
Exact Sampling of the Infinite Horizon Maximum of a Random

Walk Over a Non-linear Boundary

Blanchet, J.∗ Dong, J. Liu, Z.

October 14, 2018

Abstract

We present the first algorithm that samples maxn≥0{Sn − nα}, where Sn is a mean zero
random walk, and nα with α ∈ (1/2, 1) defines a nonlinear boundary. We show that our
algorithm has finite expected running time. We also apply this algorithm to construct the first
exact simulation method for the steady-state departure process of a GI/GI/∞ queue where the
service time distribution has infinite mean.

1 Introduction

Consider a random walk Sn =
∑n

i=1Xi for n ≥ 1 and S0 = 0, where {Xi : i ≥ 1} is a sequence
of independent and identically distributed random variables with E[X1] = 0. Without loss of
generality, we shall also assume that V ar(X1) = 1. Moreover, we shall impose the following light-
tail assumption on the distribution of Xi’s.

Assumption 1. There exists δ > 0, such that E[exp(θX1)] <∞ for ∀θ ∈ (−δ, δ).

In this paper, we develop the first algorithm that generates perfect samples (i.e. samples without
any bias) from the random variable

Mα = max
n≥0
{Sn − nα},

where α ∈ (1/2, 1). Moreover, we will show that our algorithm has finite expected running time.

There has been substantial amount of work on exact sampling (i.e. sampling without any bias)
from the distribution of the maximum of a negative drifted random walk, e.g. M1 in our setting.
Ensor and Glynn [6] propose an algorithm to sample the maximum when the increments of the
random walk are light-tailed (i.e Assumption 1 holds). In [2], Blanchet et al. propose an algorithm
to simulate a multidimensional version of M1 driven by Markov random walks. In [5], Blanchet
and Wallwater develop an algorithm to sample M1 for the heavy-tailed case, which requires only
that E |X1|2+ε <∞ for some ε > 0 to guarantee finite expected termination time.

Some of this work is motivated by the fact that M1 plays an important role in ruin theory
and queueing models. For example, the steady state waiting time of GI/GI/1 queue has the same
distribution as M1, where Xi corresponds to the (centered) difference between the i-th service time
and the i-th interarrival time, (see [1]). Moreover, applying Coupling From The Past (CFTP), see
for example [9] and [8], the techniques to sample M1 jointly with the random walk {Sn : n ≥ 0}
∗Support from NSF grant DMS-132055 is gratefully acknowledged by J. Blanchet.

1

ar
X

iv
:1

60
9.

06
40

2v
2

 [
m

at
h.

PR
]

 2
3

Se
p

20
16

have been used to obtain perfect sampling algorithms for more general queueing systems, including
multi-server queues [4], infinite server queues and loss networks [3], and multidimensional reflected
Brownian motion with oblique reflection [2].

The fact that Mα stochastically dominates M1 makes the development of a perfect sampler
for Mα more difficult. For example, the direct use of exponential tilting techniques as in [6] is
not applicable. However, similar to some of the previous work, the algorithmic development uses
the idea of record-breakers (see e.g. [3]) and randomization procedures similar to the heavy-tailed
context studied in [5].

The techniques that we study here can be easily extended, using the techniques studied in [2],
to obtain exact samplers of a multidimensional analogue of Mα driven by Markov random walks
(as done in [2] for the case α = 1). Moreover, using the domination technique introduced in Section
5 of [4], the algorithms that we present here can be applied to the case in which the term nα is
replaced by g (n) as long as there exists n0 > 0 such that g (n) ≥ nα for all n ≥ n0.

We mentioned earlier that algorithms which simulate M1 jointly with {Sn : n ≥ 0} have been
used in applications of CFTP. Since the random variable Mα dominates M1, and we also simulate
Mα jointly with {Sn : n ≥ 0}, we expect our results here to be applicable to perfect sampling (using
CFTP) for a wide range of processes. In this paper, we will show how to use the ability to simulate
Mα jointly with {Sn : n ≥ 0} to obtain the first algorithm which samples from the steady-state
departure process of an infinite server queue in which the job requirements have infinite mean; the
case of finite mean service/job requirements is treated in [3].

The rest of the paper is organized as follows. In Section 2 we discuss our sampling strategy.
Then we provide a detailed running time analysis in Section 3. As a sanity check, we implement
our algorithm in instances in which we can compute a theoretical benchmark, this is reported in
Section 3.1. Finally, the application to exact simulation of the steady-state departure process of
an infinite server queue with infinite mean service time is given in Section 4.

2 Sampling strategy and main algorithmic development

Our goal is to simulate Mα using a finite but random number of Xi’s. To achieve this goal, we
introduce the idea of record-breakers.

Let ψ(θ) := logE[exp(θXi)]. As ψ(θ) = 1
2θ

2 + o(θ2), by Taylor expansion, there exists δ′ < δ,
such that ψ(θ) ≤ θ2, for θ ∈ (−δ′, δ′). Let

a < min

{
4δ′,

1

2

}
, and b =

4

a
log

(
4

(∞∑
n=0

2n exp(−a222nα−n−4

))
. (1)

These choices of a and b will become clear in the proof of Lemma 1. We define a sequence of
record-breaking times as T0 := 0. For k = 1, 2 . . . , if Tk−1 <∞,

Tk := inf
{
n > Tk−1 : Sn > STk−1

+ a(n− Tk−1)α + b(n− Tk−1)1−α} ;

otherwise if Tk−1 =∞, then Tk =∞. We also define

κ := inf{k > 0 : Tk =∞}.

Because the random walk has independent increments, P (Ti =∞|Ti−1 <∞) = P (T1 =∞). Thus,
κ is a geometric random variable with probability of success

P (T1 =∞).

We first show that κ is well defined.

2

Lemma 1. For a and b satisfying (1),

P (T1 =∞) ≥ 3

4
.

Proof. We first notice that

P (T1 <∞) =

∞∑
n=0

P (T ∈ [2n, 2n+1))

≤
∞∑
n=0

∑
k∈[2n,2n+1)

P (Sk > akα + bk1−α).

For any k ∈ [2n, 2n+1),

P (Sk > akα + bk1−α) ≤ exp
(
kψ(θ)− θ(akα + bk1−α)

)
≤ exp

(
2n+1ψ(θ)− θa2αn − θb2(1−α)n

)
,

for any θ ∈ (−δ, δ). If we set θn = a2(α−1)n−2, as a < 4δ′, θn < δ′. Then

P
(
Sk > akα + bk1−α) ≤ exp

(
2n+1θ2

n − θna2αn − θnb2(1−α)n
)

= exp
(
−a222nα−n−3 − ab/4

)
.

Therefore,

P (T1 <∞) ≤

(∞∑
n=0

2n exp
(
−a222nα−n−3

))
exp

(
−ab

4

)
≤ 1

4
,

where the last inequality follows from our choice of b.

Let

ξ := max
n≥0

{
(anα + bn1−α)− 1

2
nα
}
. (2)

Conditional on the value of κ and the values of {Xi : 1 ≤ i ≤ Tκ−1}, we define

Γ(κ) :=
⌈
(2STκ−1 + 2ξ)1/α

⌉
.

The choice of ξ will become clear in the proof of Lemma 2. We will next establish that

Mα = max
0≤n≤Tκ−1+Γ(κ)

{Sn − nα}.

Lemma 2. For n ≥ Tκ−1 + Γ(κ),
Sn ≤ nα.

Proof. For ξ defined in (2), we have for any n ≥ 0,

anα + bn1−α ≤ 1

2
nα + ξ.

Since Tκ =∞, for n ≥ Γ(κ),

STκ−1+n ≤ anα + bn1−α + STκ−1

≤ 1

2
nα + ξ +

1

2
Γ(κ)α − ξ

≤ nα ≤ (Tκ−1 + n)α.

3

Figure 1 illustrates the basic idea of our algorithmic development. The solid line is nα. The
first dotted line from the left (lowest dotted curve) is the record-breaking boundary that we start
with, anα−1 + bnα. T1 is the first record-breaking time. Based on the value of ST1 , we construct a
new record-breaking boundary, ST1 + a(n − T1)α−1 + b(n − T1)α (the second dotted line from the
left). At time T2, we have another record-breaker. Based on the value of ST2 , we construct again
a new record-breaking boundary, ST2 + a(n− T2)α−1 + b(n− T2)α (the third dotted line from the
left). If from T2 on, we will never break the record again (T3 =∞), then we know that for n large
enough (say, n > 3000 in the figure), Sn will never pass the solid boundary again.

Figure 1: Bounds for record-breakers

T1,ST1()

T2,ST2()

The actual simulation strategy goes as follows.

Algorithm 1. Sampling Γ(κ) together with (Xi : 1 ≤ i ≤ Tκ−1 + Γ(κ)).

i) Initialize T0 = 0, k = 1.

ii) For Tk−1 <∞, sample J ∼Bernoulli(P (Tk =∞|Tk−1)).

iii) If J = 0, sample (Xi : i = Tk−1 + 1, . . . , Tk) conditional on Tk < ∞. Set k = k + 1 and go
back to step ii); otherwise (J = 1), set κ = k and go to step iv).

iv) Calculate Γ(κ), sample (Xi : i = Tk−1 + 1, . . . , Tk−1 + Γ(κ)) conditional on Tk =∞.

Remark 1. In general, any a < min {4δ′, 1/2}, and b ≥ 4
a log

(
4
(∑∞

n=0 2n exp(−a222nα−n−4
))

would work. However, there is a trade-off. The larger the value of a and b, the smaller the value
of κ, but the value of Γ(κ) would be larger. We conduct a numerical study on the choice of these
parameters in Section 3.1.1.

In what follows, we shall elaborate on how to carry out step ii), iii) and iv) in Algorithm 1. In
particular, step ii) and iii) are outlined in Procedure A. Step iv) is outlined in Procedure B.

4

2.1 Step ii) and iii) in Algorithm 1

It turns out step ii) and iii) can be carried out simultaneously using exponential tilting based on
the results and proof of Lemma 1.

We start by explaining how to sample the first record-breaking time T1. We introduce an
auxiliary random variable N with probability mass function (pmf)

p(n) = P (N = n) =
2n exp

(
−a222nα−n−3

)∑∞
m=0 2m exp (−a222mα−m−3)

, for n ≥ 1 (3)

We can then apply exponential tilting to sample the path (X1, X2 . . . , XT1) conditional on T1 <∞.
The actual sampling algorithm goes as follows.

Procedure A. Sampling J with P (J = 1) = P (T1 =∞); if J = 0, output (X1, . . . , XT1).

i) Sample a random time N with pmf (3).

ii) Let θN = a2N(α−1)−2. Generate X1, X2, . . . , X2N+1−1 under exponential tilting with tilting
parameter θN , i.e.

dPθN
dP

1{Xi ∈ A} = exp(θNXi − ψ(θN))1{Xi ∈ A}.

Let T1 = inf{n ≥ 1 : Sn > anα + bn1−α} ∧ 2N+1

iii) Sample U ∼Uniform[0, 1]. If

U ≤ exp(−θNST1 + T1ψ(θN))

p(N)
I
{
T1 ∈

[
2N , 2N+1

)}
,

then set J = 0 and output (X1, X2, . . . , XT1); else, set J = 1.

We next show that Procedure A works.

Theorem 1. In Procedure A, J is a Bernoulli random variable with probability of success P (T1 =
∞). If J = 0, the output (X1, X2, . . . , XT1) follows the distribution of (X1, X2, . . . , XT1) conditional
on T1 <∞.

Proof. We first show that the likelihood ratio in step iii) is well-defined.

exp(−θnST1 + T1ψ(θn))

P (N = n)
I{T1 ∈ [2n, 2n+1)}

≤exp(−θn(a2αn + b2(1−α)n) + 2n+1θ2
n))

P (N = n)

=
exp

(
−a222nα−n−3 − ab/4

)
P (N = n)

=2−n exp(−ab/4)
∞∑
m=0

2m exp(−a222mα−m−3) ≤ 1

4
,

5

where the last inequality follows from our choice of b as in the proof of Lemma 1. We next prove
that P (J = 0) = P (T1 <∞).

E[I{J = 0}|N = n] = Eθn

[
I

{
U ≤ exp(−θnST1 + T1ψ(θn))

p(n)

}
I{T1 ∈ [2n, 2n−1)}

]
= Eθn

[
exp(−θnST1 + T1ψ(θn))

p(n)
I{T1 ∈ [2n, 2n+1)}

]
=
P (T1 ∈ [2n, 2n+1))

p(n)
.

Thus,

E[I{J = 0}] =

∞∑
n=0

E[I{J = 0}|N = n]p(n)

=
∞∑
n=0

P (T1 ∈ [2n, 2n+1)) = P (T1 <∞).

Let P ∗(·) denote the measure induced by Procedure A. We next show that P ∗(X1 ∈ A1, . . . , Xt ∈
At|J = 0) = P (X1 ∈ A1, . . . , Xt ∈ At|T < ∞), where t is a positive integer, and Ai ⊂ R,
i = 1, 2, . . . , t, is a sequence of Borel measurable sets satisfying Ai ⊂ {x ∈ R : x ≤ aiα + bi1−α} for
i < t and At ⊂ {x ∈ R : x > atα + bt1−α}. Let nt := blog2 tc.

P ∗(X1 ∈ A1, . . . , Xt ∈ At|J = 0)

=
P ∗(X1 ∈ A1, . . . , Xt ∈ At, J = 0)

P (J = 0)

=
P (N = nt)

P (T1 <∞)
Eθnt

[
I {X1 ∈ A1, . . . , Xt ∈ At} I

{
U ≤ exp(−θntSt + tψ(θnt))

p(nt)

}]
=

p(nt)

P (T1 <∞)
Eθnt

[
I {X1 ∈ A1, . . . , Xt ∈ At}

exp(−θntSt + tψ(θnt))

p(nt)

]
=
E [I {X1 ∈ A1, . . . , Xt ∈ At}]

P (T1 <∞)

=P (X1 ∈ A1, . . . , Xt ∈ At|T1 <∞).

The extension from T1 to Tk is straightforward: because for Tk−1 <∞, given the value of Tk−1

and STk−1
, we essentially start the random walk afresh from each Tk−1 on. Thus, to execute step ii)

and iii) in Algorithm 1, given Tk−1 <∞, we can apply Procedure A. Based on the output, if J = 0,
we denote (X̃1, X̃2, . . . , X̃T) as the output from Procedure A, and set (XTk−1+1, . . . , XTk−1+T) =

(X̃1, . . . , X̃T) and Tk = Tk−1 + T , otherwise, set κ = k.

2.2 Step iv) in Algorithm 1

Sampling (X1, . . . , XTκ−1) is realized by iteratively applying Procedure A until it outputs J = 1.
Once we found κ, sampling (XTκ−1+1, . . . , XTκ−1+n) requires us to sample the trajectory of the
random walk conditioning on that it never passes the non-linear upper bound. In particular,
given κ = k, we would like to sample (XTκ−1+1, . . . , XTκ−1+n) from P (·|Fk−1, Tk = ∞), where
{Fk : k ≥ 0} denote the filtration generated by the random walk. We can achieve this conditional
sampling using the acceptance-rejection technique.

6

We first introduce a method to simulate a Bernoulli random variable with probability of success
P (T1 =∞|T1 > t, St), which follows a similar exponential tilting idea as that used in Section 2.1.

Let
T̃t,s := inf

{
n ≥ 0 : s+ Sn > a(n+ t)α + b(n+ t)1−α} .

Given t, we introduce an auxiliary random variable Ñ(t) with pmf

pt(n) = P
(
Ñ(t) = n

)
=

2n exp
(
−2−n−4a2(2n + t)2α

)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

, for n ≥ 1. (4)

Given Ñ(t) = n, we apply exponential tilting to sample (X̃1, X̃2, . . . , X̃2n+1−1), with tilting param-
eter

θ̃n(t) = 2−n−2a(2n + t)α,

i.e.
dPθ̃n(t)

dP
1{Xi ∈ A} = exp(θ̃n(t)Xi − ψ(θ̃n(t)))1{Xi ∈ A}.

We also define S̃k := X̃1+· · ·+X̃k for k ≥ 1, and T̃ = inf
{
n ≥ 0 : s+ S̃n > a(n+ t)α + b(n+ t)1−α

}
∧

2n+1. In what follows, we shall suppress the dependence on t when there is no confusion. Let

J̃ = 1− I

{
U ≤

exp(−θ̃nS̃T̃ + T̃ψ(θ̃n))

pt(n)
I
{
T̃ ∈

[
2n, 2n+1

)}}
, (5)

where U ∼Uniform[0, 1].

Lemma 3. For J̃ defined in (5), when s < a
4 t
α, we have

P
(
J̃ = 1

)
= P

(
T̃t,s =∞

)
.

Proof. We first notice that

exp(−θ̃nST̃ + T̃ψ(θ̃n))

pt(n)
I
{
T̃ ∈

[
2n, 2n+1

)}
≤ 1

pt(n)
exp

(
−θ̃n

(
a(2n + t)α + b(2n + t)1−α − a

4
tα
)

+ 2n+1θ̃2
n

)
≤ 1

pt(n)
exp

(
−2−n−3a2(2n + t)2α + 2−n−4a2(2n + t)2α − ab

4

)
=

1

pt(n)
exp

(
−2−n−4a2(2n + t)2α − ab

4

)
≤

(∞∑
m=0

2m exp
(
−2−m−4a2(2m + t)2α

))
× exp(−ab/4)

≤

(∞∑
m=0

2m exp
(
−a222mα−m−4

))
× exp(−ab/4) ≤ 1

4
,

where the last inequality follows from our choice of a and b. The rest of the proof follows exact the
same steps as the proof of Theorem 1. We shall omit it here.

Let
L(n) = inf

{
k ≥ n : Sk > akα + bk1−α or Sk <

a

4
kα
}
.

7

The sampling algorithm goes as follows.

Procedure B. Sampling (X1, . . . , Xn) conditional on T1 =∞.

i) Sample (X1, . . . , Xn) under the nominal distribution P (·).

ii) If max1≤k≤n{Sk − akα − bk1−α} > 0, go back to step i); else, go to step iii).

iii) Sample L(n) and (Xn+1, Xn+2, . . . , XL(n)) under the nominal distribution P (·). If SL(n) >
aL(n)α + bL(n)1−α, go back to step i); else, go to step iv).

iv) Sample Ñ with probability mass function pL(n) defined in (4). Generate (X̃1, X̃2, . . . , X̃2Ñ+1−1
)

under exponential tilting with tilting parameter θ̃Ñ = 2Ñ−2a
(

2Ñ + L(n)
)α

. Let T̃ = inf{k ≥

1 : SL(n) + S̃k > a(k + L(n))α + b(k + L(n))1−α} ∧ 2Ñ+1.

v) Sample U ∼Uniform[0, 1]. If

U ≤
exp

(
−θ̃ÑST̃ + T̃ψ(θ̃Ñ)

)
pt(Ñ)

I
{
T̃ ∈

[
2Ñ , 2Ñ+1

)}
,

set J̃ = 0 and go back to Step i); else, set J̃ = 1 and output (X1, . . . , Xn).

We next show that Procedure B works.

Theorem 2. The output of Procedure B follows the distribution of (X1, . . . , Xn) conditional on
T1 =∞.

Proof. Let P ′(·) = P (·|T1 =∞). We first notice that

dP ′

dP
(X1, . . . , Xn) =

I{T1 > n}P (T1 =∞|Sn, T1 > n)

P (T1 =∞)
≤ 1

P (T1 =∞)
.

Let P ′′(·) denote the measure induced by Procedure B. Then we have, for any sequence of Borel
measurable sets Ai ⊂ R, i = 1, 2, . . . , n,

P ′′ (X1 ∈ A1, . . . , Xn ∈ An)

= P
(
X1 ∈ A1, . . . , Xn ∈ An|T1 > L(n), J̃ = 1

)
= P

(
X1 ∈ A1, . . . , Xn ∈ An|T1 > L(n), T̃L(n),SL(n)

=∞
)

= P (X1 ∈ A1, . . . , Xn ∈ An|T1 =∞),

where the second equality follows from Lemma 3, and the third equality follows from the fact that

P (T1 =∞|St, T1 > t) = P
(
T̃t,St =∞

)
.

To execute Step iv) in Algorithm 1, we apply Procedure B with n = Γ(κ).

8

3 Running time analysis

In this section, we provide a detailed running time analysis of Algorithm 1.

Theorem 3. Algorithm 1 has finite expected running time.

We divide the analysis into the following steps.

1. From Lemma 1, the number of iterations between step ii) and iii) follows a geometric distri-
bution with probability of success P (T1 =∞).

2. In each iteration (when applying Procedure A), we will show that the length of the path
needed to sample J has finite moments of all orders (Lemma 4).

3. For step iv), we will show that Γ(κ) has finite moments of all orders (Lemma 5).

4. When applying Procedure B for step iv), we will first show that L(Γ(κ)) has finite moments
of all orders (Lemma 5).

5. When applying Procedure B for step iv), we will also show that the length of the path needed
to sample J has finite moments of all orders (Lemma 6).

Lemma 4. The length of the path needed to sample the Bernoulli J in Procedure A has finite
moments of every order.

Proof. The length of the path generated in Procedure A is bounded by 2N+1, where N ’s distri-
bution is defined in (3). Therefore, ∀r > 0,

E[2(N+1)r] =

∑∞
m=0 2(m+1)r2m exp

(
−a222mα−m−3

)∑∞
m=0 2m exp (−a222mα−m−3)

=

∑∞
m=0 exp

(
−a222mα−m−3 + (mr + r +m) log 2

)∑∞
m=0 2m exp (−a222mα−m−3)

.

Since for m sufficiently large,

exp
(
−a222mα−m−3 + (mr + r +m) log 2

)
≤ exp

(
−a222mα−m−4

)
,

for fixed r > 0, ∃C > 0, such that∑∞
m=0 exp

(
−a222mα−m−3 + (mr + r +m) log 2

)∑∞
m=0 2m exp (−a222mα−m−3)

≤C
∑∞

m=0 exp
(
−a222mα−m−4

)∑∞
m=0 2m exp (−a222mα−m−3)

<∞.

Note that this also implies that

E[T rI(T <∞)] ≤ E[2(N+1)rI(J = 0)] ≤ E[2(N+1)r] <∞.

Lemma 5. Γ(κ) and L(Γ(κ)) have finite moments of any order.

9

Proof. We start with Γ(κ). Let Rn := Sn − anα − bn1−α. For Ti <∞, we also denote

Ri := STi − STi−1 − a(Ti − Ti−1)α − b(Ti − Ti−1)1−α.

Γ(κ) =
⌈
(2STκ−1 + 2ξ)1/α

⌉
≤


(
κ−1∑
i=1

(Ti − Ti−1)α + 2κξ + 2

κ−1∑
i=1

Ri

)1/α
 .

We first prove that conditioning on T1 <∞, RT1 has finite moments of every order.

E[eγRT1 I(T1 <∞)]

=

∞∑
n=0

E[eγRnI(T1 = n)]

=
∞∑
n=0

E[eγ(Xn+Sn−1−anα−bn1−α)I(T1 = n)]

≤
∞∑
n=0

E[eγXnI(T1 = n)]

≤
∞∑
n=0

E[epγXn]1/pE[I(T1 = n)]1/q for p, q > 1,
1

p
+

1

q
= 1 by Hölder’s inequality

≤E[epγXn]1/p
∞∑
n=0

P (T1 = n)1/q.

Because Xn has moment generating function within a neighborhood of 0, we can choose p > 0
and γ > 0 such that E[epγXn]1/p < ∞. In the proof of Lemma 4 we showed that ∀r > 0,
E[T r1 I(T1 < ∞)] < ∞, which implies that P (T1 = n) = O(1

nr). Because r can be any positive

value,
∑∞

n=0 P (T1 = n)1/q <∞. By Jensen’s inequality, for any r ≥ 1,

E

(κ−1∑
i=1

(Ti − Ti−1)α + 2κξ + 2

κ−1∑
i=1

Ri

)r/α
≤ 3

r
α
−1E

(κ−1∑
i=1

(Ti − Ti−1)α

)r/α
+ (2κξ)r/α +

(
2
κ−1∑
i=1

Ri

)r/α . (6)

We next analyze each of the three part on the right hand side of (6). As κ is a geometric random

variable, E[(2κξ)r/α] <∞.

E

(κ−1∑
i=1

(Ti − Ti−1)α

)r/α = E

E
(κ−1∑

i=1

(Ti − Ti−1)α

)r/α
|κ


≤ E

[
κr/α−1E

[
κ−1∑
i=1

(Ti − Ti−1)r|κ

]]
≤ E

[
κr/α2(N+1)r+1

]
= E

[
κr/α

]
E
[
2(N+1)r+1

]
<∞.

10

Similarly, we have

E

(2
κ−1∑
i=1

Ri

)r/α ≤ E [(2κ)r/α
]
E
[
R
r/α
T1
|T1 <∞

]
<∞.

Therefore, we have
E[Γ(κ)] <∞.

We next analyze L(Γ(κ)).

L(Γ(κ))− Γ(κ) ≤ inf
{
n ≥ 0 : Sn+Γ(κ) <

a

4
(n+ Γ(κ))α

}
.

Given Γ(κ) = n∗ and SΓ(κ) = s∗, since s∗ < anα∗ + bn1−α
∗ ,

P (L(Γ(κ))− Γ(κ) > n|Γ(κ) = n∗, SΓ(κ) = s∗)

≤P
(
Sn ≥

a

4
(n+ n∗)

α − s∗
)

≤P
(
Sn ≥

a

4
(n+ n∗)

α − anα∗ − bn1−α
∗

)
≤P

(
Sn ≥

a

4
(n+ n∗)

α − 1

2
nα∗ − ξ

)
≤ exp

(
nθ2 − θ

(
a

4
(n+ n∗)

α − 1

2
nα∗ − ξ

))
for 0 < θ < δ′.

Let wn = a
4 (n+ n∗)

α − 1
2n

α
∗ − ξ. If we pick θ = εn|wnn | where εn is chosen such that θ < δ′. Then

exp
(
nθ2 − θwn

)
≤ exp

(
−w

2
n

n
εn(1− εn)

)
≤ exp

(
−w

2
n

4n

)
.

We notice that for n large enough,

wn ≤
a

5
(n+ n∗)

α.

Thus, ∃C > 0, such that

P (L(Γ(κ))− Γ(κ) > n|Γ(κ) = n∗, SΓ(κ) = s∗) ≤ C exp

(
− a2

100

(n+ n∗)
2α

n

)
≤ C exp

(
− a2

100
n2α−1

)
.

This implies that, given Γ(κ) and SΓ(κ), L(Γ(κ))− Γ(κ) has finite moments of all orders.

Lemma 6. The length of the path needed to sample the Bernoulli J̃ in Procedure B has finite
moments of every order.

Proof. The length of the path in Procedure B is bounded by 2Ñ(t)+1, with Ñ(t) sampled from (4).
For any r > 0,

E[2(Ñ(t)+1)r] =

∑∞
m=0 2(m+1)r2m exp

(
−2−m−4a2(2m + t)2α

)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

=

∑∞
m=0 exp

(
−2−n−4a2(2m + t)2α + (mr +m+ r) log 2

)∑∞
m=0 2m exp (−2−n−4a2(2m + t)2α)

.

11

As for m sufficiently large,

exp
(
−2−m−4a2(2m + t)2α + (mr +m+ r) log 2

)
< exp

(
−2−m−5a2(2m + t)2α

)
,

for fixed r > 0, ∃C > 0, such that

E[2(Ñ(t)+1)r] ≤ C
∑∞

m=0 exp
(
−2−m−5a2(2m + t)2α

)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

<∞.

3.1 Numerical experiments

In this section, we conduct numerical experiments to analyze the performance of Algorithm 1
for different values of parameters. We will also conduct a sanity check of the correctness of our
algorithms (empirically) by simulating the steady state departure process of an infinite server
queueing model. The details of the simulation of the infinite server queue will be given in Section
4.

3.1.1 Choice of parameter a

In Remark 1 we briefly discuss how the parameters a and b would affect the performance of Algo-
rithm 1. We shall fix the value of b upon our choice of a as in (1), as we want to guarantee that
probability of record-breaking is small enough, while keeping Γ(κ) as small as possible. In this
subsection, we conduct some simulation experiments to analyze the effect of different values of a
on the computational cost. We first notice that the choice of a and b will affect the distribution of
N , which is the length of trajectory generated in Procedure A. In Procedure B, the value of Γ(κ),
L(Γ(κ)) and the distribution of Ñ also depend on the value of a and b.

Let Xi
d
=X−1, where X is a unit rate exponential random variable. Then ψ(θ) = −θ−log(1−θ),

for θ < 1. Let g(θ) := ψ(θ)− θ2. As g′(0) = 0, g′′(θ) = 1
(1−θ)2 − 2, we have

g(θ) < 0 ∀θ ∈ (−1, 1−
√

2

2
).

Therefore, we can set δ′ = 1 −
√

2
2 , and when θ ∈ (−δ′, δ′), ψ(θ) < θ2. According to (1), a <

min(1
2 , 4δ

′) = 1
2 . We ran Algorithm 1 with different values of a and α. Table 1 summarizes the

running time of the algorithm in different settings.

Table 1: Running time of Algorithm 1 (in seconds)

a α = 0.8 α = 0.85 α = 0.9 α = 0.95

0.1 287.58 39.62 10.20 4.99
0.2 36.24 8.11 4.19 3.15
0.3 13.38 5.03 2.94 2.56
0.4 7.90 3.53 2.41 2.25
0.45 7.06 3.31 2.43 2.15

We observe that while a is away from the upper bound 1
2 , the running time decreases as a

increases. We also observe that the decreasing rate in a is larger for smaller values of α, which in
general implies greater curvature of the nonlinear boundary.

12

3.1.2 Departure process of an M/G/∞ queue

We apply a variation of Algorithm 1 to simulate the steady state departure process of an infinite
server queue whose service times have infinite mean. The details of the algorithm will be explained
in Section 4. In particular, we consider an infinite server queue having Poisson arrival process with
rate 1, and Pareto service time distributions with probability density function (pdf)

f(v) = βv−(β+1)I{v ≥ 1},

for β ∈ (1/2, 1). Notice that we already know the departure process of this M/G/∞ queue should
also be Poisson process with rate 1, therefore, this numerical experiment would help us verify the
correctness of our algorithm.

We sample the arrival process using Procedure A’ and Procedure B’ described in Section 4,
which are modifications of Procedure A and Procedure B to adapt for the absolute value of the
random walk. We truncate the length of path at 106 steps. We tried different pairs of parameters
α and β, and executed 1000 trials for each pair of α and β. We count the number of departures
between time 0 to 1 for each run and construct the corresponding relative frequency bar plot.
(Figure 2). Figure 2 suggests that the distribution of simulated departures between time 0 and 1
indeed follows a Poisson distribution with rate 1. In particular, the distribution is independent of
the values of α and β, which is consistent with what we expected. We also conduct goodness of fit
tests with the four groups of sampled data. The p-values for the tests are 0.2404, 0.2589, 0.4835,
and 0.1137 respectively. Therefore the tests fail to reject that the generated samples are Poisson
distributed.

Figure 2: Histograms comparison for sampled departure

13

4 Departure process of an infinite server queue

We finish the paper with an application of the algorithm developed in Section 2 to sample the
steady-state departure process of an infinite server queue with general interarrival time and service
time distributions. We assume the interarrival times are i.i.d.. Independent of the arrival process,
the service times are also i.i.d. and may have infinite mean.

Suppose the system starts operating from the infinite past, then it would be at stationarity at
time 0. We want to sample all the departures in the interval [0, h]. We next introduce a point
process representation of infinite server queue to facilitate the explanation of simulation strategy.
In particular, we mark each arriving customer as a point in a 2-dimensional space, where the
x-coordinate records its arrival time and the y-coordinate records its service time (service require-
ment). Based on this point process representation, Figure 3 provides a graphical representation
of the region that we are interested in simulation. Specifically, to sample the departure process
on [0, h], we want to sample all the points (customers) that fall into the shaded area. We further
divide the shaded area into two part, namely H and G. Sampling the points that fall into G is
easy. As G is a bounded area, we can simply sample all the arrivals between 0 and h, and decide,
using their service time information, whether they fall into region G or not. The challenge lies in
sampling the points in H, as it is an unbounded region.

Figure 3: Point process representation of infinite server queue

H

G
0 h t

We mark the points sequentially (according to their arrival times) backwards in time from time
0 as (−A1, V1), (−A2, V2), . . . , where −An is the arrival time of the n-th arrival counting backwards
in time and Vn is his service time. Let A0 := 0. We then denote Xn := An−1−An, as the interarrival
time between the n-th arrival and the (n− 1)-th arrival.

For simplicity of notation, we write

H := {(−An, Vn) : An < Vn < An + h}.

It is the collection of points that fall into region H. If we can find a random number Ξ such that

Vn < An or Vn > An + h

for n ≥ Ξ, then we can sample the point process up to Ξ and find H.
We further introduce an idea to separate the simulation of the arrival process and the service

time process. It requires us to find a sequence of {εn : n ≥ 1}, satisfying the following two
properties:

1. There exists a well-defined random number Ξ1, such that

nµ− εn < An < nµ+ εn for all n ≥ Ξ1.

14

2. There exists a well-defined random number Ξ2, such that

Vn < nµ− εn or Vn > nµ+ εn + h for all n ≥ Ξ2.

This allows us to find Ξ1 and Ξ2 separately and set Ξ = max{Ξ1,Ξ2}. In particular, we can
choose εn satisfying the following two conditions:

C1)
∑∞

n=1 P (|An − nµ| > εn) <∞,

C2)
∑∞

n=1 P (Vn ∈ (nµ− εn, nµ+ εn + h)) <∞.

Then Borel-Cantelli Lemma guarantees that Ξ1 and Ξ2 are “well-defined”, i.e. finite almost
surely.

We next introduce a specific choice of εn when the service times follow a Pareto distribution
with shape parameter β ∈ (1/2, 1). We denote the pdf of Vi as f(·), which takes the form

f(v) = βv−(β+1)I{v ≥ 1}. (7)

We also write F̄ (·) as the tail cdf of Vi. We assume the interarrival time has finite moment
generating function in a neighborhood of the origin. This is without loss of generality. Because if
the interarrival time is heavy-tailed, we can simulate a coupled infinite server queue with truncated
interarrival times, XC

i = min{Xi, C}, then it would serve as an upper bound (in terms of the
number of departures) of the original infinite server queue in a path-by-path sense. Let µ := E[X]
denote the mean interarrival time and σ2 := V ar(X) denote its variance.

In this case, we can set εn = nα for 1/2 < α < β. We next show that our choice of εn satisfies
C1) and C2) respectively. We also explain how to find Ξ1 and Ξ2.

4.1 Sampling of the arrival process and Ξ1

Lemma 7. If εn = nα for α > 1/2,

∞∑
n=1

P (|An − nµ| > εn) <∞.

Proof. We notice that An =
∑n

i=1Xi is a random walk with Xi being i.i.d. interarrival times with
mean µ, except the first one. X1 follows the backward recurrent time distribution of the interarrival
time distribution. By moderate deviation principle [7], we have

1

n2α−1
P (|An − nµ| > nα)→ − 1

2σ2
.

As 2α− 1 > 0,
∑∞

n=1 P (|An − nµ| > nα) <∞.
Let Sn = Tn − nµ. We notice that both Sn and −Sn are mean zero random walks.

P (|Sn| > nα) ≤ P (Sn > nα) + P (−Sn > nα).

Thus, we can apply a modified version of Algorithm 1 to find Ξ1. In particular, we define a modified
sequence of record-breaking times as follows. Let T ′0 := 0. For k ≥ 1, if T ′k−1 <∞,

T ′k := inf
{
n > T ′k−1 : Sn > ST ′k−1

+ a(n− T ′k−1)α + b(n− T ′k−1)1−α

or Sn < ST ′k−1
− a(n− T ′k−1)α − b(n− T ′k−1)1−α

}
;

else, T ′k =∞. Then the modified version of Algorithm 1 goes as follows.

Algorithm 1′. Sampling Ξ together with (Xi : 1 ≤ i ≤ Ξ).

15

i) Initialize T0 = 0, k = 1.

ii) For Tk−1 < ∞, sample J ∼Bernoulli(P (Tk = ∞|Tk−1)). If J = 0, sample (Xi : i = Tk−1 +
1, . . . , Tk) conditional on Tk < ∞. Set k = k + 1 and go back to step ii); otherwise (J = 1),
set Ξ1 = Tk−1 and go to step iii). (see Procedure A′)

iii) Apply Procedure C (detailed in Section 4.2) to sample Ξ2.

iv) Set Ξ = max{Ξ1,Ξ2}. If Ξ > Ξ1, sample (Xi : i = Tk−1 + 1, . . . ,Ξ) conditional on Tk = ∞.
(see Procedure B′)

We also modify Procedure A and Procedure B as follows.

Procedure A′. Sampling J ′ with P (J ′ = 1) = P (T ′1 =∞), if J ′ = 0, output (X1, . . . , XT ′1
).

i) Sample a random time N with pmf (3). Let θN = a2N(α−1)−2. Sample U1 ∼Uniform[0, 1]. If
U1 ≤ 1/2, go to step ii a), else go to step ii b).

ii a) Generate X1, . . . , X2N+1−1 under exponential tilting with tilting parameter θN . Let

T ′1 = inf{n ≥ 1 : |Sn| > anα + bn1−α} ∧ 2N .

.

ii b) Generate X1, . . . , X2N+1−1 under exponential tilting with tilting parameter −θN . Let

T ′1 = inf{n ≥ 1 : |Sn| > anα + bn1−α} ∧ 2N .

iii) Generate U2 ∼Uniform[0, 1]. If

U2 ≤

(
1
2 exp(θNST ′1 − ψ(θN)T ′1) + 1

2 exp(−θNST ′1 − ψ(−θN)T ′1)
)−1

p(N)
× I

{
T ′1 ∈ [2N , 2N+1)

}
,

then set J ′ = 0 and output (X1, X2, . . . , XT ′1
); else, set J ′ = 1.

Proposition 1. In Procedure A′, J ′ is a Bernoulli random variable with probability of success
P (T ′1 = ∞). If J = 0, the output (X1, X2, . . . , XT ′1

) follows the distribution of (X1, X2, . . . , XT ′1
)

conditional on T ′1 <∞.

The proof of Proposition 1 follows exactly the same line of analysis as the proof of Theorem 1.
We shall omit it here.

Let

L′(n) = inf
{
k > n : Sk ∈

(
−a

4
kα,

a

4
kα
)

or Sk > akα + bk1−α or Sk < −akα − bk1−α
}
.

Procedure B′. Sampling (X1, . . . , Xn) conditional on T ′1 =∞.

i) Sample (X1, . . . , Xn) under the nominal distribution P (·).

16

ii) If max1≤k≤n{Sk − akα − bk1−α} > 0 or min1≤k≤n{Sk + akα + bk1−α} < 0, go back to step i);
else, go to step iii).

iii) Sample L′(n) and (Xn+1, . . . , XL′(n)) under the nominal distribution P (·). If |SL′(n)| >
aL′(n)α + bL′(n)1−α, go back to step i); else, go to step iv).

iv) Sample Ñ with probability mass function pL(n) defined in (4). Set θ̃Ñ = 2Ñ−2a
(

2Ñ + L(n)
)α

.

Sample U1 ∼Uniform[0, 1]. If U1 < 1/2, go to step v a); else, go to step v b).

v a) Generate X̃1, X̃2, . . . , X̃2Ñ+1−1
under exponential tilting with tilting parameter θ̃Ñ . Let

T̃ ′ = inf
{
n ≥ 1 :

∣∣∣SL′(n) + S̃k

∣∣∣ > a(k + L′(n))α + b(k + L′(n))1−α
}
∧ 2Ñ+1.

v b) Generate X̃1, X̃2, . . . , X̃2Ñ+1−1
under exponential tilting with tilting parameter −θ̃Ñ . Let

T̃ ′ = inf
{
n ≥ 1 :

∣∣∣SL′(n) + S̃k

∣∣∣ > a(k + L′(n))α + b(k + L′(n))1−α
}
∧ 2Ñ+1.

vi) Sample U2 ∼Uniform[0, 1]. If

U2 ≤

(
1
2 exp

(
θ̃Ñ S̃T̃ ′ − ψ̃(θ̃Ñ)

)
+ 1

2 exp
(
−θ̃Ñ S̃T̃ ′ − ψ̃(−θ̃Ñ)

))−1

pt(Ñ)
× I

{
T̃ ′ ∈

[
2Ñ , 2Ñ+1

)}
,

set J̃ ′ = 0 and go back to Step i); else, set J̃ ′ = 1 and output (X1, . . . , Xn).

Proposition 2. The output of Procedure B′ follows the distribution of (X1, . . . , Xn) conditional
on T ′1 =∞.

The proof of Proposition 2 follows exactly the same line of analysis as the proof of Theorem 2.
We shall omit it here.

4.2 Sampling of the service time process and Ξ2

Lemma 8. If εn = nα for 1/2 < α < β,

∞∑
n=1

P (Vn ∈ (nµ− εn, nµ+ εn + h)) <∞.

Proof.

P (Vn ∈ (nµ− εn, nµ+ εn + h)) = F̄ (nµ− εn)− F̄ (nµ+ εn + h)

≤ β

(nµ− nα)(β+1)
(2nα + h)

=
β(2 + hn−α)

nβ+1−α(µ− n−(β−α))β+1
.

17

As β + 1− α > 1,
∞∑
n=1

β(2 + hn−α)

nβ+1−α(µ− nα−β)β+1
<∞.

To find Ξ2, we use a similar record-breaker idea. In particular, we say Vn is a record-breaker if

Vn ∈ (nµ− ε, nµ+ εn + h).

The idea is to find the record-breakers sequentially until there are no more record-breakers. Specif-
ically, let K0 := 0 and if Ki−1 <∞,

Ki = inf{n > Ki−1 : Vn ∈ (nµ− ε, nµ+ εn + h)}.

if Ki−1 =∞, Ki =∞. Let τ = min{i > 0 : Ki =∞}. Then we can set Ξ2 = Kτ−1.
The task now is to find Ki’s one by one. We start with K1.

P (K1 =∞) =
∞∏
n=1

(1− P (Vn ∈ (nµ− εn, nµ+ εn + h))) .

Let

u(k) =
k∏

n=1

(1− P (Vn ∈ (nµ− εn, nµ+ εn + h))) .

Then we have P (K1 = ∞) < u(k + 1) < u(k) for any k ≥ 1 and limk→∞ u(k) = P (K1 = ∞). We
also notice that u(k)− u(k − 1) = P (K1 = k).

From the proof of Lemma 8, we have for n > (2/µ)1/(β−α),

P (Vn ∈ (nµ− εn, nµ+ εn + h)) <
2(2 + h)β

µ

1

nβ+1−α .

Then for k∗ large enough such that k∗ > (2/µ)1/(β−α), and 2(2+h)β
µ

1
nβ+1−α < 1, we have for k > k∗.

∞∏
n=k+1

(1− P (Vn ∈ (nµ− εn, nµ+ εn + h)))

≥
∞∏

n=k+1

(
1− 2(2 + h)β

µ

1

nβ+1−α

)

≥ exp

(
−(2 + h)β

µ

∞∑
n=k+1

1

nβ+1−α

)

≥ exp

(
−(2 + h)β

µ
(k + 1)−(β−α)

)
.

Let l(k) = 0 for k < k∗ and

l(k) = u(k) exp

(
−2(2 + h)β

µ
(k + 1)−(β−α)

)
for k > k∗. Then we have l(k) ≤ l(k + 1) < P (K1 =∞) and limk→∞ l(k) = P (K1 =∞).

18

Similarly, given Ki−1 = m <∞, we can construct the sequences of upper and lower bounds for
P (Ki =∞|Ki−1 = m) as

um(k) =
k∏

n=m+1

(1− P (Vn ∈ (nµ− εn, nµ+ εn + h)))

for k > m, and

lm(k) = um(k) exp

(
−(2 + h)β

µ
(k + 1)−(β−α)

)
.

Based on the sequence of lower and upper bounds, given Ki−1 = m, we can sample Ki using
the following iterative procedure.

Procedure C. Sample Ki conditional on Ki−1 = m.

i) Generate U ∼Uniform[0, 1]. Set k = m+ 1. Calculate um(k) and lm(k).

ii) While lm(k) < U < um(k)
Set k = k + 1. Update um(k) and lm(k).
end While.

iii) If U < lm(k), output Ki =∞; else, output Ki = k.

Once we find the values of Ki’s, sampling Vn’s conditional on the information of Ki’s is straight-
forward.

We next provide some comments about the running time of Procedure C. Let Φi denote the
number of iterations in Procedure C to generate Ki. We shall show that while P (Φi < ∞) = 1,
while E[Φi] =∞. Take Φ1 as an example:

P (Φ1 > n) = P (K1 > n)

= P (l1(n) < U < u1(n))

≥ u1(n)

(
1− exp

(
−2(2 + h)β

µ
(n+ 1)−(β−α)

))
,

with

1− exp

(
−2(2 + h)β

µ
(n+ 1)−(β−α)

)
= O(n−(β−α)),

and u1(n) ≥ P (K1 = ∞) for any n ≥ 1. As 1 < β − α < 1, we have P (K1 < ∞) = 1, but∑∞
n=1 P (K1 > n) =∞. Thus, P (Φ1 <∞) = 1, but E[Φ1] =∞.

The fact that the Procedure C has infinite expected termination time may be unavoidable in
the following sense. In the absence of additional assumptions on the traffic feeding into the infinite
server queue, any algorithm which simulates stationary departures during, say, time interval [0, 1],
must be able to directly simulate the earliest arrival, from the infinite past, which departs in [0, 1].
If such arrival is simulated sequentially backwards in time, we now argue that the expected time
to detect such arrival must be infinite. Assuming, for simplicity, deterministic inter-arrival times

19

equal to 1, and letting −T < 0 be the time at which such earliest arrival occurs, then we have that

P (T > n) ≥ P (∪∞k=n+1{Vk ∈ [k, k + 1]})

≥ (1− P (V > n))
∞∑

k=n+1

P (Vk ∈ [k, k + 1])

= (1− P (V > n))P (V > n+ 1).

As
∑∞

n=0 P (V > n) =∞, we must have that E[T] =∞.

Remark 2. Based on our analysis above, in general, there is a trade-off between Ξ1 and Ξ2 in
terms of εn. The smaller εn is, the larger the value of Ξ1 and the smaller the value of Ξ2.

References

[1] S. Asmussen. Applied Probability and Queues. Springer, 2 edition, 2003.

[2] J. Blanchet, X. Chen, and J. Dong. Steady-state simulation of reflected brownian motion and
related stochastic networks. The Annals of Applied Probability, 25(6):32093250, 2015.

[3] J. Blanchet and J. Dong. Perfect sampling for infinite server and loss systems. Advances in
Applied Probability, 47(3):761–786, 2015.

[4] J. Blanchet, J. Dong, and Y. Pei. Perfect sampling of gi/gi/c queues. Working paper, available
at http://arxiv.org/pdf/1508.02262v1.pdf.

[5] J. Blanchet and A. Wallwater. Exact sampling fot the steady-state waiting times of a
heavy-tailed single server queue. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 25(4), 2015.

[6] K. Ensor and P. Glynn. Simulating the maximum of a random walk. Journal of Statistical
Planning and Inference, 85:127–135, 2000.

[7] A. Ganesh, N. O’Connell, and D. Wischik. Big Queues. Lecture notes in Mathematics. Springer,
Berlin, 2004.

[8] W.S. Kendall. Perfect simulation for the area-interaction point process. In Probability towards
2000, pages 218–234. Springer, 1998.

[9] J. Propp and D. Wilson. Exact sampling with coupled Markov chains and applications to
statistical mechanics. Random Structures and Algorithms, 9:223–252, 1996.

20

	1 Introduction
	2 Sampling strategy and main algorithmic development
	2.1 Step ii) and iii) in Algorithm 1
	2.2 Step iv) in Algorithm 1

	3 Running time analysis
	3.1 Numerical experiments
	3.1.1 Choice of parameter a
	3.1.2 Departure process of an M/G/ queue

	4 Departure process of an infinite server queue
	4.1 Sampling of the arrival process and 1
	4.2 Sampling of the service time process and 2

