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Abstract

We consider an infinitely divisible random field in Rd given as an integral of a
kernel function with respect to a Lévy basis. Under mild regularity conditions
we derive central limit theorems for the moment estimators of the mean and
the variogram of the field.
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1 Introduction

In the present paper, we derive central limit theorems (CLTs) for mean and vari-
ogram estimators for a field (Xi)i∈Zd , defined by

Xi =

∫

Rd

f(s− i)M(ds) , (1.1)

where M is an infinitely divisible, independently scattered random measure on Rd

and f is some kernel function.
Lévy-based models as defined in (1.1) provide a flexible modelling framework

that recently has been used in a range of modelling contexts, including modelling
of turbulent flows, growth processes, Cox point processes and brain imaging data
[3, 6, 8, 9].

Due to the tractability of Lévy-based models, it has been possible to derive tail
asymptotics for the supremum of such a field as well as asymptotics of excursion sets
of the field. The case where M is a convolution equivalent measure is considered in
[12, 14]. Results for random measures with regularly varying tails have been derived
in [11] and refined in [1, 2].

In [4], CLTs are proved for a stationary random field (Xi)i∈Zd , discretely defined
by

Xi = u(Ms+i : s ∈ Zd) , (1.2)

where (Mi)i∈Zd are independent and identically distributed (i.i.d.) random variables
and u is a measurable function. In contrast, our set-up involves a random measure
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defined on Rd. However, if we discretize the integral in (1.1), then our model is of the
form (1.2) with u a linear function and the random variablesMi having an infinitely
divisible distribution. Note that if this type of model is going to hold for finer and
finer resolution, then the common distribution of the random variables Mi has to
be infinitely divisible.

For a random field defined by (1.1), we prove in the present paper CLTs for

SΓ =
∑

i∈Γ

Xi and TΓ(h) =
∑

i∈Γ

(Xi −Xi+h)
2,

where h ∈ Zd and Γ is a finite subset of Zd with number of elements increasing
to infinity. We show under mild regularity conditions that both SΓ and TΓ(h) are
asymptotically normally distributed and give explicit expressions for the asymptotic
variances. It turns out that the asymptotic variance of TΓ(h) is equal to an approxi-
mate variance, earlier derived in [13]. In the latter paper, the approximate variance
was used in the assessment of the precision of a section spacing estimator in electron
microscopy. More details are given in Section 5 below.

If we discretize the integral in (1.1), both SΓ and TΓ(h) take the form
∑

i∈Γ

v
(∑

s∈Zd

asMs+i

)
. (1.3)

Here, v(x) = x and as = f(s) for SΓ, while v(x) = x2 and as = f(s) − f(s − h)
for TΓ(h). In [4], CLTs for random variables of the form (1.3) are discussed. In
particular, a CLT for SΓ is derived which is a discrete analogue of the CLT we
obtain. For second-order properties, [4] considers

∑

i∈Γ

XiXi+h,

but do not deal explicitly with the case where the mean of the field is unknown, as
is done in our paper.

The present paper is organised as follows. In Section 2 we define the random field
(1.1) and state the main result. In Section 3 we provide the proofs. An important
tool in the proofs will be a CLT (Theorem 3.1) for mn-dependent fields proved in [5].
Section 4 discusses the case where the kernel function is isotropic, while the results
are used for estimation of sample spacing in Section 5. Cumulant formulae and a
proof of a corollary to Ottaviani’s inequality are deferred to two Appendices.

2 Preliminaries and main result

Consider an independently scattered random measure M on Rd. Then for a se-
quence of disjoint sets (An)n∈N ⊆ Rd in B(Rd) the random variables (M(An))n∈N
are independent and satisfy M(∪An) =

∑
M(An). Assume furthermore that M(A)

is infinitely divisible for all A ∈ B(Rd). Then M is called a Lévy basis, see [3] and
references therein.
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For a random variable X let κX(λ) denote its cumulant function logE(eiλX). We
shall assume that the Lévy basis is stationary and isotropic such that for A ∈ B(Rd)
the variable M(A) has a Lévy–Khintchine representation given by

κM(A)(λ) = iλamd(A)− 1
2
λ2θmd(A)+

∫

A×R

(
eiλu−1−iλu1[−1,1](u)

)
F (ds, du), (2.1)

where md is the Lebesgue measure on (Rd,B(Rd)), a ∈ R, θ ≥ 0 and F is a measure
on B(Rd × R) of the form

F (A×B) = md(A)ρ(B) . (2.2)

In the following, we let M ′ be a so–called spot variable, i.e. M ′ is a random
variable with the distribution of M(A) for A ∈ B(Rd) with md(A) = 1. We will
assume that the Lévy measure ρ satisfies

∫

[−1,1]

z2 ρ(dz) <∞ and
∫

[−1,1]c
|z| ρ(dz) <∞ .

The first assumption is needed for ρ to be a Lévy measure. The second assumption is
equivalent to E|M ′| <∞ (see [15, Theorem 25.3]). Now assume that f : Rd → [0,∞)
is a bounded kernel function satisfying

∫

Rd

f(s)ds <∞ . (2.3)

Let Zd be the grid integer numbers in Rd. We consider the family of random variables
(Xi)i∈Zd defined by

Xi =

∫

Rd

f(s− i)M(ds) . (2.4)

See [10, Theorem 2.7] for existence of the integrals, where their conditions (i)–
(iii) can be easily verified under the given assumptions on M and f . The field is
stationary, and if furthermore f has the form f(s) = g(‖s‖), where ‖ · ‖ is Euclidean
norm, it will be isotropic. This special case is studied in Section 4.

We will be interested in estimating the mean and the variogram of the field. We
have

µ = EX0 = E(M ′)

∫

Rd

f(s) ds

and for h ∈ Zd

γ(h) = E(X0 −Xh)
2 = Var(M ′)

∫

Rd

(f(s)− f(s− h))2 ds ,

where identities from Appendix A have been applied. Note that due to stationarity,
µ = EXi and γ(h) = E(Xi − Xi+h)

2 for all i ∈ Zd. For Γ a finite subset of Zd, we
define

SΓ =
∑

i∈Γ

Xi, (2.5)
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and for h ∈ Zd
TΓ(h) =

∑

i∈Γ

(Xi −Xi+h)
2 . (2.6)

Unbiased estimators for µ and γ(h), respectively, are obtained as

µ̂ =
1

|Γ|SΓ γ̂(h) =
1

|Γ|TΓ ,

where |Γ| denotes the number of elements in Γ. The main result gives asymptotic
normality of these estimators for |Γ| going to infinity.

Theorem 2.1. Let (Γn)n≥1 be a sequence of finite subsets of Zd and assume that
|Γn| goes to infinity and |∂Γn|/|Γn| goes to 0. Let

σ2
S = Var(M ′)

∑

i∈Zd

∫

Rd

f(s)f(s− i) ds .

If σ2
S <∞, then

SΓn − |Γn|µ√
|Γn|

D−→ N (0, σ2
S) . (2.7)

If furthermore E(M ′)4 <∞, then

TΓn(h)− |Γn|γ(h)√
|Γn|

D−→ N (0, σ2
T ) , (2.8)

where

σ2
T =

∑

j∈Zd

[
κ4(M ′)

∫

Rd

g(s)2g(s− j)2 ds+ 2 Var(M ′)2
(∫

Rd

g(s)g(s− j) ds
)2
]
<∞ ,

κ4(M ′) is the fourth cumulant of M ′ and g(s) = f(s)− f(s− h).

It should be noted that the assumptions of the theorem

|Γn| → ∞ and |∂Γn|/|Γn| → 0

are equivalent with the (less intuitive, but more computationally convenient) prop-
erty

|Γn| → ∞ and |(Γn − j) ∩ Γn|/|Γn| → 1

for all j ∈ Zd, where Γ + j denotes translation of Γ in direction j ∈ Zd, i.e.

Γ + j = {i+ j | i ∈ Γ} .
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3 Proofs

An important tool in the proof of our main result, Theorem 2.1, is a CLT for mn–
dependent random fields that may be found in [5, Theorem 2]. This theorem is also
used in the proofs of the CLTs, derived in [4]. However, our proof of the CLT for SΓ

is simpler and takes advantage of the linearity of the Lévy–based model (1.1), while
our proof of the CLT for TΓ(h) follows a different route than the one adopted in [4]
for the second–order property

∑
i∈ΓXiXi+h.

Recall that a random field (Zi)i∈Zd is said to be mn–dependent, if for any A,B ⊂
Zd with |A|, |B| <∞ and inf{‖a− b‖ : a ∈ A , b ∈ B} > mn, (Za)a∈A and (Zb)b∈B
are independent. The CLT for mn–dependent fields is here stated as

Theorem 3.1. Let (Γn)n≥1 be a sequence of finite subsets of Zd with |Γn| → ∞
as n → ∞ and let (mn)n≥1 be a sequence of positive integers. For each n ≥ 1, let
{Un(j) , j ∈ Zd} be an mn–dependent random field with EUn(j) = 0 for all j ∈ Zd.
Assume that E(

∑
j∈Γn

Un(j))2 → σ2 as n → ∞ with σ2 < ∞. Then
∑

j∈Γn
Un(j)

converges in distribution to a Gaussian random variable with mean zero and variance
σ2, if there exists a finite constant c > 0 such that for any n ≥ 1,

∑

j∈Γn

EUn(j)2 ≤ c,

and for any ε > 0, it holds that limn→∞ Ln(ε) = 0, where

Ln(ε) = m2d
n

∑

j∈Γn

E
(
Un(j)21{|Un(j)|≥εm−2d

n }
)
.

Proof of Theorem 2.1 for SΓn. Let (mn)n≥1 be a sequence of integers increasing to
infinity. The choice of the sequence will be specified below.

Let for i ∈ Zd and n ∈ N, Cn(i) be the ball in Rd with center in i and radius
mn/3. Let

X
n

i =

∫

Cn(i)

f(s− i)M(ds)

and let furthermore µn = E(X
n

0 ) = E(M ′)
∫
Cn(0)

f(s) ds and SΓn =
∑

i∈Γn
X
n

i . The
proof will be divided into two steps. The first step is to show that

lim
n→∞

‖SΓn − |Γn|µ− (SΓn − |Γn|µn)‖2√
|Γn|

= 0 . (3.1)

The second step is to show, using Theorem 3.1, that with an appropriately chosen
sequence (mn)n≥1, we have

SΓn − |Γn|µn√
|Γn|

D−→ N (0, σ2
S) (3.2)
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To prove (3.1), we find, using Appendix A,

‖SΓn − |Γn|µ− (SΓn − |Γn|µn)‖2
2

|Γn|

=
1

|Γn|
E
[(∑

i∈Γn

[∫

Cn(i)c
f(s− i)M(ds)− E(M ′)

∫

Cn(i)c
f(s− i) ds

])2
]

=
1

|Γn|
∑

i∈Γn

∑

j∈Γn

Cov
[∫

Cn(i)c
f(s− i)M(ds),

∫

Cn(j)c
f(s− j)M(ds)

]

=
Var(M ′)

|Γn|
∑

i∈Γn

∑

j∈Γn

∫

Cn(i)c∩Cn(j)c
f(s− i) f(s− j) ds

≤ Var(M ′)

|Γn|
∑

i∈Γn

∑

j∈Zd

∫

Cn(i)c∩Cn(j)c
f(s− i) f(s− j) ds

= Var(M ′)
∑

j∈Zd

∫

Cn(0)c∩Cn(j)c
f(s) f(s− j) ds

→ 0 ,

where the convergence is a result of dominated convergence, since
∑

j∈Zd

∫

Rd

f(s) f(s− j) ds <∞ , (3.3)

and Cn(0)c ∩ Cn(j)c → ∅ as n→∞.
In order to prove (3.2), define for n ∈ N and j ∈ Zd

Un(j) =
X
n

j − µn√
|Γn|

,

such that ∑

j∈Γn

Un(j) =
SΓn − |Γn|µn√

|Γn|
.

Then, clearly (Un(j))j∈Zd ismn–dependent with EUn(j) = 0 for all n ≥ 1 and j ∈ Zd.
Furthermore, cf. Appendix A,

E
[(∑

i∈Γn

Un(i)
)2]

=
1

|Γn|
∑

i∈Γn

∑

j∈Γn

Cov
[∫

Cn(i)

f(s− i)M(ds),

∫

Cn(j)

f(s− j)M(ds)
]

=
Var(M ′)

|Γn|
∑

i∈Γn

∑

j∈Γn

∫

Cn(i)∩Cn(j)

f(s− i) f(s− j) ds

= Var(M ′)
∑

j∈Zd

|(Γn − j) ∩ Γn|
|Γn|

∫

Cn(0)∩Cn(j)

f(s) f(s− j) ds

→ Var(M ′)
∑

j∈Zd

∫

Rd

f(s) f(s− j) ds,
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as n → ∞, by dominated convergence. Here, we have used that (3.3) is fulfilled,
|(Γn − j)∩ Γn|/|Γn| → 1 for all j and Cn(0)∩Cn(j)→ Rd as n→∞. Furthermore,
we find, cf. Appendix A,

∑

i∈Γn

E[Un(i)2] = Var(X
n

0 ) = Var(M ′)

∫

Cn(0)

f(s)2 ds ≤ Var(M ′)

∫

Rd

f(s)2 ds <∞ .

Now define
Y = sup

n≥1
|Xn

0 − µn| .

Note that the sequence (X
n

0 )n≥1 has independent increments and that

sup
n≥1

E
[
(X

n

0 − µn)2
]

= sup
n≥1

Var(M ′)

∫

Cn(0)

f(s)2 ds ≤ Var(M ′)

∫

Rd

f(s)2 ds <∞ .

Then, EY 2 <∞, due to Corollary B.2. Furthermore,

Ln(ε) = m2d
n

∑

j∈Γn

E
[
U2
n(j)1{|Un(j)|≥εm−2d

n }
]

= m2d
n E
[
(X

n

0 − µn)21{|Xn
0−µn|≥ε

√
|Γn|m−2d

n }
]

≤ m2d
n E
[
Y 21{Y≥ε

√
|Γn|m−2d

n }
]

= m2d
n E
[
Y 21{Y≥ε

√
|Γn|m−2d

n ,Y≤|Γn|1/4}
]

+m2d
n E

[
Y 21{Y≥ε

√
|Γn|m−2d

n ,Y >|Γn|1/4}

]

≤ m2d
n

√
|Γn|P

[
Y ≥ ε

√
|Γn|m−2d

n

]
+m2d

n E
[
Y 21{Y >|Γn|1/4}

]

≤ m6d
n

ε2
√
|Γn|

EY 2 +m2d
n ψ(|Γn|1/4) ,

where ψ(x) = E(Y 21{Y≥x}). Note that ψ(x) → 0 as x → ∞. With [·] denoting the
integer part, now choose the sequence (mn)n≥1 as mn = [|Γn|

1
24d ] if ψ(|Γn|1/4) = 0

and
mn = min

{[
ψ(|Γn|1/4)−

1
4d

]
,
[
|Γn|

1
24d

]}
,

otherwise. With this choice it is seen that Ln(ε)→ 0 as n→∞. Thus we have from
Theorem 3.1 that

SΓn − |Γn|µn√
|Γn|

D−→ N (0, σ2
S) .

Combining this with (3.1) yields the desired result.

In the proof of Theorem 2.1 for TΓn(h), we need the following lemma, the proof
of which follows from straightforward calculations, using that f is bounded and
non–negative.

Lemma 3.2. Let for h ∈ Zd

g(s) = f(s)− f(s− h), s ∈ Rd.
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Then, for s ∈ Rd, j ∈ Zd,

|g(s)g(s− j)| ≤ vj(s),

g(s)2g(s− j)2 ≤ Cvj(s),

where

vj(s) = f(s)f(s− j) + f(s)f(s− h− j) + f(s− h)f(s− j) + f(s− h)f(s− h− j)

and C <∞ is an appropriately chosen constant. If

∑

j∈Zd

∫

Rd

f(s)f(s− j) ds <∞,

then ∑

j∈Zd

∫

Rd

vj(s) ds <∞ and
∑

j∈Zd

(∫

Rd

vj(s) ds
)2

<∞.

Proof of Theorem 2.1 for TΓn(h). First note that it follows from Lemma 3.2 that
σ2
S <∞ and E[(M ′)4] <∞ implies σ2

T <∞.
For ease of notation, we shall now consider the field (Yi)i∈Zd , where Yi = Xi−Xi+h.

Then, for all i ∈ Zd, EYi = 0 and

Yi =

∫

Rd

(
f(s− i)− f(s− i− h)

)
M(ds) =

∫

Rd

g(s− i)M(ds) ,

where g(s) = f(s) − f(s − h) as previously. Let (mn)n≥1 be (another) sequence
of integers increasing to infinity. Let Cn(i) and X

n

i be defined as in the proof of
Theorem 2.1 for SΓn . Let

Y
n

i = X
n

i −X
n

i+h =

∫

Rd

gn(s− i)M(ds) ,

where gn(s) = 1Cn(0)(s)f(s) − 1Cn(h)(s)f(s − h). Then gn(s) → g(s) for all s ∈ Rd.
Note that EY n

i = 0 and let furthermore γ(h)n = E(Y
n

0 )2. Also define T Γn(h) =∑
i∈Γn

(Y
n

i )2.
As for SΓn , the first step will be to show that

lim
n→∞

‖TΓn(h)− |Γn|γ(h)− (T Γn(h)− |Γn|γ(h)n)‖2√
|Γn|

= 0 . (3.4)

The second step is to show, using Theorem 3.1, that with an appropriately chosen
sequence (mn)n≥1 , we have

T Γn(h)− |Γn|γ(h)n√
|Γn|

D−→ N (0, σ2
T ). (3.5)
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To prove (3.4), we find

‖TΓn(h)− |Γn|γ(h)− (T Γn(h)− |Γn|γ(h)n)‖2
2

|Γn|
=

1

|Γn|
E
[(∑

i∈Γn

[
Y 2
i − EY 2

i − ((Y
n

i )2 − E(Y
n

i )2)
])2]

=
1

|Γn|
∑

i,j∈Γn

E
[
(Y 2

i − EY 2
i )(Y 2

j − EY 2
j )
]

+
1

|Γn|
∑

i,j∈Γn

E
[(

(Y
n

i )2 − E(Y
n

i )2
)(

(Y
n

j )2 − E(Y
n

j )2
)]

− 2
1

|Γn|
∑

i,j∈Γn

E
[
(Y 2

i − EY 2
i )
(
(Y

n

j )2 − E(Y
n

j )2
)]
. (3.6)

We will show convergence of the three terms in (3.6) separately. Using the calculation
formulae from Appendix A, the first term equals

1

|Γn|
∑

i,j∈Γn

[
κ4(M ′)

∫

Rd

g(s− i)2g(s− j)2 ds

+ 2 Var(M ′)2
(∫

Rd

g(s− i)g(s− j) ds
)2
]

=
∑

j∈Zd

|Γn ∩ (Γn − j)|
|Γn|

[
κ4(M ′)

∫

Rd

g(s)2g(s− j)2 ds

+ 2 Var(M ′)2
(∫

Rd

g(s)g(s− j) ds
)2
]
.

By dominated convergence, this converges to σ2
T , using that σ2

T is finite and that all
terms in σ2

T are non–negative. The second term in (3.6) equals

∑

j∈Zd

|Γn ∩ (Γn − j)|
|Γn|

[
κ4(M ′)

∫

Rd

gn(s)2gn(s− j)2 ds

+ 2 Var(M ′)2
(∫

Rd

gn(s)gn(s− j) ds
)2
]
.

By dominated convergence and Lemma 3.2, applied to gn instead of g, but keeping
the upper bound as vj(s), this also converges to σ2

T . Similarly, the third term of (3.6)
converges to −2σ2

T , and we have the desired result in (3.4).
Now define for n ∈ N and j ∈ Zd

Vn(j) =
(Y

n

j )2 − γ(h)n√
|Γn|

.

We want to show that ∑

j∈Γn

Vn(j)
D−→ N (0, σ2

T ),
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using Theorem 3.1. Then by construction EVn(j) = 0 for all n ≥ 1 and j ∈ Zd, and
for n such that mn/3 > ‖h‖, the field (Vn(j))j∈Zd is mn–dependent. Furthermore

E
[(∑

i∈Γn

Vn(i)
)2]

=
1

|Γn|
E
[(∑

i∈Γn

[
(Y

n

i )2 − E(Y
n

i )2
])2]

=
1

|Γn|
∑

i,j∈Γn

E
[(

(Y
n

i )2 − E(Y
n

i )2
)(

(Y
n

j )2 − E(Y
n

j )2
)]
,

which equals the second term of (3.6) and therefore has limit σ2
T . Additionally, using

Appendix A,
∑

i∈Γn

E[Vn(i)2] = E
[[

(Y
n

0 )2 − E(Y
n

0 )2
]2]

= κ4(M ′)
(∫

Rd

gn(s)4 ds
)

+ 2 Var(M ′)2
(∫

Rd

gn(s)2 ds
)2

≤ κ4(M ′)
(∫

Rd

v0(s)2 ds
)

+ 2 Var(M ′)2
(∫

Rd

v0(s) ds
)2

<∞

with v0 as defined in Lemma 3.2. Now define

Z =
(
sup
n≥1
|Xn

0 |+ sup
n≥1
|Xn

h|
)2

+ C ,

where
C = 2 Var(M ′)

∫

Rd

f(s)2 ds.

Using Appendix A, we find that 0 ≤ γ(h)n ≤ C for all n ≥ 1. Also note that
the sequence (X

n

0 )n≥1 has independent increments and that for k = 1, 2, 3, 4, cf.
Appendix A,

sup
n≥1

κk
(
X
n

0

)
= sup

n≥1
κk(M

′)

∫

Cn(0)

f(s)k ds ≤ κk(M
′)

∫

Rd

f(s)k ds <∞ .

Thus also supn≥1 E
(
X
n

0

)4
<∞. By stationarity, also supn≥1 E

(
X
n

h

)4
<∞, and thus

EZ2 <∞, due to Corollary B.2. Then

Ln(ε) = m2d
n

∑

j∈Γn

E
[
V 2
n (j)1{|Vn(j)|≥εm−2d

n }
]

= m2d
n E
[(

(X
n

0 −X
n

h)2 − γ(h)n
)2
1{|(Xn

0−X
n
h)2−γ(h)n|≥ε

√
|Γn|m−2d

n }
]

≤ m2d
n E
[
Z21{Z≥ε

√
|Γn|m−2d

n }
]
.

Now, it follows that Ln(ε)→ 0 by choosing (mn)n≥1 as in the proof of Theorem 2.1
for SΓn . Thus, we can conclude from Theorem 3.1

T Γn − |Γn|γ(h)n√
|Γn|

D−→ N (0, σ2
T ) ,

and combining this with (3.4) gives the desired convergence.
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4 Isotropic model

Now make the assumption that the observations in the field have the form

Xi =

∫

Rd

f(‖s− i‖)M(ds) (4.1)

for i ∈ Zd, where f : [0,∞)→ [0,∞) satisfies
∫

Rd

f(‖s‖) ds <∞ .

This is equivalent to assuming that f(s) in (2.4) only depends on s through ‖s‖.
With this assumption, the field is isotropic, so

E(Xi −Xj)
2 = γ(‖i− j‖)

for a variogram function γ : [0,∞) → [0,∞). Estimation of µ = EX0 and the
corresponding asymptotic properties are unchanged, compared to the more general
framework in Section 2. Also estimation of γ(‖h‖) for h ∈ Zd can be carried out as
before, and the asymptotic results are still valid.

However, we can improve the variogram estimator by taking into account that
γ(‖h‖) only depends on ‖h‖. For this, we introduce

T ′Γ(d0) =
1

|h(d0)|
∑

i∈Γ

∑

h∈h(d0)

(Xi −Xi+h)
2 ,

where Γ is a finite subset of Zd, d0 > 0 and h(d0) = {h ∈ Zd : ‖h‖ = d0}. We have

Theorem 4.1. Let (Γn)n≥1 be a sequence of finite subsets of Zd and assume that
|Γn| goes to infinity and |∂Γn|/|Γn| goes to 0. If

∑

i∈Zd

∫

Rd

f(‖s‖)f(‖s− i‖) ds <∞

and E(M ′)4 <∞, then

T ′Γn
(d0)− |Γn|γ(d0)√

|Γn|
D−→ N (0, σ2

T ′) ,

where

σ2
T ′ =

1

|h(d0)|2
∑

j∈Zd

∑

h,h′∈h(d0)

[
κ4(M ′)

∫

Rd

gh(s)
2gh′(s− j)2 ds

+ 2 Var(M ′)2
(∫

Rd

gh(s)gh′(s− j) ds
)2
]
<∞ ,

and gh(s) = f(‖s‖)− f(‖s− h‖).
The proof of Theorem 4.1 follows exactly the same lines as the second part of

the proof of Theorem 2.1. Additional notation is only needed to take care of the
extra summation in the definition of T ′Γ.
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5 Estimation of sample spacing

Assume that d = 3 and consider the isotropic case again. Let the random field
(Xt)t∈R3 be defined as

Xt =

∫

R3

f(‖s− t‖)M(ds) .

Suppose that the field is only observed in grid points within two parallel planes with
an unknown distance that we want to estimate. Due to the isotropy, we can without
loss of generality assume that observations are made in the two planes

Z2 = {(z1, z2, 0) : z1, z2 ∈ Z}
and

Z2 + h0 = {(z1, z2, d0) : z1, z2 ∈ Z} ,

where h0 = (0, 0, d0). The aim is then to estimate d0. Note that Z2 + h0 ⊂ Z3 only
if d0 ∈ Z, which is not assumed. The idea will be to estimate γ(d0), the variogram
evaluated in d0, only based on pairs (i, i + h0), where i ∈ Z2 and i + h0 ∈ Z2 + h0.
For a finite subset Γ ⊂ Z2, we can estimate γ(d0) by γ̂(d0) = 1

|Γ| T̃Γ, where

T̃Γ =
∑

i∈Γ

(Xi −Xi+h0)
2 .

Assuming that the variogram function d 7→ γ(d) is known and strictly increasing,
an estimator for d0 is obtained by

d̂0 = γ−1(γ̂(d0)) .

This estimator is studied in [13], where an expression for the variance of T̃Γ is derived.
Furthermore an approximate expression for the variance of d̂0 is found using a Taylor
approximation.

Below we state a theorem, giving asymptotic normality of T̃Γ. In fact, apart from
the scaling, the asymptotic variance is equal to the approximation to the variance
suggested in [13].

A result showing asymptotic normality of T̃Γ can directly be translated into
asymptotic confidence intervals for d̂0. If also d 7→ γ(d) is assumed to be differen-
tiable, asymptotic normality of d̂0 is easily derived using the delta method.

Theorem 5.1. Let (Γn)n≥1 be a sequence of finite subsets of Z2 and assume that
|Γn| goes to infinity and that |∂Γn|/|Γn| → 0 for all j ∈ Z2. Assume furthermore
that E(M ′)4 <∞ and

∑

i∈Z2

∫

R3

f(‖s‖)f(‖s− i‖) ds <∞ .

Then,
T̃Γn − |Γn|γ(d0)√

|Γn|
D−→ N (0, σ2

T̃
) ,
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where
σ2
T̃

=
∑

j∈Z2

[
κ4(M ′)

∫

Rd

g(s)2g(s− j)2 ds

+ 2 Var(M ′)2
(∫

Rd

g(s)g(s− j) ds
)2
]
<∞,

and g(s) = f(‖s‖)− f(‖s− h0‖).

Above ∂Γn denotes the boundary of Γn as a subset of Z2. The proof of Theo-
rem 5.1 is almost identical to the proof of Theorem 2.1, but with Zd replaced by Z2

as the index set for the observations.
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A Cumulant formulas

For two variables Y1, Y2 on the form (2.4),

Y1 =

∫

Rd

f1(s)M(ds) Y2 =

∫

Rd

f2(s)M(ds) ,

with kernels f1, f2 satisfying (2.3), the joint cumulant function is given as

logE
(
ei(λ1Y1+λ2Y2)

)
=

∫

Rd

logE
(
ei(λ1f1(s)+λ2f2(s))M ′

)
ds ,

see [6] for details. Assuming that E|M ′|k < ∞ and differentiating k times with
respect to λ1 gives

κk(Y1) = κk(M
′)

∫

Rd

f1(s)k ds ,

where κk(X) denotes the kth cumulant of the variable X. Similarly, if E(M ′)2 <∞
we find

Cov(Y1, Y2) = Var(M ′)

∫

Rd

f1(s)f2(s) ds .

If furthermore EY1 = EY2 = 0 and E(M ′)4 <∞, it holds

E
(
(Y 2

1 − EY 2
1 )(Y 2

2 − EY 2
2 )
)

= κ4(M ′)
(∫

Rd

f1(s)2f2(s)2 ds
)

+ 2 Var(M ′)2
(∫

Rd

f1(s)f2(s) ds
)2

.
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B Corollary to Ottaviani’s inequality

In this Appendix (Xn)n≥1 will denote a sequence of random variables. Let

Sn = X1 + · · ·+Xn and Mn = max
1≤k≤n

|Sk| .

We will use the following version of Ottaviani’s inequality, see [7, Section 6.24].

Theorem B.1. Let (Xn)n≥1 be a sequence of independent random variables. Then,

P(Mn > x+ y) · min
1≤k≤n

P(|Sn − Sk| ≤ y) ≤ P(|Sn| > x)

for all x, y ∈ R.

Corollary B.2. Let (Xn)n≥1 be a sequence of independent random variables. Then
for all p ≥ 1, supn≥1 E|Sn|p <∞ if and only if EMp <∞, where M = supn≥1Mn.

Note that the corollary can be shown for 0 < p < 1 as well. However, in the
present paper we only need the result for p = 2, 4.

Proof of the corollary. First notice that it is easy to show directly that EMp < ∞
implies supn≥1 E|Sn|p <∞. The opposite statement follows from monotone conver-
gence, if we can show that for all n ≥ 1

EMp
n ≤ C max

1≤k≤n
E|Sk|p (B.1)

for a finite constant C that only depends on p. By assumption, supn≥1 E|Sn|p <∞
and therefore,

m = max
1≤k≤n

E|Sk|p <∞ .

Let τ = (2p+1m)1/p. Then, by Markov’s inequality, we have for 1 ≤ k ≤ n

P(|Sn − Sk| > τ) ≤ E(|Sn − Sk|p)
τ p

≤ 2p
E|Sn|p + E|Sk|p

τ p
≤ 1

2
,

where the inequality |x + y|p ≤ 2p(|x|p + |y|p) has been applied. It follows that
min1≤k≤n P(|Sn − Sk| ≤ τ) ≥ 1

2
, so by Theorem B.1,

P(Mn > x) = P(Mn > (x− τ) + τ) ≤ 2P(|Sn|+ τ > x).

Integrating both sides with respect to pxp−1 dx gives

EMp
n ≤ 2E

(
(|Sn|+ τ)p

)
≤ 2p+1E(|Sn|p + τ p) ≤ 2p+1(1 + 2p+1)m.
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