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Abstract

By a random process with immigration at random times we mean a shot noise process with a
random response function (response process) in which shots occur at arbitrary random times.
The so defined random processes generalize random processes with immigration at the epochs
of a renewal process which were introduced in [Iksanov et al. (2017). Bernoulli, 23, 1233–
1278] and bear a strong resemblance to a random characteristic in general branching processes
and the counting process in a fixed generation of a branching random walk generated by a
general point process. We provide sufficient conditions which ensure weak convergence of
finite-dimensional distributions of these processes to certain Gaussian processes. Our main
result is specialised to several particular instances of random times and response processes.
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1 Introduction

1.1 Definition of random processes with immigration at random times

Let D := D[0,∞) be the Skorokhod space of right-continuous real-valued functions which are
defined on [0,∞) and have finite limits from the left at each positive point. Denoting, as usual,
by N0 := N ∪ {0} the set of nonnegative integers, let (Tk)k∈N0

be a collection of nonnegative,
not necessarily ordered points such that

N(t) := #{k ∈ N0 : Tk ≤ t} < ∞ a.s. for each t ≥ 0. (1)

Although in most of applications the number of nonzero Tk’s is a.s. infinite (then limk→∞ Tk = ∞
a.s. is a sufficient condition for (1)), the case of a.s. finitely many points is also allowed. Further,
let (Xj)j∈N be independent copies of a random process X with paths in D which vanishes on the
negative halfline. Finally, we assume that, for each k ∈ N0, Xk+1 is independent of (T0, . . . , Tk).
In particular, the case of complete independence of (Xj)j∈N and (Tk)k∈N0

is not excluded.
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Put
Y (t) :=

∑

k≥0

Xk+1(t− Tk), t ∈ R

(note that Y (t) = 0 for t < 0). We shall call Y := (Y (t))t∈R random process with immigration

at random times. The interpretation is that associated with the kth immigrant which arrives at
time Tk−1 is the random process Xk which describes some model-dependent ‘characteristics’ of
the kth immigrant, for instance, Xk(t− Tk−1) may be the number of offspring of the immigrant
at time t or the fitness of the immigrant at time t. The value of Y (t) is then given by the sum
of ‘characteristics’ of all immigrants that arrived up to and including time t.

1.2 Pointers to earlier literature and relation of random processes with im-

migration at random times to other models

When (Tk)k∈N0
is a zero-delayed standard random walk with nonnegative jumps, that is, T0 = 0

and (Tk − Tk−1)k∈N are independent identically distributed nonnegative random variables, the
random process Y was called in [10] a random process with immigration at the epochs of a

renewal process. Thus, the set of the latter processes constitutes a proper subset of the set of
the random processes with immigration at random times. We refer to [6] and [10] for detailed
surveys concerning earlier works on random processes with immigration at the epochs of a
Poisson or renewal process. A non-exhaustive list of more recent contributions, not covered in
the cited sources, includes [7], [8], [9], [12] and [13].

Articles are relatively rare which focus on the random processes with immigration at random
times other than renewal times. A selection of these can be traced via the references given in
the recent article [14]. The authors of [14] investigate the random process of the form

Y (t) =
∑

k≥1

Xk(t− Tk)1{Tk≤t}, t ≥ 0,

where Xk(t) = H(t, ηk) for k ∈ N, H : [0,∞) × R
n → R is a deterministic measurable function

and ηk is an R
n-valued random vector. Since η1, η2, . . . are assumed to be conditionally inde-

pendent given (Tj)j∈N (rather than just independent), and ηk is allowed to depend on Tk, the
model in [14] is slightly different from ours.

In [11], another quite recent paper, functional limit theorems are proved for random processes
with immigration at random times. There, the standing assumption is that X is an eventually
nondecreasing deterministic function which is regularly varying at ∞ of nonnegative index. We
stress that the techniques used in the present work and in [11] are very different.

Random processes with immigration at random times can be thought of as natural successors
of two well-known branching processes: the general branching process (GBP) counted with
random characteristic (see pp. 362-363 in [1]) and the counting process in a branching random
walk (BRW). To define the GBP imagine a population initiated by a single ancestor at time 0.
Denote by

• T a point process on [0,∞) describing the instants of time at which generic individual
produces offspring;

• Φ a random characteristic which is a random process on R which vanishes on the negative
halfline; the processes T and Φ are allowed to be arbitrarily dependent;

• J the collection of ever born individuals of the population.
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Associated with each individual n ∈ J is its birth time σn and a random pair (Tn,Φn), a copy of
(T ,Φ). Furthermore, for different individuals these copies are independent. The GBP is given
by

Z(t) :=
∑

n∈J

Φn(t− σn), t ≥ 0.

If Φ(t) = 1 for all t ≥ 0, then Z(t) is the total number of births up to and including time t. If
Φ(t) = 1{τ>t} for a positive random variable τ interpreted as the lifetime of generic individual,
then Z(t) is the number of individuals alive at time t. More examples of this flavor can be found
on p. 363 in [1].

Consider now a BRW with positions of the jth generation individuals given by (T (v))v∈Vj

for j ∈ N, where Vj is the set of words of length j over N and for the individual v ∈ Vj its
position on the real line is denoted by T (v). Set Nj(t) := #{v ∈ Vj : T (v) ≤ t} for t ∈ R, so
that Nj(t) is the number of individuals in the jth generation of the BRW with positions ≤ t.
With the help of a branching property we obtain the basic decomposition

Nj(t) :=
∑

v∈Vj−1

N
(v)
1 (t− T (v)), t ∈ R, (2)

where (N
(v)
1 (t))t≥0 for v ∈ Vj−1 are independent copies of (N1(t))t≥0 which are also independent

of the T (v), v ∈ Vj−1. Motivated by an application to certain nested infinite occupancy schemes
in a random environment the authors of the recent article [4] proved functional limit theorems in

DN for
(

Nj(t·)−aj (t·)
bj(t)

)

j∈N
with appropriate centering and normalizing functions aj and bj . The

standing assumption of [4] is that the positions (T (v))v∈V1
are given by (− log Pk)k∈N, where P1,

P2, . . . are positive random variables with an arbitrary joint distribution satisfying
∑

k≥1 Pk = 1
a.s.

2 Main result

Throughout the remainder of the paper we assume that EX(t) = 0 for all t ≥ 0 and that the
covariance

f(u,w) := Cov(X(u),X(w)) = EX(u)X(w)

is finite for all u,w ≥ 0. The variance of X will be denoted by v, that is, v(t) := f(t, t) =
VarX(t).

Following [10] we recall several notions related to regular variation in R
2
+ := (0,∞)× (0,∞).

We refer to [3] for an encyclopaedic treatment of regular variation on the positive halfline.

Definition 2.1. A function r : [0,∞) × [0,∞) → R is regularly varying in R
2
+ if there exists a

function C : R2
+ → (0,∞) such that

lim
t→∞

r(ut,wt)

r(t, t)
= C(u,w), u, w > 0.

The function C is called limit function. The definition implies that r(t, t) is regularly varying
at ∞, i.e., r(t, t) ∼ tβℓ(t) as t → ∞ for some ℓ slowly varying at ∞ and some β ∈ R which is
called the index of regular variation. In particular, C(a, a) = aβ for all a > 0 and further

C(au, aw) = C(a, a)C(u,w) = aβC(u,w)

for all a, u,w > 0.
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Definition 2.2. A function r : [0,∞)× [0,∞) → R will be called fictitious regularly varying of
index β in R

2
+ if

lim
t→∞

r(ut,wt)

r(t, t)
= C(u,w), u, w > 0,

where C(u, u) := uβ for u > 0 and C(u,w) := 0 for u,w > 0, u 6= w. A function r will be
called wide-sense regularly varying of index β in R

2
+ if it is either regularly varying or fictitious

regularly varying of index β in R
2
+.

The function C corresponding to a fictitious regularly varying function will also be called
limit function.

The processes introduced in Definition 2.3 arise as weak limits in Theorem 2.4 which is our
main result. We shall show that these are well-defined at the beginning of Section 4.

Definition 2.3. Let ρ > 0 and C be the limit function for a wide-sense regularly varying
function (see Definition 2.2) in R

2
+ of index β for some β ∈ (−1,∞). We shall denote by

Vβ,ρ := (Vβ,ρ(u))u>0 a centered Gaussian process with the covariance

EVβ,ρ(u)Vβ,ρ(w) =

∫ u∧w

0
C(u− y,w − y) dyρ = ρ

∫ u∧w

0
C(u− y,w − y)yρ−1 dy , u, w > 0,

when C(s, t) 6= 0 for some s, t > 0, s 6= t, and a centered Gaussian process with independent
values and variance EV 2

β,ρ(u) = ρB(β + 1, ρ)uβ+ρ, otherwise. Here and hereafter, B(·, ·) denotes
the beta function.

Theorem 2.4 given below is an extension of Proposition 2.1 in [10] which treats the case
where (Tk)k∈N0

is a zero-delayed ordinary random walk with positive increments. We shall write

Zt(u)
f.d.⇒ Z(u), t → ∞ to denote weak convergence of finite-dimensional distributions, that is, for

any n ∈ N and any 0 < u1 < u2 < . . . < un < ∞, (Zt(u1), . . . , Zt(un)) converges in distribution

to (Z(u1), . . . , Z(un)), as t → ∞. Also, as usual,
P→ denotes convergence in probability.

Theorem 2.4. Let finite c, ρ > 0 and β > −(ρ ∧ 1) be given. Assume that

• v is a locally bounded function; f(u,w) = Cov(X(u),X(w)) is a wide-sense regularly

varying function of index β in R
2
+ with limit function C;

lim
t→∞

sup
a≤u≤b

∣

∣

∣

∣

f(ut, (u+ w)t)

v(t)
− C(u, u+ w)

∣

∣

∣

∣

= 0 (3)

for every w > 0 and all 0 < a < b < ∞; when f(u,w) is regularly varying, the function

u 7→ C(u, u+ w) is a.e. continuous on (0,∞) for every w > 0;

• for all y > 0

vy(t) := E

(

X2(t)1
{|X(t)|>y

√
tρv(t)}

)

= o(v(t)), t → ∞; (4)

•
sup

y∈[0, T ]

∣

∣

∣

N(ty)

tρ
− cyρ

∣

∣

∣

P→ 0, t → ∞ (5)

for all T > 0;

• if β ∈ (−(ρ ∧ 1), 0], then EN(t) < ∞ for all t ≥ 0 and

E(N(t)−N(t− 1)) = O(tρ−1), t → ∞. (6)
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Then
Y (ut)

√

ctρv(t)

f.d.⇒ Vβ,ρ(u), t → ∞ (7)

where Vβ,ρ is a centered Gaussian process introduced in Definition 2.3.

Remark 2.5. The condition β > −ρ is obviously needed to guarantee that the normalization
√

ctρv(t) diverges to ∞, as t → ∞. Since EV 2
β, ρ(u) = ρB(β + 1, ρ)uβ+ρ, the limit process Vβ, ρ

is not well-defined unless β > −1.

Remark 2.6. Condition (5) entails that the number of positive Tk’s is a.s. infinite. A simple
sufficient condition for (5) is

lim
t→∞

t−ρN(t) = c a.s. (8)

Indeed, the latter entails limt→∞ t−ρN(ty) = cyρ a.s. for each fixed y ≥ 0. Furthermore, the
convergence is locally uniform in y a.s., that is, (5) holds a.s. (hence, in probability) as the
convergence of monotone functions to a continuous limit.

If T0 < T1 < . . . a.s., then a standard inversion procedure ensures that (8) is equivalent
to limk→∞ k−1/ρTk = c−1/ρ a.s. If the collection (Tk)k∈N0

is not ordered or ordered in the
nondecreasing (rather than increasing) order the aforementioned equivalence may fail to hold.

3 Applications

In this section we discuss how Theorem 2.4 reads for some particular (Tk)k∈N0
and X.

3.1 Particular (Tk)

3.1.1 Perturbed random walks

Let (ξk, ηk)k∈N be independent copies of a random vector (ξ, η) with positive arbitrarily depen-
dent components. Denote by (Sk)k∈N0

the zero-delayed ordinary random walk with nondegener-
ate at zero increments ξk, that is, S0 := 0 and Sk := ξ1+ . . .+ξk for k ∈ N. Consider a perturbed

random walk
Tk := Sk−1 + ηk, k ∈ N. (9)

It is convenient to define the corresponding counting process on R rather than on [0,∞), that
is, N(t) = #{k ∈ N : Tk ≤ t} for t ∈ R. Then, of course, N(t) = 0 a.s. for t < 0.

Condition (5) holds for this particular N(t) in view of Lemma 3.1 in combination with
Remark 2.6.

Lemma 3.1. If µ := Eξ < ∞, then limt→∞ t−1N(t) = µ−1 a.s.

Proof. Set ν(t) :=
∑

k≥0 1{Sk≤t} for t ≥ 0. For t > 0 and y ∈ (0, t), the following inequalities
hold with probability one

ν(t− y)−
ν(t)
∑

k=1

1{ηk>y} =

ν(t)
∑

k=1

1{Sk−1≤t−y} −
ν(t)
∑

k=1

1{ηk>y} ≤
ν(t)
∑

k=1

1{Sk−1+ηk≤t} = N(t) ≤ ν(t). (10)

By the strong law of large numbers for ordinary random walks limn→∞ n−1
∑n

k=1 1{ηk>y} =

E1{η>y} = P{η > y} a.s. Since lim
t→∞

ν(t) = ∞ a.s., it follows that limt→∞
∑ν(t)

k=1 1{ηk>y} /ν(t) =

5



P{η > y} a.s. Recall that lim
t→∞

t−1ν(t) = µ−1 a.s. by the strong law of large numbers for renewal

processes, whence

∑ν(t)
k=1 1{ηk>y}

t
=

∑ν(t)
k=1 1{ηk>y}

ν(t)

ν(t)

t
→ P{η > y}

µ
a.s.

as t → ∞. Hence, using (10) we infer that

µ−1 − µ−1
P{η > y} ≤ lim inf

t→∞
t−1N(t) ≤ lim sup

t→∞
t−1N(t) ≤ µ−1 a.s.

Letting y → ∞ gives limt→∞ t−1N(t) = µ−1 a.s.

To take care of the case when β ∈ (−1, 0) in Theorem 2.4 we note that

EN(t) = EU(t− η) =

∫

[0, t]
U(t− y)dG(y), t ∈ R (11)

where, for t ∈ R, U(t) :=
∑

k≥0 P{Sk ≤ t} is the renewal function and G(t) := P{η ≤ t}. In
particular, by monotonicity and our assumption that P{ξ = 0} < 1, EN(t) ≤ U(t) < ∞ for all
t ≥ 0. Further, condition (6) holds because subadditivity of U on R entails 0 ≤ E(N(t)−N(t−
1)) ≤ U(1).

3.1.2 Non-homogeneous Poisson process

Assume that (N(t))t≥0 is a non-homogeneous Poisson process with mean functionm(t) := EN(t)
for t ≥ 0 which satisfies m(t) ∼ c0t

ρ0 as t → ∞ for some positive c0 and ρ0. We can identify
the process (N(t))t≥0 with the process (P(m(t)))t≥0 , where (P(t))t≥0 is a homogeneous Poisson
process of unit intensity. As a consequence of the strong law of large numbers for P(t) we obtain
limt→∞ t−ρ0N(t) = c0 a.s. In view of Remark 2.6 condition (5) holds for the present N(t) with
c = c0 and ρ = ρ0. An additional assumption m(t)−m(t− 1) = O(tρ0−1) as t → ∞ guarantees
that condition (6) also holds.

3.1.3 Positions in the jth generation of a branching random walk

Consider a BRW generated by a point process with the points given by the successive positions
of the same random walk (Sn)n≥1 as in Section 3.1.1. Assume that µ = Eξ < ∞. Denote by
(Tk,j)k∈N, j ∈ N the positions of the jth generation individuals and by Nj(t), j ∈ N, t ≥ 0,
the number of the jth generation individuals with positions ≤ t. In this example we identify
(Tk)k∈N0

with (Tk,j)k∈N for some integer j ≥ 2, hence N(t) with Nj(t).
Set Uj(t) := ENj(t) for j ∈ N and t ≥ 0. From the representation which is a counterpart of

(2)

Nj(t) =
∑

k≥1

N
(k)
1 (t− Tk,j−1), t ≥ 0 (12)

where (N
(1)
1 (t))t≥0, (N

(2)
1 (t))t≥0, . . . are independent copies of (N1(t))t≥0 which are independent

of (Tk,j−1)k∈N, we obtain

Uj(t) =

∫

[0, t]
U1(t− y)dUj−1(y), t ≥ 0.

6



By the elementary renewal theorem, U1(t) = O(t) as t → ∞. Further, by monotonicity, Uj(t) ≤
U1(t)Uj−1(t) for t ≥ 0 which shows that Uj(t) < ∞ for all t ≥ 0 and that

Uj(t) = O(tj), t → ∞. (13)

To show that (6) holds we write by using subadditivity of U1(t) + 1 and monotonicity of
U1(t)

Uj(t)− Uj(t− 1) =

∫

[0, t−1]
(U1(t− y)− U1(t− 1− y))dUj−1(y) +

∫

(t−1, t]
U1(t− y)dUj−1(y)

≤ (U1(1) + 1)Uj−1(t− 1) + U1(1)(Uj−1(t)− Uj−1(t− 1))

≤ (U1(1) + 1)Uj−1(t).

Invoking (13) proves (6) with ρ = j.
To check (5) we assume for simplicity that σ2 := Var ξ < ∞ (this condition is by no means

necessary but enables us to avoid some additional calculations). Theorem 1.3 in [8] entails that

Nj(t·)− (t·)j/(j!µj)
√

σ2µ−2j−1t2j−1

converges weakly to a (j − 1)-times integrated Brownian motion in D equipped with the J1-
topology. Of course, this immediately yields (5) with ρ = j and c = (j!µj)−1.

3.2 Particular X

Let (ηk)k∈N be independent copies of a random variable η such that, for each k ∈ N0, ηk+1 is
independent of (T0, . . . , Tk).

In Section 3 of [10] it was checked that the covariance functions f of the response processes
X discussed in parts (a), (b) and (e) below (parts (a) and (b) below) are regularly varying in
R
2
+ of index β (satisfy (3)).

(a) Let X(t) = 1{η>t} −P{η > t} with P{η > t} ∼ tβℓ(t) as t → ∞ for some β ∈ (−1, 0). In

this case, C(u,w) = (u∨w)β for u,w > 0, so that C(u, u+w) = (u+w)β is continuous in u for
every w > 0. Further, v(t) = P{η > t}P{η ≤ t} is bounded. Finally, condition (4) holds in view
of |X(t)| ≤ 1 a.s.
(b) Let X(t) = ηg(t), where Eη = 0, Var η ∈ (0,∞) and g : [0,∞) → R varies regularly at ∞
of index β/2 for some β > −1 and g ∈ D. In this case, C(u,w) = (uw)β/2 for u,w > 0, so that
C(u, u + w) = (u(u + w))β/2 is continuous in u for every w > 0. Also, v(t) = (Var η)g2(t) is
locally bounded. Let ρ > 0. Observe now that limt→∞(

√

tρv(t)/|g(t)|) = ∞ implies that, for all
y > 0,

EX2(t)1
{|X(t)|>y

√
tρv(t)}

= g2(t)Eη2 1
{|η|>y

√
tρv(t)/|g(t)|}

= o(v(t)), t → ∞,

that is, (4) holds. The corresponding limit process admits a stochastic integral representation

Vβ, ρ(u) =

∫

[0, u]
(u− y)β/2dW (yρ), u > 0,

where (W (u))u≥0 is a Brownian motion and β > −(ρ ∧ 1).

7



(c) Let X be a D-valued centered random process with finite second moments satisfying, for
some interval I ⊂ (0,∞), E sups∈I X

2(s) < ∞. Assume also it is self-similar of Hurst exponent
β/2 for some β > 0. By self-similarity, v(t) = tβEX2(1) (locally bounded function) and

f(ut,wt)

v(t)
=

EX(u)X(w)

EX2(1)
, u, w > 0

which shows that f is regularly varying in R
2
+ of index β with limit function C(u,w) =

(EX(u)X(w))/(EX2(1)) and that (3) trivially holds. Continuity of C(u, u + w) in u > 0 for
every w > 0 is justified by the facts that, with probability one, X(u)X(u + w) does not have
fixed discontinuities and that E sups∈[a,b]X

2(s) < ∞ for all 0 < a < b < ∞ (use self-similarity)
in combination with the Lebesgue dominated convergence theorem: for any deterministic u > 0
lims→0X(u + s)X(u + s + w) = X(u)X(u + w) a.s. and for any s ∈ R sufficiently close to 0
|X(u + s)X(u+ s+ w)| ≤ supv∈[a, b] X

2(v) a.s. for large enough b > 0 and small enough a > 0.
Finally, condition (4) holds in view of

EX2(t)1
{|X(t)|>y

√
tρv(t)}

= tβEX2(1)1{|X(1)|>(EX2(1))1/2ytρ/2} = o(tβ), t → ∞,

where ρ > 0.
In particular, if X(t) = W (tβ) for β > 0, where, as before, (W (t))t≥0 is a Brownian motion,

then, for any ρ > 0, Vβ, ρ(u) = (ρB(β + 1, ρ))1/2W (uβ+ρ) for u ≥ 0.
(d) Let X(t) = N(t) − EN(t) = N(t) − m(t), where (N(t))t≥0 is a non-homogeneous Poisson
process with mean function m(t) as discussed in Section 3.1.2. In this case, v(t) = m(t) ∼ c0t

ρ0

as t → ∞. Since m(t) is a nondecreasing function, it must be locally bounded. For u, v > 0,
f(u, v) = E(N(u)−m(u))(N(v)−m(v)) = m(u∧v). Hence, f is regularly varying in R

2
+ of index

ρ0 with limit function C(u, v) = (u ∧ v)ρ0 . Further, it is obvious that (3) holds and that, for
every w > 0, C(u, u+w) = uρ0 is continuous in u. It remains to check that condition (4) holds.
To this end, we use Hölder’s inequality and then Markov’s inequality to obtain, for ρ, y > 0,

E(N(t)−m(t))2 1
{|N(t)−m(t)|>y

√
tρm(t)}

≤
(

E(N(t)−m(t))4
)1/2(

P{|N(t)−m(t)| > y
√

tρm(t)}
)1/2

≤ (m(t)(1 + 3m(t)))1/2y−1t−ρ/2 = o(m(t))

which proves (4).
The limit process Vρ0, ρ is the same time-changed Brownian motion as in point (c) in which

the role of β is played by ρ0.
To give a concrete specialization of Theorem 2.4 let Y (t) denote the number of the second

generation individuals in a BRW generated by a non-homogeneous Poisson process (N(t))t≥0 as
above. Then (Y (t))t≥0 is a random process with immigration at random times, for Y (t) admits
a representation similar to (12) in which we take j = 2, replace N2(t) with Y (t) and N1(t) with
N(t) and let (Tk,1)k∈N denote the atoms of (N(t))t≥0. We shall write Tk for Tk,1. According to
Theorem 2.4 in combination with the discussion above and in Section 3.1.2 we have the following
limit theorem with a random centering:

Y (ut)−∑

k≥1m(ut− Tk)1{Tk≤ut}

c0(ρ0B(ρ0 + 1, ρ0))1/2tρ0
f.d.⇒ W (u2ρ0), t → ∞,

where (W (u))u≥0 is a Brownian motion.
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(e) LetX(t) = (t+1)β/2Z(t), where β ∈ (−1, 0) and (Z(t))t≥0 is a stationary Ornstein-Uhlenbeck
process with variance 1/2. In this case, f(u,w) = E(X(u)X(w)) = 2−1(u+1)β/2(w+1)β/2e−|u−w|

is fictitious regularly varying in R
2
+ of index β. Furthermore, condition (3) holds, that is, for

every w > 0,
f(ut, (u+ w)t)

v(t)
=

(ut+ 1)β/2((u+ w)t+ 1)β/2

(t+ 1)β
e−wt

converges to 0, as t → ∞ uniformly in u ∈ [a, b] for all 0 < a < b < ∞. This stems from the
fact that while the first factor converges to uβ/2(u + w)β/2 uniformly in u ∈ [a, b], the second
factor converges to zero and does not depend on u. Further, v(t) = 2−1(t+ 1)β is bounded. By
stationarity, for each t > 0, Z(t) has the same distribution as a random variable θ having the
normal distribution with zero mean and variance 1/2. Hence, with ρ > 0,

EX2(t)1
{|X(t)|>y

√
tρv(t)}

= (t+ 1)βEθ2 1{|θ|>2−1/2ytρ/2} = o(tβ), t → ∞,

that is, condition (4) holds. For β > −(ρ∧ 1), the corresponding limit process Vβ, ρ is a centered
Gaussian process with independent values.

4 Proof of Theorem 2.4

When C(u,w) = 0 for all u,w > 0, u 6= w, the process Vβ, ρ exists as a Gaussian process with
independent values, see Definition 2.3. Now we intend to show that the Gaussian process Vβ, ρ

is well-defined in the complementary case when C(u,w) > 0 for some u,w > 0, u 6= w. To this
end, we check that the function Π(s, t) given by

Π(s, t) :=

∫ s∧t

0
C(s− y, t− y) dyρ, s, t > 0

is finite and positive semidefinite, that is, for any j ∈ N, any γ1, . . . , γj ∈ R and any 0 < v1 <
. . . < vj < ∞

0 ≤
j

∑

i=1

γ2i Π(vi, vi) + 2
∑

1≤r<l≤j

γrγlΠ(vr, vl)

=

j−1
∑

i=1

∫ vi

vi−1

( j
∑

s=i

γ2sC(vs − y, vs − y) + 2
∑

i≤r<l≤j

γrγlC(vr − y, vl − y)

)

dyρ

+ γ2j

∫ vj

vj−1

C(vj − y, vj − y) dyρ, (14)

where v0 := 0. In view of

|f(s, t)| ≤ 2−1(v(s) + v(t)), s, t ≥ 0, (15)

we infer
C(s− y, t− y) ≤ 2−1((s − y)β + (t− y)β). (16)

Since β > −1 by assumption the latter ensures Π(s, t) < ∞ for all s, t > 0. Now we pass to the
proof of (14). Since the second term on the right-hand side of (14) is nonnegative, it suffices
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to prove that so is the first. The function C(s, t), s, t > 0 is positive semidefinite as a limit of
positive semidefinite functions. Hence, for each 1 ≤ i ≤ j − 1 and y ∈ (vi−1, vi),

j
∑

s=i

γ2sC(us − y, us − y) + 2
∑

i≤r<l≤j

γrγlC(ur − y, ul − y) ≥ 0.

Thus, the process Vβ, ρ does exist as a Gaussian process with covariance function Π(s, t), s, t > 0.

Proof of Theorem 2.4. We treat simultaneously the case when C(u,w) > 0 for some u,w > 0,
u 6= w and the complementary case.

According to the Cramér-Wold device relation (7) is equivalent to

∑j
i=1 αi

∑

k≥0Xk+1(uit− Tk)1{Tk≤uit}
√

ctρv(t)

d→
j

∑

i=1

αiVβ,ρ(ui) (17)

for all j ∈ N, all α1, . . . , αj ∈ R and all 0 < u1 < . . . < uj < ∞. Here and hereafter,
d→ denotes

convergence in distribution. Define the σ-algebras F0 := σ(T0) and Fk := σ(T0,X1, T1, . . . ,Xk, Tk)
for k ∈ N and set Ek(·) := E(·|Fk), k ∈ N0. Now observe that

Ek

j
∑

i=1

αiXk+1(uit− Tk)1{Tk≤uit} = 0, k ∈ N0

which shows that
∑

k≥0

∑j
i=1 αiXk+1(uit − Tk)1{Tk≤uit} is a martingale limit. In view of this,

in order to prove (17), one may use the martingale central limit theorem (Corollary 3.1 in [5]).
The theorem tells us that it suffices to verify

∑

k≥0

Ek(Z
2
k+1, t)

P→ Dβ,ρ(u1, . . . , uj), t → ∞ (18)

and
∑

k≥0

Ek

(

Z2
k+1, t 1{|Zk+1, t|>y}

) P→ 0, t → ∞ (19)

for all y > 0, where

Zk+1, t :=

∑j
i=1 αi 1{Tk≤uit} Xk+1(uit− Tk)

√

ctρv(t)
, k ∈ N0, t > 0.

Proof of (18). We start by writing

∑

k≥0

Ek(Z
2
k+1, t) =

∑j
i=1 α

2
i

∑

k≥0 1{Tk≤uit} v(uit− Tk)

ctρv(t)

+
2
∑

1≤r<l≤j αrαl
∑

k≥0 1{Tk≤urt} f(urt− Tk, ult− Tk)

ctρv(t)
.

We shall prove that, as t → ∞,

∑

k≥0 1{Tk≤uit} v(uit− Tk)

ctρv(t)
=

∫

[0, ui]
v(t(ui − y)) dN(ty)

ctρv(t)

P→ ρB(β + 1, ρ)uβ+ρ
i (20)
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for all 1 ≤ i ≤ j and that

∑

k≥0 1{Tk≤urt} f(urt− Tk, ult− Tk)

ctρv(t)
=

∫

[0, ur]
f(t(ur − y), t(ul − y)) dN(ty)

ctρv(t)

P→
∫ ur

0
C(ur − y, ul − y)dyρ (21)

for all 1 ≤ r < l ≤ j.
Fix any ur < ul and pick ε ∈ (0, ur ∧ 1). We claim that, as t → ∞,

∫

[0, ur−ε]

v(t(ur − y))

v(t)
d
N(ty)

ctρ
P→

∫ ur−ε

0
(ur − y)β dyρ (22)

and
∫

[0, ur−ε]

f(t(ur − y), t(ul − y))

v(t)
d
N(ty)

ctρ
P→

∫ ur−ε

0
C(ur − y, ul − y)dyρ. (23)

To prove these limit relations we need some preparation. For each t > 0, the random function
Gt defined by Gt(y) := 0 for y < 0, := N(ty)/N(tur) for y ∈ [0, ur), and = 1 for y ≥ ur is a
random distribution function. Similarly, the function G defined by G(y) := 0 for y < 0, :=
(y/ur)

ρ for y ∈ [0, ur), and = 1 for y ≥ ur is a distribution function. According to (5), for every
sequence (tn)n∈N there exists a subsequence (tns)s∈N such that lims→∞ t−ρ

ns N(tnsy) = cyρ a.s. for
each y ∈ [0, ur]. We would like to stress that uniformity of the convergence in (5) ensures that
the subsequence (tns)s∈N does not depend on y (without the uniformity assumption we should
have taken a new subsequence (tns)s∈N for each particular y ∈ [0, ur]; this would not be sufficient
for what follows). The last limit relation guarantees lims→∞N(tnsy)/N(tnsur) = (y/ur)

ρ a.s.
for each y ∈ [0, ur]. Therefore, as s → ∞ Gtns

converges weakly to G with probability one.
Proof of (22). Write

∣

∣

∣

∫

[0, ur−ε]

v(tns(ur − y))

v(tns)
dGtns

(y)−
∫

[0, ur−ε]
(ur − y)βdG(y)

∣

∣

∣

≤
∫

[0, ur−ε]

∣

∣

∣

v(tns(ur − y))

v(tns)
− (ur − y)β

∣

∣

∣
dGtns

(y)

+
∣

∣

∣

∫

[0, ur−ε]
(ur − y)βdGtns

(y)−
∫

[0, ur−ε]
(ur − y)βdG(y)

∣

∣

∣
.

By the uniform convergence theorem for regularly varying functions (Theorem 1.5.2 in [3]),

lim
t→∞

v(t(ur − y))

v(t)
= (ur − y)β (24)

uniformly in y ∈ [0, ur − ε]. This implies that the first summand on the right-hand side of the
penultimate centered formula converges to 0 a.s. as s → ∞. The second summand does so by
the following reasoning. The function g defined by g(y) := (ur − y)ρ for y ∈ [0, ur − ε] and := 0
for y > ur − ε is bounded with one discontinuity point. With this at hand it remains to invoke
the aforementioned weak convergence with probability one and the fact that G is a continuous
distribution function. This implies that the left-hand side of the penultimate centered formula
with t replacing tns converges in probability to 0 as t → ∞. Multiplying it by N(tur)/(ct

ρ)
which converges to uρr in probability as t → ∞ we arrive at (22).
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Proof of (23) is analogous. Instead of (24) one has to use the following relation which is a
consequence of (3):

lim
t→∞

f(t(ur − y), t(ul − y))

v(t)
= C(ur − y, ul − y)

uniformly in y ∈ [0, ur − ε]. The role of g is now played by g∗(y) := C(ur − y, ul − y) for
y ∈ [0, ur − ε] and := 0 for y > ur − ε. In view of (16), this function is bounded. Also, g∗ is a.e.
continuous by assumption which in combination with the absolute continuity of G is enough for
completing the proof of (23).

As ε → 0+, the right-hand sides of (22) and (23) converge to
∫ ur

0 (ur − y)β dyρ = ρB(β +

1, ρ)uβ+ρ
r and

∫ ur

0 C(ur − y, ul − y)dyρ, respectively. Thus, relations (20) and (21) are valid if
we can show (see Theorem 4.2 in [2]) that

lim
ε→0+

lim sup
t→∞

P

{

∫

(ur−ε, ur ]
v(t(ur − y)) dN(ty)

ctρv(t)
> δ

}

= 0 (25)

and

lim
ε→0+

lim sup
t→∞

P

{

∣

∣

∫

(ur−ε, ur]
f(t(ur − y), t(ul − y)) dN(ty)

∣

∣

ctρv(t)
> δ

}

= 0 (26)

for any δ > 0.
Using (15) we obtain

∫

(ur−ε, ur ]
|f(t(ur − y), t(ul − y))|dN(ty)

≤ 2−1
(

∫

(ur−ε, ur ]
v(t(ur − y)) dN(ty) +

∫

(ur−ε, ur]
v(t(ul − y)) dN(ty)

)

(27)

which shows that a proof of (26) includes that of (25). Therefore, we shall only prove (26).
We first treat the second summand on the right-hand side of (27). Since

lim
t→∞

v(t(ul − y))

v(t)
= (ul − y)β

uniformly in y ∈ (ur − ε, ur] (recall that ur < ul) we can use the argument given after formula
(24) to conclude that

∫

(ur−ε, ur]
v(t(ul − y)) dN(ty)

ctρv(t)

P→
∫

(ur−ε, ur ]
(ul − y)βdyρ, t → ∞.

The right-hand side converges to zero as ε → 0+.
Now we are passing to the analysis of the first summand on the right-hand side of (27).

According to Potter’s bound (Theorem 1.5.6 (iii) in [3]), for any chosen A > 1, γ ∈ (0, β) when
β > 0 and γ ∈ (0, β + 1) when β ∈ (−(ρ ∧ 1), 0] there exists t0 > 0 such that

v(t(ur − y))

v(t)
≤ A(ur − y)β−γ
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whenever t ≥ t0 and t(ur − y) ≥ t0. Then, for t ≥ t0/ε,

∫

(ur−ε, ur]
v(t(ur − y)) dN(ty)

ctρv(t)

≤
∫

(ur−ε, ur−t0/t]
v(t(ur − y)) dN(ty)

ctρv(t)
+

∫

(ur−t0/t, ur ]
v(t(ur − y)) dN(ty)

ctρv(t)

≤
A
∫

(ur−ε, ur−t0/t]
(ur − y)β−γdN(ty)

ctρ
+

(N(tur)−N(tur − t0)) supx∈[0, t0] v(x)

ctρv(t)
. (28)

We claim that the second term on the right-hand side in (28) converges to zero in probability
as t → ∞. For the proof we first note that the function v is locally bounded by assumption.
With this at hand, the claim follows from (6) in combination with Markov’s inequality when

β ∈ (−(ρ∧1), 0) or β = 0 and lim inft→∞v(t) = 0 and from t−ρ(N(t)−N(t− t0))
P→ 0 as t → ∞

which, in its turn, is a consequence of (5) when β > 0 or β = 0 and lim inft→∞v(t) > 0.
While treating the first summand on the right-hand side in (28) we consider two cases

separately.
Case β > 0 in which β−γ > 0. The first summand is bounded from above by Aεβ−γN(tur)/(ct

ρ)
which converges to Aεβ−γuρr in probability as t → ∞. Therefore, for any δ > 0,

lim sup
t→∞

P{Aεβ−γN(tur)/(ct
ρ) > δ} ≤ 1[0,Aεβ−γuρ

r ](δ).

It remains to note that the right-hand side converges to zero as ε → 0+.
Case β ∈ (−(ρ ∧ 1), 0] in which β − γ < 0. Invoking Markov’s inequality we see that it suffices
to prove that

lim
ε→0+

lim sup
t→∞

∫

(ur−ε, ur]
(ur − y)β−γ dL(ty)

tρ
= 0, (29)

where L(t) := EN(t) for t ≥ 0.
Write, for large enough t, positive constants C1 and C2, and i = 1, 2

∫

(ur−ε,ur]
(ur − y)β−γ dL(ty) ≤

[εt]
∑

k=0

∫

(ur−t−1(k+1),ur−t−1k]
(ur − y)β−γ dL(ty)

≤
[εt]
∑

k=0

(k/t)β−γ(L(tur − k)− L(tur − (k + 1)))

≤
{

C1t
−(β−γ)

∑[εt]
k=0 k

β−γ(tur − k)ρ−1, if ρ ≥ 1,

C2t
−(β−γ)

∑[εt]
k=0 k

β−γ(tur − k + 1)ρ−1, if ρ ∈ (0, 1),

≤ Cit
−(β−γ)

[εt]
∑

k=1

∫ k

k−1
yβ−γ(tur − y)ρ−1dy

≤ Cit
−(β−γ)

∫ εt

0
yβ−γ(tur − y)ρ−1dy

= Cit
ρ

∫ ε

0
yβ−γ(ur − y)ρ−1dy,

where the third inequality is a consequence of (6), and we take i = 1 when ρ ≥ 1 and i = 2
when ρ ∈ (0, 1). This proves (29), and (18) follows.
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Proof of (19): The following inequality holds for real a1, . . . , am

(a1 + . . .+ am)2 1{|a1+...+am|>y} ≤ (|a1|+ . . .+ |am|)2 1{|a1|+...+|am|>y}

≤ m2(|a1| ∨ . . . ∨ |am|)2 1{m(|a1|∨...∨|am|)>y}

≤ m2
(

a21 1{|a1|>y/m} + . . .+ a2m 1{|am|>y/m}

)

. (30)

This in combination with the regular variation of tρv(t) guarantees it is sufficient to show that

∑

k≥0

1{Tk≤t} Ek

(

X2
k+1(t− Tk)

tρv(t)
1

{|Xk+1(t−Tk)|>y
√

tρv(t)}

)

P→ 0 (31)

for all y > 0.
By Proposition 1.5.8 in [3], tρv(t) ∼ (ρ+β)

∫ t
0 y

ρ−1v(y)dy as t → ∞. Therefore, while proving

Theorem 2.4 we can interchangeably use tρv(t) or (ρ + β)
∫ t
0 y

ρ−1v(y)dy in the denominator of
(7). Therefore, without loss of generality we can and do assume that tρv(t) is nondecreasing,
for so is its asymptotic equivalent. Thus, relation (31) follows if we can prove that

1

tρv(t)

∫

[0, t]
vy(t− x) dN(x)

P→ 0, t → ∞ (32)

for all y > 0.
Fix any y > 0. Formula (4) ensures that given ε > 0 there exists t0 > 0 such that vy(t) ≤ εv(t)

whenever t ≥ t0. With this at hand we obtain

1

tρv(t)

∫

[0, t]
vy(t− x) dN(x) =

1

tρv(t)

(

∫

[0, t−t0]
vy(t− x) dN(x) +

∫

(t−t0, t]
vy(t− x) dN(x)

)

≤ ε

tρv(t)

∫

[0, t]
v(t− x) dN(x)

+
(N(t)−N(t− t0)) supx∈[0, t0] vy(x)

tρv(t)
.

Using (20) with ui = 1 and denoting the first summand on the right-hand side by J(t, ε) we
conclude that, for any δ > 0,

lim
ε→0+

lim sup
t→∞

P{J(t, ε) > δ} = 0.

Since vy(t) ≤ v(t) for all t ≥ 0, and v is locally bounded by assumption, so is vy. Therefore, the
second summand on the right-hand side converges to zero in probability as t → ∞ by the same
reasoning as given for the second summand on the right-hand side of (28).

The proof of Theorem 2.4 is complete.
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