)

We also define, for all x ∈ R,

W
(q)

(x) :=

∫ x

0
W (q)(y)dy, W

(q)
(x) :=

∫ x

0

∫ z

0
W (q)(w)dwdz,

Z(q)(x) := 1 + qW
(q)

(x), Z
(q)

(x) :=

∫ x

0
Z(q)(z)dz = x+ qW

(q)
(x).

Because W (q)(x) = 0 for −∞ < x < 0, we have

W
(q)

(x) = 0, W
(q)

(x) = 0, Z(q)(x) = 1, and Z
(q)

(x) = x, x ≤ 0.
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Remark 3.1. (1) W (q) is differentiable a.e. In particular, if X is of unbounded variation or the Lévy
measure does not have an atom, it is known that W (q) is C1(R\{0}); see, e.g., [6, Theorem 3].

(2) As in Lemma 3.1 of [9],

W (q)(0) =

{
0 if X is of unbounded variation,
c−1 if X is of bounded variation.

We also use W (q+r) and Φ(q + r), which are defined by (3.2) and (3.3) with q replaced by q + r. By
the convexity of ψ on (0,∞), we have Φ(q + r) > Φ(q) for r > 0, and, from the identity (5) in [12],

W (q+r)(x)−W (q)(x) = r

∫ x

0
W (q+r)(u)W (q)(x− u)du, x ∈ R.

We also define, for q, r > 0 and x ∈ R,

Z(q)(x,Φ(q + r)) := eΦ(q+r)x

(
1− r

∫ x

0
e−Φ(q+r)zW (q)(z)dz

)
= r

∫ ∞
0

e−Φ(q+r)zW (q)(z + x)dz > 0.

Here, the second equality holds because (3.2) gives
∫∞

0 e−Φ(q+r)xW (q)(x)dx = r−1. By differentiating
this with respect to the first argument,

Z(q)′(x,Φ(q + r)) :=
∂

∂x
Z(q)(x,Φ(q + r)) = Φ(q + r)Z(q)(x,Φ(q + r))− rW (q)(x), x > 0.

Finally, for b ≥ 0 and x ∈ R, we define

W
(q,r)
−b (x) := W (q)(x+ b) + r

∫ x

0
W (q+r)(y)W (q)(x− y + b)dy,

Z
(q,r)
−b (x) := Z(q)(x+ b) + r

∫ x

0
W (q+r)(y)Z(q)(x− y + b)dy,

Z
(q,r)
−b (x) := Z

(q)
(x+ b) + r

∫ x

0
W (q+r)(y)Z

(q)
(x− y + b)dy.

(3.4)

Remark 3.2. Using the identities given in (5) of [12], we have

W
(q,r)
0 (x) = W (q+r)(x) and Z

(q,r)
0 (x) = Z(q+r)(x), x ∈ R.

Remark 3.3. Fix b ≥ 0. Let Xr be the Parisian reflected process of X from above at the level 0 (without
classical reflection) as studied in [16], and

τ−−b(r) := inf{t > 0 : Xr(t) < −b}.

Then, by Corollary 3.3 in [16], for any x ∈ R,

Ex−b
[
e−τ

−
−b(r)

]
= Z

(q,r)
−b (x− b)− rZ(q)(b)W

(q+r)
(x− b)

− q Z
(q)(b,Φ(q + r))

Z(q)′(b,Φ(q + r))

(
W

(q,r)
−b (x− b)− rW (q)(b)W

(q+r)
(x− b)

)
, (3.5)
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where in particular

E0

[
e−τ

−
−b(r)

]
= Z(q)(b)− q Z

(q)(b,Φ(q + r))

Z(q)′(b,Φ(q + r))
W (q)(b). (3.6)

These identities are used later in Remark 4 and the proof of Lemma 5.2.

For a comprehensive study on the scale function and its applications, see [9, 10].

3.2 Expression of vb via the scale function

Using the functions given in (3.4), the expression (3.1) can be computed immediately by Corollaries
4.4 and 4.5 in [16] via the scale function. Recall our assumption (2.4) that ψ′(0+) is finite. Below, we
extend the domain of vb to R by setting vb(x) = βx + vb(0) for x < 0, so as to include the case when
the process is started at a negative value and is pushed up to zero immediately.

Lemma 3.1. For b ≥ 0 and x ∈ R,

vb(x) = −Cb
(
Z

(q,r)
−b (x− b)− rZ(q)(b)W

(q+r)
(x− b)

)
− rW

(q+r)
(x− b)

+ β
(
Z

(q,r)
−b (x− b) +

ψ′(0+)

q
− rZ(q)

(b)W
(q+r)

(x− b)
)
, (3.7)

where

Cb :=
r(βZ(q)(b)− 1)

qΦ(q + r)Z(q)(b,Φ(q + r))
+

β

Φ(q + r)
. (3.8)

In particular, for x ≤ b, we obtain that

vb(x) = −CbZ(q)(x) + β
(
Z

(q)
(x) +

ψ′(0+)

q

)
. (3.9)

Proof. By Corollaries 4.4 and 4.5 in [16], for all b ≥ 0 and x ∈ R, we have

Ex

(∫
[0,∞)

e−qtdL0,b
r (t)

)
= r

Z(q,r)
−b (x− b)− rZ(q)(b)W

(q+r)
(x− b)

qΦ(q + r)Z(q)(b,Φ(q + r))
−W

(q+r)
(x− b)

 ,

Ex

(∫
[0,∞)

e−qtdR0,b
r (t)

)
=

(
rZ(q)(b)

qΦ(q + r)Z(q)(b,Φ(q + r))
+

1

Φ(q + r)

)
×
(
Z

(q,r)
−b (x− b)− rZ(q)(b)W

(q+r)
(x− b)

)
−
(
Z

(q,r)
−b (x− b) +

ψ′(0+)

q
− rZ(q)

(b)W
(q+r)

(x− b)
)
.

Combining these, we have the claim.

3.3 Smoothness of vb

Here we analyze the smoothness of the function vb. The proof of the following lemma is straightforward
and is hence omitted.
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Lemma 3.2. For all b ≥ 0,

v′b(x) = −qCbW
(q,r)
−b (x− b)− rW (q+r)

(x− b) + βZ
(q,r)
−b (x− b), x ∈ R\{0}, (3.10)

v′′b (x+) = −qCb
(
W (q)′(x+) + rW (q+r)(x− b)W (q)(b) + r

∫ x−b

0
W (q+r)(y)W (q)′(x− y)dy

)
− rW (q+r)(x− b) + β

(
qW

(q,r)
−b (x− b) + rW (q+r)(x− b)Z(q)(b)

)
, x ∈ R\{0, b}. (3.11)

By the smoothness of the scale function on R\{0} as in Remark 3.1(1), the derivative (3.10) is con-
tinuous on R\{0}. In particular, in the case X is of unbounded variation, by Remark 3.1 (1) and (2), the
second derivative, given by (3.11), is continuous on R\{0}. Hence, we have the following results.

Lemma 3.3. For all b ≥ 0, we have the following:

(i) When X is of bounded variation, vb is continuously differentiable on R\{0}.

(ii) When X is of unbounded variation, vb is twice continuously differentiable on R\{0}.

Remark 3.4 (Continuity/smoothness at zero). For b ≥ 0, we have the following.

(i) By Lemma 3.1, we have that vb is continuous at zero.

(ii) For the case X is of unbounded variation, vb is continuously differentiable at zero because, by
Lemma 3.2 and Remark 3.1(2), v′b(0+) = −qCbW (q)(0) + β = β = v′b(0−).

4 Selection of a candidate optimal barrier b∗

In this section, we focus on the periodic barrier strategy defined in the previous section and choose the
candidate barrier b∗, which satisfies v′b∗(b

∗) = 1 if such b∗ > 0 exists, and set it to be zero otherwise.
Recall, as in Lemma 3.3, that vb is continuously differentiable except at zero. If b > 0, using (3.8)

and (3.10), we have

v′b(b) = −qCbW (q)(b) + βZ(q)(b) = g(b) + 1, (4.1)

where we define, for b ≥ 0,

g(b) :=

(
1− rW (q)(b)

Φ(q + r)Z(q)(b,Φ(q + r))

)(
βZ(q)(b)− 1

)
− βq

Φ(q + r)
W (q)(b)

=
Z(q)′(b,Φ(q + r))

Φ(q + r)Z(q)(b,Φ(q + r))

(
βZ(q)(b)− 1

)
− βq

Φ(q + r)
W (q)(b).

(4.2)

In other words, for b > 0, v′b(b) = 1 if and only if g(b) = 0.

Remark 4.1 (Probabilistic representation of g). By (3.6) and (4.2),

g(b) =
q

Φ(q + r)

βE0

[
e−qτ

−
−b(r)

]
− 1

Z(q)(b)− E0

[
e−qτ

−
−b(r)

]W (q)(b). (4.3)

7



(i) Because Z(q)(b)−E0

[
e−qτ

−
−b(r)

]
> 0 for b > 0 and b 7→ βE0

[
e−qτ

−
−b(r)

]
−1 is strictly decreasing,

there exists at most one root of g(b) = 0.

(ii) Using, in (4.3), the fact that limb↑∞ E0

[
e−qτ

−
−b(r)

]
= 0, and W (q)(x)/Z(q)(x)

x↑∞−−−→ Φ(q)/q as in
Exercise 8.5 (i) in [10], we have that limb↑∞ g(b) = −Φ(q)/Φ(q + r) < 0. Therefore g(b) must
be negative for sufficiently large b.

In order to handle also the case where such b does not exist, we define

b∗ := inf{b ≥ 0 : g(b) ≤ 0} , (4.4)

which is well-defined because, by Remark (ii), the set{b ≥ 0 : g(b) ≤ 0} 6= ∅.
Below, we provide a necessary and sufficient condition for the optimal barrier b∗ to be zero.

Lemma 4.1. We have b∗ = 0 if and only if X is of bounded variation and

β − 1− r(β − 1) + qβ

cΦ(q + r)
≤ 0. (4.5)

Proof. By the definition of b∗ as in (4.4), we have that b∗ = 0 if and only if g(0) ≤ 0 where, by (4.2),

g(0) = β − 1− (r(β − 1) + qβ)
W (q)(0)

Φ(q + r)
.

For the case of unbounded variation (where W (q)(0) = 0 by Remark 3.1(2)), we have g(0) = β− 1 > 0

and hence b∗ > 0. On the other hand, for the case of bounded variation, by Remark 3.1(2), b∗ = 0 if and
only if (4.5) holds.

Remark 4.2 (slope at b∗). (i) If b∗ > 0 (i.e. g(b∗) = 0), the equation (4.1) implies v′b∗(b
∗) = 1. (ii) If

b∗ = 0 (i.e. g(0) ≤ 0), (4.1) gives v′b∗(0+) ≤ 1.

Remark 4.3. Suppose b∗ > 0 (i.e. g(b∗) = 0). Then by (4.1), we have

Cb∗ =
βZ(q)(b∗)− 1

qW (q)(b∗)
.

5 Verification of optimality

In this section, we will show the optimality of the strategy π0,b∗ for the value of b∗ selected in the previous
section.

Theorem 5.1. The strategy π0,b∗ is optimal and the value function of the problem (2.5) is given by
v = vb∗ .

In order to show Theorem 5.1, it suffices to show variational inequalities. We omit the proof of the
following proposition because it is essentially the same as the spectrally positive case given in Lemma

8



5.3 of [15]. Here we slightly relax the assumption on the smoothness at zero, which can be done by
applying the Meyer-Itô formula as in Theorem 4.71 of [17].

Let L be the infinitesimal generator associated with the process X applied to a measurable function
f on R that is C1(0,∞) (resp. C2(0,∞)) for the case in which X is of bounded (resp. unbounded)
variation with

Lf(x) := γf ′(x) +
1

2
σ2f ′′(x) +

∫
(−∞,0)

[
f(x+ z)− f(x)− f ′(x)z1{−1<z<0}

]
Π(dz).

Below, as in Avram et al. [4], we extend the domain of vπ of (3.1) to R by setting vπ(x) = βx + vπ(0)

for x < 0.

Proposition 5.1. Suppose π̂ ∈ A such that vπ̂ isC1(0,∞) (resp.C2(0,∞)) for the caseX is unbounded
(resp. unbounded) variation, continuous on R and, for the case of unbounded variation, continuously
differentiable at zero. In addition, suppose that

(L − q)vπ̂(x) + r max
0≤l≤x

{l + vπ̂(x− l)− vπ̂(x)} ≤ 0, x > 0,

v′π̂(x) ≤ β, x > 0,

inf
x≥0

vπ̂(x) > −m, for some m > 0.

(5.1)

Then vπ̂(x) = v(x) for all x ≥ 0 and hence π̂ is an optimal strategy.

We shall provide some preliminary results in order to show the variational inequalities.

Lemma 5.1. For b ≥ 0, we have

(L − q)vb(x) =

0 if x ∈ (0, b),

−r{(x− b) + vb(b)− vb(x)} if x ∈ [b,∞).
(5.2)

Proof. (i) Suppose 0 < x < b. By the proof of Theorem 2.1 in [5], we have

(L − q)Z(q)(y) = (L − q)
(
Z

(q)
(y) +

ψ′(0+)

q

)
= 0, y > 0. (5.3)

Applying these in (3.9), we obtain (5.2).
(ii) Suppose x > b. By the proof of Lemma 5.2 in [14], we have

(L − q)W (q+r)
(x− b) = 1 + rW

(q+r)
(x− b),

(L − q)W
(q+r)

(x− b) = (x− b) + rW
(q+r)

(x− b). (5.4)

On the other hand by the proof of Lemma 4.5 in [8], we have

(L − (q + r))

(∫ x−b

0
W (q+r)(y)Z(q)(x− y)dy

)
= (L − (q + r))

(∫ x−b

0
W (q+r)(x− b− y)Z(q)(b+ y)dy

)
= Z(q)(x),
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and hence

(L − q)
(∫ x−b

0
W (q+r)(y)Z(q)(x− y)dy

)
= Z

(q,r)
−b (x− b). (5.5)

Combining (5.3) and (5.5), we obtain

(L − q)Z(q,r)
−b (x− b) = rZ

(q,r)
−b (x− b). (5.6)

In a similar way, we see that

(L − q)
(∫ x−b

0
W (q+r)(y)Z

(q)
(x− y)dy

)
= Z

(q,r)
−b (x− b), (5.7)

and, using identities (5.3) and (5.7), we obtain

(L − q)
(
Z

(q,r)
−b (x− b) +

ψ′(0+)

q

)
= rZ

(q,r)
−b (x− b). (5.8)

Therefore, applying (5.4), (5.6) and (5.8) in (3.7),

(L − q)vb(x) = −Cb
(
rZ

(q,r)
−b (x− b)− rZ(q)(b)

(
1 + rW

(q+r)
(x− b)

))
− r

(
(x− b) + rW

(q+r)
(x− b)

)
− rβZ(q)

(b)
(

1 + rW
(q+r)

(x− b)
)

+ rβZ
(q,r)
−b (x− b)

= −r((x− b) + vb(b)− vb(x)) ,

where in the last equality we used the fact that vb(b) = −CbZ(q)(b) + β
(
Z

(q)
(b) +

ψ′(0+)

q

)
.

Lemma 5.2. We have 1 ≤ v′b∗(x) ≤ β for x ∈ (0, b∗) and 0 ≤ v′b∗(x) ≤ 1 for x ∈ (b∗,∞).

Proof. We prove separately for the cases (i) b∗ > 0 and (ii) b∗ = 0.
(i) Suppose b∗ > 0. Then, using (3.10) and Remark 4.3, we obtain

v′b∗(x) = βZ
(q,r)
−b∗ (x− b∗)− rW (q+r)

(x− b∗)− βZ(q)(b∗)− 1

W (q)(b∗)
W

(q,r)
−b∗ (x− b∗). (5.9)

By the second equality of (4.2) and the fact that g(b∗) = 0, we obtain

q
Z(q)(b∗,Φ(q + r))

Z(q)′(b∗,Φ(q + r))
W (q)(b∗) =

βZ(q)(b∗)− 1

β
.

Hence using the above expression and (5.9) in (3.5) we obtain that, for x > 0,

βEx−b∗
[
e−qτ

−
−b∗ (r)

]
= βZ

(q,r)
−b∗ (x− b∗)− rβZ(q)(b∗)W

(q+r)
(x− b∗)

− βZ(q)(b∗)− 1

W (q)(b∗)

(
W

(q,r)
−b∗ (x− b∗)− rW (q)(b∗)W

(q+r)
(x− b∗)

)
= v′b∗(x),

(5.10)

where the last inequality follows from (5.9).
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From (5.10), we then deduce that 0 ≤ v′b∗(x) ≤ β and that v′b∗ is decreasing on (0,∞). This and the
fact that v′b∗(b

∗) = 1 as in Remark 4.1 complete the proof.
(ii) Suppose that b∗ = 0 (then necessarily X is of bounded variation by Lemma 4.1). Because

C0 =
r(β − 1) + qβ

qΦ(q + r)
,

we have, by (3.10) and Remark 3.2,

v′0(x) = −r(β − 1) + qβ

Φ(q + r)
W

(q,r)
0 (x)− rW (q+r)

(x) + βZ
(q,r)
0 (x)

=
r(β − 1) + qβ

r + q

(
Z(q+r)(x)− r + q

Φ(q + r)
W (q+r)(x)

)
+

r

r + q
. (5.11)

Differentiating (5.11) further,

v′′0(x+) = (r(β − 1) + qβ)

(
1− 1

Φ(q + r)

W (q+r)′(x+)

W (q+r)(x)

)
W (q+r)(x). (5.12)

Because β > 1, we have r(β−1)+qβ > 0. In addition, x 7→W (q+r)′(x+)/W (q+r)(x) is monotonically
decreasing in x as in (8.18) and Lemma 8.2 of [10] and converges to Φ(r+ q) as x→∞. By these facts
and (5.12), we have that v′′0(x+) < 0, meaning v0 is concave.

Recall, as in Remark 4.2, that v′0(0+) ≤ 1. Hence we have that v′0(x) ≤ 1 for all x ∈ (0,∞). Finally,

we have v′0(x)
x↑∞−−−→ r/(r + q) > 0 because Z(q+r)(x) − (r + q)W (q+r)(x)/Φ(r + q) vanishes in the

limit by Theorem 8.1 (ii) of [10], and hence v′0(x) > 0.

Next, by applying Lemma 5.2 for b∗ > 0 and b∗ = 0, the following results are immediate.

Lemma 5.3. For b∗ ≥ 0, we have that

max
0≤l≤x

{l + vb∗(x− l)− vb∗(x)} =

0 if x ∈ [0, b∗],

x− b∗ + vb∗(b
∗)− vb∗(x) if x ∈ (b∗,∞).

We are now ready to show Theorem 5.1.

Proof of Theorem 5.1. We shall show that vb∗ satisfies all the conditions given in Proposition 5.1. The
desired smoothness/continuity of vb∗ holds by Lemma 3.3 and Remark 3.4. Hence, we only need to
prove the variational inequalities given in (5.1).

Lemmas 5.1 and 5.3 yield the validity of the first item of (5.1) with equality. The second item holds
by Lemma 5.2. Finally, the third item follows because, by the monotonicity of vb∗ in view of Lemma 5.2
and (2.6), we have infx≥0 vb∗(x) ≥ vb∗(0) > −∞.

6 Numerical results

In this section, we give numerical results using the spectrally negative Lévy process with phase-type
jumps of the form:

X(t)−X(0) = ct+ ηB(t)−
N(t)∑
n=1

Zn, 0 ≤ t <∞,
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where B = (B(t); t ≥ 0) is a standard Brownian motion, N = (N(t); t ≥ 0) is a Poisson process
with arrival rate 1, and Z = (Zn;n = 1, 2, . . .) is an i.i.d. sequence of phase-type random variables that
approximate the (folded) Normal distribution with mean zero and variance 1 (the phase-type parameters
are given in [11]). See, e.g., [13] for a review of the phase-type distribution. The processes B, N , and Z
are assumed to be mutually independent. We refer the reader to [7, 9] for the forms of the corresponding
scale functions. Throughout we set q = 0.05.
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Figure 1: Plots of b 7→ g(b) for Cases 1 and 2. The values of b∗ are indicated by the circles.
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Figure 2: Plots of vb∗ (solid) for Cases 1 and 2 in comparison to vb (dotted) with b = 0, b∗/2, 3b∗/2

for Case 1 and b = 0.5, 1, 1.5 for Case 2. The points (b∗, vb∗(b
∗)) are indicated by the squares and the

points (b, vb(b)) are indicated by the down-pointing (resp. up-pointing) triangles if b < b∗ (resp. b > b∗).

We first illustrate the implementation procedure using Case 1 (unbounded variation) with η = 0.2,
c = 1 and β = 1.5 and Case 2 (bounded variation) with η = 0, c = 0.3 and β = 1.05 with the common
value of r = 0.5.

Recall the definition of b∗ as in (4.4). In Figure 1, the function g(b) as in (4.2) is plotted for Cases
1 and 2. As we have studied in Remark 4 and Lemma 4.1, if g(0) > 0 as in Case 1, there exists a
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unique value b∗ such that g(b∗) = 0, and hence this can be computed by the bisection method. For the
case g(0) ≤ 0 as in Case 2, we set b∗ = 0. Using the selected b∗, the optimal value functions vb∗ are
computed and plotted in Figure 2 for both Cases 1 and 2. In the same plots, in order to confirm the
optimality, we plot the function vb for different selection of b. It is confirmed that vb∗ dominates vb, for
b 6= b∗, uniformly in x.

Figure 3 shows the behaviors of the optimal solutions with respect to the parameters β and r using the
same parameters as Case 1 (unless stated otherwise for the values of β and r). The left plot shows vb∗ for
β ranging from 1.01 to 20. As expected, vb∗ is decreasing in β uniformly in x. In addition, we observe
that b∗ increases as β increases. The right plot shows vb∗ for various values of r ranging from 0.0001

to 50 along with the results in the classical bail-out case (without the restriction (2.2)), say vb† with the
optimal classical barrier b†, as in [4]. It is observed that the value function converges increasingly to that
in [4]. It is also confirmed that b∗ increases in r and converges to b† of [4] as r →∞.
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Figure 3: (Left) Plots of vb∗ for β = 1.01, 1.02, . . ., 1.09, 1, 1.1, 1.2, . . ., 1.9, 2, 3, . . ., 19, 20 with
the points (b∗, vb∗(b

∗)) indicated by the circles. (Right) Plots of vb∗ (dotted) for r = 0.0001, 0.0002,
. . ., 0.0009, 0.001, 0.002, . . ., 0.009, 0.01, 0.02, . . ., 0.1, 0.2, . . ., 0.9, 1, 2, . . . 9, 10, 20, 30, 40, 50

with the points (b∗, vb∗(b
∗)) indicated by circles, along with the classical case vb† as in [4] with the point

(b†, vb†(b
†)) indicated by the square.
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[16] PÉREZ, J.L. AND YAMAZAKI, K. Mixed periodic-classical barrier strategies for Lévy risk pro-
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