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Abstract

If the parameters of the original Parrondo games A and B are allowed
to be arbitrary, subject to a fairness constraint, and if the two (fair) games
A and B are played in an arbitrary periodic sequence, then the rate of
profit can not only be positive, it can be arbitrarily close to 1 (i.e., 100%).

1 Introduction

The Parrondo effect appears when two fair coin-tossing games, A and B, played
in a random sequence or in some periodic sequence such as ABBABBABB · · · ,
form a winning game. Let us define a p-coin to be a coin with probability p
of heads. In the original capital-dependent games of Parrondo (Harmer and
Abbott, 1999), game A uses a fair coin, while game B uses two biased coins, a
p0-coin if capital is congruent to 0 (mod 3) and a p1-coin otherwise, where

p0 =
1

10
and p1 =

3

4
. (1)

(These coins can be physically realized with dice; see Figure 1.) The player
wins one unit with heads and loses one unit with tails. Both games are fair,
but the random mixture, denoted by 1

2A+ 1
2B and interpreted as the game in

which the toss of a fair coin determines whether game A or game B is played,
has long-term cumulative profit per game played (hereafter, rate of profit)

µ
(

1
2A+ 1

2B
)

=
18

709
≈ 0.0253879,

and the pattern ABB has rate of profit

µ(ABB) =
2416

35601
≈ 0.0678633. (2)
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Figure 1: Parrondo dice. Game A uses the black die (3 +, 3 −), while game B
uses the white dice, namely (1 +, 9 −) when capital is congruent to 0 (mod 3)
and (9 +, 3 −) otherwise. The player wins one unit with a plus sign and loses
one unit with a minus sign. Both games are fair, but when alternated, either
randomly or periodically, a winning game ensues. (One exception: The pattern
AB, that is, the periodic sequence ABABAB · · · , remains fair.)

Dinis (2008) found that the pattern ABABB has the highest rate of profit,
namely

µ(ABABB) =
3613392

47747645
≈ 0.0756769. (3)

These rates of profit are rather modest. Can we modify the games to make
the rates of profit more substantial? To put it more precisely, how large can the
rate of profit be if we vary the parameters of the games, subject to a fairness
constraint? We will focus on periodic sequences, where the rates of profit tend
to be larger than with random sequences.

Game A is always the same fair-coin-tossing game. With r ≥ 3 an integer,
game B is a mod r capital-dependent game that uses two biased coins, a p0-
coin (p0 < 1/2) if capital is congruent to 0 (mod r), and a p1-coin (p1 > 1/2)
otherwise. The probabilities p0 and p1 must be such that game B is fair, which
requires the constraint

(1− p0)(1− p1)r−1 = p0p
r−1
1 ,

or equivalently,

p0 =
ρr−1

1 + ρr−1
and p1 =

1

1 + ρ
(4)

for some ρ ∈ (0, 1). The special case of r = 3 and ρ = 1/3 gives (1). The games
are played in some pattern Γ(A,B), repeated ad infinitum. We denote the rate
of profit by µ(r, ρ,Γ(A,B)), so that the rates of profit in (2) and (3) in this
notation become µ(3, 1/3, ABB) and µ(3, 1/3, ABABB).

How large can µ(r, ρ,Γ(A,B)) be? The answer, perhaps surprisingly, is that
it can be arbitrarily close to 1 (i.e., 100%).

Theorem 1.

sup
r≥3, ρ∈(0,1), Γ(A,B) arbitrary

µ(r, ρ,Γ(A,B)) = 1.
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The proof is deferred to Section 4.
We can compute µ(r, ρ,Γ(A,B)) for r ≥ 3 (the modulo number in game

B) and pattern Γ(A,B) as a function of ρ (the parameter in (4)). Indeed, the
method of Ethier and Lee (2009) applies if r is odd, and generalizations of it
apply if r is even; see Section 2 for details. For example,

µ(3, ρ, ABB) =
(1− ρ)3(1 + ρ)(1 + 2ρ+ ρ2 + 2ρ3 + ρ4)

3 + 12ρ+ 20ρ2 + 28ρ3 + 36ρ4 + 28ρ5 + 20ρ6 + 12ρ7 + 3ρ8
.

(5)
This and other examples suggest that typically µ(r, ρ,Γ(A,B)) is decreasing in
ρ, hence maximized at ρ = 0. (There are exceptions, which include, when r ≥ 3
is odd, ABs with s ≥ 3 odd.) We excluded the case ρ = 0 in (4), but now we
want to include it. We find that

µ(3, 0, ABB) =
1

3
(6)

(by (5)) and

µ(3, 0, ABABB) =
9

25
. (7)

Thus, we take ρ = 0 in what follows.
For a given r ≥ 3, we expect that we can maximize the rate of profit

µ(r, 0,Γ(A,B)) with a pattern of the form

Γ(A,B) = (AB)sBr−2 (8)

for some positive integer s. Notice that this is ABB if (r, s) = (3, 1) and
ABABB if (r, s) = (3, 2).

Let us explain the intuition behind (8). Only the s plays of game A are
random. Game B is deterministic and very simple: If capital is congruent to 0
(mod r), we lose one unit, otherwise we win one unit. Notice that cumulative
profit remains bounded by r when game B is played repeatedly, hence cumula-
tive profit per game played tends to 0 as the number of games played tends to
infinity, and game B is (asymptotically) fair.

Clearly, the optimal strategy, if it were legal, would be to play game A when
capital is congruent to 0 (mod r) and to play game B otherwise. With initial
capital congruent to 0 (mod r), this strategy could be described as playing
the pattern (AB)SBr−2, where S is the geometric random variable equal to
the number of plays of game A needed to achieve a win at that game. Of
course, random patterns are not ordinarily considered, so (8) seems a reasonable
nonrandom approximation for some positive integer s.

First, assume that r is odd and initial capital is congruent to 0 (mod r). If
all s plays of game A result in losses, cumulative profit is −1 after one play of
(8); otherwise it is r. If initial capital is congruent to r − 1 (mod r), then after
one play of (8), cumulative profit is 1 with probability 1.

Second, assume that r is even and again initial capital is congruent to 0
(mod r). If the number of wins in the s plays of game A is 0, cumulative profit
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is 0 after one play of (8); if the number of wins is between 1 and r/2, inclusive,
cumulative profit is r; if the number of wins is between r/2 + 1 and r, inclusive,
cumulative profit is 2r; if the number of wins is between r+1 and 3r/2, inclusive,
cumulative profit is 3r; and so on. If initial capital is congruent to r − 1 (mod
r), then after one play of (8), cumulative profit is 0 with probability 1.

The probabilistic structure of capital growth after multiple plays of (8) can
be analyzed precisely from these observations, and we can evaluate the exact
rate of profit.

Theorem 2. Let r ≥ 3 be an odd integer and s be a positive integer. Then

µ(r, 0, (AB)sBr−2) =
r

2s+ r − 2

2s − 1

2s + 1
, (9)

regardless of initial capital.
Let r ≥ 4 be an even integer and s be a positive integer. Then

µ(r, 0, (AB)sBr−2) =


r

2s+ r − 2

s∑
k=0

⌈
2k

r

⌉(
s

k

)
1

2s
if initial capital is even,

0 if initial capital is odd.

(10)

The formula in (9) is consistent with (6) and (7). The sum in (10) is equal to
(2s− 1)/2s if s ≤ r/2 and bounded below by (2s− 1)/2s in general. Theorem 2
implies Theorem 1, as we will confirm later. The proof of Theorem 2 is deferred
to Section 4. Table 1 illustrates (9) with several examples.

Table 1: The rate of profit µ(r, 0, (AB)sBr−2). Here, for a given odd r, we
choose s to maximize s′ 7→ µ(r, 0, (AB)s

′
Br−2). Results are rounded to six

significant digits.

r s µ(r, 0, (AB)sBr−2) r s µ(r, 0, (AB)sBr−2)

3 2 9/25 = 0.360000 25 5 0.711662
5 3 35/81 ≈ 0.432099 125 7 0.898263
7 3 49/99 ≈ 0.494949 625 9 0.971238
9 3 7/13 ≈ 0.538462 3125 11 0.992671

We do not consider random mixtures γA + (1 − γ)B of games A and B.
Although we expect that the rate of profit, which we denote by µ(r, ρ, γA +
(1 − γ)B), can be made arbitrarily close to 1 by suitable choice of the modulo
number r in game B, the parameter ρ in (4), and the probability γ with which
game A is played, we cannot prove it. However, see Table 2 for several examples.
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Table 2: The rate of profit µ(r, 0, γA + (1 − γ)B). Here, for a given odd r, we
choose γ to maximize γ′ 7→ µ(r, 0, γ′A+ (1− γ′)B). Results are rounded to six
significant digits.

µ(r, 0, γA µ(r, 0, γA
r γ + (1− γ)B) r γ + (1− γ)B)

3 0.407641 0.133369 25 0.277926 0.482769
5 0.420756 0.229111 125 0.150722 0.709914
7 0.399201 0.279864 625 0.0739646 0.854806
9 0.376138 0.318393 3125 0.0345306 0.931535

2 SLLN for periodic sequences of games

Ethier and Lee (2009) proved a strong law of large numbers and a central limit
theorem for periodic sequences of Parrondo games of the form ArBs, repeated ad
infinitum, where r and s are positive integers. Below we state a generalization
of the SLLN to arbitrary patterns. Later we will weaken the hypotheses as
needed.

First, it should be mentioned that several other authors have studied periodic
sequences of Parrondo games. Pyke (2003) discussed one example, AABB,
which he regarded as the alternation of AA and BB. His method is sound but
his stated “asymptotic average gain” for that example is inaccurate, and the
source of the error is unknown. Kay and Johnson (2003) studied patterns of
the form ArBs in the context of history-dependent Parrondo games, and gave
an expression for the rate of profit that is consistent with (11) below. Key,
K losek, and Abbott (2006), as well as Rémillard and Vaillancourt (2019), took
a different approach, analyzing periodic sequences of Parrondo games in terms
of transience to ±∞ and recurrence instead of in terms of the rate of profit.

Theorem 3. Let PA and PB be transition matrices for Markov chains in a finite
state space Σ. Let C1C2 · · ·Ct, where each Ci is A or B, be a pattern of As and
Bs of length t. Assume that P := PC1

PC2
· · ·PCt

is irreducible and aperiodic,
and let the row vector π be the unique stationary distribution of P . Given a
real-valued function w on Σ × Σ, define the payoff matrix W := (w(i, j))i,j∈Σ.

Define ṖA := PA ◦W and ṖB := PB ◦W , where ◦ denotes the Hadamard
(entrywise) product, and put

µ := t−1π(ṖC1
+ PC1

ṖC2
+ · · ·+ PC1

PC2
· · ·PCt−1

ṖCt
)1, (11)

where 1 denotes a column vector of 1s with entries indexed by Σ. Let {Xn}n≥0

be a nonhomogeneous Markov chain in Σ with transition matrices PC1
, PC2

,
. . . , PCt

, PC1
, PC2

, . . . , PCt
, PC1

, and so on, and let the initial distribution
be arbitrary. For each n ≥ 1, define ξn := w(Xn−1, Xn) and Sn := ξ1 + · · ·+ ξn.
Then limn→∞ n−1Sn = µ a.s.
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Proof. The proof is identical to the proof of Theorem 6 of Ethier and Lee (2009).
However, here we have assumed fewer hypotheses and should explain why. First,
it is unnecessary to assume that PA and PB are irreducible and aperiodic be-
cause that assumption is not needed. It is also unnecessary to assume that all
cyclic permutations of P := PC1

PC2
· · ·PCt

are irreducible and aperiodic be-
cause that assumption is redundant; it suffices that P itself be irreducible and
aperiodic. Finally, we assumed in the original theorem that the Markov chain

(X0, X1, . . . , Xt), (Xt, Xt+1, . . . , X2t), (X2t, X2t+1, . . . , X3t), . . . (12)

is irreducible and aperiodic, and we claim that this assumption is also redundant.
The state space Σ∗ of (12) is the set of (x0, x1, . . . , xt) ∈ Σt+1 such that

π(x0)PC1
(x0, x1)PC2

(x1, x2) · · ·PCt
(xt−1, xt) > 0,

and its transition matrix Q is given by

Q((x0, x1, . . . , xt), (xt, xt+1, . . . , x2t))

= PC1
(xt, xt+1)PC2

(xt+1, xt+2) · · ·PCt
(x2t−1, x2t).

We use the fact that a necessary and sufficient condition for a finite Markov
chain to be irreducible and aperiodic is that some power of its transition matrix
has all entries positive. It is straightforward to show that Qn has all entries
positive if P n−1 does. Indeed,

Qn((x0, x1, . . . , xt), (y0, y1, . . . , yt))

= P n−1(xt, y0)PC1(y0, y1)PC2(y1, y2) · · ·PCt(yt−1, yt). (13)

Because P is irreducible and aperiodic, so too is Q.

As an illustration, we can use (11) to confirm (2) and (3), in which case
Σ = {0, 1, 2},

PA =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 , PB =

 0 1/10 9/10
1/4 0 3/4
3/4 1/4 0

 ,

and the payoff matrix is

W =

 0 1 −1
−1 0 1
1 −1 0

 .

More generally, we wish to apply Theorem 3 with

Σ = {0, 1, . . . , r − 1} (14)
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(r is the modulo number in game B), the r × r transition matrices

PA =



0 1/2 0 · · · 0 0 1/2
1/2 0 1/2 · · · 0 0 0
0 1/2 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1/2 0
0 0 0 · · · 1/2 0 1/2

1/2 0 0 · · · 0 1/2 0


, (15)

PB =



0 p0 0 · · · 0 0 1− p0

1− p1 0 p1 · · · 0 0 0
0 1− p1 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 0 p1 0
0 0 0 · · · 1− p1 0 p1

p1 0 0 · · · 0 1− p1 0


, (16)

where p0 and p1 are given by (4), and the r × r payoff matrix

W =



0 1 0 · · · 0 0 −1
−1 0 1 · · · 0 0 0
0 −1 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1 0
0 0 0 · · · −1 0 1
1 0 0 · · · 0 −1 0


. (17)

There are five cases that we want to consider.

1. Let the pattern C1C2 · · ·Ct of Theorem 3 be arbitrary. If ρ > 0 and r is
odd (≥ 3), then P := PC1PC2 · · ·PCt is irreducible and aperiodic.

2. Let the pattern C1C2 · · ·Ct be arbitrary. If ρ > 0, r is even (≥ 4), and t
is odd, then P is irreducible and periodic with period 2.

3. Let the pattern C1C2 · · ·Ct be arbitrary. If ρ > 0, r is even (≥ 4), and t
is even, then P is reducible with two aperiodic recurrent classes, each of
size r/2.

4. Let the pattern C1C2 · · ·Ct have the form (AB)sBr−2 for a positive integer
s. If ρ = 0 and r is odd (≥ 3), then P := (PAPB)s(PB)r−2 is reducible
with one aperiodic recurrent class of size 2 and r − 2 transient states.

5. Let the pattern C1C2 · · ·Ct have the form (AB)sBr−2 for a positive integer
s. If ρ = 0 and r is even (≥ 4), then P is reducible with two absorbing
states and r − 2 transient states.

7



Theorem 3 applies directly only to Case 1. Nevertheless, the theorem can
be extended so as to apply first to Cases 1 and 4, then to Cases 3 and 5, and
finally to Case 2. We begin by generalizing Theorem 3 so as to apply to Cases
1 and 4.

Theorem 3′. Theorem 3 holds with “is irreducible and aperiodic” replaced by
“has only one recurrent class, which is aperiodic”.

Proof. Assume that P has only one recurrent class, which is aperiodic. Let
Σ0 ⊂ Σ be the unique recurrent class. The stationary distribution π of P is
unique and satisfies π(x) > 0 if x ∈ Σ0 and π(x) = 0 otherwise. For some
n ≥ 2, P n−1(xt, y0) > 0 for all xt, y0 ∈ Σ0. With the help of (13) we find that
Qn has all entries positive, hence Q is irreducible and aperiodic.

An example may help to clarify this argument. Consider the special case of
(14)–(17) (with (4)) in which ρ = 0 and r = 3, and let C1C2C3 = ABB. Then
π = (2/3, 0, 1/3), and the state space for the Markov chain (X0, X1, X2, X3),
(X3, X4, X5, X6), . . . is Σ∗ = {(0, 1, 2, 0), (0, 2, 0, 2), (2, 0, 2, 0), (2, 1, 2, 0)} with
corresponding transition matrix

Q =


1/2 1/2 0 0
0 0 1/2 1/2

1/2 1/2 0 0
1/2 1/2 0 0

 ,

which is irreducible and aperiodic.
The remainder of the proof follows that of Theorem 6 of Ethier and Lee

(2009).

We turn to Cases 3 and 5, which require a new formulation of Theorem 3, the
difficulty being that the limit in the SLLN depends on the initial distribution
of the underlying Markov chain.

Theorem 4. Let PA and PB be transition matrices for Markov chains in a
finite state space Σ. Let C1C2 · · ·Ct, where each Ci is A or B, be a pattern
of As and Bs of length t. Assume that P := PC1

PC2
· · ·PCt

is reducible with
two recurrent classes R1 and R2, both of which are aperiodic, and possibly some
transient states, and let the row vectors π1 and π2 be the unique stationary
distributions of P concentrated on R1 and R2, respectively. Given a real-valued
function w on Σ × Σ, define the payoff matrix W := (w(i, j))i,j∈Σ. Define

ṖA := PA ◦W and ṖB := PB ◦W , where ◦ denotes the Hadamard (entrywise)
product, and put

µj := t−1πj(ṖC1
+ PC1

ṖC2
+ · · ·+ PC1

PC2
· · ·PCt−1

ṖCt
)1

for j = 1, 2, where 1 denotes a column vector of 1s with entries indexed by Σ.
Let {Xn}n≥0 be a nonhomogeneous Markov chain in Σ with transition matrices
PC1 , PC2 , . . . , PCt , PC1 , PC2 , . . . , PCt , PC1 , and so on, and let its initial
state be i0 ∈ Σ. Let α := P (Xnt ∈ R1 for n sufficiently large). For each n ≥ 1,
define ξn := w(Xn−1, Xn) and Sn := ξ1 + · · · + ξn. Then limn→∞ n−1Sn =
αµ1 + (1− α)µ2 a.s.
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Proof. The argument used to prove the conclusion of Theorem 3 when π is the
initial distribution applies here, allowing us to prove that limn→∞ n−1Sn = µj
a.s. if πj is the initial distribution, then if the initial state i0 belongs to Rj , for
j = 1, 2. Let N := min{nt : Xnt ∈ R1 ∪ R2}. Then P (XN ∈ R1) = α, and the
stated conclusion readily follows.

We conclude this section by addressing Case 2.

Theorem 3′′. Theorem 3 holds with “is irreducible and aperiodic” replaced by
“is irreducible and periodic with period 2”.

Proof. The idea is to apply Theorem 4 with the pattern C1C2 · · ·Ct replaced
by the pattern C1C2 · · ·CtC1C2 · · ·Ct, which has the same limit in the SLLN.
In particular, P is replaced by P 2. The assumption that P is irreducible with
period 2 means that Σ is the disjoint union of R1 and R2, and transitions under
P take R1 to R2 and R2 to R1. This means that P 2 is reducible with two
recurrent classes, R1 and R2, and no transient states. Let the row vectors π1

and π2 be the unique stationary distributions of P 2 concentrated on R1 and
R2, respectively. Then π1P = π2 and π2P = π1. Consequently, the limit µ1

starting in R1 is, according to Theorem 4,

(2t)−1π1

[
ṖC1 + PC1ṖC2 + · · ·+ PC1PC2 · · ·PCt−1ṖCt

+ P (ṖC1
+ PC1

ṖC2
+ · · ·+ PC1

PC2
· · ·PCt−1

ṖCt
)
]
1

= t−1π(ṖC1
+ PC1

ṖC2
+ · · ·+ PC1

PC2
· · ·PCt−1

ṖCt
)1,

where π := (π1 + π2)/2 is the unique stationary distribution of P , and this is
(11). The limit µ2 starting in R2 is the same but with π1 and π2 interchanged,
and again this is (11).

For example, we find that

µ(4, ρ, ABB) =
(1− ρ)3

3(1 + ρ3)

as a consequence of Theorem 3′′, and

µ(4, ρ, ABBB) =


(1− ρ)(2− 3ρ+ 2ρ2)

4(1 + ρ)(1− ρ+ ρ2)
if initial capital is even

−
ρ2(1− ρ)(5− 6ρ+ 5ρ2)

4(1 + ρ)3(1− ρ+ ρ2)2
if initial capital is odd

as a consequence of Theorem 4. Recalling the five cases below (14)–(17), these
two examples correspond to Cases 2 and 3, respectively, whereas (5) corresponds
to Case 1.

Finally, we point out that Rémillard and Vaillancourt (2019) have addressed
some of the same issues that we encountered in this section, namely reducibility,
periodicity, and more than one recurrent class, albeit by different methods.
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3 Mean of a binomial-like distribution

Here we want to find the mean of a discrete distribution that depends, like
the binomial, on two parameters, a positive integer n and p ∈ (0, 1). The
distribution does not appear to have a name. The formula for the probability
mass function depends on whether n is even or odd, so we treat the two cases
separately. We use the convention that q := 1− p.

In the case n = 2m with m a positive integer, consider a particle that starts
at (0, 0). At each time step, it moves one unit to the right with probability
p or one unit up with probability q, stopping at the first time it reaches the
boundary (k,m− bk/2c), k = 0, 1, . . . , 2m. Let Z2m denote the x-coordinate of
its final position. Then

P (Z2m = k) =

(
m+ bk/2c

k

)
pkqm−bk/2c, k = 0, 1, . . . , 2m. (18)

Each lattice path ending at (k,m− bk/2c) has probability pkqm−bk/2c, and the
binomial coefficient counts the number of paths that end at (k,m− k/2) if k is
even, and at (k,m − (k − 1)/2) if k is odd because in the latter case the path
must first reach (k,m− (k + 1)/2). See Figure 2.

In the case n = 2m− 1 with m a positive integer, again consider a particle
that starts at (0, 0). At each time step, it moves one unit to the right with
probability p or one unit up with probability q, stopping at the first time it
reaches the boundary (k,m − dk/2e), k = 0, 1, . . . , 2m − 1. Let Z2m−1 denote
the x-coordinate of its final position. Then

P (Z2m−1 = k) =

(
m− 1 + dk/2e

k

)
pkqm−dk/2e, k = 0, 1, . . . , 2m− 1. (19)

Each lattice path ending at (k,m− dk/2e) has probability pkqm−dk/2e, and the
binomial coefficient counts the number of paths that end at (k,m− (k + 1)/2)
if k is odd, and at (k,m− k/2) if k is even because in the latter case the path
must first reach (k,m− 1− k/2). See Figure 3.

Lemma 5.

P (Zn is even) =

{
(1 + qn+1)/(1 + q) if n is even,

(q + qn+1)/(1 + q) if n is odd.
(20)

Equivalently,

P (Zn is odd) =

{
(q − qn+1)/(1 + q) if n is even,

(1− qn+1)/(1 + q) if n is odd.

Proof. We give separate proofs for n even and n odd, both by induction. To
initialize, in the n = 1 case, the probability mass function is q at 0 and p at 1,
so (20) holds. In the n = 2 case, the probability mass function is q at 0, pq at
1, and p2 at 2, so again (20) holds.
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Figure 2: The solid dots determine the boundary characterizing Z6, whereas
the open dots determine the boundary characterizing Z8.
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Figure 3: The solid dots determine the boundary characterizing Z5, whereas
the open dots determine the boundary characterizing Z7.
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Now assume that (20) holds for n = 2m. We must show that it holds for
n = 2m+ 2. By the interpretation of the distribution (see Figure 2),

P (Z2m+2 is even | Z2m is even) = q + p2 = 1− q + q2,

P (Z2m+2 is even | Z2m is odd) = p = 1− q.

We conclude that

P (Z2m+2 is even) = P (Z2m is even)P (Z2m+2 is even | Z2m is even)

+ P (Z2m is odd)P (Z2m+2 is even | Z2m is odd)

=
1 + q2m+1

1 + q
(1− q + q2) +

q − q2m+1

1 + q
(1− q)

=
1 + q2m+3

1 + q
,

proving the lemma when n is even.
Now assume that (20) holds for n = 2m− 1. We must show that it holds for

n = 2m+ 1. By the interpretation of the distribution (see Figure 3),

P (Z2m+1 is even | Z2m−1 is even) = q,

P (Z2m+1 is even | Z2m−1 is odd) = pq = q(1− q).

We conclude that

P (Z2m+1 is even) = P (Z2m−1 is even)P (Z2m+1 is even | Z2m−1 is even)

+ P (Z2m−1 is odd)P (Z2m+1 is even | Z2m−1 is odd)

=
q + q2m

1 + q
q +

1− q2m

1 + q
q(1− q)

=
q + q2m+2

1 + q
,

proving the lemma when n is odd.

Lemma 6.

E[Zn] = n
p

2− p
+ [1− (−1)n(1− p)n]

p(1− p)
(2− p)2

.

Equivalently,

E[Zn] = n
1− q
1 + q

+ [1− (−1)nqn]
q(1− q)
(1 + q)2

. (21)

Proof. As with Lemma 5, we give separate proofs for n even and n odd, both
by induction. To initialize, in the n = 1 case, the probability mass function is
q at 0 and p at 1, so the mean is p = 1 − q and (21) holds. In the n = 2 case,
the probability mass function is q at 0, pq at 1, and p2 at 2, so the mean is
pq + 2p2 = (1− q)(2− q) and again (21) holds.
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Now assume that (21) holds for n = 2m. We must show that it holds for
n = 2m+ 2. By the interpretation of the distribution (see Figure 2),

E[Z2m+2 − Z2m | Z2m is even] = pq + 2p2 = (1− q)(2− q),
E[Z2m+2 − Z2m | Z2m is odd] = p = 1− q.

We conclude from the induction hypothesis and Lemma 5 that

E[Z2m+2] = E[Z2m] + P (Z2m is even)E[Z2m+2 − Z2m | Z2m is even]

+ P (Z2m is odd)E[Z2m+2 − Z2m | Z2m is odd]

= 2m
1− q
1 + q

+ (1− q2m)
q(1− q)
(1 + q)2

+
1 + q2m+1

1 + q
(1− q)(2− q) +

q − q2m+1

1 + q
(1− q)

= (2m+ 2)
1− q
1 + q

+ (1− q2m+2)
q(1− q)
(1 + q)2

,

proving the lemma when n is even.
Now assume that (21) holds for n = 2m− 1. We must show that it holds for

n = 2m+ 1. By the interpretation of the distribution (see Figure 3),

E[Z2m+1 − Z2m−1 | Z2m−1 is even] = p = 1− q,
E[Z2m+1 − Z2m−1 | Z2m−1 is odd] = pq + 2p2 = (1− q)(2− q).

We conclude from the induction hypothesis and Lemma 5 that

E[Z2m+1] = E[Z2m−1]

+ P (Z2m−1 is even)E[Z2m+1 − Z2m−1 | Z2m−1 is even]

+ P (Z2m−1 is odd)E[Z2m+1 − Z2m−1 | Z2m−1 is odd]

= (2m− 1)
1− q
1 + q

+ (1 + q2m−1)
q(1− q)
(1 + q)2

+
q + q2m

1 + q
(1− q) +

1− q2m

1 + q
(1− q)(2− q)

= (2m+ 1)
1− q
1 + q

+ (1 + q2m+1)
q(1− q)
(1 + q)2

,

proving the lemma when n is odd.

We conclude this section with alternative interpretations of the distribution
of Zn, given by (18) if n = 2m and by (19) if n = 2m − 1, that do not require
separate formulations for n even and n odd.

• Consider a particle that starts at (0, 0). At each time step, it moves one
unit to the right with probability p or one unit up with probability q,
stopping at the first time it reaches or crosses the boundary (k, (n−k)/2),
k = 0, 1, . . . , n. Let Zn denote the x-coordinate of its final position.

13



• Consider a particle that starts at (0, 0). At each time step, it moves one
unit to the right with probability p or two units up with probability q,
stopping at the first time it reaches or crosses the boundary (k, n − k),
k = 0, 1, . . . , n. Let Zn denote the x-coordinate of its final position.

• Consider a particle that starts at (0, 0). At each time step, it moves one
unit to the right with probability p or one unit up with probability q
followed by another unit up with probability 1, stopping at the first time
it reaches the boundary (k, n − k), k = 0, 1, . . . , n. Let Zn denote the
x-coordinate of its final position.

The last of these interpretations is the context in which the distribution
arises in Section 4 below.

4 Proofs of Theorems 1 and 2

Proof of Theorem 1. The result is immediate from Theorem 2 provided we can
show that f(ρ) := µ(r, ρ, (AB)sBr−2) is continuous at 0. We use Theorem 3,
3′′, or 4 to evaluate f(ρ), which is a rational function of ρ. The only potential
singularities are those of the stationary distribution π (or π1 or π2). But the
existence and uniqueness of π (or π1 or π2) for 0 ≤ ρ ≤ 1 ensures that f(ρ) is
real analytic there, hence continuous.

We give two proofs of Theorem 2, the first one direct (depending solely on
Theorems 3′ and 4) but complicated, and the second one more easily understood
but depending on Theorems 3′ and 4 and Lemmas 5 and 6.

First proof of Theorem 2. First assume that r ≥ 3 is odd. Since ṖA1 = 0,
Theorem 3′ tells us that the rate of profit, regardless of initial capital, can be
expressed as

µ(r, 0, (AB)sBr−2)

= (2s+ r − 2)−1π

[ s−1∑
j=0

(PAPB)jPAṖB +

r−3∑
i=0

(PAPB)s(PB)iṖB

]
1, (22)

where π is the stationary distribution of P := (PAPB)s(PB)r−2. Since ρ = 0
and r is odd, P is reducible with one recurrent class {0, r−1} and r−2 transient
states. From the observations about the pattern (AB)sBr−2 in Section 1 it
follows that P (0, 0) = 1−P (0, r− 1) = 1− 2−s and P (r− 1, 0) = 1 so that the
stationary distribution π is given by π = (π0, 0, 0, . . . , 0, πr−1), where

π0 = 1− πr−1 =
2s

2s + 1
.

Except for the factor (2s + r − 2)−1, all of the terms in (22) have the form
πΛṖB1 for a transition matrix Λ = (λi,j)i,j=0,1,...,r−1. Therefore, using ṖB1 =
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(−1, 1, 1, . . . , 1)T, we have

πΛṖB1 = 1− 2(π0λ0,0 + πr−1λr−1,0), (23)

showing that we need only determine two of the entries of Λ to evaluate (23).
We first consider the transition matrix Λ = (PAPB)jPA for 0 ≤ j ≤ s− 1.

When j < (r−1)/2, we have λ0,0 = 0. When j ≥ (r−1)/2, from state 0 we can
reach state r − 1 after j plays of AB if there are at least (r − 1)/2 wins from
the j plays of game A, after which we can move to state 0 with an additional
win from game A. Thus, we have

λ0,0 =

j∑
k=(r−1)/2

(
j

k

)
1

2j+1
.

For all j, we have λr−1,0 = 1/2. Using (23), for j < (r − 1)/2,

π(PAPB)jPAṖB1 = 1− 2πr−1
1

2
= π0 =

2s

2s + 1
,

and for j ≥ (r − 1)/2,

π(PAPB)jPAṖB1 = 1− 2

[
π0

j∑
k=(r−1)/2

(
j

k

)
1

2j+1
+ πr−1

1

2

]

=
2s

2s + 1

[
1−

j∑
k=(r−1)/2

(
j

k

)
1

2j

]
.

Summing these s terms, we have

s−1∑
j=0

π(PAPB)jPAṖB1 =
2s

2s + 1

[
s−

s−1∑
j=(r−1)/2

j∑
k=(r−1)/2

(
j

k

)
1

2j

]
. (24)

Next we consider the transition matrix Λ = (PAPB)s(PB)i for 0 ≤ i ≤ r−3.
For even i, we have λ0,0 = 2−s and λr−1,0 = 0, from which we obtain, via (23),

π(PAPB)s(PB)iṖB1 = 1− 2π0 2−s =
2s − 1

2s + 1
.

Now let i be odd. Assume we start from state 0. With at least (r − i)/2 wins
from s plays of game A, we can reach state r − i or an even state to its right
after s plays of game AB, and then move to state 0 after i additional plays of
game B. Thus, we have

λ0,0 =

s∑
k=(r−i)/2

(
s

k

)
1

2s
.
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Moreover, λr−1,0 = 1. Thus, for odd i we obtain, via (23),

π(PAPB)s(PB)iṖB1 = 1− 2

[
π0

s∑
k=(r−i)/2

(
s

k

)
1

2s
+ πr−1

]

=
2s − 1

2s + 1
− 2

2s + 1

s∑
k=(r−i)/2

(
s

k

)
.

Summing over i, we have

r−3∑
i=0

π(PAPB)s(PB)iṖB1 = (r− 2)
2s − 1

2s + 1
− 2

2s + 1

(r−3)/2∑
i=1

s∑
k=(r−2i+1)/2

(
s

k

)
.

(25)
For the double sum in (25), a change of variables gives

(r−3)/2∑
i=1

s∑
k=(r−2i+1)/2

(
s

k

)
=

(r−1)/2∑
j=2

s∑
k=j

(
s

k

)
.

There are two cases. If (r − 1)/2 ≥ s, which also makes the double sum in (24)
zero, then this becomes

s∑
j=2

s∑
k=j

(
s

k

)
=

s∑
k=2

k∑
j=2

(
s

k

)
=

s∑
k=2

(k − 1)

(
s

k

)
=

s∑
k=0

(k − 1)

(
s

k

)
+ 1

= s2s−1 − 2s + 1 =
s2s − 2(2s − 1)

2
, (26)

and (22) becomes

µ(r, 0, (AB)sBr−2) =
1

2s+ r − 2

[
s2s

2s + 1
+ (r − 2)

2s − 1

2s + 1
− s2s − 2(2s − 1)

2s + 1

]
=

r

2s+ r − 2

2s − 1

2s + 1
.

If (r − 1)/2 < s, it suffices to verify the following identity:

s−1∑
j=(r−1)/2

j∑
k=(r−1)/2

(
j

k

)
2s−j + 2

(r−1)/2∑
j=2

s∑
k=j

(
s

k

)
= s2s − 2(2s − 1).

For 1 ≤ s0 < s,

s−1∑
j=s0

j∑
k=s0

(
j

k

)
2s−j + 2

s0∑
j=2

s∑
k=j

(
s

k

)
− [s2s − 2(2s − 1)]

=

s−1∑
j=s0

j∑
k=s0

(
j

k

)
2s−j − 2

s∑
j=s0+1

s∑
k=j

(
s

k

)
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=

s−1∑
k=s0

s−1∑
j=k

(
j

k

)
2s−j − 2

s∑
k=s0+1

s∑
j=k

(
s

j

)

=

s∑
k=s0+1

2s+1

[ s−1∑
j=k−1

(
j

k − 1

)
1

2j+1
−

s∑
j=k

(
s

j

)
1

2s

]
= 0,

where the first equality uses (26) and the last equality uses the relationship
between the binomial and negative binomial distributions. (The first sum within
brackets is the probability that, in a sequence of independent Bernoulli trials
with success probability 1/2, at most s trials are needed for the kth success, and
the second sum is the probability that at least k successes occur in s trials.)

Next assume that r ≥ 4 is even. Theorem 4 tells us that the rate of profit
can be expressed as

µ(r, 0, (AB)sBr−2)

= (2s+ r − 2)−1π0

[ s−1∑
j=0

(PAPB)jPAṖB +

r−3∑
i=0

(PAPB)s(PB)iṖB

]
1, (27)

where π0 := (1, 0, 0, . . . , 0) if initial capital is even and π0 := (0, 0, . . . , 0, 1) if
initial capital is odd.

Except for the factor (2s + r − 2)−1, all of the terms in (27) have the form
π0ΛṖB1 for a transition matrix Λ = (λi,j)i,j=0,1,...,r−1, and

π0ΛṖB1 =

{
1− 2λ0,0 if initial capital is even,

1− 2λr−1,0 if initial capital is odd.

For Λ = (PAPB)jPA with 0 ≤ j ≤ s − 1, λ0,0 = 0 and λr−1,0 = 1/2. For
Λ = (PAPB)s(PB)i with 0 ≤ i ≤ r − 3, λ0,0 = 0 if i is odd and

λ0,0 =

[(
s

0

)
+

d2s/re∑
m=1

mr/2∑
k=(mr−i)/2

(
s

k

)]
1

2s

if i is even. Finally, λr−1,0 = 1 if i is odd and λr−1,0 = 0 if i is even.
Therefore, if initial capital is odd,

µ(r, 0, (AB)sBr−2) =
1

2s+ r − 2

[
s

(
1− 2 · 1

2

)
+
r − 2

2
(1− 1)

]
= 0,

and if initial capital is even,

µ(r, 0, (AB)sBr−2)

=
1

2s+ r − 2

{
s+ r − 2− 2

r/2−2∑
i=0

[(
s

0

)
+

d2s/re∑
m=1

mr/2∑
k=mr/2−i

(
s

k

)]
1

2s

}
.
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It remains to check that this last expression coincides with the formula in (10).
The quantity within braces is equal to

s+ r − 2− 2

(
r

2
− 1

)
1

2s
− 2

d2s/re∑
m=1

mr/2∑
j=(m−1)r/2+2

mr/2∑
k=j

(
s

k

)
1

2s

= s+ (r − 2)

(
1− 1

2s

)
− 2

d2s/re∑
m=1

mr/2∑
k=(m−1)r/2+2

(k − 1− (m− 1)r/2)

(
s

k

)
1

2s

= s+ (r − 2)

(
1− 1

2s

)
− 2

d2s/re∑
m=1

mr/2∑
k=(m−1)r/2+1

(k − 1− (m− 1)r/2)

(
s

k

)
1

2s

= s+ (r − 2)

(
1− 1

2s

)
− 2

s∑
k=0

(k − 1)

(
s

k

)
1

2s
− 2

2s

+ r

d2s/re∑
m=1

(m− 1)

mr/2∑
k=(m−1)r/2+1

(
s

k

)
1

2s

= s+ (r − 2)

(
1− 1

2s

)
− 2

(
s

2
− 1

)
− 2

2s

− r
(

1− 1

2s

)
+ r

d2s/re∑
m=1

m

mr/2∑
k=(m−1)r/2+1

(
s

k

)
1

2s

= r

d2s/re∑
m=1

m

mr/2∑
k=(m−1)r/2+1

(
s

k

)
1

2s

= r

s∑
k=0

⌈
2k

r

⌉(
s

k

)
1

2s
,

and the proof is complete.

Second proof of Theorem 2. First, fix an odd integer r ≥ 3 and a positive integer
s. We apply Theorem 3′ assuming (14)–(17) with ρ = 0 in (4) and C1C2 · · ·Ct =
(AB)sBr−2 with t := 2s+ r − 2, to conclude that

µ(r, 0, (AB)sBr−2) = lim
n→∞

(nt)−1E[Snt]. (28)

(The theorem tells us that the rate of profit does not depend on initial capital, so
for convenience we take initial capital congruent to 0 (mod r).) Here S1, S2, . . .
is the player’s sequence of cumulative profits. We can evaluate E[Snt].

We denote by pn(k), k = 0, 1, . . . , n, the probability mass function in (18) if
n = 2m and in (19) if n = 2m− 1. We claim that

P (Snt = kr −mod(n− k, 2)) = pn(k), k = 0, 1, . . . , n,
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with p = 1 − 2−s. The result follows by using the third of the alternative
interpretations of the distribution in (18) and (19) at the end of Section 3.

We can now evaluate, with the help of Lemmas 5 and 6, mean profit after
nt games:

E[Snt] =

n∑
k=0

(kr −mod(n− k, 2))pn(k)

= rE[Zn]− P (n− Zn is odd)

= r

(
n

1− q
1 + q

+ [1− (−1)nqn]
q(1− q)
(1 + q)2

)
− q − (−1)nqn+1

1 + q
.

We divide by nt = n(2s+ r − 2) and let n→∞ to obtain

lim
n→∞

(nt)−1E[Snt] =
r

2s+ r − 2

1− q
1 + q

=
r

2s+ r − 2

2s − 1

2s + 1
,

so (9) follows from this and (28).
Second, fix an even integer r ≥ 4 and a positive integer s. We apply Theo-

rem 4 assuming (14)–(17) with ρ = 0 in (4) and C1C2 · · ·Ct = (AB)sBr−2 with
t := 2s+ r− 2, to conclude that (28) holds. (The theorem tells us that the rate
of profit depends on initial capital only through its parity, so for convenience we
take initial capital congruent to 0 (mod r) if initial capital is even, or congruent
to r − 1 (mod r) if odd.) Recalling from Section 1 that, with initial capital
congruent to 0 (mod r), each play of (AB)sBr−2 results in a mean profit of

E[St] =

d2s/re∑
m=1

mr

mr/2∑
k=(m−1)r/2+1

(
s

k

)
1

2s
= r

s∑
k=0

⌈
2k

r

⌉(
s

k

)
1

2s
,

we find that

lim
n→∞

(nt)−1E[Snt] =
r

2s+ r − 2

s∑
k=0

⌈
2k

r

⌉(
s

k

)
1

2s
.

With initial capital congruent to r − 1 (mod r), P (Snt = 0) = 1, so

lim
n→∞

(nt)−1E[Snt] = 0,

and (10) follows from the last two limits and (28).
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