arXiv:1906.11605v1 [math.PR] 27 Jun 2019

Weak convergence of random processes with immigration at
random times

Congzao Dong* and Alexander Iksanov'

June 28, 2019

Abstract

By a random process with immigration at random times we mean a shot noise process with a
random response function (response process) in which shots occur at arbitrary random times.
The so defined random processes generalize random processes with immigration at the epochs
of a renewal process which were introduced in [Tksanov et al. (2017). Bernoulli, 23, 1233
1278] and bear a strong resemblance to a random characteristic in general branching processes
and the counting process in a fixed generation of a branching random walk generated by a
general point process. We provide sufficient conditions which ensure weak convergence of
finite-dimensional distributions of these processes to certain Gaussian processes. Our main
result is specialised to several particular instances of random times and response processes.
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1 Introduction

1.1 Definition of random processes with immigration at random times

Let D := DJ[0,00) be the Skorokhod space of right-continuous real-valued functions which are
defined on [0, 00) and have finite limits from the left at each positive point. Denoting, as usual,
by Np := N U {0} the set of nonnegative integers, let (T%)ren, be a collection of nonnegative,
not necessarily ordered points such that

N(t):=#{keNy: T, <t} <oco as. foreach ¢>0. (1)

Although in most of applications the number of nonzero Tj’s is a.s. infinite (then limy_, o, T = 00
a.s. is a sufficient condition for (IJ)), the case of a.s. finitely many points is also allowed. Further,
let (X;);en be independent copies of a random process X with paths in D which vanishes on the
negative halfline. Finally, we assume that, for each k € Ny, X1 is independent of (T, ..., Tk).
In particular, the case of complete independence of (X;);cn and (T )ken, is not excluded.
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Put

Y(t)=> Xpa(t—Tp), teR
k>0

(note that Y(¢) = 0 for t < 0). We shall call Y := (Y (¢))ter random process with immigration
at random times. The interpretation is that associated with the kth immigrant which arrives at
time T},_q is the random process X, which describes some model-dependent ‘characteristics’ of
the kth immigrant, for instance, Xy (t — Tr_1) may be the number of offspring of the immigrant
at time t or the fitness of the immigrant at time ¢. The value of Y (¢) is then given by the sum
of ‘characteristics’ of all immigrants that arrived up to and including time ¢.

1.2 Pointers to earlier literature and relation of random processes with im-
migration at random times to other models

When (T})ren, is a zero-delayed standard random walk with nonnegative jumps, that is, Ty = 0
and (T — Tk—1)ken are independent identically distributed nonnegative random variables, the
random process Y was called in [I0] a random process with immigration at the epochs of a
renewal process. Thus, the set of the latter processes constitutes a proper subset of the set of
the random processes with immigration at random times. We refer to [6] and [I0] for detailed
surveys concerning earlier works on random processes with immigration at the epochs of a
Poisson or renewal process. A non-exhaustive list of more recent contributions, not covered in
the cited sources, includes [7], [8], [9], [12] and [13].

Articles are relatively rare which focus on the random processes with immigration at random
times other than renewal times. A selection of these can be traced via the references given in
the recent article [14]. The authors of [I4] investigate the random process of the form

Y(t)=> Xp(t—Ti) Lyp<y, t2>0,
1

where Xy (t) = H(t,ny) for k € N, H : [0,00) x R™ — R is a deterministic measurable function
and 7 is an R"-valued random vector. Since 7, 12, ... are assumed to be conditionally inde-
pendent given (7});en (rather than just independent), and 7y, is allowed to depend on T}, the
model in [I4] is slightly different from ours.

In [I1], another quite recent paper, functional limit theorems are proved for random processes
with immigration at random times. There, the standing assumption is that X is an eventually
nondecreasing deterministic function which is regularly varying at co of nonnegative index. We
stress that the techniques used in the present work and in [II] are very different.

Random processes with immigration at random times can be thought of as natural successors
of two well-known branching processes: the general branching process (GBP) counted with
random characteristic (see pp. 362-363 in [1]) and the counting process in a branching random
walk (BRW). To define the GBP imagine a population initiated by a single ancestor at time 0.
Denote by

e 7 a point process on [0,00) describing the instants of time at which generic individual
produces offspring;

e ® a random characteristic which is a random process on R which vanishes on the negative
halfline; the processes 7 and ® are allowed to be arbitrarily dependent;

e J the collection of ever born individuals of the population.



Associated with each individual n € J is its birth time o, and a random pair (7, ®,), a copy of
(T, ®). Furthermore, for different individuals these copies are independent. The GBP is given
by
Z(t):=Y Tn(t—0,), t=0.
neJ

If ®(t) =1 for all ¢ > 0, then Z(¢) is the total number of births up to and including time ¢. If
®(t) = Ly;>¢y for a positive random variable 7 interpreted as the lifetime of generic individual,
then Z(t) is the number of individuals alive at time ¢. More examples of this flavor can be found
on p. 363 in [I].

Consider now a BRW with positions of the jth generation individuals given by (7'(v))vev,
for j € N, where V; is the set of words of length j over N and for the individual v € V; its
position on the real line is denoted by T'(v). Set N;(t) := #{v € V; : T'(v) < t} for t € R, so
that INV;(t) is the number of individuals in the jth generation of the BRW with positions < t.
With the help of a branching property we obtain the basic decomposition

Nit):= Y NV(t-T(), teR, (2)

UEijl

where (Nl(v) (t))t>0 for v € V,_; are independent copies of (N (t)):>0 which are also independent
of the T'(v), v € V;_;. Motivated by an application to certain nested infinite occupancy schemes
in a random environment the authors of the recent article [4] proved functional limit theorems in

DN for <M> . with appropriate centering and normalizing functions a; and b;. The
je

b;(t)
standing assumption of [4] is that the positions (T'(v)),ev, are given by (—log Py)ren, where Py,
P,, ... are positive random variables with an arbitrary joint distribution satisfying > p>1 e =1
a.s.

2 Main result

Throughout the remainder of the paper we assume that EX(¢) = 0 for all ¢ > 0 and that the
covariance
fu,w) := Cov(X (u), X (w)) = EX (u) X (w)
is finite for all u,w > 0. The variance of X will be denoted by v, that is, v(t) = f(t,t) =
Var X (t).
Following [10] we recall several notions related to regular variation in R? := (0, 00) x (0, c0).
We refer to [3] for an encyclopaedic treatment of regular variation on the positive halfline.

Definition 2.1. A function r : [0,00) x [0,00) — R is regularly varying in R% if there exists a
function C' : R% — (0, 00) such that

lim r(ut, wt)

R Sy =C(u,w), u,w > 0.

The function C' is called limit function. The definition implies that r(¢, ) is regularly varying
at oo, i.e., 7(t,t) ~ t9L(t) as t — oo for some /£ slowly varying at oo and some 8 € R which is
called the index of regular variation. In particular, C(a,a) = a® for all a > 0 and further

Clau, aw) = C(a,a)C(u,w) = a’C(u, w)

for all a,u,w > 0.



Definition 2.2. A function r : [0,00) x [0,00) — R will be called fictitious reqularly varying of
index (3 in Ri if
. r(ut,wt)
lim

TR (D) =C(u,w), u,w >0,

where C(u,u) := u? for v > 0 and C(u,w) := 0 for u,w > 0, u # w. A function r will be
called wide-sense regularly varying of index 3 in ]Ri if it is either regularly varying or fictitious
regularly varying of index 3 in Rﬁ_.

The function C' corresponding to a fictitious regularly varying function will also be called
limit function.

The processes introduced in Definition arise as weak limits in Theorem [Z.4] which is our
main result. We shall show that these are well-defined at the beginning of Section Ml

Definition 2.3. Let p > 0 and C be the limit function for a wide-sense regularly varying
function (see Definition 22]) in R% of index j for some 8 € (—1,00). We shall denote by
Vi,p = (Vg,p(u))u>0 a centered Gaussian process with the covariance

uNw

uNw
EVs o(u)Vp p(w) = / Clu—y,w—y)dy’ = p/ Clu—y,w—y)y" 'dy, u,w>0,
0 0

when C(s,t) # 0 for some s,t > 0, s # t, and a centered Gaussian process with independent
values and variance IEVB% ,(u) =pB(B+1, p)uPtP, otherwise. Here and hereafter, B(-,-) denotes
the beta function.

Theorem 2] given below is an extension of Proposition 2.1 in [I0] which treats the case
where (T} )ken, is a zero-delayed ordinary random walk with positive increments. We shall write

Z(u) Yz (u), t = oo to denote weak convergence of finite-dimensional distributions, that is, for
any n € Nand any 0 < ug < ug < ... < up < 00, (Z(uy),...,Zi(uy,)) converges in distribution

to (Z(u1),...,Z(uy)), as t = co. Also, as usual, 5 denotes convergence in probability.
Theorem 2.4. Let finite ¢,p > 0 and B > —(p A1) be given. Assume that

e v is a locally bounded function; f(u,w) = Cov(X(u),X(w)) is a wide-sense regularly
varying function of index B in R%_ with limit function C;

flut, (u+w)t)
v(t)

for every w > 0 and all 0 < a < b < oo; when f(u,w) is reqularly varying, the function
ur Cu,u+w) is a.e. continuous on (0,00) for every w > 0;

e forally >0

lim sup
t—)OOaSqu

—C(u,u—i—w)‘:O (3)

0 () = E(XO) Ly iy ) = o).t oo (4)

‘ N(ty)
yelo, 7 17

—cy”‘ 5 0, t— o0 (5)

for all T > 0;
o if B (—(pAN1),0], then EN(t) < oo for allt >0 and

E(N(t) =Nt —1) =0@t""), t— oo (6)



Then
Y(ut) ta

Tv(t) Vgp(u), t— o0 (7)

where Vg , is a centered Gaussian process introduced in Definition [2.3.

Remark 2.5. The condition 8 > —p is obviously needed to guarantee that the normalization
VetPu(t) diverges to oo, as t — oco. Since Evﬁz’p(u) = pB(B + 1, p)uPTP, the limit process Vs ,
is not well-defined unless g > —1.

Remark 2.6. Condition () entails that the number of positive T}’s is a.s. infinite. A simple
sufficient condition for (B is
lim t7’N(t) =c as. (8)

t—o00

Indeed, the latter entails limy_, o t 7" N(ty) = cy” a.s. for each fixed y > 0. Furthermore, the
convergence is locally uniform in y a.s., that is, (@) holds a.s. (hence, in probability) as the
convergence of monotone functions to a continuous limit.

If To < Ty < ... as., then a standard inversion procedure ensures that (&) is equivalent
to limg_eo k™ /PT, = ¢ /P as. If the collection (T )ken, is not ordered or ordered in the
nondecreasing (rather than increasing) order the aforementioned equivalence may fail to hold.

3 Applications

In this section we discuss how Theorem [2.4] reads for some particular (7} )xen, and X.

3.1 Particular (7)
3.1.1 Perturbed random walks

Let (£k,mk)ken be independent copies of a random vector (§,n) with positive arbitrarily depen-
dent components. Denote by (Si)ren, the zero-delayed ordinary random walk with nondegener-
ate at zero increments &, that is, Sg := 0 and Sy := & +...+ & for k € N. Consider a perturbed

random walk
Ty = Sk—1+mk, keN, 9)

It is convenient to define the corresponding counting process on R rather than on [0, 00), that
is, N(t) = #{k € N: T}, <t} for t € R. Then, of course, N(t) =0 a.s. for t < 0.

Condition () holds for this particular N(¢) in view of Lemma Bl in combination with
Remark

Lemma 3.1. If ju:= E¢ < 00, then limy oot 'N(t) = = a.s.

Proof. Set v(t) := 3 ;50 Lis,<s for ¢ > 0. For t > 0 and y € (0,1), the following inequalities
hold with probability one
v(t) v(t)
v(t —y) - Z Lin>yy = Z Lise i<t—yy —
k=1 k=1

v(t) v(t)

Lpneony < D Tisi vimesy = N S v(t). (10)
k=1 k=1
By the strong law of large numbers for ordinary random walks lim,,yoon 2> p_; 1 >y} =

El,sy = P{n >y} as. Since tli)n;mol/(t) = 00 a.s., it follows that lim; Zz(zt)l Lipesyy /v(t) =



P{n > y} a.s. Recall that tlim t~'u(t) = =1 a.s. by the strong law of large numbers for renewal
—00

processes, whence

v(t v(t
k(z)l L >y) _ Zk(:)l Ly >yy v(2) _ P{n >y}
t v(t) t i

as t — 0o. Hence, using (I0) we infer that

pt =Py >y} < lign inft 'N(t) < limsupt'N(t) < p!  as.
—00

t—o00

Letting y — oo gives limy_,oo t " N (t) = 1 as. O

To take care of the case when 5 € (—1,0) in Theorem [2.4] we note that

EN()=EU(t-n)= | U(t—y)dG(y), teR (11)
0.1]

where, for t € R, U(t) := 350 P{Sk < t} is the renewal function and G(t) := P{n < t}. In
particular, by monotonicity and our assumption that P{{ = 0} < 1, EN(¢) < U(t) < oo for all
t > 0. Further, condition (@) holds because subadditivity of U on R entails 0 < E(N(t) — N(t —
1)) <U1).

3.1.2 Non-homogeneous Poisson process

Assume that (N (t)):>0 is a non-homogeneous Poisson process with mean function m(t) := EN(¢)
for t > 0 which satisfies m(t) ~ ¢yt as t — oo for some positive ¢y and pg. We can identify
the process (N(t))¢>0 with the process (P(m(t)))i>0, where (P(t))i>0 is a homogeneous Poisson
process of unit intensity. As a consequence of the strong law of large numbers for P(¢) we obtain
limy oo t7P°N(t) = ¢p a.s. In view of Remark condition () holds for the present N(t) with
c=cp and p = po. An additional assumption m(t) — m(t — 1) = O(tP°~1) as t — oo guarantees
that condition (@) also holds.

3.1.3 Positions in the jth generation of a branching random walk

Consider a BRW generated by a point process with the points given by the successive positions
of the same random walk (S,),>1 as in Section B.I.Jl Assume that y = E£ < co. Denote by
(Tk j)ken, § € N the positions of the jth generation individuals and by N;(t), j € N, t > 0,
the number of the jth generation individuals with positions < t. In this example we identify
(T )ken, with (T j)ren for some integer j > 2, hence N (t) with N;(t).
Set Uj;(t) := ENj(t) for j € N and ¢ > 0. From the representation which is a counterpart of
@
Ni(t) =Y NPt~ Tiyo1), t>0 (12)
k>1

where (Nl(l)(t))tzo, (N1(2) (t))t>0, . . . are independent copies of (N (t))s>0 which are independent
of (T}, j—1)ken, we obtain

Us(t) = /[ UitV 120
0,t



By the elementary renewal theorem, Uy (t) = O(t) as t — oo. Further, by monotonicity, U;(t) <
Ui (t)U;-1(t) for t > 0 which shows that U;(t) < oo for all £ > 0 and that

Uj(t) =0{), t— . (13)

To show that (B) holds we write by using subadditivity of U;(¢t) + 1 and monotonicity of
Ur(t)

U;(t) — Ut —1) /[0 t_”(Ul(t —y) = Uit —1—y))dU;_1(y) + / Ur(t —y)dU;-1(y)

(t—1,1]
(Ul(l) + 1)Uj_1(t - 1) + Ul(l)(Uj_l(t) - Uj_l(t - 1))

<
< (Ui(1) + VU1 ().

Invoking (I3]) proves (@) with p = j.
To check (B]) we assume for simplicity that ¢ := Var ¢ < oo (this condition is by no means
necessary but enables us to avoid some additional calculations). Theorem 1.3 in [8] entails that

Nj(t) = ()74

converges weakly to a (j — 1)-times integrated Brownian motion in D equipped with the J;-
topology. Of course, this immediately yields (5 with p = j and ¢ = (j!u?) L.

3.2 Particular X

Let (ni)rken be independent copies of a random variable 7 such that, for each k € Ny, ng41 is
independent of (7o, ..., Tk).

In Section 3 of [10] it was checked that the covariance functions f of the response processes
X discussed in parts (a), (b) and (e) below (parts (a) and (b) below) are regularly varying in
R? of index 3 (satisfy (@]).
(a) Let X(t) = Lyysgy —P{n > t} with P{n > t} ~ t°4(t) as t — oo for some 3 € (—1,0). In
this case, C'(u,w) = (uVw)? for u,w > 0, so that C(u,u +w) = (u+w)? is continuous in u for
every w > 0. Further, v(t) = P{n > t}P{n < t} is bounded. Finally, condition (@) holds in view
of [ X ()| <1 as.
(b) Let X (t) = ng(t), where En = 0, Varn € (0,00) and g : [0,00) — R varies regularly at oo
of index (/2 for some § > —1 and g € D. In this case, C(u,w) = (uw)?/? for u,w > 0, so that
C(u,u +w) = (u(u + w))P/? is continuous in u for every w > 0. Also, v(t) = (Varn)g?(t) is
locally bounded. Let p > 0. Observe now that lim;_,o(1/tPv(t)/|g(t)]) = oo implies that, for all
y >0,

2 _ 2 2 —
EX°O L xysyymomy =9 OF Ly Jm@mgon = 000) ¢ =0,

that is, @) holds. The corresponding limit process admits a stochastic integral representation
Vs, (u) = / (u—y)P2dW (y?), u >0,
[0, u]

where (W (u))y>0 is a Brownian motion and 8 > —(p A 1).



(c) Let X be a D-valued centered random process with finite second moments satisfying, for
some interval I C (0,00), Esup,c; X%(s) < co. Assume also it is self-similar of Hurst exponent
3/2 for some (> 0. By self-similarity, v(t) = t’EX?(1) (locally bounded function) and

flut,wt)  EX(u)X(w)
o(t)  EXZ%(1)

u,w > 0

which shows that f is regularly varying in Ri of index $ with limit function C(u,w) =
(EX (u)X (w))/(EX?(1)) and that @] trivially holds. Continuity of C(u,u + w) in u > 0 for
every w > 0 is justified by the facts that, with probability one, X (u)X (u + w) does not have
fixed discontinuities and that Esupsg(, 5 X 2(s) < oo forall 0 < a < b< oo (use self-similarity)
in combination with the Lebesgue dominated convergence theorem: for any deterministic u > 0
limg_o X(u + $)X(u + s +w) = X(u)X(u+ w) as. and for any s € R sufficiently close to 0
| X (u+8)X(u+s+w)| <supyep,y X2(v) a.s. for large enough b > 0 and small enough a > 0.
Finally, condition () holds in view of

EX* () 1y y ) jyy/momy = F EX (D) Lxs@xe /gy = oft’), = oo,

where p > 0.

In particular, if X () = W (¢?) for B8 > 0, where, as before, (W (t));>0 is a Brownian motion,
then, for any p > 0, Vs ,(u) = (pB(8 + 1, p))/2W (u**?) for u > 0.
(d) Let X(t) = N(t) — EN(t) = N(t) — m(t), where (N(t));>0 is a non-homogeneous Poisson
process with mean function m(t) as discussed in Section In this case, v(t) = m(t) ~ cot?
as t — oo. Since m(t) is a nondecreasing function, it must be locally bounded. For u,v > 0,
f(u,v) =E(N(u)—m(u))(N(v)—m(v)) = m(uAv). Hence, f is regularly varying in R? of index
po with limit function C'(u,v) = (u A v)P°. Further, it is obvious that (B]) holds and that, for
every w > 0, C'(u,u+w) = uf° is continuous in w. It remains to check that condition () holds.
To this end, we use Holder’s inequality and then Markov’s inequality to obtain, for p,y > 0,

2
E(N(®) = m()” Ly () m(t) >y /Fm@)

(E(N () — m@)") (BN () = m(t)| > yy/m(0)}) "/
< (m)(1+3m(1) 2y~ P2 = o(m(t))

IN

which proves ().

The limit process V. , is the same time-changed Brownian motion as in point (c) in which
the role of 3 is played by po.

To give a concrete specialization of Theorem 2.4 let Y (¢) denote the number of the second
generation individuals in a BRW generated by a non-homogeneous Poisson process (N(t)):>o as
above. Then (Y (¢));>0 is a random process with immigration at random times, for Y (t) admits
a representation similar to (I2) in which we take j = 2, replace No(t) with Y'(t) and N;(¢) with
N(t) and let (T} 1)ren denote the atoms of (N(t))i>0. We shall write T, for T}, ;. According to
Theorem 2.4]in combination with the discussion above and in Section B.I.21 we have the following
limit theorem with a random centering:

Y (ut) — m(ut —T) 1 u
( ) Zk21 ( lf)z {Ty<ut} f.:d_ W(u2p0)7 t = oo,
co(poB(po + 1, po))t/2tro

where (W (u))y,>0 is a Brownian motion.



(e) Let X (t) = (t+1)%/2Z(t), where 8 € (—1,0) and (Z(t))s>0 is a stationary Ornstein-Uhlenbeck
process with variance 1/2. In this case, f(u,w) = E(X (u)X (w)) = 27 (u+1)5/2 (w+41)8/2e~lu—vl
is fictitious regularly varying in R%— of index . Furthermore, condition (B]) holds, that is, for

every w > 0,
flut, (ut w)t) _ (ut + PP ((ut w)t + D2,

o(t) - (t+1)8
converges to 0, as t — oo uniformly in u € [a,b] for all 0 < a < b < oo. This stems from the
fact that while the first factor converges to u%/2(u 4 w)?/? uniformly in u € [a,b], the second
factor converges to zero and does not depend on u. Further, v(t) = 27!(¢ +1)” is bounded. By
stationarity, for each ¢ > 0, Z(t) has the same distribution as a random variable 6 having the
normal distribution with zero mean and variance 1/2. Hence, with p > 0,

EX2(6) L x (s imoiy = & D B0 Ljgnn-1/2g002y = 0(t7), ¢ — 00,

that is, condition (@]) holds. For 3 > —(p A1), the corresponding limit process Vs, , is a centered
Gaussian process with independent values.

4 Proof of Theorem 2.4

When C(u,w) = 0 for all u,w > 0, u # w, the process V3 , exists as a Gaussian process with
independent values, see Definition Now we intend to show that the Gaussian process V3, ,
is well-defined in the complementary case when C'(u,w) > 0 for some u,w > 0, u # w. To this
end, we check that the function Il(s,t) given by

SAL
II(s,t) ::/0 C(s—y,t—y)dy”, s,t>0

is finite and positive semidefinite, that is, for any j € N, any v1,...,7; € R and any 0 < v1 <

o<y <00
J
0< Z’Y?H(Uh Ui) +2 Z ’YT’YIH(UMUI)
i=1 1<r<i<j
I L J
:Z/ (ZV?C(vs—y,vs—y)+2 Z ’yr’le(vr—y,vl—y)> dy”
i=1 V-1 \ 5= i<r<l<j
vj
+ 'y;‘-’/ Clvj —y,v; —y)dy”, (14)
Vj—1

where vy := 0. In view of
[f(s,0)] <27 (v(s) +0(t), s,t>0, (15)

we infer
Cls—yt—y) <2 (s —y)+(t—y)). (16)

Since 8 > —1 by assumption the latter ensures II(s,¢) < oo for all s,z > 0. Now we pass to the
proof of ([I4]). Since the second term on the right-hand side of (I4]) is nonnegative, it suffices



to prove that so is the first. The function C(s,t), s,t > 0 is positive semidefinite as a limit of
positive semidefinite functions. Hence, for each 1 <i < j —1 and y € (v;—1, v;),

j
Y Clus—yus —y)+2 > % uClur —y,u —y) > 0.
s=1

1<r<i<j
Thus, the process Vg , does exist as a Gaussian process with covariance function Il(s, t), s, > 0.

Proof of Theorem[2.7} We treat simultaneously the case when C(u,w) > 0 for some u,w > 0,
u # w and the complementary case.
According to the Cramér-Wold device relation (7)) is equivalent to

S Ym0 Xt (wit — Th) Lz, <uuty q :

ctPo(t)

aiVB,p(ui) (17)
1

1=

forall j € N, all a1,...,a; € Rand all 0 <wu; < ... <u; < oo. Here and hereafter, 4 denotes
convergence in distribution. Define the o-algebras Fy := o(Ty) and Fy, := o(To, X1, T, - .., Xk, Tk)
for k € N and set Ei(+) := E(-|F%), k € Ng. Now observe that

J
Ex Z a,-X;H_l(uit — Tk) ]]-{Tkguit} =0, keNy

i=1

which shows that >, Zgzl @i Xgr1(uit — T) Lip,<y;ey is @ martingale limit. In view of this,
in order to prove ([I7)), one may use the martingale central limit theorem (Corollary 3.1 in [5]).
The theorem tells us that it suffices to verify

P
> Ew(Zii1s) = Dpplu,...ouy), t— o0 (18)
k>0
and .
ZEk(Z]%+17t]]'{‘Zk+l,t‘>y}) — 0, t—=o00 (19)
k>0

for all y > 0, where

Zgzl a; Lim, <u;t) X1 (uit = T)
ctPo(t)

Zk+1,t = , keNg, t>0.

Proof of ([I8). We start by writing

23:1 0%2 Zkzo L7, <uit) v(uit — Tk)
ctPo(t)

ZEk(ZI%+1,t) =

k>0

+2 D t<rai<j O Y g0 L <unty flurt — Ty wit — Ti)
ctPu(t) '

We shall prove that, as t — oo,

Sk Hnpcuey 0wt = Th)  Jig g 0(E(ui = y)) AN (ty)
ctPu(t) B ctPu(t)

5 BB+ Lot (20)
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for all 1 <7 < j and that

Dorz0 Lm<upty furt = Toyugt = Tp)) f[O,uT.] f(t(ur —y), t(w —y)) AN(ty)
Ctp?}(t) a ctpv(t)
/0 Oy =y, — y)dy? (21)

forall 1 <r<lil<j.
Fix any w, < u; and pick € € (0,u, A 1). We claim that, as ¢t — oo,

/ ?)(t(ur — y)) dN(ty) E) /uT—E(ur B y)ﬁ dyp (22)
[0, ur—e] 0

’U(t) ctP
and FH( ), t( ) N(ty) I
Ur —Y),tlu; —y Yy P r—¢
/[0 — v(t) d ctP - /0 C(uy — y,uy — y)dy”. (23)

To prove these limit relations we need some preparation. For each ¢ > 0, the random function
Gy defined by Gi(y) := 0 for y < 0, := N(ty)/N(tu,) for y € [0,u,), and = 1 for y > u, is a
random distribution function. Similarly, the function G defined by G(y) := 0 for y < 0,
(y/u,)? for y € [0,u,), and = 1 for y > w, is a distribution function. According to (&), for every
sequence (t,)nen there exists a subsequence (¢, )sen such that limg oo tn” N(t,,y) = cy? a.s. for
each y € [0,u,]. We would like to stress that uniformity of the convergence in (&) ensures that
the subsequence (t,,)seny does not depend on y (without the uniformity assumption we should
have taken a new subsequence (t,, )sen for each particular y € [0, u,]; this would not be sufficient
for what follows). The last limit relation guarantees lims oo N (t,,y)/N(tn,ur) = (y/u, )P a.s.
for each y € [0, u,]. Therefore, as s — 0o Gy, converges weakly to G with probability one.
PROOF OF (22]). Write

< [
0, ur—e|

‘ /[0 ur—a] BdgtnS( ) /[O,ur-—a] (= y)ﬁdg(y)‘

By the uniform convergence theorem for regularly varying functions (Theorem 1.5.2 in [3]),

ol — )
t—o00 U(t)

= (ur - y)ﬁ (24)

uniformly in y € [0, u, — ¢]. This implies that the first summand on the right-hand side of the
penultimate centered formula converges to 0 a.s. as s — oo. The second summand does so by
the following reasoning. The function g defined by ¢(y) := (u, — y)? for y € [0,u, — €] and := 0
for y > u, — € is bounded with one discontinuity point. With this at hand it remains to invoke
the aforementioned weak convergence with probability one and the fact that G is a continuous
distribution function. This implies that the left-hand side of the penultimate centered formula
with t replacing t,, converges in probability to 0 as t — oco. Multiplying it by N (tu,)/(ct”)
which converges to uj in probability as t — oo we arrive at ([22]).

11



Proor oF (23] is analogous. Instead of (24]) one has to use the following relation which is a
consequence of (3)):

uniformly in y € [0,u, — ¢]. The role of g is now played by ¢*(y) := C(u, — y,u; — y) for
y € [0,u, —e] and := 0 for y > u, —e. In view of (IQ)), this function is bounded. Also, ¢g* is a.e.
continuous by assumption which in combination with the absolute continuity of G is enough for
completing the proof of (23)).

As & — 0+, the right-hand sides of [22) and @3] converge to [, (u, — y)’ dy? = pB(S +
1, p)u§+p and [ C(uy — y,u — y)dyP?, respectively. Thus, relations @0) and @2I) are valid if
we can show (see Theorem 4.2 in [2]) that

w—e 1 V(E(ur —y)) AN (ty
lim limsupP f( re:ur] ( )N (e) >6p,=0 (25)
e—=0+ 500 ctpv(t)
" s —ovug £ = 9). 8 — 1)) AN 1)
e t(u, —y), t(u; —y)) dN (ty
lim limsupP{ —tr=s] 54 =0 (26)
e=0+  tooo ctPo(t)
for any 6 > 0.

Using ([I3]) we obtain
[ =)t —plaN )
Up—E, Uy

(uT_ey U'r}

oltw —y) AN () (27)

which shows that a proof of (26]) includes that of (25]). Therefore, we shall only prove (26]).
We first treat the second summand on the right-hand side of ([27]). Since

i V(0 = 9)

B
t—00 U(t) )

=(w—y

uniformly in y € (u, — &, u,] (recall that u, < u;) we can use the argument given after formula
24)) to conclude that

S u vt =) AN (ty)
=
ctPu(t)

/ (w —y)’dy?, t— oo
(ur—e, ur]

The right-hand side converges to zero as € — 0+.

Now we are passing to the analysis of the first summand on the right-hand side of (27]).
According to Potter’s bound (Theorem 1.5.6 (iii) in [3]), for any chosen A > 1, v € (0, 3) when
B >0andye (0,54 1) when 8 € (—(pA1),0] there exists ¢y > 0 such that

v(t(ur —y)) <A

U(t) (ur - y)ﬁ—«/
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whenever t > tg and t(u, —y) > to. Then, for ¢t > to/e,

f(ur—e,ur} U(t(ur - y)) dN(ty)

ctPu(t)
- f(ur.—a"ur—to/t] v(t(ur —y)) AN (ty) . f(ur-_to/t7 ur] v(t(ur —y)) dN (ty)
- ctPu(t) ctPo(t)
_ A f(ur_&ur_to/t] (uy — y)P~7dN (ty) N (N(tuy) — N(tu, — to)) Supge(o, 1) v(2) (28)
- ctP ctPu(t) '

We claim that the second term on the right-hand side in (28] converges to zero in probability
as t — oo. For the proof we first note that the function v is locally bounded by assumption.
With this at hand, the claim follows from (@) in combination with Markov’s inequality when
B e (—(pA1),0) or f =0 and liminf; ,,v(t) = 0 and from ¢t P(N(t) — N(t —to)) B 0ast— oo
which, in its turn, is a consequence of () when 5 > 0 or f = 0 and liminf;_, v (t) > 0.

While treating the first summand on the right-hand side in ([28) we consider two cases
separately.
CASE 8 > 0 in which f—v > 0. The first summand is bounded from above by Ae®~7 N (tu,.)/(ct?)
which converges to Ae®~7u! in probability as t — oco. Therefore, for any ¢ > 0,

lim sup P{ A~V N (tu,)/(ct’) > 6} < Lio, acp—u2) ()
t—o00
It remains to note that the right-hand side converges to zero as ¢ — 0+.
CASE € (—(pA1),0] in which g — v < 0. Invoking Markov’s inequality we see that it suffices
to prove that

e (e — )7 AL (ty)
lim limsup (ur &, ur =0, (29)
e=0+  t—o00 tP

where L(t) := EN(¢) for ¢t > 0.
Write, for large enough ¢, positive constants C7 and Co, and 7 = 1,2

[et]
/ (ur — )P dL(ty) < / (ur — )"~ dL(ty)
(ur—e,ur] 0 ¥ (wr—t =1 (k41),up —t = K]

g

< Y (k/t)"(L(tuy — k) = Ltu, — (k+1)))
k=0
_ o S BB (fu, — R, if p>1,
= ot B S kA (fu, — K+ 1)L, if p e (0,1),
[Et] k
< ) Z/ Y (tu, — )P dy
k=1 k—1
et
< Cit=B= / P (tuy, — y)P My
0

15
= Cit”/ ¥ (u, — y)Pdy,
0

where the third inequality is a consequence of (@), and we take i = 1 when p > 1 and ¢ = 2
when p € (0,1). This proves (29), and (8] follows.
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Proof of ([I9): The following inequality holds for real ay, ..., an,

(larl + -+ lam))? a4 4am >0}
m2(‘a1’ V...V ‘am‘) ]l{m |a1\v Nlam|)>y}
m*(ai ]1{\a1\>y/m} ot Yo sy/my ) (30)

((11 +...+ am)2 ]]-{\a1+...+am\>y}

INIA TN

This in combination with the regular variation of t?v(t) guarantees it is sufficient to show that

Xt = Ti)
(Wl{xk+l(t—Tk)>y\/t/’v(t)} >

P
> Liz<n Bx (31)

k>0

for all y > 0.

By Proposition 1.5.8 in [3], tPv(t) ~ (p+5) fo y”~lv(y)dy as t — oo. Therefore, while proving
Theorem 2.4 we can interchangeably use tPv(t) or (p + 5) fo y”~'v(y)dy in the denominator of
([@). Therefore, without loss of generality we can and do assume that t’v(t) is nondecreasing,
for so is its asymptotic equivalent. Thus, relation (BII) follows if we can prove that

1 P
0(0) /[0 ) vy(t —x)dN(z) — 0, t— o0 (32)

for all y > 0.
Fix any y > 0. Formula (@) ensures that given € > 0 there exists ¢y > 0 such that v, (t) < ev(t)
whenever t > t;. With this at hand we obtain

L 1
W/[o,t} vy(t —x)dN(z) = W</[O,t—to} Uy(t_$)dN(x)+/(t—to,t} Uy(t—x)dN(;p))

£
< /[Ot v(t —x)dN(z)

tpv(t 4]

(N (t) — N(t —to)) sup,e[o, ¢) vy ()
tPu(t) '

~—

_|_

Using (20)) with u; = 1 and denoting the first summand on the right-hand side by J(t,e) we
conclude that, for any § > 0,

lim limsupP{J(t,e) > 0} = 0.

e=0+ t—oo

Since vy (t) < v(t) for all t > 0, and v is locally bounded by assumption, so is v,. Therefore, the
second summand on the right-hand side converges to zero in probability as ¢ — oo by the same
reasoning as given for the second summand on the right-hand side of ([28]).

The proof of Theorem 241 is complete. O
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