LETTER TO THE EDITOR

Dear Editor,

Kemeny's constant for infinite DTMCs is infinite

Consider a positive recurrent discrete-time Markov chain $(X_n)_{n\geq 0}$ with (countable) state space S. For $x \in S$, define the positive hitting time $T_x = \inf\{n \geq 1 : X_n = x\}$ and the hitting time $\theta_x = \inf\{n \geq 0 : X_n = x\}$. Let \mathbb{P}_x denote the law of the process started from state x, and let \mathbb{E}_x denote the corresponding expectation. It was observed by Kemeny and Snell [3] that, when S is finite, the expected hitting time of a random stationary target, i.e. the quantity

$$\kappa_{x} = \sum_{y \in \mathcal{S}} \pi_{y} \mathbb{E}_{x}[T_{y}], \tag{1}$$

does not depend on x. (Here $\pi = (\pi_y)_{y \in S}$ is the stationary distribution for the chain.) Thus, the quantity $\kappa = \kappa_x$ in (1) is called Kemeny's constant. Considerable effort has been devoted to giving an 'intuitive' proof of this result. In [1] it was argued that it is more natural to consider the quantity

$$\omega_{x} = \sum_{y \in \mathcal{S}} \pi_{y} \mathbb{E}_{x} [\theta_{y}].$$

Note that $\mathbb{E}_x[\theta_y] = \mathbf{1}_{\{y \neq x\}} \mathbb{E}_x[T_y]$, from which it follows that $\kappa_x = 1 + \omega_x$ (since $\pi_x \mathbb{E}_x[T_x] = 1$). For finite \mathcal{S} , Hunter [2] established the sharp bound $\kappa \geq (|\mathcal{S}| + 1)/2$ (the bound is achieved by the directed non-random walk on the cycle). It was conjectured in [1, p. 1031] that κ is infinite for any infinite state chain. In this note we verify this conjecture.

Theorem 1. For an irreducible positive recurrent, discrete-time Markov chain with infinite state space and for any $x \in S$, we have $\kappa_x = \sum_{y \in S} \pi_y \mathbb{E}_x[T_y] = \infty$.

This theorem is an immediate consequence of the following result.

Lemma 1. Let S be finite or infinite. Then, for every $x, y \in S$, $\mathbb{E}_x[T_y] \ge \pi_x/(2\pi_y)$.

Proof. We first prove by induction on $n \ge 0$ that $\mathbb{P}_x(X_n = y) \le \pi_y/\pi_x$ for every x, y. The case n = 0 is trivial (for both x = y and $x \ne y$). For $n \ge 1$, we have

$$\mathbb{P}_{x}(X_{n}=y) = \sum_{u \in \mathcal{S}} \mathbb{P}_{x}(X_{n-1}=u)p_{u,y} \le \sum_{u \in \mathcal{S}} \frac{\pi_{u}}{\pi_{x}} p_{u,y} = \frac{\pi_{y}}{\pi_{x}},\tag{2}$$

where $(p_{w,z})_{w,z\in\mathcal{S}}$ are the one-step transition probabilities, and we have used the induction hypothesis and the full balance equations. Using (2), we have

$$\mathbb{P}_{x}(T_{y} \leq n) = \mathbb{P}_{x}\left(\bigcup_{j=1}^{n} \{X_{j} = y\}\right) \leq \sum_{j=1}^{n} \mathbb{P}_{x}(X_{j} = y) \leq \frac{n\pi_{y}}{\pi_{x}}.$$

Therefore, $\mathbb{P}_{x}(T_{y} > n) \geq 1 - n\pi_{y}/\pi_{x}$, and

$$\mathbb{E}_{x}[T_{y}] = \sum_{n=0}^{\infty} \mathbb{P}_{x}(T_{y} > n) \ge \sum_{n=0}^{\lfloor \pi_{x}/\pi_{y} \rfloor} \left(1 - \frac{n\pi_{y}}{\pi_{x}}\right) \ge \frac{\pi_{x}}{2\pi_{y}}.$$

Received 07 June 2019; revision received 18 June 2019.

The last step uses the fact that, for $a \ge 0$,

$$\sum_{n=0}^{\lfloor a\rfloor} \left(1 - \frac{n}{a} \right) = \frac{(2a - \lfloor a\rfloor)(\lfloor a\rfloor + 1)}{2a} \ge \frac{a}{2}.$$

Acknowledgements

OA was supported in part by NSERC. MH was supported by a Future Fellowship grant (no. FT160100166) from the Australian Research Council.

References

- [1] BINI, D., HUNTER, J. J., LATOUCHE, G., MEINI, B. AND TAYLOR, P. G. (2018). Why is Kemeny's constant a constant? J. Appl. Prob. 55, 1025–1036.
- [2] HUNTER, J. J. (2006). Mixing times with applications to perturbed Markov chains. *Linear Algebra Appl.* 417, 108–123.
- [3] KEMENY, J. G. AND SNELL, J. L. (1960). Finite Markov Chains. Van Nostrand, Princeton, NJ.

Yours sincerely,

OMER ANGEL* AND MARK HOLMES**

* Department of Mathematics, The University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T1Z2, Canada.

** School of Mathematics and Statistics,
The University of Melbourne,
Parkville,
VIC 3010,
Australia.