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SMALL-TIME MODERATE DEVIATIONS FOR THE RANDOMISED HESTON MODEL

ANTOINE JACQUIER, FANGWEI SHI

Abstract. We extend previous large deviations results for the randomised Heston model to the case of moderate

deviations. The proofs involve the Gärtner-Ellis theorem and sharp large deviations tools.

1. Introduction

Classical stochastic volatility models are known to provide an overall good fit of option price data (or of

the so-called implied volatility surface), except for short maturities; in this particular region, adding jumps has

historically provided a good patch, at the expense of complicated hedging, and more recently rough volatility

models [2, 5, 11, 15, 17, 18, 22] have shown to out-perform while preserving continuity of the sample paths.

Building on the intuition that these refinements somehow capture a certain kind of uncertainty around the

starting time of the process, a randomised version of the Heston model [21] was proposed in [23, 26], where the

starting point of the variance process is considered random. The authors showed there that this extra source

of randomness generates the desired behaviour of implied volatility for small times. Mathematically, this was

proved showing that the underlying stock price process satisfies some large deviations principles with specific

rates of convergence.

Moderate deviations, although formally equivalent to large deviations, however usually provide more efficient

ways (from a numerical point of view) to compute limiting probabilities. Introduced in [28], they have become

an increasingly useful tool in probability and statistical Physics, as can be found in [3, 8, 9, 25]. They have

also recently appeared in mathematical finance in order to provide a different, yet somehow more useful view

on asymptotics, and important results in this direction can be studied in [4, 14, 24].

This paper builds upon the large deviations results from [23] and provide their moderate deviations coun-

terparts, in the context of small-time behaviour of the randomised Heston model; contrary to large deviations,

the moderate deviations rate functions are here available in closed form, hence allowing for more efficient and

quicker computations. In passing, we provide (Theorems 3.2 and 3.6) unusual examples of moderate deviations

rate function which does not have a quadratic form. We gather some technical results and background in the

appendix.

Notations Let R+ := [0,∞), R∗+ := (0,∞), and R∗ := R \ {0}. For two functions f and g we write f ∼ g

as x tends to x0 if lim
x→x0

f(x)/g(x) = 1. Finally, for a sequence (Yt)t≥0 satisfying a large deviations principle

as t tends to zero with speed g(t) and good rate function Λ we use the notation Y ∼ LDP(g(t),Λ).
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2. Model description

On a given filtered probability space (Ω,F , (Ft)t≥0,P) supporting two independent Brownian motions W (1)

and W (2), we consider the following dynamics for a log-stock price process (Xt)t≥0:

(2.1)
dXt = −1

2
Vtdt+

√
Vt

(
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

)
, X0 = 0,

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

(1)
t , V0 = V ,

with κ, θ, ξ > 0 and ρ ∈ [−1, 1]. This corresponds to the randomised version of the classical Heston model [21],

as recently proposed and analysed in [23, 26]. We assume that V is a continuous random variable independent

of the filtration (Ft)t≥0, and that the interior of its support reads (v−, v+) ⊆ R∗+. Further assume that its

moment generating function MV(u) := E(euV ) is well defined on an open interval containing the origin, and

denote m := sup{u : E(euV ) < ∞}. We shall distinguish three separate behaviours for the randomisation V :
bounded-support (v+ < ∞), thin-tail (m = ∞, v+ = ∞), and fat-tail (m < ∞, v+ = ∞). Following [23], we

introduce the following assumptions characterising the thin-tail and fat-tail cases:

Assumption 2.1 (Thin tails). v+ = ∞ and V admits a smooth density f with log f(v) ∼ −l1vl2 as v tends to

infinity, for some (l1, l2) ∈ R∗+ × (1,∞).

Assumption 2.2 (Fat tails). There exists (γ0, γ1, ω) ∈ R∗ × R × {1, 2}, such that the following asymptotics

hold for the cumulant generating function (cgf) of V as u tends to m from below:

(2.2) logMV(u) =





γ0 log(m− u) + γ1 + o(1), for ω = 1, γ0 < 0,
γ0

m− u
(1 + γ1(m− u) log(m− u) +O(m− u)) , for ω = 2, γ0 > 0,

and

(2.3)
M′V(u)

MV(u)
=





|γ0|
m− u

(1 + o(1)) , for ω = 1, γ0 < 0,
γ0

(m− u)2
(1− γ1(m− u) + o (m− u)) , for ω = 2, γ0 > 0,

Common continuous distributions fit into this framework, in particular the uniform distribution (bounded

support), the folded Gaussian distribution, the Gamma distribution (Assumption 2.2 with ω = 1), and the

noncentral Chi-squared (Assumption 2.2 with ω = 2).

Before stating the main results of the paper, let us recall some information on the cumulant generating

function of Xt, which will be essential for the rest of the analysis. As proved in [1], the moment generating

function of Xt in the standard Heston model (where V is a Dirac mass at v0 > 0) admits the closed-form

representation M(t, u) = exp (C(t, u) + D(t, u)v0), for any u ∈ Dt
M ⊂ R, where

(2.4)





C(t, u) :=
κθ

ξ2

[
(κ− ρξu− d(u))t− 2 log

(
1− g(u)e−d(u)t

1− g(u)

)]
,

D(t, u) :=
κ− ρξu− d(u)

ξ2
1− exp (−d(u)t)

1− g(u) exp (−d(u)t) ,

d(u) :=
(
(κ− ρξu)2 + ξ2u(1− u)

)1/2
and g(u) :=

κ− ρξu− d(u)

κ− ρξu+ d(u)
.
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Introduce further the real numbers u− ≤ 0 and u+ ≥ 1 and the function Λ : (u−, u+) → R:

(2.5)





u− :=
2

ξρ
arctan

(
ρ

ρ

)
11{ρ<0} −

π

ξ
11{ρ=0} +

2

ξρ

(
arctan

(
ρ

ρ

)
− π

)
11{ρ>0},

u+ :=
2

ξρ

(
arctan

(
ρ

ρ

)
+ π

)
11{ρ<0} +

π

ξ
11{ρ=0} +

2

ξρ
arctan

(
ρ

ρ

)
11{ρ>0},

Λ(u) :=
u

ξ(ρcot (ξρu/2)− ρ)
.

The pointwise limit of the (rescaled) cumulant generating function of Xt then reads [12]

lim
t↓0

t logM
(
t,
u

t

)
= Λ(u)v0, for any u ∈ (u−, u+),

and the function Λ is well defined, smooth, strictly convex on (u−, u+), and infinite elsewhere.

3. Moderate deviations

Moderate deviations classically arise as rescaled large deviations; in our setting, they take the following form:

for α 6= 0, define the processX(α) pathwise viaX
(α)
t := t−αXt. Moderate deviations for the sequence (Xt)t≥0 as t

tends to zero are equivalent to large deviations for (X
(α)
t )t≥0 and can, in our framework, be derived from finite-

dimensional tools using the Gärtner-Ellis theorem. The assumptions on the behaviour of the randomisation V
yield different rate functions and speed for the moderate deviations regime, which we analyse sequentially below.

3.1. Distribution with bounded support. We first start with the case where the random initial distribution

of V has bounded support, in which case the following holds:

Theorem 3.1. If v+ is finite then for any γ ∈ (0, 1), X(α) ∼ LDP
(
tγ , x2

2v+

)
holds with α := 1

2 (1− γ).

Since v+ is finite, m is infinite. One of the striking feature of moderate deviations is that, contrary to classical

large deviations, the rate function is usually available analytically, and often of quadratic form [14, 19, 20].

Proof. Let α, γ ∈ (0, 1). Notice that

(3.1) M(t, u) := E
(
euXt

)
= E

(
E
(
euXt |V

))
= E

(
eC(t,u)+D(t,u)V

)
= eC(t,u)MV (D(t, u)) ,

where the functions C and D are the components of the moment generating function of the standard Heston

model in (2.4). Then for any t > 0, the rescaled cumulant generating function of X
(α)
t reads

Λ(α)
γ

(
t,
u

tγ

)
:= tγ logE

[
exp

(
uX

(α)
t

tγ

)]
= tγ logE

[
exp

(
uXt

tγ+α

)]
= tγC

(
t,

u

tγ+α

)
+ tγ logMV

(
D
(
t,

u

tγ+α

))
,

for all u ∈ R such that the left-hand side exists. Lemma A.1 implies that (γ+α) has to be less than one in order

to obtain a non-trivial behaviour. Let us first prove the following claim: for v+ <∞, lim
u↑∞

u−1 logMV(u) = v+.

If FV denotes the cumulative distribution function of V , then

MV(u) = E
(
euV
)
≤ exp(uv+)

∫

[v−,v+]

FV(dv) = exp(uv+).

For any small ε > 0, fix δ ∈ (0, εv+/2), so that

logMV(u)

uv+
≥ 1

uv+
log

(∫
v+

v+−δ

euvFV (dv)

)
≥ 1

uv+
log
(
eu(v+−δ)P (V ≥ v+ − δ)

)
= 1− δ

v+
+

logP (V ≥ v+ − δ)

uv+
,
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since v+ is the upper bound of the support, therefore P(V ≥ v+ − δ) is strictly positive, and the claim follows.

From this claim, as t tends to zero, we deduce the asymptotic behaviour

Λ(α)
γ

(
t,
u

tγ

)
=





O (tγ) + v+Λ(u)t
γ−1, if γ + α = 1, for all u ∈ (u−, u+),

o (tγ) +
v+

2
u2t1−γ−2α, if γ + α < 1, for all u ∈ R.

Since α 6= 0, the non-degenerate result is obtained if and only if 1 − γ − 2α = 0, i.e. α = 1−γ
2 , and the proof

follows from the Gärtner-Ellis theorem [10, Theorem 2.3.6]. �

3.2. Thin-tail distribution. With l1, l2 given in Assumption 2.1, we introduce the following two special rates

of convergence 1
2 < γ < 1 < γ, and two positive constants c, c:

(3.2) γ :=
l2

1 + l2
, γ :=

l2
l2 − 1

, c := (2l1l2)
1

1+l2 , c := (2l1l2)
1

1−l2 ,

and define the function Λ∗ : R → R+ by

(3.3) Λ∗(x) :=
c

2γ
x2γ , for any x in R.

Introduce further

Λ
∗
(x) := sup

u∈(u−,u+)

{
ux− c

γ
2γ−1Λ(u)γ

}
, for all x ∈ R.

with Λ and u± in (2.5). The moderate deviations principle then takes the following form:

Theorem 3.2. Under Assumption 2.1, the following statements hold as t tends to zero:

(i) for any γ ∈ (0, γ), X(α) ∼ LDP(tγ ,Λ∗) with α = 1
2 (1− γ/γ);

(ii) if γ = γ, then X(α) ∼ LDP(tγ ,Λ
∗
) with α = 1− γ.

Let us first state and prove the following short technical lemma. Recall [6] that, for a > 0, a function f :

(a,∞) → R∗+ is said to be regularly varying with index l ∈ R (and we write f ∈ Rl) if lim
x↑∞

f(λx)/f(x) = λl, for

any λ > 0. When l = 0, the function is called slowly varying.

Lemma 3.3. If | log f | ∈ Rl (l > 1), then logMV(z) ∼ (l − 1)
(
z
l

) l
l−1 ψ(z) at infinity, with ψ ∈ R0 defined as

ψ(z) :=

(
z

| log f |←(z)

)←
z

l
1−l ,

where f←(x) := inf{y : f(y) > x} defines the generalised inverse.

Proof. Since | log f | ∈ Rl, Bingham’s Lemma [6, Theorem 4.12.10] implies logP(V ≥ x) = log
∫∞
x

elog f(y)dy ∼
log f(x), as x tends to infinity, and the result follows from Kasahara’s Tauberian theorem [6, Theorem 4.12.7].

�

Proof of Theorem 3.2. By Lemma 3.3, if γ + α < 1, then

Λ(α)
γ

(
t,
u

tγ

)
∼ c

2γ
u2γtγ+[1−2(α+γ)]γ, as t tends to zero, for all u ∈ R.

The only non-degenerate result is obtained when α = 1
2 (1 − γ/γ), and the requirement that γ + α < 1 implies

that γ < γ. The rest follows directly from the Gärtner-Ellis theorem. If γ + α = 1, then

Λ(α)
γ

(
t,
u

tγ

)
∼ c

γ
2γ−1Λ(u)γtγ−γ , as t tends to zero, for all u ∈ (u−, u+),
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which imposes γ = γ. Define now the function f(u) := γ−1c2γ−1Λ(u)γ on (u−, u+); then

f ′(u) = 2γ−1cΛ(u)γ−1Λ′(u) and f ′′(u) = 2γ−1c
[
(γ − 1)Λ′(u)2Λ(u)γ−2 + Λ(u)γ−1Λ′′(u)

]
.

Since γ > 1, and since Λ is strictly convex and tends to infinity at u±, then so does f . Consequently, for

any x ∈ R the equation x = f ′(u) admits a unique solution in (u−, u+), hence the function Λ
∗
is well defined

on R and is a good rate function. The large deviations principle follows from the Gärtner-Ellis theorem. �

In a mathematical finance context, the case γ < γ belongs to the so-called regime of moderately out-of-the-

money [14, 27], with time-dependent log-strike xt = xtα, for x ∈ R∗+ and α ∈ (0, 1/2). In a thin-tail randomised

environment, the rescaled limiting cgf does not satisfy [14, Assumption 6.1] in which the limit is assumed to

have a quadratic form. Moreover, Theorem 3.2 implies that for the original process (Xt)t≥0,

(3.4) P (Xt ≥ xt) = P

(
X

(α)
t ≥ x

)
= exp

(
−Λ∗(x)

tγ
(1 + o(1))

)
, as t tends to zero.

Tail probabilities translate naturally to asymptotic behaviours of the implied volatility, denoted by σt(x), for

given maturity t and log-strike x. The following corollary makes this statement precise:

Corollary 3.4. Consider the following two regimes:

• Moderately out-of-the-money (MOTM): (α, x) ∈ (0, 1/2)× R∗;

• Small time and large strike: (α, x) ∈ (1− γ, 0)× R∗.

Under Assumption 2.1, let xt := xtα, and γ̂ := (1− 2α)(1 − γ) > 0. Then lim
t↓0

tγ̂σ2
t (xt) = c

−1γx2(1−γ).

Proof. We only prove the case x > 0, the other cases being analogous. For γ := γ(1 − 2α) > 0, Equation (3.4)

implies that as t tends to zero, − logP (Xt ≥ xt) ∼ t−γΛ∗(x). It is easy to check that the sequence (tγ , xt)t≥0

satisfies [7, Hypothesis 2.2], so that the corollary follows from [7, Theorem 2.3]:

σ2
t (xt) ∼

2xtα

t

(√
c

2γ

x2γ−1

tγ+α
−
√

c

2γ

x2γ−1

tγ+α
− 1

)2

∼ 2x

t1−α

(√
c

2γ

x2γ−1

tγ+α
+

√
c

2γ

x2γ−1

tγ+α
− 1

)−2
∼
γx2(1−γ)

ctγ̂
.

�

This result can actually be improved slightly, as follows:

Corollary 3.5. Under Assumption 2.1, for any slowly varying (at zero) function s : R∗+ → R∗+ and γ ∈
(
0, γ
)
,

let α := 1
2 (1 − γ/γ) and xt := tαs(t). Then

P (Xt ≥ xt) = exp

(
−Λ∗ (s(t))

tγ
(1 + o(1))

)
.

Proof. The function q : R∗+ → R∗+ defined by q(t) := s(t)−2γ is slowly varying at zero, and limt↓0 t
γq(t) =

limt↓0

(
t

γ
2γ /s(t)

)2γ
= 0. Notice that γ + α ∈ (1/2, 1), so that t = o (tγ+αq(t)s(t)), and Lemma A.1 implies that

the rescaled cgf of the process (Xt/(s(t)t
α))t≥0 is given by

tγq(t) logM

(
t,

u

tγ+αq(t)s(t)

)
= tγq(t)C

(
t,

u

tγ+αq(t)s(t)

)
+ tγq(t) logMV

(
D

(
t,

u

tγ+αq(t)s(t)

))

= O
(
t1+2γ+αq(t)2s(t)

)
+ tγq(t) logMV

(
u2t(1 + o(1))

2t2(γ+α)(q(t)s(t))2

)
.
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Then from Lemma 3.3, plugging in the expressions for α and the function q, the limit of the rescaled cgf reads

lim
t↓0

tγq(t) logM

(
t,

u

tα+γq(t)s(t)

)
=

c

2γ
u2γ lim

t↓0
tγq(t)

(
1 + o(1)

tγ/γ(q(t)s(t))2

)γ

=
c

2γ
u2γ .

The Gärtner-Ellis theorem implies that (Xt/(s(t)t
α)) ∼ LDP(tγq(t),Λ∗), with Λ∗ in (3.3). Consequently,

− inf
x∈(1,∞)

Λ∗(x) ≤ lim
t↓0

tγq(t) logP (Xt ≥ xt) = lim
t↓0

tγq(t) log P

(
Xt

tαs(t)
≥ 1

)
≤ − inf

x∈[1,∞)
Λ∗(x).

The proof then follows by noticing that
Λ∗(1)

q(t)
=

c

2γ
s(t)2γ = Λ∗ (s(t)) for all t > 0. �

3.3. Fat-tail distribution. The fat-tail distribution case yields some degeneracy, and forces us to analy-

sis the asymptotic behaviour of the cumulant generating function in more details, in particular using sharp

large deviations techniques for the rescaled process (Xg
t )t≥0 defined by Xg

t := g(t)−1Xt, for t > 0, where the

function g : R+ → R+ satisfies g(t) = o(1) and
√
t = o(g), as t tends to zero. For any rescaling function

h(t) :=
√
t/g(t) (= o(1)), denote the rescaled cumulant generating function as

Λg
t (u) := h(t) logE

[
exp

{
u

h(t)
Xg

t

}]
.

We provide a full asymptotic expansion for the European call option price with a time-dependent log-strike

xt := xg(t), for any fixed x 6= 0, and translate this into small-time asymptotic behaviour of the implied

volatility σt(xt). We discuss the case where the initial randomisation satisfies Assumption 2.2 with ω = 1. The

case where ω = 2 can be processed in a similar fashion.

Theorem 3.6. For any x 6= 0, as t tends to zero, a European call option with strike xt satisfies

(3.5) E
(
eXt − ext

)+
= (1− ext)+ + exp

(
−
√

2m

t
|xt|+ γ1 + xt

)
|xt||γ0|−1

Γ(|γ0|)(2m)1−γ0/2
t1+γ0/2g(t) (1 + o(1)) .

Moreover, the implied volatility satisfies

σ2
t (xt) =

|xt|
2
√
2mt

+ h1(x) + h2 log(t) +
1

4m
log(g(t)) + o(1),

where

h1(x) :=
1

8m

{
xt − (2γ0 + 1) log |xt|+ log

(
16πe2γ1

Γ(|γ0|)2
)
−
(
|γ0|+

1

2

)
log(2m)

}
and h2 :=

1

8m

(
1

2
− |γ0|

)
.

Furthermore, under Assumption 2.2, Xg ∼ LDP(h(t),
√
2m|x|).

Proof of Theorem 3.6. The proof is close to that of [23, Theorem 4.10], so that we only sketch the highlights.

Notice that
√
t = o(h(t)). Following similar steps to [23, Lemma D.1], it is easy to show that for any x 6= 0

and small t > 0, the equation ∂uΛ
g
t (u) = x admits a unique solution u∗t (x) satisfying u∗t (x) = sgn(x)

√
2m −

|γ0|
x h(t) +O

(
h(t)2 +

√
t
)
. Then as t tends to zero, direct computations yield

exp

{−xu∗t (x) + Λg
t (u
∗
t (x))

h(t)

}
= exp

{
−
√

2m

t
|xt| − γ0 + γ1

}(
|γ0|

√
2mt

|xt|

)γ0

(1 + o(1)).

For fixed x 6= 0 and small t > 0, define the time-dependent measure Qt by

dQt

dQ
:= exp

{
u∗t (x)X

g
t − Λg

t (u
∗
t (x))

h(t)

}
,
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so that, for x > 0,

E
(
eXt − ext

)+
= EQt

[
ext

(
eg(t)(X

g
t −x) − 1

)+ dQ

dQt

]
(3.6)

= exp

{−xu∗t (x) + Λg
t (u
∗
t (x))

h(t)

}
extEQt

[
exp

(−u∗t (x)Zt

h(t)

)(
eg(t)Zt − 1

)+]
,

with Zt := Xg
t − x. From Lemma A.2, under the measure Qt, the characteristic function of Zt satisfies

Ψt(u) := EQt [eiuZt ] = e−iux
(
1− iux

|γ0|

)γ0

(1 + o(1)) , as t tends to zero.

By Fourier inversion, we can therefore write, for small t > 0,

EQt

[
exp

(−u∗t (x)Zt

h(t)

)(
eg(t)Zt − 1

)+]
=

t

2π

∫ ∞

−∞

Ψt(u)du

(u∗t (x) + (iu− g(t))h(t))(u∗t (x) + iuh(t))
=
tfΓ(x)

2m
(1+o(1)),

where fΓ(y) :=
y|γ0|−1

Γ(|γ0|)
exp(−|γ0

x |y)(|γ0

x |)|γ0|, for y > 0. The result then follows directly by plugging this back

into (3.6). The case where x < 0 follows by Put-Call parity. Finally, a direct application of [16, Corollary 7.2]

yields the asymptotics for the implied volatility. �

Appendix A. Useful results

We recall the the following small-time expansion of the (rescaled) functions C and D from [23, Appendix C]:

Lemma A.1. The following asymptotic behaviour as t tends to zero:

C

(
t,

u

h(t)

)
=





undefined, u 6= 0, if h(t) = o(t),

O(1), u ∈ (u−, u+), if h(t) = t+O(t2),

O
(
th(t) + h3(t)

)
+
κθu2

4

(
t

h(t)

)2 [
1 +O

(
h(t) +

t

h(t)

)]
, u ∈ R, if t = o(h(t));

D

(
t,

u

h(t)

)
=





0, if u = 0, for any function h,

undefined, u 6= 0, if h(t) = o(t),

t−1Λ(u) +O(1), u ∈ (u−, u+), if h(t) = t+O(t2),

u2t

2h2(t)

[
1− h(t)

u
+
ρξut

2h(t)
+O

(
t+ h2(t) +

t2

h2(t)

)]
, u ∈ R, if t = o(h(t)).

We also recall the following lemma:

Lemma A.2. [Lemma D.3 in [23]] For any x 6= 0, let Zt := (Xt − x)/ϑ(t), where ϑ(t) := 11{ω=1} + 11{ω=2}t
1/8.

Under Assumption 2.2, as t tends to zero, the characteristic function of Zt under measure Qt is

Ψt(u) := EQt
(
eiuZt

)
=





e−iux
(
1− iux

|γ0|

)γ0

(1 + o(1)) , for ω = 1,

exp

(−u2ζ2(x)
2

)
(1 + o(1)) , for ω = 2,

where ζ(x) :=
√
2

(
2m

γ20

)1/8

|x|3/4.
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