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Abstract

Consider a graph on randomly scattered points in an arbitrary space, with
any two points x, y connected with probability φ(x, y). Suppose the number
of points is large but the mean number of isolated points is O(1). We give
general criteria for the latter to be approximately Poisson distributed. More
generally, we consider the number of vertices of fixed degree, the number of
components of fixed order, and the number of edges. We use a general result
on Poisson approximation by Stein’s method for a set of points selected from a
Poisson point process. This method also gives a good Poisson approximation
for U-statistics of a Poisson process.

1 Introduction

In the inhomogeneous random graph (IRG), each vertex has one of several possible
types or states, where the space of possible states may be infinite. Given the states
of the vertices, each possible edge is present with a probability that depends on
the states of the two endpoints, independently of the other edges. This provides a
very flexible class of random graph models; for example, the state of a vertex could
represent spatial location, or it could represent the time at which a vertex is born,
for a randomly evolving graph.
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Such models are popular in statistical network modelling, where they go under
names such as stochastic block model [24] (in which case the state space is usually
taken to be finite) and latent space model [11] or latent variable model [23]. The IRG
terminology dates from [25], and is prevalent in the more probabilistic literature,
where the model has been studied in depth, for example in [4] and [2]. Much of this
literature is concerned with the birth of the giant component, but full connectivity
has also been studied in [6].

For our purposes, the IRG is defined as follows. Let (X,F , µ) be a probability
space (the state space). For s > 0 let Ps be the (random) set of points of a Poisson
point process on X with mean measure (i.e., intensity measure) sµ. Also, for n ∈ N,
let Xn be the binomial point process consisting of n independent random elements
of X which common distribution µ.

Suppose φ : X × X → [0, 1] is a measurable symmetric function; we call such a
function a connection function. Given finite V ⊂ X (possibly with multiplicity), let
G(V, φ) be the random (undirected) graph with vertex set V, with each pair {x, y}
of points of V connected by an edge with probability φ(x, y), independently of all
other pairs. We are particularly interested in G(Ps, φ) and G(Xn, φ); we define these
graphs more formally in Section 4.

In the special case where X is a region of Euclidean space and φ(x, y) is de-
termined by the displacement x − y (typically via ‖x − y‖, where ‖ · ‖ denotes
the Euclidean norm), the IRG is also known as the soft random geometric graph
[22] or random connection model (RCM) [18]. If, in the Euclidean setting, we have
φ(x, y) = 1{‖x−y‖≤r} the IRG is known as the random geometric graph (RGG) [19]
or Gilbert graph. These models are important in applications to wireless communi-
cations; see for example [7, 8, 10, 17, 26].

For any graph G and any j ∈ N0 := N ∪ {0}, let Dj(G) denote the number of
vertices in G of degree j; also set D≤j(G) :=

∑j
i=0Di(G). In particular, D0(G) is

the number of isolated vertices. Of interest is the question of whether D≤k(G(Ps, φ))
and D≤k(G(X⌊s⌋, φ)) are approximately Poisson distributed for s large, with k fixed,
e.g. k = 0. One reason for interest is that D0(G) = 0 (respectively D≤k(G) = 0)
is clearly a necessary condition for G to be connected (resp. (k + 1)-connected,
assuming G has at least k + 2 vertices), and for many choices of X and φn this
condition is asymptotically sufficient (in probability) when G = G(Xn, φn) with
n large; see [9, 12, 22, 21, 20]. In such cases, P[D≤k(G(Xn, φn)) = 0] is a good
approximation for the probability that G(Xn, φn) is (k + 1)-connected, so if we can
estimate the former via Poisson approximation, we may have a useful estimate for
the probability of (k + 1)-connectivity.

The references just mentioned show that in many cases where s is large and φ
is chosen so that EDj(G(Ps, φ)) = O(1), the distributions of Dj(G(Ps, φ)) and of
Dj(G(X⌊s⌋, φ)) are approximately Poisson. In this paper we give a general criterion

2



for this to be the case, without making any geometrical or topological assumptions
on the space X (Theorem 2.1). We give similar results for the number of components
of order k with k fixed (Theorems 2.2 and 2.3), and for the number of edges (Theorem
2.4). These theorems also incorporate asymptotic normality, when the mean of the
variable in question grows slowly as a function of s.

We prove Theorems 2.1, 2.2, 2.3 and 2.4 in Sections 5, 6 and 7. The proofs use
Theorem 3.1, a general result on Poisson approximation for functionals of Poisson
processes, which is of independent interest. This theorem also gives us further results
on the Poisson approximation for the number of edges under different assumptions
from those of Theorem 2.4. See Theorem 7.1 and the subsequent discussion. It
also provides an alternative way to derive (and slightly improve) a result of [5] on
Poisson approximation of U -statistics of a Poisson process; see Section 8.

2 Results on inhomogeneous random graphs

Let Φ be the class of all measurable symmetric functions from X× X to [0, 1], and
for ε > 0 let Φε be the class of all φ ∈ Φ that satisfy

inf
x∈X

(∫

X

φ(x, y)µ(dy)

)

≥ ε sup
x∈X

(∫

X

φ(x, y)µ(dy)

)

.

If φ ∈ Φε we say the connection function φ is ε-homogeneous. Note that 1-homogeneity,
according to our definition, is the same as homogeneity as defined in [6].

Several of our results require ε-homogeneity. There are many interesting classes
of connection function which satisfy this condition. For example, suppose X is a
bounded convex region in Euclidean space R

d, and µ has a density (with respect to
Lebesgue measure on that region) that is bounded away from 0 and infinity. Then
there exists ε > 0 such that all connection functions of the form φ(x, y) = ψ(|x−y|)
with ψ nonincreasing lie in Φε. In particular, we do not require any exponential
decay condition on ψ, such as that imposed in [22].

For φ ∈ Φ, set φ = supx,y φ(x, y). As well as ε-homogeneity, some of our results

also require that φ be bounded away from 1. This condition is annoying since it
excludes from consideration the standard RGG, and also some cases of the IRG
which have been considered elsewhere in the literature [4, 6]. On the other hand,
‘soft’ versions of these models, which do satisfy this condition, are easily defined and
arguably will often be reasonable from the point of view of applications (we shall
discuss this further below). Without this condition, it may be unrealistic to expect
to find a simple argument for Poisson approximation of D0 covering a large class
of RGG densities without getting involved in geometrical details of any particular
probability density or even assuming any Euclidean structure at all, which is what
our condition on φ allows us to do.
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Suppose we have connection functions φs defined for each s > 0 with ED≤j(G(Ps, φs))
bounded as s → ∞, for some fixed j ∈ N0. See (5.1) below for a formula for
EDj(G(Ps, φs)). Our first result shows that Dj(G(Ps, φs)) and Dj(G(X⌊s⌋, φ⌊s⌋))
are approximately Poisson and Dk(G(Ps, φs)) is approximately normal for k > j,
for large s under the condition that φs ∈ Φε for all s and φs is bounded away from
1.

For α ∈ (0,∞), let Zα denote a random variable having the Poisson distribution
with parameter α. Let N denote a random variable having the standard normal
distribution in R, i.e. with probability density function (2π)−1/2 exp(−x2/2), x ∈ R.
For any graph G we define D≤−1(G) := 0. For any two (0,∞)-valued functions u(s)
and v(s), we say u(s) = O(v(s)) if lim sups→∞ u(s)/v(s) <∞, and u(s) = o(v(s)) if
lim sups→∞ u(s)/v(s) = 0, and u(s) = Θ(v(s)) if u(s) = O(v(s)) and v(s) = O(u(s)).

Theorem 2.1. Let j, k ∈ N0, ε > 0 and φs ∈ Φε with φs ≤ 1 − ε for s ∈ (0,∞),
satisfying lims→∞ ED≤j(G(Ps, φs)) = α ∈ (0,∞). Then as s→ ∞,

Dj(G(Ps, φs)) D−→ Zα; Dj(G(X⌊s⌋, φ⌊s⌋))
D−→ Zα, (2.1)

and also

D≤j−1(G(Ps, φs)) P−→ 0; D≤j−1(G(X⌊s⌋, φ⌊s⌋))
P−→ 0, (2.2)

and moreover

E [Dk(G(Ps, φs))] = Θ((log s)k−j) (2.3)

and if also k > j then

Dk(G(Ps, φs))− E [Dk(G(Ps, φs))]
√

E [Dk(G(Ps, φs))]
D−→ N . (2.4)

It is interesting to compare the conclusions (2.1) and (2.2) of this result with
the example on page 55 of [19]. In that case, for a certain sequence of RGGs one
can arrange for the number of vertices of degree 2 to be asymptotically compound
Poisson, whereas here it is asymptotically Poisson.

For k ∈ N, and for any graph G, we refer to the components of G of order k
(i.e., with k vertices) as the k-components of G. Let Nk(G) denote the number of
k-components in G. In particular, N1(G) = D0(G).

Suppose we have connection functions φs defined for each s > 0 with ENk(G(Ps, φs))
bounded as s→ ∞, for some fixed k ∈ N. Theorem 2.3 below shows thatNk(G(Ps, φs))
and Nk(G(X⌊s⌋, φ⌊s⌋)) are approximately Poisson under the condition that φs ∈ Φε
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and φs ≤ 1− ε for all s and some fixed ε > 0; even without this condition, Theorem
2.2 shows that the Poisson approximation holds provided that φs = o(1/ log s) (in
the case of G(Ps, φs)), or provided that φ⌊s⌋ = o(s−1/2) (in the case of G(X⌊s⌋, φ⌊s⌋)).

These rates of decay imposed on φs are significantly milder than the condition
pn = Θ((logn)/n) for the Erdős-Rényi random graph G(n, pn) to be at the thresh-
old for having no isolated vertices.

We also give a result on asymptotic normality, when ENk(G(Ps, φs)) grows
slowly as s→ ∞. All asymptotics in the next two theorems are as s→ ∞.

Theorem 2.2. Let k ∈ N and φs ∈ Φ for s > 0, with ENk(G(Ps, φs)) → α ∈ (0,∞).

(a) If φs = o(1/ log s), then Nk(G(Ps, φs)) D−→ Zα.

(b) If φs = o(s−1/2), then Nk(G(X⌊s⌋, φ⌊s⌋))
D−→ Zα.

Theorem 2.3. Let k ∈ N, ε > 0 and φs ∈ Φε for s > 0, with φs ≤ 1− ε for all s.
(a) If ENk(G(Ps, φs)) → α ∈ (0,∞), then

Nk(G(Ps, φs)) D−→ Zα; Nk(G(X⌊s⌋, φ⌊s⌋))
D−→ Zα. (2.5)

(b) If ENk(G(Ps, φs)) → ∞, but ENk(G(Ps, φs)) = o(s), then setting αs =

ENk(G(Ps, φs)), we have that (Nk(G(Ps, φs))− αs)/
√
αs

D−→ N .

Among other things, the case k = 1 of Theorem 2.2 (a) generalizes Lemma 3.2
of [22] to a more general class of (X, φs) than is considered in [22].

Given a connection function φ ∈ Φ, let us define

κ(φ) := sup
x∈X

∫

X

φ(x, y)µ(dy). (2.6)

If φ is ε-homogeneous for fixed ε > 0, then for any x ∈ X the expected degree of
a vertex of G(Ps, φ) located at x is of the order of sκ(φ). Our proof of Theorems
2.1 and 2.3 actually shows that under conditions of ε-homogeneity and φs ≤ 1− ε,
if sκ(φs) → ∞ (so the ‘typical degrees’ become large) then for any fixed j ≥ 0
and k ≥ 2, both Dj and Nk are approximately Poisson distributed (so if the mean
of this Poisson distribution goes to infinity then they are approximately normally
distributed). Moreover, under the conditions of Theorem 2.1 or Theorem 2.3 (a),
we shall show that sκ(φs) = Θ(log s) (see (5.2) and (6.12)).

In Theorem 2.1 we do not address asymptotic normality Dj(G(Ps, φs)) when its
expected value grows to infinity more slowly than s, except for the case j = 0 which
is covered by the case k = 1 of Theorem 2.3 (b). In attempting to adapt the proof of
the latter to the case j > 0, the difficulty is that in general the expression (5.8) does
not vanish in the case where sκ(φs) tends to zero. We conjecture that asymptotic

5



normality of Dj(G(Ps, φs)) can be proved by other means but this is beyond the
scope of this paper.

Our next result is concerned with Poisson or normal approximation for (a gener-
alization of) the number of edges of G(Ps, φs). This is of interest in itself, and will
also be of use in the proof of Theorem 2.3. Given k ∈ N with k ≥ 2, for any graph
G let Hk(G) denote the number of connected induced subgraphs of G of order k (so
in particular, H2(G) is the number of edges.) Again, asymptotics are as s→ ∞.

Theorem 2.4. Let ε > 0, φs ∈ Φε for all s > 0, and k ∈ N with k ≥ 2.

(a) If EHk(G(Ps, φs)) → α ∈ (0,∞), then Hk(G(Ps, φs)) D−→ Zα.
(b) If EHk(G(Ps, φs)) → ∞ but EHk(G(Ps, φs)) = o(s), then setting αs :=

EHk(G(Ps, φs)), we have (Hk(G(Ps, φs))− αs)/
√
αs

D−→ N .

The proof of Theorems 2.1, 2.3 and 2.4 provides information about the rates
of convergence in these results. Theorem 2.2 will be proved by the method of
moments, which does not provide any information about rates. The reason part
(b) of that result requires a stronger condition on φs than part (a) does, is because
when bounding these moments from below, for part (a) we have a sequence of the
form exp(−nxn) (with xn bounded by a constant times φn), while for (b) we have
a sequence of the form (1 − xn)

n which is asymptotic to exp(−nxn) only when
xn = o(n−1/2)

We now discuss some of the literature related to these results. Much of this
concerns the RGG. Suppose (X,F , µ) is the d-dimensional Euclidean space with the
Borel σ-algebra and with µ having a density f with respect to Lebesgue measure,
while the connection function is given by φs(x, y) = 1{|x−y|≤rs}, with rs chosen in

such a way that ED0(G(Ps, φs)) → α ∈ (0,∞). It has been shown that D0
D−→ Zα

when µ is uniform on the unit cube [21], and for certain special types of density with
unbounded support [9, 12, 20]. However, D0 is not always asymptotically Poisson;
see the last paragraph of [12, Section 2], where it is suggested that the Poisson
limit is ‘the exception rather than the rule’ in dimension d = 1. We are a long way
from having any complete characterisation of distributions for which the number of
isolated vertices in the RGG is asymptotically Poisson.

Suppose (X,F , µ) is the d-dimensional unit cube equipped with Lebesgue mea-
sure. If φs is of the form φs(x, y) = ps1{|x−y|≤rs}, with ps and rs chosen so that

ED0(G(Ps, φs)) → α, then D0
D−→ Zα. More generally, if φs is of the form

φs(x, y) = ψs(|x− y|) with ψs a decreasing function satisfying an exponential decay
condition, then the Poisson convergence of D0 is known to hold; see [22]. Our results
enable us to relax the exponential decay condition and allow for other distributions,
for example with density bounded away from zero and infinity on a convex compact
region in R

d.
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Here is a simple example of a sequence of connection functions φs where
D0(G(Ps, φs)) has bounded mean, but is not asymptotically Poisson. Let (X,F , µ)
be the unit interval equipped with Lebesgue measure, and set φs(x, y) = 1 if
max(x, y) ≤ s−1 or min(x, y) > s−1, otherwise setting φs(x, y) = 0. Then in the
large-s limit the random variable D0(G(Ps, φs)) is Bernoulli distributed with param-
eter e−1, not Poisson distributed. The condition of ε-homogeneity, which appears in
many of our results, rules out this sort of example.

Devroye and Fraiman [6] consider D0(G(Xn, φn)) on a general space X in the
case where φn = (a(n)φ0)∧ 1 for a fixed function φ0 : X×X → R+ (such a function
φ0 is called a kernel), and some sequence a(n) (where ∧ denotes minimum). This
is a common assumption for the IRG; see for example [4]. Their results may be
interpreted as saying that (under certain conditions) the threshold value of a above
which G(Xn, aφ0 ∧ 1) is free of isolated vertices (which may be viewed as a random
variable) satisfies a weak law of large numbers; it is asymptotic to a constant times
(log n)/n, in probability. They also derive a similar law of large numbers for the
threshold for the graph to be connected.

When φ0 is bounded, our Theorem 2.2 (b) gives a possibility of deriving con-
vergence in distribution for this threshold (suitably transformed). For example,
suppose X = [0, 1) and µ has a density f with respect to Lebesgue measure, with f
bounded away from zero. Suppose also that φ0(x, y) is determined via the absolute
value of x− y (mod 1) (so we are in the one-dimensional torus). If f ≡ 1, or if f is
smooth with g(x) :=

∫

φ0(x, y)f(y)(dy) having a unique minimum, then it should
be possible to derive a distributional limit law for this threshold, since in these cases
it should be possible, for any α ∈ (0,∞), to determine a sequence as such that
ED0(G(Ps, asφ0)) → α, and then apply Theorem 2.2 (b).

If φ0 is unbounded but shift-invariant on the torus, for example if φ0(x, y) =
((x − y)mod 1)−γ for some fixed positive γ and f ≡ 1, then for any ε ∈ (0, 1), it
may be possible to find a limiting distribution for a suitable transformation of the
threshold value of a above which G(Xn, aφ0 ∧ (1 − ε)) is free of isolated vertices,
now using Theorem 2.3 (a). Indeed, in this case the connection functions are all
1-homogeneous, and by using connection functions φn = anφ0 ∧ (1− ε) rather than
the more standard φn = anφ0 ∧ 1, we ensure that the extra condition φn ≤ 1 − ε is
also satisfied.

It would be interesting to fully work out and extend these examples; to get a
similar results for the connectivity threshold; and to improve the weak law of [6] to
a strong law.

In the present work we consider only undirected graphs. Analogous directed
graph models can be defined similarly; these have been considered in the random
geometric graphs literature [13] and in the statistical literature [11]. In this case,
the connection function φ(x, y) represents the probability that there is a directed

7



edge from a vertex at x to a vertex at y. It is not required to be symmetric, and
can be adapted so that all vertices have the same expected outdegree, as in [13]. It
would be interesting to try to derive a similar result to Theorem 2.1 for the number
of vertices with outdegree j in such a model.

3 A general result on Poisson approximation

Let (M,M,m) be a probability space (known as a mark space). Assume that the
probability measure m on M is diffuse, by which we mean that there is a product
measurable set A ⊂ M ×M with (m ⊗m)(A) = 0, such that the diagonal {(t, t) :
t ∈ M} is contained in A. For example, if {t} ∈ M and m({t}) = 0 for all t ∈ M,
then m is diffuse.

Suppose on a suitable probability space that we have a sequence ((Xi, Ti), i =
1, 2, 3, . . .) of independent identically distributed random elements of X × M with
common distribution µ⊗m, and an independent unit rate Poisson counting process
(Zs, s > 0), so that the random variable Zs has Poisson(s) distribution for each
s, and also a further independent sequence (τ, τ1, τ2, τ3, . . .) of independent random
elements of M with common distribution m. By our assumption that m is diffuse,
the values of τ, T1, τ1, T2, τ2, T3, τ3, . . . are almost surely distinct.

A finite point process in X is defined as a random element of the space S(X) of
all finite subsets of X, where S(X) is equipped with the smallest σ-algebra S(X)
containing the sets {ξ ∈ S(X) : ξ(B) = k} for all B ∈ F and all k ∈ N0, where
ξ(B) := |ξ ∩ B| and |ξ| denotes the number of elements of ξ.

A finite point process in X×M is defined similarly as a random element of the
space S := S(X×M), where X×M is equipped with the product σ-algebra F ⊗M.
For k ∈ N, let Sk := {ξ ∈ S : |ξ| = k}.

Given s > 0, n ∈ N, define the following point processes in X×M:

ηs := ∪Zs

i=1{(Xi, Ti)}; ξn := ∪ni=1{(Xi, Ti)}. (3.1)

Then ηs is a Poisson point process in X×M with mean measure sµ×m. Similarly,
ξn is a binomial point process in X×M.

Let dTV and dW denote total variation distance and Wasserstein distance, re-
spectively, between probability measures on the nonnegative integers. That is, for
N0-valued random variables X, Y with distribution L(X),L(Y ) respectively, we set

dTV (L(X),L(Y )) = sup
A⊂N0

(P[X ∈ A]− P[Y ∈ A]);

dW (L(X),L(Y )) = sup{|Eh(X)− Eh(Y )| : ‖∆h‖∞ ≤ 1},
where for h : N0 → R we set ∆h(i) := h(i + 1) − h(i) for i ∈ N0, and ‖h‖∞ :=
supi∈N0

|h(i)|

8



The following theorem is related to a well-known result on the Poisson approx-
imation of a sum of Bernoulli random variables by Stein’s method via coupling
(Theorem II.24.3 of [16], or Theorem 1.B of [1]). Here the terms in the sum are
themselves indexed by k-subsets of the set of points of a (marked) Poisson point
process.

Let k ∈ N and let f : Sk × S → {0, 1} be a measurable function. For ξ ∈ S, set

F (ξ) :=
∑

{ψ⊂ξ:|ψ|=k}

f (ψ, ξ \ ψ) . (3.2)

We can think of f as a mechanism for selecting some of the k-subsets of ξ, and F (ξ)
as the total number of k-subsets selected.

Theorem 3.1. Let s > 0. Let W := F (ηs) with ηs and F as described above. For
x1, . . . , xk ∈ X set p(x1, . . . , xk) := E f({(x1, τ1), . . . , (xk, τk)}, ηs), and set λ := sµ.

Suppose that w : Xk → [0,∞) is a measurable function, and that for λk-almost
every x = (x1, . . . , xk) ∈ X

k with p(x1, . . . , xk) > 0 we can find coupled random
variables U

x
, V

x
such that

• L(U
x
) = L(W );

• L(1 + V
x
) = L(F (∪ki=1{(xi, τi)} ∪ ηs)|f(∪ki=1{(xi, τi)}, ηs) = 1).

• E [|U
x
− V

x
|] ≤ w(x).

Set α = EW = (1/k!)
∫

p(x)λk(dx). Then

dTV (L(W ),L(Zα)) ≤
(1 ∧ α−1)

k!

∫

w(x)p(x)λk(dx), (3.3)

and

dW (L(W ),L(Zα)) ≤
3(1 ∧ α−1/2)

k!

∫

w(x)p(x)λk(dx). (3.4)

The proof uses the (multivariate) Mecke formula (see e.g. [15], or [19, Theorem
1.6]), which says that if g : Sk × S → R is a bounded measurable function, then

E

∑

{ψ⊂ηs:|ψ|=k}

g (ψ, ηs \ ψ) =
1

k!

∫

E [g({(x1, τ1), . . . , (xk, τk)}, ηs)]λk(dx). (3.5)

This fact gives us the assertion in the statement of the theorem that EW =
(1/k!)

∫

p(x)λk(dx).
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Theorem 3.1 still holds in the case where the measure λ is taken to be σ-finite
but infinite, and ηs is replaced by a Poisson point process η with mean measure
λ⊗m. The proof is essentially unchanged.

Proof of Theorem 3.1. Let h : N0 → R be bounded. Then

E [Wh(W )] = E

∑

{ψ⊂ηs :|ψ|=k}

f(ψ, ηs \ ψ)h(F (ηs))

=
1

k!

∫

E
[

f({(x1, τ1), . . . , (xk, τk)}, ηs)h
(

F
(

∪ki=1{(xi, τi)} ∪ ηs
))]

λk(dx)

=
1

k!

∫

E
[

h
(

F
(

∪ki=1{(xi, τi)} ∪ ηs
))∣

∣ f
(

∪ki=1{(xi, τi)}, ηs
)

= 1
]

p(x)λk(dx).

Also, E [αh(W + 1)] = (1/k!)
∫

Eh(W + 1)p(x)λk(dx), and therefore

|E [αh(W + 1)−Wh(W )]| ≤ 1

k!

∫

p(x)λk(dx)

×
∣

∣Eh(W + 1)− E
[

h
(

F
(

∪ki=1{(xi, τi)} ∪ ηs
))∣

∣ f
(

∪ki=1{(xi, τi)}, ηs
)

= 1
]∣

∣ .

Since |h(i)−h(j)| ≤ ‖∆h‖∞·|i−j| for i, j ∈ N0, we obtain for each x = (x1, . . . , xk) ∈
X
k that
∣

∣Eh(W + 1)− E
[

h
(

F
(

∪ki=1{(xi, τi)} ∪ ηs
))∣

∣ f
(

∪ki=1{(xi, τi)}, ηs
)

= 1
]∣

∣

≤ |Eh(U
x
+ 1)− Eh(V

x
+ 1)|

≤ ‖∆h‖∞E |U
x
− V

x
| ≤ ‖∆h‖∞w(x),

and therefore

|E [αh(W + 1)−Wh(W )]| ≤ ‖∆h‖∞
k!

∫

w(x)p(x)λk(dx).

Given A ⊂ N0, set g = 1A and choose h : N0 → R so that h(0) = 0 and

αh(i+ 1)− ih(i) = g(i)− E [G(Zα)], i ∈ N0. (3.6)

Then (see Lemma 1.1.1 of [1]) h is bounded and ‖∆h‖∞ ≤ 1 ∧ α−1, and hence

|P[W ∈ A]− P[Zα ∈ A]| ≤ (1 ∧ α−1)

k!

∫

w(x)p(x)λk(dx).

The result (3.3) follows.
One obtains (3.4) similarly by choosing, for any given g with ‖∆g‖∞ ≤ 1, a

solution h to (3.6) with h(0) = 0, and using Lemma 1.1.5 of [1].
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We now give an overview of how we shall use Theorem 3.1 to prove Theorems
2.1 and 2.3. As explained in the next section, we may view G(Ps, φs) as being
determined by a marked Poisson point process in X, i.e. a Poisson point process in
a product space X×M

∗ (where M
∗ is a certain mark space).

Then the functional Dk(G(Ps, φs)) may be viewed as a sum of the form (3.2) for
a suitable f which selects those points with degree k. For each x ∈ X we need to find
coupled variables Ux and Vx such that Ux has the distribution of Dk(G(Ps, φs)) and
1+Vx has the conditional distribution of Dk(G(Ps∪{x}, φs)) given that x has degree
k, and such that |Ux − Vx| is small (in probability). To do this we note that by the
thinning theorem (see for example [15]), the point process of points of Ps connected
to x, and the point process of points of Ps not connected to x, are independent. To
generate Vx we need to condition the first point process to have exactly k points,
which we can do by adding or removing points from it, while leaving the second
point process unchanged. Since we modify only the first point process (i.e., the
points connected to x), we may hope that the score Vx obtained from the modified
(overall) point process is similar to the score Ux obtained from the original (overall)
point process. This is how we shall prove Theorem 2.1.

For Theorem 2.3, we view Nk(G(Ps, φs)) as a sum of the form (3.2) for a suitable
f which selects those k-tuples of points forming a component. For each x ⊂ X

with k elements, we need to find coupled variables U
x
and V

x
such that U

x
has

the distribution of Nk(G(Ps, φs)) and 1 + V
x
has the conditional distribution of

Nk(G(Ps ∪ x, φs)) given that the points of x form a component. Again by the
thinning theorem, the point process of points of Ps connected to x is independent
of the rest of Ps, so to get V

x
we condition on this point process having no elements,

simply by removing those points. Again this is a small change, so the difference
between U

x
and V

x
again is small (in probability).

4 Formal constructions of the IRG

Let s ∈ (0,∞) and n ∈ N. Let φ ∈ Φ. We now give a more formal definition of the
graphs G(Ps, φ) and G(Xn, φ),

We make the following particular choice of mark space (M∗,M∗,m∗). Let Leb
denote Lebesgue measure on [0, 1). Let M∗ = [0, 1)N0 with M∗ the product Borel σ-
algebra, and with m∗ := ⊗∞

n=0Leb, so that a random element of M∗ with distribution
m∗ is a sequence of independent uniform(0, 1) random variables indexed by N0.

Now (and for the rest of this paper) taking (M,M,m) = (M∗,M∗,m∗), let
(Xi, Ti)i≥1, (Zs)s>0 and (τ, τ1, τ2, . . .) be as in the preceding section. Given n ∈ N

and s > 0, let the point processes ηs and ξn be as given by (3.1). Thus ηs is a
Poisson point process in X with mean measure sµ and with each point marked

11



with a sequence of independent uniform[0, 1) variables indexed by the nonnegative
integers. Similarly, ξn is a binomial point process in X × M

∗. We write S∗ for
S(X×M

∗).
To ease notation, we shall also assume from now on that the probability measure

µ on X is diffuse. This ensures that the values of X1, X2, . . . are almost surely
distinct. However, this assumption is for notational convenience only; even without
it, one can make sense of our results either by allowing the set {X1, . . . , Xn} to have
multiplicities, or by using the attached marks Ti (which are almost surely distinct)
to distinguish between different points Xi.

Set Xn := {X1, . . . , Xn} and Ps := {X1, . . . , XZs
}, the canonical projections of

ξn and ηs respectively onto X. Define the graph G(Xn, φ) to have vertex set Xn and
to have an edge between vertices Xi and Xj, for i, j ∈ [n] := {1, 2, . . . , n} with i < j,
if and only if Ti,j ≤ φ(Xi, Xj), where Ti = (Ti,0, Ti,1, Ti,2 . . .). Let G(Ps, φ) be the
graph G(XZs

, φ).
This is one way to formally define the random graphs with the properties de-

scribed more informally in the Introduction. It has the advantage that G(Xn, φ) is
a subgraph of G(Ps, φ) whenever n ≤ Zs and G(Ps, φ) is a subgraph of G(Xn, φ)
whenever Zs ≤ n, which is useful for coupling arguments. However, it has the disad-
vantage that the edge-set of the graph G(Ps, φ) is not invariant under permutation
of the order in which the marked points (X1, T1), . . . , (XZs

, TZs
) are listed. There-

fore we define a further graph which has the same distribution but also satisfies this
permutation-invariance. This will be useful in applying Theorem 3.1 in the proof of
Theorems 2.1, 2.3 and 2.4.

Given ξ ∈ S∗ and φ ∈ Φ, define the graph Gφ(ξ) as follows. If there exist distinct
(x, t0, t1 . . .) ∈ ξ and (y, u0, u1, . . .) ∈ ξ with t0 = u0, then set Gφ(ξ) to be the empty
graph. Otherwise, we can write ξ uniquely as

ξ = ∪|ξ|
i=1{(xi, ti,0, ti,1, ti,2, . . .)}

with each xi ∈ X and with t1,0 < t2,0 < · · · < t|ξ|,0. Let Gφ(ξ) have vertex set
{x1, . . . , x|ξ|}, and for each i < j ≤ |ξ| let Gφ(ξ) have an edge connecting xi to xj if
and only if ti,j ≤ φ(xi, xj). In other words, we use the first coordinate of the marks
to determine the order in which we enumerate the points of ξ; having done so, for
i < j we use the (j + 1)-st component of the mark attached to the i-th point to
decide whether to connect it to the j-th point.

Let us say that two random graphs G and G′ have the same distribution if any
graph invariant of G has the same distribution as the same graph invariant evaluated
on G′. The following is immediate from the independence of the components of the
marks τi.

Proposition 4.1. For any finite X = {x1, . . . , xm} ⊂ X the distribution of the
random graph Gφ({(x1, τ1), . . . , (xm, τm)}) is the same as that of G(X , φ).
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In particular, the the distribution of Gφ(ηs) is the same as that of G(Ps, φ),
although they are not the same graph because the set of edges is defined differently
for the two graphs. Likewise Gφ(ξn) has the same distribution as G(Xn, φ).

In the following lemmas we check measurability of functions which will feature
in the proof of Theorems 2.1 and 2.3 respectively. We use the following notation.
For ℓ ∈ N and i ∈ [ℓ], let Iℓ,i denote the set of (x, t0, t1, t2, . . .) ∈ X × [0, 1)N0 such
that (i− 1)/ℓ ≤ t0 < i/ℓ.

Lemma 4.1. Let j ∈ N0. Then the function f : X×M
∗ × S∗ → {0, 1} given by

f(x, t, ξ) := 1{x has degree j in Gφ(ξ ∪ {(x, t)})}, (x, t, ξ) ∈ X×M
∗ × S∗

is measurable.

Proof. For ℓ, n,m, i1 . . . , in ∈ N with m ≤ n ≤ ℓ, and i1 < i2 < · · · < in ≤ ℓ, let
Aℓ,n,m,i1,...,in denote the set of (x, t, ξ) ∈ X×M

∗ × S∗ such that:

1. (ξ ∪ {(x, t)})(Iℓ,ik) = 1, for 1 ≤ k ≤ n;

2. (ξ ∪ {(x, t)})(Iℓ,i) = 0, for i ∈ [ℓ] \ {i1, . . . , in};

3. (x, t) ∈ Iℓ,im ;

4.
(
∑m−1

k=1 ξ({(y,u) ∈ Iℓ,ik : um ≤ φ(x, y)})
)

+
∑n

k=m+1 ξ({(y,u) ∈ Iℓ,ik : tk ≤
φ(x, y)}) = j, where u = (u0, u1, . . .) and t = (t0, t1, . . .).

Then each Aℓ,n,m,i1,...,in is measurable in X×M
∗ × S∗, and

f(x, t, ξ) = 1{(x, t, ξ) ∈ ∪ℓ,n,m,i1,...,in∈N:m≤n≤ℓ,1≤i1<i2<···<in≤ℓAℓ,n,m,i1,...,in}

which is a measurable function.

Lemma 4.2. Let k ∈ N. Suppose the function f̃ : (X×M
∗)k×S∗ → {0, 1} is given,

for (x1, t1, . . . , xk, tk) ∈ (X×M
∗)k and ξ ∈ S∗, by

f̃(x1, t1, . . . , xk, tk, ξ)

:= 1
{

{x1, . . . , xk} induces a component of Gφ

(

∪ki=1{(xi, ti)} ∪ ξ
)}

.

Then f̃ is measurable.

Proof. For ℓ, n,m1, . . . , mk, i1 . . . , in ∈ N with max1≤i≤kmi ≤ n ≤ ℓ, and
m1, . . . , mk distinct, and 1 ≤ i1 < i2 < · · · < in ≤ ℓ, let Aℓ,n,m1,...,mk ,i1,...,in de-
note the set of (x1, t1, . . . , xk, tk, ξ) ∈ (X×M

∗)k × S∗ such that for some connected
graph Γ on vertex set [k]:

13



1.
(

∪kh=1{(xh, th)} ∪ ξ
)

(Iℓ,ij) = 1, for 1 ≤ j ≤ n;

2.
(

∪kh=1{(xh, th)} ∪ ξ
)

(Iℓ,i) = 0, for i ∈ [ℓ] \ {i1, . . . , in};

3. (xh, th) ∈ Iℓ,imh
for 1 ≤ h ≤ k;

4. for all h ∈ [k] and 1 ≤ j < mh with j /∈ {m1, . . . , mk} we have ξ({(y,u) ∈ Iij :
umh

> φ(xh, y)}) = 1, where u = (u0, u1, . . .);

5. for all h ∈ [k] and mh < j ≤ n with j /∈ {m1, . . . , mk} we have ξ({(y,u) ∈ Iij :
th,j > φ(xh, y)}) = 1, where th = (th,0, th,1, . . .), and

6. for all h, h′ ∈ [k] with mh < mh′ and {h, h′} an edge of Γ, we have th,mh
≤

φ(xh, xh′).

Then each Aℓ,n,k,m1,...,mk,i1,...,in is measurable in (X ×M)k × S∗, and setting [n]k6= to

be the set of (m1, . . . , mk) ∈ [n]k such that m1, . . . , mk are distinct, we have that f̃
is the indicator of the set

∪ℓ,n,i1,...,in∈N,(m1,...,mk)∈[n]
k
6=
:n≤ℓ,1≤i1<i2<···<in≤ℓAℓ,n,m1,...,mk,i1,...,in

which is measurable.

5 Proof of Theorem 2.1

For s > 0, let ηs, Ps, Zs, τ, τ1, τ2, . . . be as in the preceding section. For φ ∈ Φ and
i ∈ N0, we can obtain from the Mecke equation (3.5) that

EDi(Gφ(ηs)) = s

∫

X

(s
∫

φ(x, y)µ(dy))i

i!
exp

(

−s
∫

φ(x, y)µ(dy)

)

µ(dx). (5.1)

Here is a brief explanation of (5.1). In (3.5), we take k = 1 and use the space S∗

rather than S. For (x, t, ξ) ∈ X×M
∗ × S∗, our function g((x, t), ξ) takes the value

1 if x has degree i in the graph Gφ((x, t) ∪ ξ), and otherwise takes the value zero.
Given Zs = n, the point process Ps has n points, each of which is independently
connected to x with probability

∫

φ(x, y)µ(y)dy. Hence by the thinning property of
the Poisson distribution [15, Proposition 1.3], the number of points of Ps connected
to x in Gφ((x, τ) ∪ ηs) is Poisson with mean s

∫

φ(x, y)µ(dy).
In the sequel, other formulae for expectations of numbers of vertices, or k-tuples

of vertices, having certain properties in terms of the graph Gφ(ηs) (or equivalently,
the graph G(Ps, φ)), will also be justified by the Mecke formula. These arguments
also justify (3.5) of [22].

Recall from (2.6) that for φ ∈ Φ we set κ(φ) := supx∈X
∫

φ(x, y)µ(dy).
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Lemma 5.1. Suppose the assumptions of Theorem 2.1 hold. Then (2.3) holds. Also

sκ(φs) = Θ(log s), (5.2)

and

EDj(G(Ps, φs)) → α. (5.3)

Proof. For all s > 0, since we assume φs ∈ Φε, by (5.1) we have for i ∈ N that

εsκ(φs)

i
≤ EDi(G(Ps, φs))

EDi−1(G(Ps, φs))
≤ sκ(φs)

i
. (5.4)

We are assuming for some fixed j ∈ N0 that as s→ ∞ we have

ED≤j(G(Ps, φs)) → α ∈ (0,∞). (5.5)

Hence ED0(G(Ps, φs)) is bounded, but also ED0(G(Ps, φs)) ≥ se−sκ(φs) by (5.1), so
sκ(φs) → ∞ as s→ ∞.

By (5.5), EDj(G(Ps, φs)) remains bounded, and since also sκ(φs) → ∞, if j ≥ 1
then using (5.4) we have EDj−1(G(Ps, φs)) → 0, and repeating the argument we
also have EDi(G(Ps, φs)) → 0, for i = 0, 1, . . . , j − 1. Hence by (5.5) we have (5.3).

Using (5.3) and (5.1), the assumed ε-homogeneity of the φs, and the fact that
sκ(φs) → ∞, it is straightforward to show that (5.2) holds. Then, using (5.4)
repeatedly, and (5.3), we obtain (2.3).

Proof of Theorem 2.1. Assume the assumptions of Theorem 2.1 apply. Then
(2.3) follows from Lemma 5.1, and (2.3) gives us the first part of (2.2).

Next we show that Dj(G(Ps, φs)) D−→ Zα. To carry out the strategy outlined at
the end of Section 3, we shall apply Theorem 3.1 to the case φ = φs of the function
f considered in Lemma 4.1. That is, for (x, t, ξ) ∈ X × M

∗ × S∗ we set fs(x, t, ξ)
to be the indicator of the statement that x has degree j in Gφs(ξ ∪ {(x, t)}). Then
Dj(Gφs(ηs)) = Fs(ηs), where Fs is the function F obtained by using f ≡ fs in (3.2)
(with k = 1).

Let s > 0 and x ∈ X. If j ≥ 1 suppose we also have an extra sequence
(Y, Y1, . . . , Yj) of independent identically distributed random elements of X with
P[Y ∈ dy] = φs(x, y)µ(dy)/

∫

φs(x, z)µ(dz), independent of ((Xi, Ti))i≥1 and (Zs)s>0

and (τ, τ1, τ2, . . .). Let Gs be the graph Gφs(ηs ∪ {(x, τ), (Y1, τ1), . . . , (Yj, τj)}), with
added edges from x to each of Y1, . . . , Yj (if not already included). Let Ps,x be the
set of points of Ps that are connected to x in this graph, and set Px

s := Ps \ Ps,x.
Let Ux denote the number of vertices of degree j in the subgraph of Gs induced

by vertex set Ps. By Proposition 4.1, this graph has the distribution of G(Ps, φs),
so Ux has the distribution of Fs(ηs).
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Now consider the subgraph of Gs induced by {x}∪Ps. This has the distribution
of G(Ps ∪ {x}, φs), and Ps,x is the set of vertices in this graph lying adjacent to x.
Conditioning on x having degree j amounts to conditioning on |Ps,x| = j. We define
a coupled point process P∗ (a subset of Ps ∪ {Y1, . . . , Yj}) with the distribution of
Ps conditioned on x having degree j, as follows.

If |Ps,x| > j then we select |Ps,x| − j elements of Ps,x uniformly at random and
discard them from Ps to get a point process P∗. If |Ps,x| < j we set P∗ := Ps ∪ Yx,
where we set

Yx := {Y1, . . . , Yj−|Ps,x|}.
Let G∗

s denote the subgraph of Gs induced by P∗ ∪ {x}. Then x has degree j in
G∗
s . Let Vx be the number of vertices in G∗

s having degree j, other than x. This has
the conditional distribution of Fs({(x, τ)} ∪ ηs) − 1 given that fs({(x, τ)}, ηs) = 1.
This is because Ps,x and Px

s are independent Poisson processes, and conditioning
on fs({(x, τ)}, ηs) = 1 amounts to conditioning on the first of these two Poisson
processes having j points.

If |Ps,x| > j then |Ux − Vx| ≤ U ′
x + V ′

x, where we set U ′
x to be the number of

y ∈ Ps,x such that y has j neighbours in Ps, and V ′
x to be the number of pairs (y, z)

with y ∈ Ps,x, z ∈ Ps, such that z 6= y, z is connected to y and z has at most j
neighbours in Px

s . By the Mecke formula, and the assumption that φs ∈ Φε for all
s, writing κs := κ(φs) and recalling that sκs → ∞ by (5.2), we have

EU ′
x =

∫

sφs(x, y)

(

(s
∫

φs(y, z)µ(dz))
j

j!

)

exp

(

−
∫

sφs(y, z)µ(dz)

)

µ(dy)

= O((sκs)
j+1) exp(−Θ(sκs)) = o(1), (5.6)

uniformly over x ∈ X. Also, using that φs ≤ 1− ε for all s, we have that

EV ′
x =

j
∑

i=0

∫

sφs(x, y)

∫

sφs(y, z)

(

(s
∫

φs(z, w)(1− φs(x, w))µ(dw))
i

i!

)

× exp

(

−
∫

sφs(z, w)(1− φs(x, w))µ(dw)

)

µ(dz)µ(dy)

= O((sκs)
j+2)× exp(−Θ(sκs)) → 0, (5.7)

uniformly over x ∈ X.
If |Ps,x| < j then |Ux − Vx| ≤ Ũx + Ṽx, where we set Ũx to be the number of

y ∈ Yx having at most j neighbours in Ps, and Ṽx is the number of pairs (y, z) with
y ∈ Yx, z ∈ Ps connected to y, and z having at most j neighbours in Ps. Then

E Ũx ≤ j

j
∑

i=0

∫

(sκs)
i exp(−Θ(sκs))

(

φs(x, y)
∫

φs(x, w)µ(dw)

)

µ(dy) → 0, (5.8)
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uniformly over x ∈ X. Also

E Ṽx ≤
j
∑

i=0

∫

s

(

s

∫

φs(z, w)µ(dw)

)i

exp

(

−
∫

sφs(z, w)µ(dw)

)

×j
∫
(

φs(x, y)φs(z, y)
∫

φs(x, w)µ(dw)

)

µ(dy)µ(dz)

= O((sκs)
j+1)× exp(−Θ(sκs)) → 0, (5.9)

uniformly over x ∈ X.
Combining the estimates (5.6), (5.7), (5.8) and (5.9), and using Theorem 3.1,

gives us the first part of (2.1), namely Dj(G(Ps, φs)) D−→ Zα.
Now suppose k > j. Set βk,s := E [Dk(G(Ps, φs))]. The argument just given, with

j replaced by k, shows that dTV (Dk(G(Ps, φs)), Zβk,s) → 0 as s→ ∞. Also βk,s → ∞
by (2.3), so that (Zβk,s−βk,s)/

√

βk,s
D−→ N . Hence (Dk(G(Ps, φs))−βk,s)/

√

βk,s
D−→

N , which is (2.4).
It remains to prove the second parts of (2.1) and (2.2). For n ∈ N, let s(n) =

n−n3/4 and t(n) := n+n3/4. By Chebyshev’s inequality, with high probability (i.e.
with probability tending to 1) we have Zs(n) ≤ n ≤ Zt(n) so that Ps(n) ⊂ Xn ⊂ Pt(n).
Moreover, when this happens, G(Xn, φ) is the subgraph of G(Pt(n), φ) induced by
Xn, and G(Ps(n), φ) is the subgraph of G(Xn, φ) induced by Ps(n).

By (5.1), for i ∈ N0,

(

s(n)

n

)i+1

≤ EDi(G(Ps(n), φn))
EDi(G(Pn, φn))

≤ sup
x∈X

(

exp

(

n3/4

∫

φn(x, y)µ(dy)

))

and by (5.2), both the upper and the lower bound tend to 1. Therefore by (2.3) and
(5.3) we have as n→ ∞ that

EDi(G(Ps(n), φn)) → 0, i = 0, 1, . . . , j − 1; (5.10)

EDj(G(Ps(n), φn)) → α. (5.11)

Let k ∈ N0 with k ≤ j. If Ps(n) ⊂ Xn, then

D≤k(G(Xn, φn))−D≤k(G(Ps(n), φn)) = Sn − Rn,

where Sn denotes the number of points of Xn \ Ps(n) with degree at most k in
G(Xn, φn), and Rn is the number of points of Ps(n) with degree at most k in
G(Ps(n), φn) but with degree at least k + 1 in G(Xn, φn).

Let S ′
n denote the number of points of Pt(n) \Ps(n) that are connected to at most

k points of Ps(n), and let R′
n be the number of points of Ps(n) with degree at most k
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in G(Ps(n), φn) but with degree at least k + 1 in G(Pt(n), φn). If Ps(n) ⊂ Xn ⊂ Pt(n),
then Sn ≤ S ′

n and Rn ≤ R′
n. Hence by Markov’s inequality,

P[D≤k(G(Xn, φn)) 6= D≤k(G(Ps(n), φn))] ≤ P[{Zs(n) ≤ n ≤ Zt(n)}c] + ES ′
n + ER′

n.

Now

ES ′
n = 2n3/4

k
∑

i=0

∫

X

(s(n)
∫

φn(x, y)µ(dy))
i

i!
exp

(

−s(n)
∫

φn(x, y)dy

)

µ(dx)

=

(

2n3/4

s(n)

)

ED≤k(G(Ps(n), φn)),

which tends to zero by (5.10) and (5.11). Also

ER′
n ≤ s(n)

k
∑

i=0

∫

(s(n)
∫

φn(x, y)µ(dy))
i

i!

× exp

(

−s(n)
∫

φn(x, y)µ(dy)

){

2n3/4

∫

φn(x, y)µ(dy)

}

µ(dx)

≤ 2n3/4anED≤k(Ps(n), φn),
which tends to zero by (5.2), (5.10) and (5.11).

Therefore with high probability we have D≤k(G(Xn, φn)) = D≤k(G(Ps(n), φn)).
This holds both for k = j, and for k = j − 1. Hence using the first part of (2.1) and
the first part of (2.2) we obtain the second part of (2.1) and of (2.2).

6 Proof of Theorems 2.2 and 2.3

Given φ ∈ Φ, given k, ℓ ∈ N, and given x = (x1 . . . , xk) ∈ X
k and y = (y1, . . . , yℓ) ∈

X
ℓ, set

φ(x,y) := 1−
k
∏

i=1

ℓ
∏

j=1

(1− φ(xi, yj)). (6.1)

We also write φ({x1, . . . , xk}, {y1, . . . , yℓ}) for φ(x,y) (allowing multiplicities in the
sets {x1, . . . , xk} and {y1, . . . , yℓ}); it is the probability that there is at least one edge
in the random graphG({x1, . . . , xk, y1, . . . , yℓ}, φ) connecting one of the vertices xi to
one of the vertices yj. If k = 1 we write φ(x1, {y1, . . . , yℓ}) for φ({x1}, {y1, . . . , yℓ}).
Also, let hφ(x) or hφ(x1, . . . , xk) denote the probability that G({x1, . . . , xk};φ) is
connected; more precisely, let hφ(x) := 1 if k = 1 and otherwise let

hφ(x1, . . . , xk) :=
∑

Γ

∏

{{i,j}:{i,j}∈E(Γ)}

φ(xi, xj)
∏

{{i,j}:i,j /∈E(Γ)}

(1− φ(xi, xj)), (6.2)
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where the sum is over all connected graphs Γ on vertex set {1, . . . , k}, and E(G)
denotes the set of edges of a graph G. By the Mecke formula (3.5), and the equality
in distribution of G(Ps, φ) and Gφ(ηs) as discussed in Section 4,

ENk(G(Ps, φ)) = ENk(Gφ(ηs))

=
sk

k!

∫

Xk

hφ(x1, . . . , xk) exp

(

−s
∫

φ(z; {x1, . . . , xk})µ(dz)
)

µk(d(x1, . . . , xk)). (6.3)

Now fix k ∈ N and α ∈ (0,∞). Assume throughout this section that φs ∈ Φ for
s > 0, and (unless explicitly stated otherwise) that

lim
s→∞

ENk(G(Ps, φs)) = α. (6.4)

Proof of Theorem 2.2 (a). Assume that φs = o(1/ log s). We shall use the
method of moments.

For n, ℓ ∈ N we write (n)ℓ for the descending factorial n(n − 1) · · · (n − ℓ + 1).
Then (Nk(G(Ps, φs)))ℓ is the number of ordered ℓ-tuples of distinct k-components of
G(Ps, φs). This equals the sum over all ordered kℓ-tuples x1,1, . . . , x1,k, . . . , xℓ,1, . . . , xℓ,k
of distinct points of Ps, of the indicator of the event that for each i ≤ ℓ the sub-
graph of G(Ps, φs) induced by xi,1 . . . , xi,k is connected and these vertices are not
connected to any other vertices of G(Ps, φs), divided by (k!)ℓ. Hence by the Mecke
formula,

E [(Nk(G(Ps, φs)))ℓ] =
skℓ

(k!)ℓ

∫

Xkℓ

(

ℓ
∏

i=1

hφs(xi,1, . . . , xi,k)

)

us(x1,1 . . . , xℓ,k)

× exp

(

−s
∫

φs(z, {x1,1, . . . , xℓ,k})µ(dz)
)

µkℓ(d(x1,1, . . . , xℓ,k)), (6.5)

where we set us({x1,1, . . . , xℓ,k}) to be the probability that the graphG({x1,1, . . . , xℓ,k}, φs)
has no edge between any xi,j and xi′,j′ such that i 6= i′, that is,

us(x1,1 . . . , xℓ,k) :=
∏

(i1,j1),(i2,j2)∈[ℓ]×[k]:i1<i2

(1− φs(xi1,j1, xi2,j2)). (6.6)

By our condition on φs the value of us(x1,1, . . . , xℓ,k) tends to 1, uniformly over
(x1,1, . . . , xℓ,k). Also, by the union bound φs(z, {x1,1, . . . , xℓ,k}) is bounded by
∑ℓ

i=1 φs(z, {xi,1, . . . , xi,k}). Therefore by (6.5), writing just Nk for Nk(G(Ps, φs)),
we have

E [(Nk)ℓ] ≥ (1 + o(1))

(

sk

k!

∫

Xk

hφs(x1, . . . , xk)

× exp

(

−s
∫

φs(z, {x1, . . . , xk})µ(dz)
)

µk(d(x1, . . . , xk))

)ℓ

.
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By (6.4) and (6.3), this lower bound for E [(Nk)ℓ] tends to α
ℓ as s→ ∞.

By the Bonferroni bound and the union bound we have for (z, x1,1, . . . , xℓ,k) ∈
X

1+ℓk that

φs(z, {x1,1, . . . , xℓ,k}) ≥
ℓ
∑

i=1

φs(z, {xi,1, . . . , xi,k})
(

1−
ℓ
∑

j=i+1

φs(z, {xj,1, . . . , xj,k})
)

≥
ℓ
∑

i=1

φs(z, {xi,1, . . . , xi,k})(1− kℓφs). (6.7)

Therefore by (6.5),

E [(Nk)ℓ] ≤
skℓ

(k!)ℓ

∫

Xkℓ

(

ℓ
∏

i=1

hφs(xi,1, . . . , xi,k)

)

× exp

(

−s
ℓ
∑

i=1

∫

φs(z, {xi,1, . . . , xi,k})(1− kℓφs)µ(dz)

)

µkℓ(d(x1,1, . . . , xℓ,k))

=

(

sk

k!

∫

Xk

hφs(x1, . . . , xk)

× exp

(

−s
∫

φs(z, {x1, . . . , xk})(1− kℓφs)µ(dz)

)

µk(d(x1, . . . , xk))

)ℓ

.

Since µ is a probability measure and x1−kℓφs is a concave function on x ≥ 0, we
obtain by Jensen’s inequality and the fact that hφs(·)1/(1−kℓφs) ≤ hφs(·) that

E [(Nk)ℓ] ≤
sk

2ℓ2φs

k!ℓ2kφs

(

sk

k!

∫

hφs(x1, . . . , xk)

× exp

(

−s
∫

φs(z, {x1, . . . , xk})µ(dz)
)

µk(d(x1, . . . , xk))

)ℓ(1−kℓφs)

which tends to αℓ by (6.3), (6.4) and our assumption on φs. Thus E [(Nk)ℓ] → αℓ,
so by the method of moments (see e.g. Theorem 1.22 of [3]) the result (i) follows.

Proof of Theorem 2.2 (b). Assume now that φs = o(s−1/2). Again we use the
method of moments. Write n for ⌊s⌋, and set N ′

k = Nk(G(Xn, φn)). Then by (6.6)
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and the union bound,

E [(N ′
k)ℓ] =

(n)kℓ
k!ℓ

∫

· · ·
∫

(

ℓ
∏

i=1

hφn(xi,1, . . . xi,k)

)

un({xi,1, . . . , xℓ,k})

×
(

1−
∫

φn(z; {x1,1, . . . , xℓ,k})µ(dz)
)n−kℓ

µ(dx1,1) · · ·µ(dxℓ,k)

≥ (1 + o(1))

(

nk

k!

)ℓ ∫

· · ·
∫

(

ℓ
∏

i=1

hφn(xi,1, . . . xi,k)

)

×
(

1−
ℓ
∑

i=1

∫

φn(z, {xi,1, . . . , xi,k})µ(dz)
)n

µ(dx1,1) · · ·µ(dxℓ,k).

Using the bound 1−x ≥ exp(−x−x2) for small positive x, we have for large n that

E [(N ′
k)ℓ] ≥ (1 + o(1))

(

nk

k!

)ℓ ∫

· · ·
∫

(

ℓ
∏

i=1

hφn(xi,1, . . . xi,k)

)

× exp

(

−n
(

ℓ
∑

i=1

∫

φn(z, {xi,1, . . . , xi,k})µ(dz)
)

− n

(

ℓ
∑

i=1

k
∑

j=1

∫

φn(z, xi,j)µ(dz)

)2


µ(dx1,1) · · ·µ(dxℓ,k),

so that

E [(N ′
k)ℓ] ≥ (1 + o(1))

(

nk

k!

∫

hφn(x1, . . . xk)

× exp

(

−n
∫

φn(z, {x1, . . . , xk})µ(dz)
)

µk(d(x1, . . . , dxk))

)ℓ

× exp(−nk2ℓ2φ2

n)

which tends to αℓ by (6.3), (6.4), and the assumption that φn = o(n−1/2).
Conversely, by the bound ex ≥ 1 + x for all x ∈ R, we also have

E [(N ′
k)ℓ] ≤

(

nk

k!

)ℓ ∫

· · ·
∫

(

ℓ
∏

i=1

hφn(xi,1, . . . xi,k)

)

× exp

(

−(n− ℓk)

∫

φn(z; {x1,1, . . . , xℓ,k})µ(dz)
)

µ(dx1,1) · · ·µ(dxℓ,k)
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and using the Bonferroni bound as in (6.7), we obtain that

E [(N ′
k)ℓ] ≤ ek

2ℓ2φn

(

nk

k!

)ℓ ∫

· · ·
∫

(

ℓ
∏

i=1

hφn(xi,1, . . . xi,k)

)

× exp

(

−n
ℓ
∑

i=1

∫

φn(z; {xi,1, . . . , xi,k})(1− kℓφn)µ(dz)

)

µ(dx1,1) · · ·µ(dxℓ,k).

By Jensen’s inequality, since x1−kℓφn is a concave function on x ≥ 0 and hφn(·) ≤ 1,
we have

E [(N ′
k)ℓ] ≤ ek

2ℓ2φnnk
2ℓ2φn

(

1

k!

)ℓ(

nk
∫

· · ·
∫

hφn(x1, . . . xk)

× exp

(

−n
∫

φn(z; {x1, . . . , xk})µ(dz)
)

µ(dx1) · · ·µ(dxk)
)ℓ(1−kℓφn)

.

Hence, since our assumption φn = o(n−1/2) implies that φn = o(1/(logn)), we have
lim supE [(N ′

k)ℓ] ≤ αℓ. Therefore E [(N ′
k)ℓ] → αℓ, and the method of moments gives

us part (ii).

Lemma 6.1. Let k ∈ N, ε > 0 and φs ∈ Φε for all s > 0. Set κs := κ(φs) =
supx∈X

∫

φs(x, y)µ(dy). Then

ENk(G(Ps, φs)) = Θ(skκk−1
s ) exp(−Θ(sκs)). (6.8)

Proof. Our starting point is (6.3). We first bound the exponent in the exponential
factor. Let z, x1, . . . , xk ∈ X and s > 0. Then by the union bound,

φs(z, x1) ≤ φs(z, {x1, . . . , xk}) ≤
k
∑

i=1

φs(z, xi),

so integrating over z and using the assumed ε-homogeneity, we have

εκs ≤
∫

X

φs(z, {x1, . . . , xk})µ(dz) ≤ kκs. (6.9)

Using (6.3), this already proves the result for k = 1, so from now on assume k ≥ 2.
If xi−1 is connected to xi for 2 ≤ i ≤ k, then G({x1, . . . , xk};φs) is connected;

hence hφs(x1, . . . , xk) ≥
∏k

i=2 φs(xi−1, xi), so using (6.3) and (6.9) we obtain that

ENk(G(Ps, φs)) ≥ sk

k!
exp(−ksκs)

∫

X

· · ·
∫

X

k
∏

i=2

φs(xi−1, xi)µ(dxk) · · ·µ(dx1)

≥ εk−1κk−1
s sk

k!
exp(−ksκs). (6.10)
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For an upper bound, observe that if G({x1, . . . , xk};φs) is connected, then there
exists a permutation σ of {1, . . . , k} with σ(1) = 1 such that for 2 ≤ i ≤ k this
graph has an edge from xσ(i) to {xσ(1), . . . , xσ(i−1)}. Therefore, setting

h∗φs(x1, . . . , xk) :=

k
∏

i=2

φs(xi, {x1, . . . , xi−1}) ≤
k
∏

i=2

i−1
∑

j=1

φs(xi, xj), (6.11)

we have by the union bound that hφs(x1, . . . , xk) ≤ ∑

σ h
∗
φs
(xσ(1), . . . , xσ(k)) where

the sum is over all such permutations. Hence using (6.3) and (6.9), setting yj = xσ(j)
and taking the integrals in order yk, . . . , y1 for each permutation σ, we have

ENk(G(Ps, φs)) ≤
sk(k − 1)!

k!
exp(−εsκs)

∫

X

· · ·
∫

X

h∗φs(y1, . . . , yk)µ(dyk) · · ·µ(dy1),

and then using the inequality in (6.11) we have

ENk(G(Ps, φs)) ≤ sk(k − 1)! exp(−εsκs)κk−1
s .

Combined with (6.10) this gives us (6.8).

Proof of Theorem 2.3. Assume there exists ε > 0 such that φs ∈ Φε and φs ≤ 1−ε
for all s. Set κs := κ(φs). If sκs remains bounded away from zero and infinity, then
by (6.8) we have that ENk(G(Ps, φs)) → ∞, contradicting (6.4). Hence for any
sequence of values of s tending to infinity, there is a subsequence such that either
sκs → 0 or sκs → ∞ as s→ ∞ along the subsequence.

Consider first the case with sκs → 0. In this case, by (6.8) and (6.4) we have
k ≥ 2 and skκk−1

s = Θ(1). Recalling that Hk(G) denotes the number of connected
induced subgraphs of a graph G of order k, we have

EHk+1(G(Ps, φs)) = O(sk+1κks) = o(1).

Since 0 ≤ Hk(G(Ps, φs))−Nk(G(Ps, φs)) ≤ (k + 1)Hk+1(G(Ps, φs)), we have

E [Hk(G(Ps, φs))−Nk(G(Ps, φs))] → 0,

so by (6.4) we have that EHk(G(Ps, φs)) → α. Hence by Theorem 2.4 (a) we have

Hk(G(Ps, φs)) D−→ Zα. By Markov’s inequality P[Hk(G(Ps, φs))− Nk(G(Ps, φs)) ≥
1] → 0, so we also have Nk(G(Ps, φs)) D−→ Zα, which is the first part of (2.5).

Suppose now that sκs → ∞. Then by (6.8) and (6.4), one may readily deduce
that

sκs = Θ(log s). (6.12)
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We seek to apply Theorem 3.1. For s > 0, let ηs, Ps, Zs, τ, τ1, τ2, . . . be as in
Section 4. Let f̃s be the function f̃ considered in Lemma 4.2, using the connection
function φ ≡ φs. That is, let f̃s(x1, t1, . . . , xk, tk, ξ) be the indicator of the statement
that {x1, . . . , xk} induces a component of Gφs

(

∪ki=1{(xi, ti)} ∪ ξ
)

. Then with F̃s
denoting the function F obtained by taking f ≡ f̃s in the definition (3.2), we have
that F̃s(ηs) = Nk(Gφs(ηs)) which has the same distribution as Nk(G(Ps, φs)).

For x = (x1, . . . , xk) ∈ X
k, set X = {x1, . . . , xk} (allowing multiplicities). Define

the graph

G̃s := Gφs(ηs ∪ {(x1, τ1), . . . , (xk, τk)}). (6.13)

Let Ps,x be the set of points of Ps connected to at least one point of X in G̃s and
let Px

s = Ps \ Ps,x.
The subgraph of G̃s induced by vertex set Ps has the same distribution as

G(Ps, φs), and we shall refer to this subgraph as G′(Ps, φs). Likewise, we refer
to the subgraph of G̃s induced by vertex set Px

s as G′(Px

s , φs), and we refer to the
subgraph of G̃s induced by vertex set X as G′(X , φs).

Let U
x
= Nk(G

′(Ps, φs)). This has the same distribution as F̃s(ηs).
Let V

x
= Nk(G

′(Px

s , φs)). We claim that this has the same distribution as
conditional distribution of F̃s(∪ki=1{(xi, τi)}∪ηs)−1 given that f̃s(∪ki=1{(xi, τi)}, ηs) =
1. This is because by the Marking Theorem for Poisson processes (see e.g. [14]), the
point processes Ps,x and Px

s are independent and the statement that G̃s has X as the
vertex set of a component is equivalent to the statement that (i) Ps,x has no points
and (ii) the graph G′(X , φs) is connected, which is independent of the outcome of
G′(Px

s , φs).
Also, U

x
− V

x
= U ′

x
− V ′

x
, where U ′

x
denotes the number of k-components of

G′(Ps, φs) with at least one vertex in Ps,x, and V ′
x
is the number of k-components

of G′(Px

s , φs) with at least one neighbour in Ps,x.
By the Mecke formula

EU ′
x
=
sk

k!

∫

Xk

φs(x,y)hφs(y) exp

(

−s
∫

φs(z,y)µ(dz)

)

µk(dy),

where φs(x,y) is given by (6.1). Since we can choose the elements y1 . . . , yk of y
in an order such that y1 is connected to X and for each j ≥ 2, yj is connected to
{y1, . . . , yj−1}, by a similar argument to the proof of Lemma 6.1 we have

EU ′
x
= O(skκks)× exp (−Θ(sκs)) , (6.14)

which tends to zero (uniformly over x).
Now V ′

x
is bounded by the number of pairs (y, z) with y ∈ Ps,x and z =

(z1, . . . , zk) with {z1, . . . , zk} inducing a k-component of G′(Px

s , φn) and z connected
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to y. Hence by the Mecke equation,

EV ′
x

≤ sk+1

∫

X

∫

Xk

φs(y,x)φs(y, z)(1− φs(x, z))hφs(z)

× exp

(

−s
∫

φs(w, z)(1− φs(w,x))µ(dw)

)

µk(dz)µ(dy)

= O((sκs)
k+1) exp(−Θ(sκs)), (6.15)

which tends to zero, uniformly over x; here we have used the assumption that
φs ≤ 1 − ε, so that 1 − φs(w,x) ≥ εk, for all s, w, x. Therefore E [|U

x
− V

x
|] =

E [|U ′
x
− V ′

x
|] → 0, uniformly over x ∈ X

k. Then we can use Theorem 3.1 to get the
first part of (2.5).

Before completing the proof of part (a) of Theorem 2.3, we prove part (b), so
now instead of (6.4) we assume αs := ENk(G(Ps, φs)) → ∞, but αs = o(s). Then
by (6.8), for every sequence of values of s tending to infinity, there is a subsequence
such that either sκs → ∞ or k ≥ 2 and sκs → 0 as s→ ∞ along the subsequence.

In both cases, the estimates (6.14) and (6.15) hold so by Theorem 3.1 we have

dTV (L(Nk(G(Ps, φs))),L(Zαs
)) → 0. Since also (Zαs

− αs)/
√
αs

D−→ N , it fol-

lows that (Nk(G(Ps, φs)) − αs)/
√
αs

D−→ N . That is, for every sequence of val-
ues of s tending to infinity, there exists a subsequence such that (Nk(G(Ps, φs)) −
αs)/

√
αs

D−→ N as s→ ∞ along the subsequence. Hence (Nk(G(Ps, φs))−αs)/
√
αs

converges in distribution to N as s→ ∞. This completes the proof of part (b).
Now we return to part (a), so we go back to assuming (6.4). As in the cor-

responding part of the proof of Theorem 2.1, for n ∈ N set s(n) = n − n3/4 and
t(n) = n + n3/4. Then Ps(n) ⊂ Xn ⊂ Pt(n) with high probability, and also the point
process Pt(n) \ Ps(n) is a Poisson point process with mean measure 2n3/4µ(·), inde-
pendent of Ps(n). By (6.12), n3/4

∫

φn(y, x)µ(dy) = o(1), uniformly over x ∈ X, and
therefore by (6.4) the sequence (φn)n∈N satisfies

s(n)k

k!

∫

Xk

exp

(

−s(n)
∫

X

φn(z,x)µ(dz)

)

hφn(x)µ
k(dx) → α. (6.16)

For n, ℓ ∈ N with 1 ≤ ℓ ≤ k, let An,ℓ be the event that at least one collection of
ℓ of the added vertices of Xn \ Ps(n) lies in a k-component of G(Xn, φn). Let Bn be
the event that at least one of the added vertices of Pt(n) \ Ps(n) is connected to one
of the k-components of G(Ps(n), φn).

If An,ℓ occurs and Ps(n) ⊂ Xn ⊂ Pt(n), then there is at least one pair (X ,Y),
such that X ⊂ Ps(n) has k − ℓ elements, and Y ⊂ Pt(n) \ Ps(n) has ℓ elements, and
X ∪ Y induces a connected subgraph of G(Pt(n), φn), and there is no connection
between any vertex of X ∪Y and any vertex of Ps(n) \X (however, we do allow other
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connections between vertices of X ∪ Y and other vertices of Pt(n) \ Ps(n)). By the
Mecke equation, the expected number of such pairs equals

(2n3/4)ℓ

ℓ!

∫

(s(n))k−ℓ

(k − ℓ)!

∫

hφn(x1, . . . , xk−ℓ, y1, . . . , yℓ)

× exp

(

−s(n)
∫

φn(z, {x1, . . . , xk−ℓ, y1, . . . , yℓ})µ(dz)
)

µk−ℓ(d(x1, . . . , xk−ℓ))µ
ℓ(d(y1, . . . , yℓ)),

which tends to zero by (6.16), so P[An,ℓ] → 0. Also, the expected number of k-
components in G(Ps(n), φn) which are connected to at least one vertex of Pt(n) \Ps(n)
is at most

(s(n))k

k!

∫

exp

(

−s(n)
∫

φn(z,x)µ(dz)

)

hφn(x)2n
3/4kanµ

k(dx),

and by (6.16) and (6.12) this tends to zero. Hence P[Bn] → 0. By the first part of

(2.5) we have for k ∈ N that Nk(G(Ps(n), φn)) D−→ Zα. Also

P[Nk(G(Xn, φn)) 6= Nk(G(Ps(n), φn))] ≤ P[∪kℓ=1An,ℓ]+P[Bn]+P[{Zs(n) ≤ n ≤ Zt(n)}c],
which tends to 0, and the second part of (2.5) follows.

7 Number of edges

For any graph G, according to our earlier notation H2(G) denotes the number of
edges of G. Let φ ∈ Φ. Then by the Mecke formula (3.5),

EH2(G(Ps, φ)) = EH2(Gφ(ηs)) =
1

2

∫

X

∫

X

φ(x, y)s2µ(dx)µ(dy). (7.1)

Theorem 7.1. Suppose φ ∈ Φ. Set α := EH2(G(Ps, φ)). Then

dTV (H2(G(Ps, φ)), Zα) ≤ (1 ∧ α−1)

∫
(
∫

φ(x, y)sµ(dy)

)2

sµ(dx). (7.2)

Proof. We shall use Theorem 3.1. Given x, y ∈ X with φ(x, y) > 0, set G̃s =
Gφ(ηs ∪ {(x, τ1), (y, τ2)}). Let G′(Ps, φ) denote the subgraph of G̃s induced by the
vertex set Ps, which has the same distribution as G(Ps, φ).

Set Ux,y = H2(G
′(Ps, φ)) and Vx,y = H2(G̃s) − 1{{x, y} ∈ E(G̃s)}, where E(G)

denotes the set of edges of a graph G. Then Vx,y has the conditional distribution of
H2(G̃s)− 1 given that {x, y} ∈ E(G̃s). Also Vx,y ≥ Ux,y and

E [Vx,y − Ux,y] =

∫

X

(φ(x, z) + φ(y, z))sµ(dz) =: w(x, y).
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Hence by Theorem 3.1 the left hand side of (7.2) is bounded by the expression

(1/2)(1 ∧ α−1)

∫ ∫

w(x, y)φ(x, y)s2µ(dx)µ(dy)

= (1 ∧ α−1)

∫
(
∫

φ(x, y)sµ(dy)

)2

sµ(dx),

as required.

For example, consider the geometric setting with µ having bounded, almost
everywhere continuous density f with respect to Lebesgue measure on R

d. Sup-
pose φs(x, y) = φ(r−1

s (x − y)) for some fixed integrable, symmetric and almost
everywhere continuous φ, and rs > 0 satisfying s2rds → β for some β > 0. Set
αs := EH2(G(Ps, φs)). Then by (7.1),

αs →
β

2

(
∫

φ(z)dz

)
∫

f(x)2dx =: α.

By (7.2) we have dTV (L(H2(G(Ps, φs))),L(Zαs
)) = O(s3r2ds ) = O(s−1).

In particular H2(G(Ps, φs)) D−→ Zα. This could possibly also be proved by de-
riving a Poisson limit for H2(G(Xn, φn)) by adapting the argument in [19, Theorem
3.4] to the RCM, and Poissonizing. However, the Poissonization would seem to
introduce an error of at least s−1/2 in the total variation distance, so the rate of
convergence would not be as good.

Proof of Theorem 2.4. Let k ∈ N with k ≥ 2. Let ε > 0 and assume φs ∈ Φε for
all s > 0. Set Gs := G(Ps, φs). Set κs = supx∈X

∫

φs(x, y)µ(dy). Then with hφ(·)
defined at (6.2), by (3.5) we have

EHk(Gs) =
1

k!

∫

skhφs(x1, . . . , xk)µ
k(d(x1, . . . , xk)) = Θ(skκk−1

s ), (7.3)

where the second relation is obtained similarly to the proof of Lemma 6.1, using the
fact that for each connected graph Γ on {1, . . . , k} we can integrate the variables
x1, . . . , xk in an order (xσ(1), . . . , xσ(k)) such that for 2 ≤ i ≤ k each successive σ(i)
is connected in Γ to one or more of σ(1), . . . , σ(i− 1). Then each successive integral
gives another factor of Θ(κs).

Let x = (x1, . . . , xk) ∈ X
k, with x1, . . . , xk distinct and with hφs(x1, . . . , xk) > 0.

Let G̃s be the graph defined by (6.13), but now conditioned on the subgraph induced
by {x1, . . . , xk} being connected. Denote by G′(Ps, φs) the subgraph of G̃s induced
by Ps. Set Ux

= Hk(G
′(Ps, φs)) and Vx = Hk(G̃s)− 1. Then U

x
has the distribution
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of Hk(Gs) and 1+V
x
has the conditional distribution of Hk(G(Ps∪{x1, . . . , xk}, φs))

given that {x1, . . . , xk} induces a connected subgraph of this graph.
Now V

x
≥ U

x
and we assert that

E [V
x
− U

x
] = O

(

k−1
∑

j=1

(sjκjs)

)

, (7.4)

uniformly over x ∈ X
k. To see this, observe that V

x
− U

x
is the number of pairs

(X ,Y) with X a non-empty subset of {x1, . . . , xk} and Y a non-empty subset of Ps,
such that the subgraph of G̃s induced by vertex set X ∪ Y is a connected graph of
order k (to ease notation we ignore the issue of multiplicities in this notation). But
then, similarly to the proof of Lemma 6.1, we can take the successive elements yi of
Y in an order such that each of them is connected to at least one existing vertex from
X ∪ {y1, . . . , yi−1}. Then each successive integral gives another factor of O(sκs).

For part (a), assume EHk(Gs) → α ∈ (0,∞). Then by (7.3) and (7.4) we have

E |V
x
− U

x
| = o(1), uniformly over x ∈ X

k. Hence by Theorem 3.1, Hk(Gs)
D−→ Zα,

which is part (i).
For part (b), set αs = EHk(Gs), and assume αs → ∞ but αs = o(s). Then by

(7.3), the assumption αs = o(s) implies that (recalling k ≥ 2) we have sκs → 0.
Then by (7.4) and Theorem 3.1, we have that dTV (L(Hk(Gs)),L(Zαs

)) → 0. Since

also (Zαs
− αs)/

√
αs

D−→ N , we therefore have (Hk(Gs)− αs)/
√
αs

D−→ N .

8 U-statistics of a Poisson process

Let k ∈ N, and let Sk(X) := {ξ ∈ S(X) : |ξ| = k}. Let h : Sk(X) → {0, 1} be
measurable. For ξ ∈ S(X) set

F (ξ) =
∑

ψ⊂ξ:|ψ|=k

h(ψ).

Let s > 0, and let η be a Poisson process on X with mean measure λ := sµ. We seek
to apply Theorem 3.1 to W := F (η) for this class of choices of F , called U -statistics
of the Poisson process η. Assume µ is diffuse; once again, this assumption is for
notational convenience only.

For x = (x1, . . . , xk) ∈ X
k with h({x1, . . . , xk}) = 1, set U

x
= F (η), and

V
x
= F

(

∪ki=1{xi} ∪ η
)

− 1.

Clearly V
x
and U

x
have the required distributional properties in the statement of

Theorem 3.1. Also V
x
≥ U

x
, and

|V
x
− U

x
| =

∑

J⊂[k]:1≤|J |<k

∑

ψ⊂η:|ψ|=k−|J |

h (ψ ∪ {xi : i ∈ J}) ,
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so using the Mecke formula and integrating over x we obtain that

∫

(E |V
x
− U

x
|)h(x)λk(dx) =

k−1
∑

ℓ=1

1

(k − ℓ)!

(

k

ℓ

)
∫ ∫

h({x1, . . . , xℓ, y1, . . . , yk−ℓ})

×λk−ℓ(d(y1, . . . , yk−ℓ))h({x1, . . . , xk})λk(dx)

=
k−1
∑

ℓ=1

k!

ℓ!(k − ℓ)!2

∫
(
∫

h({x1, . . . , xℓ, y1, . . . , yk−ℓ})λk−ℓ(d(y1, . . . , yk−ℓ))
)2

×λℓ(d(x1, . . . , xℓ))
=: γ(h, λ).

By Theorem 3.1, if EF (η) = α, then dTV (L(F (η)),L(Zα)) ≤ (1 ∧ α−1)γ(h, λ)/k!.
Also dW (L(F (η)),L(Zα)) ≤ 3(1 ∧ α−1/2)γ(h, λ)/k!. This bound is comparable to
the one obtained in Theorem 7.1 of [5]. Our bound has an extra factor 1 ∧ α−1/2 in
front, which may make it better when α is large. Also, unlike [5] we do not make
any topological assumptions on the measurable space X. As remarked just after the
statement of Theorem 3.1, it is possible to extend that result to the case where the
measure λ is σ-finite, and hence to extend the above argument likewise, but we do
not go into details here.

Acknowledgements. We thank the anonymous referees for some valuable com-
ments on a previous version of this paper.

Part of this work was done while attending the programme Theoretical Founda-
tions for Statistical Network Analysis at the Isaac Newton Institute for Mathematical
Sciences, Cambridge (EPSRC Grant Number EP/K032208/1).

References

[1] Barbour, A., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford
Studies in Probability 2, Oxford University Press, Oxford.

[2] Bhamidi, S., van der Hofstad, R., and van Leeuwaarden, J. S. H. (2012). Novel
scaling limits for critical inhomogeneous random graphs. Ann. Probab. 40, 2299-
2361.

[3] Bollobás, B. (2001). Random Graphs. Second edition. Cambridge Studies in Ad-
vanced Mathematics, 73. Cambridge University Press, Cambridge, 2001.

[4] Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inho-
mogeneous random graphs. Random Structures Algorithms 31, 3-122.

29



[5] Decreusefond, L., Schulte, M. and Thäle C. (2016). Functional Poisson approxi-
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