
ar
X

iv
:1

80
8.

08
70

4v
1 

 [
m

at
h.

PR
] 

 2
7 

A
ug

 2
01

8 Is the Sibuya distribution a progeny?
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Abstract

For 0 < a < 1 the Sibuya distribution sa is concentrated on the set N+ of positive integers and

is defined by the generating function
∑∞

n=1
sa(n)z

n = 1−(1−z)a. A distribution q on N
+ is called

a progeny if there exists a Galton-Watson process (Zn)n≥0 such that Z0 = 1, such that E(Z1) ≤ 1
and such that q is the distribution of

∑∞

n=0
Zn. The paper proves that sa is a progeny if and only

if 1

2
≤ a < 1. The point is to find the values of b = 1/a such that the power series expansion of

u(1− (1− u)b)−1 has non negative coefficients. The proof is not short, but elementary.

Keywords: Branching or Galton-Watson processes, progeny, Sibuya law, natural exponential
family. AMS classification: 60J80, 60E99.

1 Introduction

1.1 Branching processes

Recall that if p is a distribution on the set N of non negative integers with generating function

fp(z) =

∞
∑

n=0

pnz
n

then a branching process (Zn)
∞
n=0 (also called Galton-Watson process) governed by p is the Markov

chain defined on N by Z0 = 1 and

Zn+1 =

Zn
∑

k=1

Xn,k

where (Xn,k)n,k≥0 are iid random variables with distribution p. It is easily seen that

E(zZn) = f (n)
p (z) = fp ◦ · · · ◦ fp(z) n times. (1)

Harris (1963) and Athreya and Ney (1972) are two classical treatises on the subject.

1.2 Sibuya distribution

In all the sequel we use the Pchhammer symbol (x)n = x(x+1) . . . (x+n−1). The Sibuya distribution
sa with parameter a ∈ (0, 1) is a probability on positive integers N

+ = {1, 2, . . .} such that if S ∼ sa
then

fsa(z) = E(zS) = 1− (1− z)a. (2)

It is easily seen that for n ≥ 1

Pr(S = n) = sa(n) =
1

n!
a(1− a)(2 − a) . . . (n− 1− a) =

(−a)n
n!

. (3)
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Although this law sa has certainly been considered before, traditionally one refers to Sibuya (1979) for
its study. In the Sibuya paper, it appears as a particular case of what Sibuya calls a digamma law. It
can be found in his formulas (16) and (28) by taking γ = −α = a for getting our (3). Surprizingly (2)
does not appear in his paper. If S ∼ s1/2 the distribution of 2S is well known as the law of first return to
0 of a simple random walk. An other probabilistic interpretation of S ∼ sa is S(w) = min{n : w ∈ An}
where (An)n≥1 is a sequence of independent events such that Pr(An) = a/n. To see this just compute
Pr(S = n) by using

Pr(S > n) = (1 − a)(1− a

2
) . . . (1− a

n
)

and obtaining (3). This idea is extended in Kozubowski and Podgórski (2018), where the authors
rather consider Pr(An) = a/(n + k), when the real parameters k and a satisfy 0 < a < k + 1. For
this generalization sa,k of sa = sa,0, the generating function of S is expressed with the hypergeometric
function 2F1(k + 1 − a, 1; k + 1; z) with a simpler form (2.13 in the paper) when k is a non negative
integer:

fsa,k
(z) = E(zS) =

1

zkPk(1)
(Pk(z)− (1− z)a), Pk(z) =

k
∑

j=0

(−a)j
j!

zj, Pk(1) =
(1− a)k

k!
, (4)

the value of Pk(1) being computed by considering
∑∞

k=0 Pk(1)s
k. This article of Kozubowski and

Podgórsk contains numerous observations and a rich set of references about sa.
However, the most interesting feature of the Sibuya law from the point of view of branching

processes is the following semigroup property

fsa ◦ fsa′
= fsaa′

This implies that the branching process (Zn)
∞
n=0 is governed by sa then the law of Zn is quite explicit

and is san . This distribution is an important example of an imbeddable law in a continuous semigroup
for composition. See Grey (1975) for instance. There are some other variations of this distribution,
sometimes called informally also Sibuya distributions. One is the mixing with an atom on zero (1 −
λ)δ0 + λ sa where 0 < λ ≤ 1, with generating function

f(1−λ)δ0+λ sa(u) = 1− λ(1 − u)a (5)

An other one is the natural exponential family extension of the Sibuya distribution, say s
(ρ)
a , defined

for 0 < ρ ≤ 1 by its generating function

f
s
(ρ)
a

(u) =
1− (1 − ρu)a

1− (1− ρ)a
. (6)

However, in the present paper Sibuya law will only mean sa for some 0 < a < 1. Last section will
comment on (6).

1.3 Progeny

If (Zn)
∞
n=0 is a branching process governed by p, a classical fact is that Pr(∃n : Zn = 0) = 1 is and

only if m =
∑∞

n=0 npn ≤ 1 : consult Harris (1963) page 7. Under these circumstances the random
variable

S =
∞
∑

n=0

Zn

is finite. Its distribution q is called the progeny of p and we have the following link between the
generating functions of p and q: for all z such that |z| ≤ 1 the following holds

fq(z) = zfp(fq(z)) (7)
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Progenies have been considered by many authors, and one can consult Harris (1963) page 32 for
references. Since Z0 = 1 the sum S is concentrated on N

+. Given p, the calculation of q, or of fq, is
not easy in general. It can be done by the Lagrange-Bürmann formula (see Whittaker and Watson
(1986) page 129 for instance). For calculating q, only the case where fp is a Moebius function is simple:
a reference is Toulouse (1999) page 266. Surprizingly enough, given fq the calculation of p is more

feasible. Actually, the function z = g(u) = f
(−1)
q (u) valued in [0, 1] is well defined for u ∈ [0, 1] by

u = fq(z) and (7) leads to

fp(u) =
u

g(u)
. (8)

Although the correspondence p 7→ q is one to one, clearly not all distributions q on N
+ can be the

progeny of some p. For instance q cannot have a bounded support, except in the trivial case where
p0 = 1. Another necessary condtion for q to be a progeny is q1 = f ′

q(0) > 0 . For if not, the reciprocal
function g of fq would not be analytic on 0. In general, given a probabilty q on N

+, no necessary and
sufficient condition such that q is a progeny is known.

1.4 When is the Sibuya distribution a progeny ?

Since the Sibuya distribution is concentrated on N
+, has an unbounded support and satisfies q1 = a >

0, the natural question is the following: given a ∈ (0, 1), does there exists p such that q = sa? The
following proposition gives the answer and is the aim of the present paper:

Proposition 1. The Sibuya distribution sa is a progeny if and only if 1
2 ≤ a < 1.

Section 2 gives the proof of Proposition 1. Note that the question is a natural one, since the explicit
calculation of g is possible. Replacing sa by the generalization sa,k as described in (4) is clearly
complicated for the calculation of g. Also, one should not wonder whether (5) is a progeny, since it
has an atom on zero. The case (6) is more interesting: Section 3 comments on the new progeny when
the generating law p is replaced by an element of the natural exponential family p(r) defined by its
generating function fp(r)/fp(r). These considerations are then applied to (6).

2 Proof of Proposition 1.

For simplicity we denote b = 1/a > 1. The calculation of the function g appearing in (8) is easy since
if u ∈ [0, 1] the only solution z ∈ [0, 1] of the equation u = 1 − (1 − z)1/b is g(u) = 1 − (1 − u)b. We
have therefore to prove that the function

u 7→ hb(u) =
u

1− (1− u)b

has a power series expansion with non negative coefficients if and only if 1 ≤ b ≤ 2.
In the sequel, we denote by B the set of b’s such that s1/b is a progeny.

First step: 2 in in B, 3 is not in B. We have h2(u) =
1
2

1
1− 1

2 u
=
∑∞

n=0
1

2n+1u
n and we get back the

well known fact that s 1
2

is the progeny of a geometric distribution starting at 0. For b = 3 we have

h3(u) =
1

3
× 1

1− u+ u2

3

=
1

3

∞
∑

n=0

rn
sin(n+ 1)θ

sin θ
un,

where re±iθ = 1
2 (3 ± i

√
3) are the complex roots of the polynomial 1 − u + u2

3 . Actually r =
√
3 and

θ = ±π/6. Clearly sin(n+ 1)θ/ sin θ ≥ 0 for all n is impossible and therefore 3 is not in B.

Second step: b is in B if 1 < b < 2.

3



Denote

H(u) =
b− 1

2
+

∞
∑

n=1

(b− 1)(2− b)(3− b) . . . (n+ 1− b)
un

(n+ 2)!

Since 1 < b < 2 all the coefficients of H are positive. With the Pochhammer symbol we can write

(1− u)b =
1

(1− u)−b
=

∞
∑

n=0

(−b)n
n!

un

As a consequence

hb(u) =
1

b
× 1

1− uH(u)
=

1

b

∞
∑

n=0

unH(u)n. (9)

which implies that b ∈ B.

Third step: b is not in B if b > 3.
Consider the numbers (Pn)n≥2 defined by

bu

1− (1− u)b
= 1 +

b− 1

2
u+

∞
∑

n=2

Pnu
n (10)

A simple calculation shows that

P2 =
b2 − 1

6
, P3 =

b2 − 1

4
, P4 =

(19− b2)(b2 − 1)

30
, P5 =

(9− b2)(b2 − 1)

4
.

Therefore P5 < 0 if b > 3.

Fourth step: b is not in B if 2 < b < 3.
This point is more difficult. Let us introduce the numbers (pn)n≥2 defined by

1− (1 − u)b

bu
=

∫ 1

0

(1− ux)b−1dx

= 1− b− 1

2
u+

∞
∑

n=2

(1− b)n
(n+ 1)!

un = 1− b − 1

2
u+

∞
∑

n=2

pnu
n (11)

where the Pochhammer symbol is used:

pn =
1

(n+ 1)!
(b− 1)(b− 2)(3− b) . . . (n− b) (12)

Observe that from (12) we have pn > 0 if 2 < b < 3 since n ≥ 2. For simplication, we now denote

v =
b− 1

2
u, u =

2

b− 1
v, An = Pn

2n

(b− 1)n
, an = pn

2n

(b − 1)n
.

With these notations, equalities (10) and (11) become

2

b− 1
× v

1−
(

1− 2
b−1v

)b
= 1 + v +

∞
∑

n=2

Anv
n (13)

b− 1

2
×

1−
(

1− 2
b−1v

)b

v
= 1− v +

∞
∑

n=2

anv
n (14)
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Since 2 < b < 3 the radius of convergence of the power series on the right hand side of (14) is
(b− 1)/2 < 1. Because an > 0 this remark implies that

∞
∑

n=2

an = ∞. (15)

Now we multiply the two right hand sides of (14) and (13). This product is 1. We obtain

∞
∑

n=2

(an +An)v
n +

∞
∑

n=2

(an −An)v
n+1 +

(

∞
∑

n=2

anv
n

)(

∞
∑

n=2

Anv
n

)

= v2

∞
∑

n=2

(an +An)v
n +

∞
∑

n=3

(an−1 −An−1)v
n +

∞
∑

n=4

(

n−2
∑

k=2

An−kak

)

vn = v2

From this last equality, watching the coefficient on vn for n ≥ 4 we get

an + an−1 +

n−2
∑

k=2

An−kak = An−1 −An (16)

Now assume that An ≥ 0 for all n ≥ 2, which is also assuming that b ∈ B. Then (16) implies
an ≤ An−1 −An. Summing up from n = 4 to N we get for all N

N
∑

n=4

an ≤ A3 −AN ≤ A3,

which contradicts (15). Therefore there exists at least one n such that An < 0. The proposition is
proved. �

3 Natural exponential family and progeny

Proposition 2. Let fp be governing a branching process with mean m ≤ 1 and with generating
function fq for its progeny. Denote by R ≥ 1 the radius of convergence of the power series fp.
Consider r ∈ (0, R) and fp(r)(z) = fp(rz)/fp(r). Suppose that that mr = rf ′

p(r)/fp(r) ≤ 1. Then the

progeny q(ρ) associated to p(r) is given by the following generating function

fq(ρ)(z) = fq(ρz)/fq(ρ) with r = fq(ρ].

Comment. In other terms, if the branching process is governed by a distribution belonging to the
natural exponential family generated by the probability p, the corresponding progeny has a distribution
belonging to the natural exponential family generated by q, but with a new parameter.

Proof.

sfp(r)(fq(ρ)(z)) =
z

fp(r)
fp(rfq(ρ) (z)) =

z

fp(r)
fp

(

r
fq(ρz)

fq(ρ)

)

=
ρz

ρfp(fq(ρ))
fp(fq(ρz)) =

fq(ρz)

fq(ρ)
. �

Example: p is the geometric distribution. For α ≤ 1
2 consider fp(z) = 1−α

1−αz Then fp(r)(z) =
1−αr
1−αrz when r ≤ 1

2 α and

fq(z) =
1

2α
(1−

√

1− 4α(1− α)z), fq(ρ)(z) =
1−

√

1− 4α(1− α)ρz

1−
√

1− 4α(1− α)ρ
.
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with r = fq(ρ) or ρ = r(1−αr)
1−α . Note here that, with the notation of (6) we have

q = s
4α(1−α)
1/2 , q(ρ) = s

4α(1−α)ρ
1/2

Example: q is the Sibuya distribution. For 1
2 ≤ a = 1

b < 1 consider fp(u) =
u

1−(1−u)b
and for

0 < r < 1
fp(r)(u) = (1− (1− r)b)× u

1− (1 − ru)b
.

Denote ρ = 1− (1 − r)b. Then (6) defines the progeny of p(r).
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