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Abstract. It is well known and readily seen that the maximum of n inde-

pendent and uniformly on [0, 1] distributed random variables, suitably stan-

dardised, converges in total variation distance, as n increases, to the standard

negative exponential distribution. We extend this result to higher dimensions

by considering copulas. We show that the strong convergence result holds for

copulas that are in a differential neighbourhood of a multivariate generalized

Pareto copula. Sklar’s theorem then implies convergence in variational dis-

tance of the maximum of n independent and identically distributed random

vectors with arbitrary common distribution function and (under conditions on

the marginals) of its appropriately normalised version. We illustrate how these

convergence results can be exploited to establish the almost-sure consistency

of some estimation procedures for max-stable models, using sample maxima.
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1. Introduction

Let U be a random variable (rv), which follows the uniform distribution on [0, 1],

i.e.,

(1) P (U ≤ u) =


0, u < 0

u, u ∈ [0, 1]

1, u > 1

=: V (u).

Let U (1), U (2), . . . be independent and identically distributed (iid) copies of U .

Then, clearly, we have for x ≤ 0 and large n ∈ N (natural set),

P

(
n

(
max
1≤i≤n

U (i) − 1

)
≤ x

)
= P

(
Ui ≤ 1 +

x

n
, 1 ≤ i ≤ n

)
= V n

(
1 +

x

n

)
=
(

1 +
x

n

)n
→n→∞ G(x),(2)

where

(3) G(x) =


exp(x), x ≤ 0

1, x > 0

is the distribution function (df) of the standard negative exponential distribution.

Thus, we have established convergence in distribution of the suitably normalised

sample maixmum, i.e.

(4) n
(
M (n) − 1

)
→D η,

where M (n) := max1≤i≤n U
(i), n ∈ N, the arrow “→D” denotes convergence in

distribution, and the rv η has df G in (3).
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Note that, with v(x) := V ′(x) = 1, if x ∈ [0, 1], and zero elsewhere, we have

vn(x) :=
∂

∂x

(
V n
(

1 +
x

n

))
= V n−1

(
1 +

x

n

)
v
(

1 +
x

n

)

→n→∞ g(x) := G′(x) =


exp(x), x ≤ 0

0, x > 0

,

i.e., we have pointwise convergence of the sequence of densities of normalised max-

imum n
(
M (n) − 1

)
, n ∈ N, to that of η. Scheffé’s lemma, see, e.g. Reiss (1989,

Lemma 3.3.3) now implies convergence in total variation:

(5) sup
A∈B

∣∣∣P (n(M (n) − 1
)
∈ A

)
− P (η ∈ A)

∣∣∣→n→∞ 0,

where B denotes the Borel-σ-field in R.

Let now X be a rv with arbitrary df F and F−1(q) := {t ∈ R : F (t) ≥ q} with

q ∈ (0, 1) be the usual quantile function or generalized inverse of F . Then, we can

assume the representation

X = F−1(U).

Let X(1), X(2), . . . be independent copies of X. Again we can consider the repre-

sentation

X(i) = F−1
(
U (i)

)
, i = 1, 2, . . .

The fact that each quantile function is a nondecreasing function yields

max
1≤i≤n

X(i) = max
1≤i≤n

F−1
(
U (i)

)
= F−1

(
max
1≤i≤n

U (i)

)
= F−1

(
1 +

1

n

(
n

(
max
1≤i≤n

U (i) − 1

)))
.

The strong convergence in equation (5) now implies the following convergence in

total variation:

(6) sup
A∈B

∣∣∣∣P ( max
1≤i≤n

X(i) ∈ A
)
− P

(
F−1

(
1 +

1

n
η

)
∈ A

)∣∣∣∣→n→∞ 0.
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Finally, assume that F is a continuous df with density f = F ′. We denote the

right endpoint of F by x0 := sup{x ∈ R : F (x) < 1}. Assume also that F ∈ D(G∗γ),

i.e. F belongs to the domain of attraction of a generalised extreme-value df G∗γ ,

e.g. Falk et al. (2019, p. 21). This means, for n ∈ N, there are norming constants

an > 0 and bn ∈ R such that

(7) Fn(anx+ bn)→n→∞ exp
(
−(1 + γx)

−1/γ
+

)
=: G∗γ(x),

for all x ∈ R, where (x)+ = max(0, x) and γ ∈ R is the so-called tail index. Such

a coefficient describes the heaviness of the upper tail of the probability density

function corresponding to G∗γ , see Falk et al. (2019, for details). Furthermore, in

this general case, we also have the pointwise convergence at the density level, i.e.

f (n)(x) :=
∂

∂x
Fn(anx+ bn)→n→∞

∂

∂x
G∗γ(x) =: g∗γ(x)(8)

for all x ∈ R, if and only if

lim
x→∞

xf(x)

1− F (x)
= 1/γ, if γ > 0(9)

lim
x↑x0

(x0 − x)f(x)

1− F (x)
= −1/γ, if γ < 0(10)

lim
x↑x0

f(x)

(1− F (x))2

∫ x0

0

1− F (t)dt = 1, if γ = 0,(11)

see e.g. Proposition 2.5 in Resnick (2008). In particular, if (8) holds true, Scheffé’s

lemma entails that

(12) sup
A∈B

∣∣∣∣P (a−1n (
max
1≤i≤n

X(i) − bn
)
∈ A

)
− P (Y ∈ A)

∣∣∣∣→n→∞ 0,

where Y is a rv with distribution G∗γ and X(i), i = 1, . . . , n are independent copies

of a rv X with distribution F , with F ∈ D(G∗γ).

In this paper we extend the results in (5), (6) and (12) to higher dimensions.

First, in Section 2, we consider copulas. In Theorem 2.4, we demonstrate that the

strong convergence result holds for copulas that are in a differential neighbourhood

of a multivariate generalized Pareto copula (Falk et al., 2019; Falk, 2019). As a
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result of this, we also establish strong convergence of the copula of the maximum of

n iid random vectors with arbitrary common df to the limiting extreme-value copula

(Corollary 2.7). Sklar’s theorem is then used in Section 3 to derive convergence in

variational distance of the maximum of n iid random vectors with arbitrary common

df and, under restrictions (9)-(11) on the margins, of its normalised versions. These

results address some still open problems in the literature on multivariate extremes.

Strong convergence for extremal order statistics of univariate iid rv has been well

investigated; see, e.g. Section 5.1 in Reiss (1989) and the literature cited therein.

Strong convergence holds in particular under suitable von Mises type conditions

on the underlying df, see (9)-(12) for the univariate normalised maximum. Much

less is known in the multivariate setup. In this case, a possible approach is to

investigate a point process of exceedances over high thresholds and establish its

convergence to a Poisson process. This is done under suitable assumptions on

variational convergence for truncated point measures, see e.g. Theorem 7.1.4 in Falk

et al. (2011). It is proven in Kaufmann and Reiss (1993) that strong convergence

of such multivariate point processes holds if, and only if, strong convergence of

multivariate maxima occurs. Differently from that, we provide simple conditions

(namely (17) and (24)) under which strong convergence of multivariate maxima and

its normalised version actually holds. Furthermore, our strong convergence results

for sample maxima are valid for maxima with arbitrary dimensions, unlike those in

de Haan and Peng (1997), which are tailored to the two-dimensional case. Section

4 concludes the paper, by illustrating how effective our variational convergence

results are for statistical purposes. In particular, when the interest is on inferential

procedures for sample maxima whose df is in a neighborhood of some multivariate

max-stable model, we show that, e.g., our results can be used to establish almost-

sure consistency for the empirical copula estimator of the extreme-value copula.

Similar results can also be achieved within the Bayesian inferential approach.
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2. Strong Results for Copulas

Suppose that the random vector (rv) U = (U1, . . . , Ud) follows a copula, say C,

on Rd, i.e., each component Uj has df Vj given in formula (1). Let U (1),U (2), . . .

be independent copies of U and put for n ∈ N

(13) M (n) :=
(
M

(n)
1 , . . . ,M

(n)
d

)
:=

(
max
1≤i≤n

U
(i)
1 , . . . , max

1≤i≤n
U

(i)
d

)
.

In the sequel the operations involving vectors are meant componentwise, further-

more, we set 0 = (0, . . . , 0), 1 = (1 . . . , 1) and ∞ = (∞, . . . ,∞). Finally, hereafter,

we denote the copula of the random vector in (13) by Cn(u), u ∈ [0, 1]d.

Suppose that a convergence result analogous to (2) holds for the random vector

M (n) of componentwise maxima, i.e., suppose there exists a nondegenerate df G

on Rd such that for x = (x1, . . . , xd) ≤ 0 ∈ Rd

P
(
n
(
M (n) − 1

)
≤ x

)
= P

(
n
(
M

(n)
1 − 1

)
≤ x1, . . . , n

(
M

(n)
d − 1

)
≤ xd

)
→n→∞ G(x).(14)

Then, G is necessarily a multivariate max-stable or multivariate extreme-value df,

with extreme-value copula CG and standard negative exponential margins Gj , j =

1, . . . , d, see (3). In the sequel we refer to the df G in (14) as standard multivariate

max-stable df. Precisely, the form of G is

G(x) = CG(G1(x1), . . . , Gd(xd)),

where the copula CG can be expressed in terms of ‖·‖D, a D-norm on Rd, via

(15) CG(u) = exp (−‖log u1, . . . , log ud‖D) , u ∈ [0, 1]d,

while the margins Gj , j = 1, . . . , d, are as in (3). Therefore, the distribution in (14)

has the representation

(16) G(x) = exp (−‖x‖D) , x ≤ 0 ∈ Rd.
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The convergence result in (14) implies that C(n)(u) := Cn(u1/n)→n→∞ CG(u),

for all u ∈ [0, 1]d, see e.g. Falk (2019, Corollary 3.1.12). For brevity, with a little

abuse of notation we also denote this latter fact by C ∈ D(CG). By Theorem

2.3.3 in Falk (2019), there exists a rv Z = (Z1, . . . , Zd) with Zi ≥ 0, E(Zi) = 1 ,

1 ≤ i ≤ d, such that

‖x‖D = E (max (|xi|Zi)) , x ∈ Rd.

Examples of D-norms are the sup-norm ‖x‖∞ = max1≤i≤d |xi|, or the complete

family of logistic norms ‖x‖p =
(∑d

i=1 |xi|
p
)1/p

, p ≥ 1. For a recent account

on multivariate extreme-value theory and D-norms we refer to Falk (2019). In

particular, Proposition 3.1.5 in Falk (2019) implies that the convergence result in

(14) is also equivalent to the expansion

(17) C(u) = 1− ‖1− u‖D + o(‖1− u‖)

as u→ 1 ∈ Rd, uniformly for u ∈ [0, 1]d.

In a first step we drop the term o(‖1− u‖) in expansion (17) and require that

there exists u0 ∈ (0, 1)d, such that

(18) C(u) = 1− ‖1− u‖D , u ∈ [u0,1] ⊂ Rd.

A copula, which satisfies the above expansion is a generalized Pareto copula (GPC).

The significance of GPCs for multivariate extreme-value theory is explained in Falk

et al. (2019) and in Falk (2019, Section 3.1).

Note that

C(u) = max (0, 1− ‖1− u‖D) , u ∈ [0, 1]d,

defines a multivariate df only in dimension d = 2, see, e.g., McNeil and Nešlehová

(2009, Examples 2.1, 2.2). But one can find for arbitrary dimension d ≥ 2 a rv,

whose df satisfies equation (18), see e.g. Falk (2019, equation 2.15). For this reason,

we require the condition in (18) only on some upper interval [u0,1] ⊂ Rd.
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The df of n
(
M (n) − 1

)
is, for x < 0 ∈ Rd and n large so that 1 + x/n ≥ u0,

P
(
n
(
M (n) − 1

)
≤ x

)
=

(
1− 1

n
‖x‖D

)n
=: F (n)(x).

Suppose that the norm ‖·‖D has partial derivatives of order d. Then the df F (n)(x)

has for 1 + x/n ≥ u0 the density

(19) f (n)(x) :=
∂d

∂x1 . . . ∂xd
F (n)(x) =

∂d

∂x1 . . . ∂xd

(
1− 1

n
‖x‖D

)n
.

As for the standard multivariate max-stable df G in (16), its density exists and is

given by

(20) g(x) :=
∂d

∂x1 . . . ∂xd
G(x) =

∂d

∂x1 . . . ∂xd
exp (−‖x‖D) , x ≤ 0 ∈ Rd.

We are now ready to state our first multivariate extension of the convergence in

total variation in equation (5). For brevity, we occasionally denote with the same

letter a Borel measure and its distribution function.

Theorem 2.1. Suppose the rv U follows a GPC C with corresponding D-norm

‖·‖D, which has partial derivatives of order d ≥ 2. Then

sup
A∈Bd

∣∣∣P (n(M (n) − 1
)
∈ A

)
−G(A)

∣∣∣→n→∞ 0,

where Bd denotes the Borel-σ-field in Rd.

Remark 2.2. Note that we can write a GPC

C(u) = 1− ‖1− u‖p = 1−

(
d∑
i=1

(1− ui)p
)1/p

, u ∈ [u0,1] ⊂ Rd,

where the D-norm ‖·‖D is a logistic norm ‖·‖p, p ≥ 1, as an Archimedean copula

C(u) = ϕ−1

(
d∑
i=1

ϕ(ui)

)
, u ∈ [u0,1] ⊂ Rd.

The generator function ϕ : (0, 1] → [0,∞) is in general strictly decreasing and

convex, with ϕ(1) = 0 (see, e.g. McNeil and Nešlehová 2009). Just set here ϕ(u) :=
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(1−u)p, u ∈ [0, 1]. Note that we require the Archimedean structure of C only in its

upper tail; this allows the incorporation of ϕ(u) = (1−u)p as a generator function in

arbitrary dimension d ≥ 2, not only for d = 2. The partial differentiability condition

on the D-norm in Theorem 2.1 now reduces to the existence of the derivative of

order d of ϕ(u) in a left neighbourhood of 1.

For the proof of Theorem 2.1 we establish the following auxiliary result.

Lemma 2.3. Choose ε ∈ (0, 1) and xε < 0 ∈ Rd with G([xε,0]) ≥ 1− ε. Then we

have for x ∈ [xε,0]

(21) f (n)(x)→n→∞ g(x).

Proof. G(x) can be seen as the function composition (`◦φ)(x), where we set `(y) =

exp(y) and φ(x) = −‖x‖D. Then, by Faá di Bruno’s formula, the density in (20)

is equal to

(22) g(x) =
∂d

∂x1 . . . ∂xd
exp(φ(x)) = G(x)

∑
P∈P

∏
B∈P

∂|B|φ(x)

∂Bx
,

where P is the set of all partitions of {1, . . . , d} and the product is over all blocks

B of a partition P ∈ P. In particular, B = (i1, . . . , ik) with each ij ∈ {1, . . . , d},

and the cardinality of each block is denoted by |B| = k. Finally, for a function

h : Rd → R we define ∂|B|h/∂Bx := ∂kh/∂xi1 , . . . , ∂xik .

Similarly, F (n)(x) can be seen as the function composition (` ◦ φn)(x), where

we set φn(x) := −n log(1/(1−n−1 ‖x‖D)). Then, F (n)(x) = exp(φn(x)) and, once

again by the Faá di Bruno’s formula, the density in (19) is equal to

f (n)(x) =
∂d

∂x1 . . . ∂xd
exp(φn(x)) = F (n)(x)

∑
P∈P

∏
B∈P

∂|B|φn(x)

∂Bx
.

Clearly, F (n)(x) →n→∞ G(x) for all x ∈ [xε,0]. Next, φn(x) can be seen as the

function composition (σn◦φ)(x), where we set σn(y) = −n log(1/(1+n−1y)). Thus,
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again by the Faá di Bruno’s formula we have that for each block B

∂|B|φn(x)

∂Bx
=

∑
PB∈PB

∂|PB |σn(y)

∂y|PB |

∣∣∣∣
y=φ(x)

∏
b∈PB

∂|b|φ(x)

∂bx
,

where PB is the set of all partitions of B = (i1, . . . , ik) and the product is over all

blocks b of partition PB ∈PB . It is not difficult to check that

∂|PB |σn(y)

∂y|PB |
= (−1)1+|PB | (|PB | − 1)! (1 + y/n)

−|PB | n−|PB |+1.

Then,

∂|PB |σn(y)

∂y|PB |
→n→∞


1, if |PB | = 1,

0, if |PB | > 1.

Notice that |PB | = 1 when PB = B and in this case b = B. Consequently, for all

x ∈ [xε,0], we have

∂|B|φn(x)

∂Bx
→n→∞

∂|B|φ(x)

∂Bx
.

Therefore, the pointwise convergence in (21) follows. �

Proof of Theorem 2.1. It is sufficient to consider A ⊂ Bd ∩ (−∞, 0]d, where Bd

denotes the Borel-σ-field in Rd. Moreover, choose ε > 0 and xε < 0 ∈ Rd with

G([xε,0]) ≥ 1− ε.

We already know that

sup
x≤0

∣∣∣P (n(M (n) − 1
)
≤ x

)
−G(x)

∣∣∣→n→∞ 0,

which implies

(23)
∣∣∣P (n(M (n) − 1

)
∈ [xε,0]

)
−G([xε,0])

∣∣∣→n→∞ 0

and, thus,

lim sup
n→∞

P
(
n
(
M (n) − 1

)
∈ [xε,0]{

)
≤ ε
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or

lim sup
n→∞

sup
A∈Bd∩[xε,0]{

∣∣∣P (n(M (n) − 1
)
∈ A

)
−G(A)

∣∣∣
≤ lim sup

n→∞
P
(
n
(
M (n) − 1

)
∈ [xε,0]{

)
+G

(
[xε,0]{

)
≤ 2ε.

As ε > 0 was arbitrary, it is therefore sufficient to establish

sup
A∈Bd∩[xε,0]

∣∣∣P (n(M (n) − 1
)
∈ A

)
−G(A)

∣∣∣→n→∞ 0.

Now, from equation (23) we know that∫
[xε,0]

f (n)(x) dx→n→∞

∫
[xε,0]

g(x) dx.

Together with (21), we can apply Scheffé’s lemma and obtain∫
[xε,0]

∣∣∣f (n)(x)− g(x)
∣∣∣ dx→n→∞ 0.

The bound

sup
A∈Bd∩[xε,0]

∣∣∣P (n(M (n) − 1
)
∈ A

)
−G(A)

∣∣∣ ≤ ∫
[xε,0]

∣∣∣f (n)(x)− g(x)
∣∣∣ dx

now implies the assertion of Theorem 2.1. �

Next we extend Theorem 2.1 to a copula C, which is in a differentiable neighbor-

hood of a GPC, defined next. Suppose that C satisfies expansion (17), where the

D-norm ‖·‖D on Rd has partial derivatives of order d. Assume also that C is such

that for each nonempty block of indices B = (i1, . . . , ik) of {1, . . . , d},

(24)
∂k

∂xi1 , . . . , ∂xik
n
(
C
(
1 +

x

n

)
− 1
)
→n→∞

∂k

∂xi1 , . . . , ∂xik
φ(x),

holds true for all x < 0 ∈ Rd, where φ(x) = −‖x‖D.

Theorem 2.4. Suppose the copula C satisfies conditions (17) and (24). Then we

obtain

sup
A∈Bd

∣∣∣P (n(M (n) − 1
)
∈ A

)
−G(A)

∣∣∣→n→∞ 0,
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where G is the standard max-stable distribution with corresponding D-norm ‖·‖D,

i.e., it has df G(x) = exp(−‖x‖D), x ≤ 0 ∈ Rd.

Proof. The proof of Theorem 2.4 is similar to that of Theorem 2.1, but this time

we resort to a variant of Lemma 2.3 as follows. Note that for n ∈ N,

P
(
n
(
M (n) − 1

)
≤ x

)
= Cn

(
1 +

x

n

)
, x ≤ 0 ∈ Rd.

Moreover, Cn (1 + x/n) is the function composition (` ◦ φn)(x), where we now

set φn(x) := n log (C (1 + x/n)). Furthermore, φn(x) is the composition function

(σn ◦ vn)(x), where we set vn(x) := n(C(1 +x/n)− 1) and σn is as in the proof of

Lemma 2.3. Then, in the Faá di Bruno’s formula we have that for each block B,

∂|B|φn(x)

∂Bx
=

∑
PB∈PB

∂|PB |σn(y)

∂y|PB |

∣∣∣∣
y=vn(x)

∏
b∈PB

∂|b|vn(x)

∂bx
.

By assumptions (17) and (24) we obtain that, for each block b of a partition PB ∈

PB ,

∂|b|vn(x)

∂bx
→n→∞

∂|b|φ(x)

∂bx
, x < 0 ∈ Rd.

Therefore, as in Lemma 2.3, we obtain

(25)
∂|B|φn(x)

∂Bx
→n→∞

∂|B|φ(x)

∂Bx
, x < 0 ∈ Rd.

and the result follows. �

Example 2.5. Consider, the Gumbel-Hougaard family {Cp : p ≥ 1} of Archimedean

copulas, with generator function ϕp(u) := (− log(u))p, p ≥ 1. This is an extreme-

value family of copulas. In particular, we have

Cp(u) = exp

−( d∑
i=1

(− log(ui))
p

)1/p
 = 1− ‖1− u‖p + o(‖1− u‖),

as u ∈ (0, 1]d converges to 1 ∈ Rd, i.e., condition (17) is satisfied, where the D-

norm is the logistic norm ‖·‖p and the limiting distribution is G(x) = exp(−‖x‖p).

The copula Cp also satisfies conditions (24). To prove it, we express Cp (1 + x/n)
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as the function composition (` ◦ ϕn)(x), with ` as in the proof of Lemma 2.3 and

ϕn(x) := log (Cp (1 + x/n)). Observe that

nϕn(x) = −n
∥∥∥log

(
1 +

x

n

)∥∥∥
p

=: −nt(sn(x)),

where t(·) = ‖·‖p, sn(x) = (sn(x1), . . . , sn(xd)), and sn(·) = log(1 + ·/n). Hence,

applying the Faá di Bruno’s formula to the partial derivatives of n(` ◦ ϕn(x) − 1)

and noting that, on one hand, Cp (1 + x/n)→n→∞ 1, on the other hand,

∂k

∂xi1 , . . . , ∂xik
nϕn(x)

= −n ∂k

∂yi1 , . . . , ∂yik
t(y)

∣∣
y=sn(x)

∂sn(xi1)

∂xi1
· · · · · ∂sn(xik)

∂xik

' −n
k−1∏
j=1

(1− jp) ‖x‖1−kpp nkp−1
k∏
j=1

|xij |p

xij
n−k(p−1)

k∏
j=1

(
1 +

xij
n

)−1
n−k

→n→∞ −
∂k

∂xi1 , . . . , ∂xik
‖x‖p ,

the desired result obtains. In particular, notice that we pass from the first to second

line of the above display by computing partial derivatives, then from the second to

the third one by exploiting the asymptotic equivalence log(1 + y) ' y, for y → 0.

Example 2.6. Consider the copula

(26) C(u) = 1− d+

d∑
i=1

ui +
∑

2≤i≤d

(−1)i
∑

B⊆{1,...,d}
|B|=i

∑
j∈B

1

1− uj
− d+ 1

−1
 .

This provides the d-dimensional version (with d ≥ 2) of the 2-dimensional copula

associated to the df discussed in (Resnick, 2008, Example 5.14). It can be checked

that C ∈ D(CG), where CG is, for all u ∈ [0, 1]d, the extreme-value copula

(27)

CG(u) = exp

 d∑
i=1

log ui +
∑

2≤i≤d

(−1)i+1
∑

B⊆{1,...,d}
|B|=i

∑
j∈B

1

log uj
− d+ 1

−1

 .
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Then, by Falk (2019, Proposition 3.1.5 and Corollary 3.1.12) the copula in (26)

satisfies condition (17), with D-norm

‖x‖D =

d∑
i=1

|xi|+
∑

2≤i≤d

(−1)i+1
∑

B⊆{1,...,d}
|B|=i

∑
j∈B

1

|xj |

−1
 .

The copula in (26) also complies conditions in (24). Indeed, for 2 ≤ k ≤ d,

∂k

∂xi1 , . . . , ∂xik
‖x‖D =

∑
k≤j≤d

(−1)j+1k!
∑

I⊆B⊆{1,...,d}
|B|=j

(∑
l∈B

1

|xl|

)−(k+1) k∏
v=1

1

x2iv

|xiv |
xiv

 ,

where I = {i1, . . . , ik}. When k = 1, (∂/∂xik) ‖x‖D is given by the right-hand side

of the above expression plus the term |xik |/xik . Furthermore, for 2 ≤ k ≤ d,

∂k

∂xi1 , . . . , ∂xik
C(1 + x/n)

=
1

n

 ∑
k≤j≤d

(−1)j+1k!
∑

I⊆B⊆{1,...,d}
|B|=j

(∑
l∈B

1

xl
+
d− 1

n

)−(k+1) k∏
v=1

1

x2iv


 .

When k = 1, n(∂/∂xik)C(1 + x/n) is given by the right-hand side of the above

expression plus 1. Therefore, for k = 1, . . . , d, we have that

n
∂k

∂xi1 , . . . , ∂xik
C(1 + x/n)→n→∞ −

∂k

∂xi1 , . . . , ∂xik
‖x‖D

and the desired result obtains.

Let C be a copula and Cn be the copula of the corresponding componentiwise

maxima, see (13). We recall that C(n)(u) := Cn(u1/n), u ∈ [0, 1]d. Assume that

C ∈ D(CG), where CG is an extreme-value copula. A readily demonstrable result

implied by Theorem 2.4 is the convergence of C(n) to CG in variational distance.
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Corollary 2.7. Assume C satisfies conditions (17) and (24), with continuous par-

tial derivatives of order up to d on (0, 1)d, then

sup
A∈Bd∩[0,1]d

|C(n)(A)− CG(A)| →n→∞ 0.

Proof. For any u ∈ [0, 1]d, define

C̃(n)(u) := P
(
n
(
M (n) − 1

)
≤ logu

)
= Cn(1 + logu/n).

By Theorem 2.4, C̃(n) converges to CG in variational distance. Now, for some

ε ∈ (0, 1), set

Uε := ∪dj=1{u ∈ [0, 1] : uj < ε or uj > 1− ε}.

In particular, fix ε > 0 such that CG(U{
ε ) > 1 − ε0, for some arbitrarily small

ε0 ∈ (0, 1). Then, using the Taylor expansion u1/n = 1 + n−1 log u + o(1/n), with

uniform reminder over U{
ε , together with the Lipschitz continuity of C, we obtain

sup
u∈U{

ε

∣∣∣C(n)(u)− C̃(n)(u)
∣∣∣→n→∞ 0,

and therefore lim supn→∞ C(n)(Uε) < ε0. This implies that, as n→∞, we have

(28) sup
A∈Bd∩[0,1]d

∣∣∣C(n)(A)− CG(A)
∣∣∣ ≤ sup

A∈Bd∩U{
ε

∣∣∣C(n)
ε (A)− C̃(n)

ε (A)
∣∣∣+O(ε0),

where C
(n)
ε and C̃

(n)
ε are the normalised versions C

(n)
ε = C(n)/C(n)(U{

ε ) and C̃
(n)
ε =

C̃(n)/C̃(n)(U{
ε ). Finally, denote their densities by c

(n)
ε and c̃

(n)
ε , respectively. Then,

the supremum on the right hand side in (28) is attained at the set

Ũ (n)
ε :=

{
u ∈ U{

ε : c(n)ε (u) > c̃(n)ε (u)
}
.

Notice that c
(n)
ε and c̃

(n)
ε are both positive on U{

ε , for n sufficiently large. Following

steps similar to those in the proof of Theorem 2.4 and exploiting the continuity of

the partial derivatives of C, we obtain

c(n)ε (u)/c̃(n)ε (u)→n→∞ 1,
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for all u ∈ U{
ε . Therefore, Ũ (n)

ε ↓ ∅ as n→∞ and the result follows. �

3. The General Case

Let X = (X1, . . . , Xd) be a rv with arbitrary df F . By Sklar’s theorem (Sklar

1959, 1996) we can assume the representation

X = (X1, . . . , Xd) =
(
F−11 (U1), . . . , F−1d (Ud)

)
,

where Fi is the df of Xi, i = 1, . . . , d, and U = (U1, . . . , Ud) follows a copula, say

C, corresponding to F .

Let X(1),X(2), . . . be independent copies of X and let U (1),U (2), . . . be inde-

pendent copies of U . Again we can assume the representation

X(i) =
(
X

(i)
1 , . . . , X

(i)
d

)
=
(
F−11

(
U

(i)
1

)
, . . . , F−1d

(
U

(i)
d

))
, i = 1, 2, . . .

From the fact that each quantile function F−1i is monotone increasing, we obtain

M (n)

:=

(
max
1≤i≤n

X
(i)
1 , . . . , max

1≤i≤n
X

(i)
d

)
=

(
max
1≤i≤n

F−11

(
U

(i)
1

)
, . . . , max

1≤i≤n
F−1d

(
U

(i)
d

))
=

(
F−11

(
max
1≤i≤n

U
(i)
1

)
, . . . , F−1d

(
max
1≤i≤n

U
(i)
d

))
=

(
F−11

(
1 +

1

n

(
n

(
max
1≤i≤n

U
(i)
1 − 1

)))
, . . . , F−1d

(
1 +

1

n

(
n

(
max
1≤i≤n

U
(i)
d − 1

))))
.

Theorem 2.1 now implies the following result.

Proposition 3.1. Let η = (η1, . . . ηd) be a rv with standard multivariate max-stable

df G(x) = exp(−‖x‖D), x ≤ 0 ∈ Rd. Let X be a rv with some distribution F and

a copula C. Suppose that either C is a GPC with corresponding D-norm ‖·‖D,

which has partial derivatives of order d ≥ 2, or C satisfies conditions (17) and
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(24). Then,

sup
A∈Bd

∣∣∣∣P (M (n) ∈ A
)
− P

((
F−11

(
1 +

1

n
η1

)
, . . . , F−1d

(
1 +

1

n
ηd

))
∈ A

)∣∣∣∣
→n→∞ 0.

Finally, we generalise the result in Proposition 3.1 to the case where the rv

of componentwise maxima is suitably normalised. Precisely, we now consider the

case that F ∈ D(G∗γ), i.e. F belongs to the domain of attraction of a generalised

multivariate max-stable df G∗γ , with tail index γ = (γ1, . . . , γd), e.g. Falk et al.

(2019, Ch. 4). This means that there exist sequences of norming vectors an =

(a
(1)
n , . . . , a

(d)
n ) > 0 and bn = (b

(1)
n , . . . , b

(d)
n ) ∈ Rd, for n ∈ N, such that (M (n) −

bn)/an →D Y as n→∞, where Y is a rv with distribution G∗γ . The copula of G∗γ

is the extreme-value copula in (15) and its margins G∗γj , j = 1, . . . , d, are members

of the generalised extreme-value family of dfs in (7).

To attain the convergence in variational distance, we combine Proposition 3.1,

obtained under conditions involving only dependence structures, with univariate

von Mises conditions on the margins F1, . . . , Fd, see (8)-(11). We denote by x0 :=

(x
(1)
0 , . . . , x

(d)
0 ), where x

(j)
0 := sup{x ∈ R : Fj(x) < 1}, j = 1, . . . , d, the vector of

endpoints.

Corollary 3.2. Let Y and X be rvs with a generalised multivariate max-stable

df G∗γ and a continuous df F , respectively. Assume that F ∈ D(G∗γ) and that its

copula C satisfies the assumptions of Proposition (3.1). Assume further that, for

1 ≤ j ≤ d, the density of the j-th margin Fj of F satisfies one of the conditions

(9)-(11) with f ′, γ and x0 replaced by f ′j, γj and x
(j)
0 . Then,

sup
A∈Bd

∣∣∣∣P (M (n) − bn
an

∈ A
)
− P (Y ∈ A)

∣∣∣∣→n→∞ 0.
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Proof. Let η = (η1, . . . , ηd) be rv with standard multivariate max-stable distribu-

tion G(x) = exp(−‖x‖D). Define,

Yn :=

(
1

a
(1)
n

(
F−11

(
1 +

1

n
η1

)
− b(1)n

)
, . . . ,

1

a
(d)
n

(
F−1d

(
1 +

1

n
ηd

)
− b(d)n

))
.

Observe that

sup
A∈Bd

∣∣∣∣P (M (n) − bn
an

∈ A
)
− P (Y ∈ A)

∣∣∣∣ ≤ T1,n + T2,n,

where

T1,n := sup
A∈Bd

∣∣∣∣P (M (n) ∈ A
)
− P

((
F−11

(
1 +

1

n
η1

)
, . . . , F−1d

(
1 +

1

n
ηd

))
∈ A

)∣∣∣∣
and

T2,n := sup
A∈Bd

|P (Yn ∈ A)− P (Y ∈ A)| .

By Proposition 3.1, T1,n →n→∞ 0. To show that T2,n →n→∞ 0, it is sufficient to

show pointwise convergence of the probability density function of Yn to that of Y

and then to appeal to the Scheffé’s lemma. First, notice that G∗γ and G have the

same extreme-value copula. Thus, from (15) it follows that, for x ∈ Rd, G∗γ(x) =

G(u(x)), where u(x) =
(
u(1)(x1), . . . , u(d)(xd)

)
with u(j)(xj) = logG∗γj (xj) for

j = 1, . . . , d. Now, define Q(n)(x) := P (Yn ≤ x) = G(un(x)), for x ∈ Rd, where

un(x) =
(
u
(1)
n (x1), . . . , u

(d)
n (xd)

)
with

u(j)n (xj) := −n
(

1− Fj
(
a(j)n xj + b(j)n

))
, 1 ≤ j ≤ d.

Consequently, as n→∞,

∂d

∂x1 . . . ∂xd
Q(n)(x) = g(un(x))

d∏
j=1

na
(j)
n Fj

(
a
(j)
n xj + b

(j)
n

)n−1
fj

(
a
(j)
n xj + b

(j)
n

)
Fj

(
a
(j)
n xj + b

(j)
n

)n−1
' g(u(x))

d∏
j=1

g∗γj (xj)

G∗γj (xj)

=
∂d

∂x1 . . . ∂xd
G(u(x)) =

∂d

∂x1 . . . ∂xd
G∗γ(x),
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where g is as in (22) and g∗γj (x) = (∂/∂x)G∗γj (x), 1 ≤ j ≤ d. In particular, the

second line follows from the continuity of g and Proposition 2.5 in Resnick (2008).

The proof is now complete. �

4. Applications

The strong convergence results established in Sections 2 and 3 can be used to re-

fine asymptotic statistical theory for extremes. Max-stable distributions have been

used for modelling extremes in several statistical analyses (e.g. Coles 2001, Ch.

8; Beirlant et al. 2004, Ch. 9; Marcon et al. 2017; Mhalla et al. 2017 to name a

few). Parametric and nonparametric inferential procedures have been proposed for

fitting max-stable models to the data (e.g., Gudendorf and Segers 2012; Berghaus

et al. 2013; Marcon et al. 2017; Dombry et al. 2017). The asymptotic theory of the

corresponding estimators is well established assuming that a sample of (componen-

twise) maxima follows a max-stable distribution. In practice, the latter provides

only an approximate distribution for sample maxima. The recent results in Ferreira

and de Haan (2015), Dombry (2015), Bücher and Segers (2018) and Berghaus and

Bücher (2018) account for such model misspecification, in the univariate setting.

In the multivariate case, in Bücher and Segers (2014), weak convergence and con-

sistency in probability of empirical copulas, under suitable second order conditions

(Bücher et al. e.g. 2019), have been studied. This is the only multivariate con-

tribution focusing on the problem of convergences, under model misspecification,

as far as we known. In the sequel, we illustrate how our variational convergence

results, obtained under conditions (17) and (24), allow to establish a stronger form

of consistency, for both frequentist and Bayesian procedures. To do that, we resort

to the notion of remote contiguity.

Definition 4.1. (Kleijn 2017) For k ∈ N, let rk, sk be real valued sequences such

that 0 < rk, sk →k→∞ 0. Let µk and νk be sequences of probability measures. Then,

νk is said rk-to-sk-remotely contiguous with respect to µk if µk(Ek) = o(rk), for a
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sequence of measurable events Ek, implies νk(Ek) = o(sk). In this case, we write

s−1k νk C r
−1
k µk.

4.1. Frequentist approach. Let Θ denote a parameter space (possibly infinite

dimensional) and θ ∈ Θ be a parameter of interest. Let Y be a d-dimensional

rv with a df F , pertaining to a probability measure µ0 on Bd. Denote by µk

the corresponding k-fold product measure. Let Y (1:k) = (Y (1,k), . . . ,Y (k,k)) be a

sequence of k iid copies of Y . Consider a measurable map Tk : ×ki=1Rd → Θ and

let

θ̂k := Tk(Y (1:k))

be an estimator of θ. Let D denote a metric on Θ.

If for every ε > 0 there are constants cε, c
′
ε > 0 such that µk(D(θ̂k, θ) > ε) =

o(e−cεk) and k1+c
′
ενkCecεkµk, then, we can conclude by Borel-Cantelli lemma that

D(Tk(Z(1:k)), θ)→k→∞ 0, νk-almost surely,

where Z(1:k) = (Z(1,k), . . . ,Z(k,k)) is a sequence of iid rv with common probability

measure ν0,k on Bd, and νk is the corresponding k-fold product measure. The

required form of remote contiguity easily obtains if supA∈Bd |ν0,k(A)−µ0(A)| →k→∞

0, µ0 and ν0,k have the same support and continuous Lebesgue densities, p0,k and

m0, satisfying

(29) sup
k≥k0

ρδ(ν0,k, µ0) := sup
k≥k0

∫
Xδ,k

(p0,k(x)/m0(x))
δ
p0,k(x)dx <∞,

for some δ ∈ (0, 1] and k0 ∈ N, where Xδ,k = {x ∈ Rd : p0,k(x)/µ0(x) >

e1/δ}. Essentially, variational convergence and (29) guarantee that the fourth mo-

ments and the expectations of the triangular array of variables {log p0,k(Z(i,k)) −

logm0(Z(i,k)), 1 ≤ i ≤ k; k ≥ k0 + k′0} are uniformly bounded and asymptoti-

cally null, respectively, for a sufficiently large k′0 ∈ N. The corresponding sequence

of (rescaled) log-likelihood ratios, then, converges to 0 by the strong law of large

numbers.
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This novel asymptotic technique can be fruitfully applied to parameter estima-

tion problems for multivariate max-stable models. In this context, the probability

measure µ0 can be associated to a multivariate max-stable df G∗γ or to its extreme-

value copula. Accordingly, we see the probability measure ν0,k as associated to

the df of a normalized rv of componentwise maxima, computed over a number of

underlying rv indexed by k, say nk.

Exploiting Corollary 2.7, herein we specialise the above procedure to the esti-

mation of an extreme-value copula via the empirical copula of sample maxima.

First, we recall some basic notions. Let Z(1:k) be a sequence of iid copies of

a rv Z with some copula C. Then, the empirical copula function Ĉk is a map

Tk : ×ki=1Rd 7→ `∞([0, 1]d) defined by

Ĉk(u;Z(1:k)) := (Tk(Z(1:k)))(u)

=
1

k

k∑
i=1

1

(∑k
l=1 1(Z

(l,k)
1 ≤ Z(i,k)

1 )

k
≤ u1, . . . ,

∑k
l=1 1(Z

(l,k)
d ≤ Z(i,k)

d )

k
≤ ud

)
,

for u ∈ [0, 1]d, with 1(E) denoting the indicator function of the event E.

Proposition 4.2. Let M (n) = (M
(n)
1 , . . . ,M

(n)
d ), C and G be as in Proposi-

tion 3.1, with C satisfying the assumptions of Corollary 2.7. Let M (n,1:k) =

(M (n,1), . . . ,M (n,k)) be k independent copies of M (n), with n ≡ nk →k→∞ ∞.

Assume that C(n) and CG satisfy

(30) sup
k≥k0

ρδ(C
(n), CG) <∞,

for some δ ∈ (0, 1], k0 ∈ N, with ρδ as in (29). Then, almost surely

sup
u∈[0,1]d

∣∣∣Ĉk(u)− CG(u)
∣∣∣→k→∞ 0,

where Ĉk ≡ Ĉk(·;M (n,1:k)).

For the proof of Proposition of 4.2 we establish the following remote contiguity

relation.
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Lemma 4.3. Let C(n,k) and CkG denote the k-fold product measures pertaining to

C(n) and CG, respectively. Then, k2C(n,k) C eckCkG, for any c > 0.

Proof. Let Ek, k = 1, 2, . . . be a sequence of measurable events satisfying CkG(Ek) =

o(e−ck), for some c > 0. It is not difficult to see that, for any ε > 0,

C(n,k)(Ek) ≤ eεkCkG(Ek) + C(n,k)(Sk > εk),

where Sk =
∑k
i=1 log

{
c(n)(U (n,i))/cG(U (n,i))

}
, U (n,i), 1 ≤ i ≤ k, are iid accord-

ing to C(n), c(n) and cG are the Lebesgue densities of C(n) and CG, respectively.

Choosing ε < c, the first term on the right-hand side is of order o(e−(c−ε)k). As

for the second term, as k → +∞ we have that n ≡ nk →∞ and, by Corollary 2.7,

εk := supA∈Bd∩[0,1]d |C(n)(A)− CG(A)| = o(1). Thus, defining

ηα,k := E

[
logα

{
c(n)(U (n,1))

cG(U (n,1))

}]
, α ∈ N,

under assumption (30), Theorem 6 in Wong and Shen (1995) guarantees that, as

k → +∞ , max(η1,k, η2,k) = O(εk log2(1/εk)) ≤ ε/2. Furthermore, simple analyti-

cal derivations lead to show that

sup
k≥k0

(−η3,k) ≤ 1 + sup
k≥k0

η4,k ≤ 2 + log4(K) + sup
k≥k0

ρδ(C
(n), CG) < +∞,

for some large but fixed K > e1/δ. Together with triangular and Markov inequali-

ties, these facts entail that as k → +∞

C(n,k)(Sk > εk) ≤ C(n,k)(|Sk − kη1,k| > ε/2k)

≤
(

2

εk

)4

E
[
(Sk − kη1,k)4

]
≤
(

2

ε

)4 [
1

k3
(η4,k − 4η1,kη3,k + 6η21,kη2,k) +

3

k2
(η2,k − η1,k)2

]
= o(k−2),

where, in the third line, we exploit nonnegativity of η1,k. The result now follows. �
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Proof of Proposition 4.2. Let V be a rv distributed according to the extreme-value

copula CG. Let V (1:k) = (V (1), . . . ,V (k)) be a sequence of iid copies of V with

joint distribution C
(k)
G . Then, standard empirical process arguments (Gudendorf

and Segers 2012, Deheuvels 1980, Wellner 1992) yield that, for any ε > 0,

C
(k)
G

(
sup

u∈[0,1]d

∣∣∣Ĉk(u;V (1:k))− CG(u)
∣∣∣ > ε

)

≤ 2d exp

(
− b2εk

(d+ 1)2

)
+ 16

kb2ε
(d+ 1)2

exp

(
− 2b2εk

(d+ 1)2

)
for some bε ∈ (0, ε). The term on the right hand side is of order O(e−cεk), for

some cε > 0. By Lemma 4.3, we have that k2C(n,k) C eckC
(k)
G for all c > 0,

where C(n,k) is the k-fold product measure corresponding to C(n). Let U (n,1:k) =

(U (n,1), . . . ,U (n,k)), where

U (n,i) =
(
F1

(
M

(n,i)
1

)n
, . . . , Fd

(
M

(n,i)
d

)n)
, i = 1, . . . , k.

The result now follows observing that U (n,1:k) is distributed according to C(n,k)

and that Ĉk(u) ≡ Ĉk(u;M (n,1:k)) = Ĉk(u;U (n,1:k)). �

Remark 4.4. Notice that the assumption in (30) of Proposition 4.2 is not over-

ambitious. Indeed, when C(n) is obtained from copulas that are extreme-value

copulas, the required condition is always satisfied. While, when C(n) is obtained

from copulas that are in the domain of attraction of extreme-value copulas, analyt-

ically verifying (30) seems troublesome. Still, numerically checking whether some

copula models meet this asumption can be fairly simple. For instance, consider the

copula of Example 2.6, given in equation (26), and let c denote its density. Denote

by c(n) the density of the copula C(n) pertaining to C and by cG the density of the

extreme-value copula model in (27). In this case, Corollary 2.7 applies and C(n)

converges to CG in variational distance. Figure 1 displays the plots of the densities

c, cG and c(n), with n = 100. Outside a neighborhood of the origin, pointwise

convergence of c(n) to cG turns out to be quite fast. In addition, the middle-right

to bottom-right panels show that the density ratio c(n)/cG is uniformly bounded
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by a finite constant, as the sample size n increases. Consequently, the condition in

(30) is satisfied.
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Figure 1. Top-left and -right panels display the densities cG and
c of the copula models in (27) and in (26), respectively. Middle-
left panel shows the density c(n) of the copula C(n) pertaining to
the copula model in (26), with sample size n = 100. Middle-
right to bottom right panels depict the density ratio c(n)/cG, for
n = 2, 50, 100, respectively.
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4.2. Bayesian approach. A similar scheme is exploited by Padoan and Rizzelli

(2019) in a Bayesian context, where extended Schwartz’ theorem, e.g. Ghosal and

van der Vaart (2017, Theorem 6.23), provides with exponential bounds for posterior

concentration in a neighborhood of the true parameter. In particular, Padoan and

Rizzelli (2019) consider a nonparametric Bayesian approach for estimating the D-

norm ‖·‖D and the densities of the associated angular measure, see Falk (2019, pp.

25–29). Therein, Corollary 3.2 is leveraged to obtain a suitable remote contiguity

result, allowing to extend almost-sure consistency of the proposed estimators from

the case of data following a max-stable model, to the case of suitably normalised

sample maxima, whose distribution lies in a variational neighbourhood of the latter.
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McNeil, A. J. and J. Nešlehová (2009). Multivariate Archimedean copulas, d-

monotone functions and `1-norm symmetric distributions. Ann. Statist. 37(5B),

3059–3097.

Mhalla, L., V. Chavez-Demoulin, and P. Naveau (2017). Non-linear models for

extremal dependence. Journal of Multivariate Analysis 159, 49–66.

Padoan, S. A. and S. Rizzelli (2019). Strong consistency of nonparametric Bayesian

inferential methods for multivariate max-stable distributions. arXiv e-prints,

arXiv:1904.00245v2.

Reiss, R.-D. (1989). Approximate Distributions of Order Statistics: With

Applications to Nonparametric Statistics. Springer Series in Statistics. New York:

Springer.

Resnick, S. I. (2008). Extreme Values, Regular Variation, and Point Processes.

Springer Series in Operations Research and Financial Engineering. New York:

Springer.
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